aboutsummaryrefslogtreecommitdiffstats
path: root/src/pipelining/SPBasic.ml
diff options
context:
space:
mode:
Diffstat (limited to 'src/pipelining/SPBasic.ml')
-rw-r--r--src/pipelining/SPBasic.ml819
1 files changed, 819 insertions, 0 deletions
diff --git a/src/pipelining/SPBasic.ml b/src/pipelining/SPBasic.ml
new file mode 100644
index 0000000..32234b8
--- /dev/null
+++ b/src/pipelining/SPBasic.ml
@@ -0,0 +1,819 @@
+(***********************************************************************)
+ (* *)
+(* Compcert Extensions *)
+(* *)
+(* Jean-Baptiste Tristan *)
+(* *)
+(* All rights reserved. This file is distributed under the terms *)
+(* described in file ../../LICENSE. *)
+(* *)
+(***********************************************************************)
+
+
+open RTL
+open Camlcoq
+open Graph.Pack.Digraph
+open Op
+open Registers
+open Memory
+open Mem
+open AST
+open SPBase_types
+open SPSymbolic_evaluation
+
+type node = instruction * int
+module G = Graph.Persistent.Digraph.AbstractLabeled
+ (struct type t = node end)
+ (struct type t = int let compare = compare let default = 0 end)
+module Topo = Graph.Topological.Make (G)
+module Dom = Graph.Dominator.Make (G)
+module Index = Map.Make (struct type t = int let compare = compare end)
+
+let string_of_instruction node =
+ match G.V.label node with
+ | (Inop,n) -> Printf.sprintf "%i nop" n
+ | (Iop (op, args, dst),n) -> Printf.sprintf "%i r%i := %s %s" n (to_int dst) (string_of_op op) (string_of_args args)
+ | (Iload (chunk, mode, args, dst),n) -> Printf.sprintf "%i r%i := load %s" n (to_int dst) (string_of_args args)
+ | (Istore (chunk, mode, args, src),n) -> Printf.sprintf "%i store %i %s" n (to_int src) (string_of_args args)
+ | (Icall (sign, id, args, dst),n) -> Printf.sprintf "%i call" n
+ | (Itailcall (sign, id, args),n) -> Printf.sprintf "%i tailcall" n
+ (* | (Ialloc (dst, size),n) -> Printf.sprintf "%i %i := alloc" n (to_int dst) *)
+ | (Icond (cond, args),n) -> Printf.sprintf "%i cond %s %s" n (string_of_cond cond) (string_of_args args)
+ | (Ireturn (res),n) -> Printf.sprintf "%i return" n
+
+let string_of_node = string_of_instruction
+
+module Display = struct
+ include G
+ let vertex_name v = print_inst (V.label v)
+ let graph_attributes _ = []
+ let default_vertex_attributes _ = []
+ let vertex_attributes v = [`Label (string_of_instruction v)]
+ let default_edge_attributes _ = []
+ let edge_attributes e = [`Label (string_of_int (G.E.label e))]
+ let get_subgraph _ = None
+end
+module Dot_ = Graph.Graphviz.Dot(Display)
+
+let dot_output g f =
+ let oc = open_out f in
+ Dot_.output_graph oc g;
+ close_out oc
+
+let display g name =
+ let addr = SPDebug.name ^ name in
+ dot_output g addr ;
+ ignore (Sys.command ("(dot -Tpng " ^ addr ^ " -o " ^ addr ^ ".png ; rm -f " ^ addr ^ ") & "))
+
+(******************************************)
+
+type cfg = {graph : G.t; start : G.V.t}
+
+(* convert traduit un graphe RTL compcert en un graphe RTL ocamlgraph*)
+
+let convert f =
+
+ let make_node inst key =
+ let inst = inst_coq_to_caml inst in
+ G.V.create (inst, to_int key)
+ in
+
+ let (graph, index) = Maps.PTree.fold (fun (g,m) key inst ->
+ let node = make_node inst key in
+ (G.add_vertex g node, Index.add (to_int key) node m)
+ ) f.fn_code (G.empty,Index.empty)
+ in
+
+ let succ = RTL.successors_map f in
+ let rec link n succs g =
+ match succs with
+ | [] -> g
+ | pos::[] ->
+ G.add_edge g (Index.find (to_int n) index) (Index.find (to_int pos) index)
+ | pos1::pos2::[] ->
+ let g = G.add_edge_e g (G.E.create (Index.find (to_int n) index) 1 (Index.find (to_int pos1) index)) in
+ G.add_edge_e g (G.E.create (Index.find (to_int n) index) 2 (Index.find (to_int pos2) index))
+ | _ -> failwith "convert : trop de successeurs"
+
+ in
+
+ let graph = Maps.PTree.fold ( fun g key inst ->
+ link key (match Maps.PTree.get key succ with
+ Some x -> x | _ -> failwith "Could not index") g
+ ) f.fn_code graph
+ in
+
+ {graph = graph; start = Index.find (to_int (f.fn_entrypoint)) index}
+
+
+let convert_back g =
+
+ G.fold_vertex (fun node m ->
+ let v = G.V.label node in
+ match (fst v) with
+ | Icond (_,_) ->
+ begin
+ let l =
+ match G.succ_e g node with
+ | [e1;e2] ->
+ if G.E.label e1 > G.E.label e2
+ then [G.E.dst e2;G.E.dst e1]
+ else [G.E.dst e1;G.E.dst e2]
+ | _ -> failwith "convert_back: nombre de successeurs incoherent"
+ in
+ let succs = List.map (fun s -> to_binpos (snd (G.V.label s))) l in
+ Maps.PTree.set (to_binpos (snd v)) (inst_caml_to_coq (fst v) succs) m
+ end
+ | _ ->
+ let succs = List.map (fun s -> to_binpos (snd (G.V.label s))) (G.succ g node) in
+ Maps.PTree.set (to_binpos (snd v)) (inst_caml_to_coq (fst v) succs) m
+ ) g Maps.PTree.empty
+
+
+
+
+(* dominator_tree calcule l'arbre de domination grace au code de FP *)
+let dominator_tree f =
+ Dom.compute_idom f.graph f.start
+
+(* detect_loops, find the loops in the graph and returns the list of nodes in it,
+ in dominating order !!! This is of great importance, we suppose that it is ordered
+ when we build the dependency graph *)
+let detect_loops graph dom_tree =
+ let rec is_dominating v1 v2 l = (* does v1 dominate v2 *)
+ match dom_tree v2 with
+ | v -> if v1 = v then Some (v :: l)
+ else is_dominating v1 v (v :: l)
+ | exception (Not_found) -> None
+ in
+
+ G.fold_edges (fun v1 v2 loops ->
+ match is_dominating v2 v1 [v1] with
+ | None -> loops
+ | Some loop -> (v2,loop) :: loops
+ ) graph []
+
+let print_index node =
+ Printf.printf "%i " (snd (G.V.label node))
+
+let print_instruction node =
+ match G.V.label node with
+ | (Inop,n) -> Printf.printf "%i : Inop \n" n
+ | (Iop (op, args, dst),n) -> Printf.printf "%i : Iop \n" n
+ | (Iload (chunk, mode, args, dst),n) -> Printf.printf "%i : Iload \n" n
+ | (Istore (chunk, mode, args, src),n) -> Printf.printf "%i : Istore \n" n
+ | (Icall (sign, id, args, dst),n) -> Printf.printf "%i : Icall \n" n
+ | (Itailcall (sign, id, args),n) -> Printf.printf "%i : Itailcall \n" n
+ (*| (Ialloc (dst, size),n) -> Printf.printf "%i : Ialloc \n" n *)
+ | (Icond (cond, args),n) -> Printf.printf "%i : Icond \n" n
+ | (Ireturn (res),n) -> Printf.printf "%i : Ireturn \n" n
+
+let is_rewritten node r =
+ match fst (G.V.label node) with
+ | Inop -> false
+ | Iop (op, args, dst) -> if dst = r then true else false
+ | Iload (chunk, mode, args, dst) -> if dst = r then failwith "J'ai degote une boucle ZARBI !!!" else false
+ | Istore (chunk, mode, args, src) -> false
+ | Icall (sign, id, args, dst) -> failwith "call in a loop"
+ | Itailcall (sign, id, args) -> failwith "tailcall in a loop"
+ (* | Ialloc (dst, size) -> if dst = r then failwith "J'ai degote une boucle ZARBI !!!" else false *)
+ | Icond (cond, args) -> false
+ | Ireturn (res) -> failwith "return in a loop"
+
+let is_variant r loop =
+ List.fold_right (fun node b ->
+ is_rewritten node r || b
+ ) loop false
+
+
+let is_pipelinable loop = (* true if loop is innermost and without control *)
+
+ let is_acceptable node =
+ match fst (G.V.label node) with
+ | Icall _ | Itailcall _ | Ireturn _ | Icond _ (*| Ialloc _*) | Iop ((Ocmp _),_,_)-> false
+ | _ -> true
+ in
+
+ let is_branching node =
+ match fst (G.V.label node) with
+ | Icond _ -> true
+ | _ -> false
+ in
+
+ let is_nop node =
+ match fst (G.V.label node) with
+ | Inop -> true
+ | _ -> false
+ in
+
+ let is_OK_aux l =
+ List.fold_right (fun n b -> is_acceptable n && b) l true
+ in
+
+ let is_bounded node loop =
+ match G.V.label node with
+ | (Icond (cond, args),n) ->
+ let args = to_caml_list args in
+ begin
+ match args with
+ | [] -> false
+ | r :: [] -> is_variant r loop (* used to be not *)
+ | r1 :: r2 :: [] ->
+ begin
+ match is_variant r1 loop, is_variant r2 loop with
+ | true, true -> false
+ | false, true -> true
+ | true, false -> true
+ | false, false -> false
+ end
+ | _ -> false
+ end
+ | _ -> false
+ in
+
+ match List.rev loop with
+ | v2 :: v1 :: l -> ((*Printf.printf "is_nop: %s | " (is_nop v1 |> string_of_bool);*)
+ Printf.printf "is_branching: %s | " (is_branching v2 |> string_of_bool);
+ Printf.printf "is_OK_aux: %s | " (is_OK_aux l |> string_of_bool);
+ Printf.printf "is_bounded: %s\n" (is_bounded v2 loop |> string_of_bool);
+ (*is_nop v1 && *)is_branching v2 && is_OK_aux l && is_bounded v2 loop)
+ | _ -> false
+
+let print_loops loops =
+ List.iter (fun loop -> print_index (fst(loop));
+ print_newline ();
+ List.iter print_index (snd(loop));
+ print_newline ();
+ if is_pipelinable (snd(loop)) then print_string "PIPELINABLE !" else print_string "WASTE";
+ print_newline ();
+ List.iter print_instruction (snd(loop));
+ print_newline ()
+ ) loops
+
+(* type resource = Reg of reg | Mem *)
+module Sim = Map.Make (struct type t = resource let compare = compare end)
+
+let map_get key map =
+ try Some (Sim.find key map)
+ with
+ | Not_found -> None
+
+let rec to_res l =
+ match l with
+ | [] -> []
+ | e :: l -> Reg e :: to_res l
+
+let resources_reads_of node =
+ match fst (G.V.label node) with
+ | Inop -> []
+ | Iop (op, args, dst) -> to_res args
+ | Iload (chunk, mode, args, dst) -> Mem :: (to_res args)
+ | Istore (chunk, mode, args, src) -> Mem :: Reg src :: (to_res args)
+ | Icall (sign, id, args, dst) -> failwith "Resource read of call"
+ | Itailcall (sign, id, args) -> failwith "Resource read of tailcall"
+ (*| Ialloc (dst, size) -> [Mem] *)
+ | Icond (cond, args) -> to_res args
+ | Ireturn (res) -> failwith "Resource read of return"
+
+let resources_writes_of node =
+ match fst (G.V.label node) with
+ | Inop -> []
+ | Iop (op, args, dst) -> [Reg dst]
+ | Iload (chunk, mode, args, dst) -> [Reg dst]
+ | Istore (chunk, mode, args, src) -> [Mem]
+ | Icall (sign, id, args, dst) -> failwith "Resource read of call"
+ | Itailcall (sign, id, args) -> failwith "Resource read of tailcall"
+ (*| Ialloc (dst, size) -> (Reg dst) :: [Mem]*)
+ | Icond (cond, args) -> []
+ | Ireturn (res) -> failwith "Resource read of return"
+
+let build_intra_dependency_graph loop =
+
+ let rec build_aux graph read write l =
+ match l with
+ | [] -> (graph,(read,write))
+ | v :: l->
+ let g = G.add_vertex graph v in
+ let reads = resources_reads_of v in
+ let writes = resources_writes_of v in
+ (* dependances RAW *)
+ let g = List.fold_right (fun r g ->
+ match map_get r write with
+ | Some n -> G.add_edge_e g (G.E.create n 1 v)
+ | None -> g
+ ) reads g in
+ (* dependances WAR *)
+ let g = List.fold_right (fun r g ->
+ match map_get r read with
+ | Some l -> List.fold_right (fun n g -> G.add_edge_e g (G.E.create n 2 v)) l g
+ | None -> g
+ ) writes g in
+ (* dependances WAW *)
+ let g = List.fold_right (fun r g ->
+ match map_get r write with
+ | Some n -> G.add_edge_e g (G.E.create n 3 v)
+ | None -> g
+ ) writes g in
+ let write = List.fold_right (fun r m -> Sim.add r v m) writes write in
+ let read_tmp = List.fold_right (fun r m ->
+ match map_get r read with
+ | Some al -> Sim.add r (v :: al) m
+ | None -> Sim.add r (v :: []) m
+ ) reads read
+ in
+ let read = List.fold_right (fun r m -> Sim.add r [] m) writes read_tmp in
+
+ build_aux g read write l
+ in
+
+ build_aux G.empty Sim.empty Sim.empty (List.tl loop)
+
+let build_inter_dependency_graph loop =
+
+ let rec build_aux2 graph read write l =
+ match l with
+ | [] -> graph
+ | v :: l->
+ let g = graph in
+ let reads = resources_reads_of v in
+ let writes = resources_writes_of v in
+ (* dependances RAW *)
+ let g = List.fold_right (fun r g ->
+ match map_get r write with
+ | Some n -> (* if n = v then g else *) G.add_edge_e g (G.E.create n 4 v)
+ | None -> g
+ ) reads g in
+ (* dependances WAR *)
+ let g = List.fold_right (fun r g ->
+ match map_get r read with
+ | Some l -> List.fold_right
+ (fun n g -> (* if n = v then g else *) G.add_edge_e g (G.E.create n 5 v)) l g
+ | None -> g
+ ) writes g in
+ (* dependances WAW *)
+ let g = List.fold_right (fun r g ->
+ match map_get r write with
+ | Some n -> (* if n = v then g else *) G.add_edge_e g (G.E.create n 6 v)
+ | None -> g
+ ) writes g in
+ let write = List.fold_right (fun r m -> Sim.remove r m) writes write in
+ let read = List.fold_right (fun r m -> Sim.remove r m) writes read in
+
+
+ build_aux2 g read write l
+ in
+
+ let (g,(r,w)) = build_intra_dependency_graph loop in
+ build_aux2 g r w (List.tl loop)
+
+(* patch_graph prepare le graphe pour la boucle commencant au noeud entry
+ qui a une borne de boucle bound et pour un software pipelining
+ de au minimum min tours et de deroulement ur *)
+(* this is rather technical so we give many comments *)
+
+(* let n1 = G.V.create (Iop ((Ointconst ur),to_coq_list [],r1),next_pc) in *)
+(* let next_pc = next_pc + 1 in *)
+(* let n2 = G.V.create (Iop (Odiv,to_coq_list [bound;r1],r2),next_pc) in *)
+(* let next_pc = next_pc + 1 in *)
+(* let n3 = G.V.create (Iop ((Omulimm ur),to_coq_list [r2],r3),next_pc) in *)
+(* let next_pc = next_pc + 1 in *)
+(* let n4 = G.V.create (Iop (Osub,to_coq_list [bound;r3],r4),next_pc) in *)
+(* let next_pc = next_pc + 1 in *)
+(* let n5 = G.V.create (Iop (Omove,to_coq_list [r3],bound),next_pc) in (\* retouchee, [r3],bound *\) *)
+
+
+let patch_graph graph entry lastone loop bound min ur r1 r2 r3 r4 next_pc prolog epilog ramp_up ramp_down =
+
+ (* 1. Break the edge that enters the loop, except for the backedge *)
+ let preds_e = G.pred_e graph entry in
+ let wannabes = List.map G.E.src preds_e in
+ let wannabes = List.filter (fun e -> not (e = lastone)) wannabes in
+ let graph = List.fold_right (fun e g -> G.remove_edge_e g e) preds_e graph in
+ let graph = G.add_edge graph lastone entry in
+
+ (* 2. Add the test for minimal iterations and link it*)
+
+ let cond = G.V.create (Icond ((Ccompimm (Integers.Cle,min)),to_coq_list [bound]), next_pc) in
+ let graph = G.add_vertex graph cond in
+ let next_pc = next_pc + 1 in
+
+ (* 3. Link its predecessors and successors *)
+ (* It is false in case there is a condition that points to the entry:
+ inthis case, the edge should not be labeled with 0 !*)
+
+ let graph = List.fold_right (fun n g -> G.add_edge g n cond) wannabes graph in
+ let graph = G.add_edge_e graph (G.E.create cond 1 entry) in
+
+
+ (* 4. Add the div and modulo code, link it *)
+ let n1 = G.V.create (Iop ((Ointconst ur),to_coq_list [],r1),next_pc) in
+ let next_pc = next_pc + 1 in
+ let n2 = G.V.create (Iop (Odiv,to_coq_list [bound;r1],r2),next_pc) in
+ let next_pc = next_pc + 1 in
+ let n3 = G.V.create (Iop (Omove,to_coq_list [bound],r4),next_pc) in
+ let next_pc = next_pc + 1 in
+ let n4 = G.V.create (Iop ((Omulimm ur ),to_coq_list [r2],r3),next_pc) in
+ let next_pc = next_pc + 1 in
+ let n5 = G.V.create (Iop ((Olea (Aindexed (Z.of_sint (-1)))),to_coq_list [r3],bound),next_pc) in (* retouchee, [r3],bound *)
+ let next_pc = next_pc + 1 in
+ let graph = G.add_vertex graph n1 in
+ let graph = G.add_vertex graph n2 in
+ let graph = G.add_vertex graph n3 in
+ let graph = G.add_vertex graph n4 in
+ let graph = G.add_vertex graph n5 in
+ let graph = G.add_edge_e graph (G.E.create cond 2 n1) in
+ let graph = G.add_edge graph n1 n2 in
+ let graph = G.add_edge graph n2 n3 in
+ let graph = G.add_edge graph n3 n4 in
+ let graph = G.add_edge graph n4 n5 in
+
+ (* 5. Fabriquer la pipelined loop et la linker, sans la condition d entree *)
+
+ let (graph,next_pc,l) = List.fold_right (fun e (g,npc,l) ->
+ let n = G.V.create (e,npc) in
+ (G.add_vertex g n, npc+1, n :: l)
+ ) loop (graph,next_pc,[]) in
+
+ let pipe_cond = List.hd l in
+ let pipeline = List.tl l in
+
+ let rec link l graph node =
+ match l with
+ | n1 :: n2 :: l -> link (n2 :: l) (G.add_edge graph n1 n2) node
+ | n1 :: [] -> G.add_edge graph n1 node
+ | _ -> graph
+ in
+
+ let graph = link pipeline graph pipe_cond in
+
+ (* link de l entree de la boucle *)
+
+ let (graph,next_pc,prolog) = List.fold_right (fun e (g,npc,l) ->
+ let n = G.V.create (e,npc) in
+ (G.add_vertex g n, npc+1, n :: l)
+ ) prolog (graph,next_pc,[]) in
+
+ let (graph,next_pc,epilog) = List.fold_right (fun e (g,npc,l) ->
+ let n = G.V.create (e,npc) in
+ (G.add_vertex g n, npc+1, n :: l)
+ ) epilog (graph,next_pc,[]) in
+
+ (* 6. Creation du reste et branchement et la condition *)
+ let n6 = G.V.create (Iop (Omove,to_coq_list [r4],bound),next_pc) in (* Iop (Omove,to_coq_list [r4],bound) *)
+ let next_pc = next_pc + 1 in
+
+ (* 7. Creation du ramp up *)
+ let ramp_up = List.map (fun (a,b) -> Iop (Omove, [b], a)) ramp_up in
+ let (graph,next_pc,ramp_up) = List.fold_right (fun e (g,npc,l) ->
+ let n = G.V.create (e,npc) in
+ (G.add_vertex g n, npc+1, n :: l)
+ ) ramp_up (graph,next_pc,[]) in
+
+ let next_pc = next_pc + 1 in
+
+ let ramp_down = List.map (fun (a,b) -> Iop (Omove,[b],a)) ramp_down in
+ let (graph,next_pc,ramp_down) = List.fold_right (fun e (g,npc,l) ->
+ let n = G.V.create (e,npc) in
+ (G.add_vertex g n, npc+1, n :: l)
+ ) ramp_down (graph,next_pc,[]) in
+
+ (* let next_pc = next_pc + 1 in *)
+
+ (* Creation des proloque et epilogue *)
+
+ let graph = link prolog graph pipe_cond in
+ let graph = link ramp_up graph (List.hd prolog) in
+ let graph = link epilog graph (List.hd ramp_down) in
+ let graph = link ramp_down graph n6 in
+
+ let graph = G.add_edge graph n5 (List.hd ramp_up) in
+ let graph = G.add_edge_e graph (G.E.create pipe_cond 1 (List.hd epilog)) in
+ let graph = G.add_edge_e graph (G.E.create pipe_cond 2 (List.hd pipeline)) in
+
+ (* 8. Retour sur la boucle classique *)
+ let graph = G.add_edge graph n6 entry in
+
+ graph
+
+let regs_of_node node =
+ match G.V.label node with
+ | (Inop,n) -> []
+ | (Iop (op, args, dst),n) -> dst :: (to_caml_list args)
+ | (Iload (chunk, mode, args, dst),n) -> dst :: (to_caml_list args)
+ | (Istore (chunk, mode, args, src),n) -> src :: (to_caml_list args)
+ | (Icall (sign, id, args, dst),n) -> dst :: (to_caml_list args)
+ | (Itailcall (sign, id, args),n) -> (to_caml_list args)
+ (*| (Ialloc (dst, size),n) -> [dst]*)
+ | (Icond (cond, args),n) -> (to_caml_list args)
+ | (Ireturn (res),n) -> match res with Some res -> [res] | _ -> []
+
+let max_reg_of_graph graph params =
+ Printf.fprintf SPDebug.dc "Calcul du registre de depart.\n";
+ let regs = G.fold_vertex (fun node regs ->
+ (regs_of_node node) @ regs
+ ) graph [] in
+ let regs = regs @ params in
+ let max_reg = List.fold_right (fun reg max ->
+ Printf.fprintf SPDebug.dc "%i " (P.to_int reg);
+ if Int32.compare (P.to_int32 reg) max > 0
+ then (P.to_int32 reg)
+ else max
+ ) regs Int32.zero in
+
+ Printf.fprintf SPDebug.dc "MAX REG = %i\n" (Int32.to_int max_reg);
+ BinPos.Pos.succ (P.of_int32 max_reg)
+
+let get_bound node loop =
+ match G.V.label node with
+ | (Icond (cond, args),n) ->
+ let args = to_caml_list args in
+ begin
+ match args with
+ | [] -> failwith "get_bound: condition sans variables"
+ | r :: [] -> if is_variant r loop then failwith "Pas de borne dans la boucle" else r (* Modified false to true condition. *)
+ | r1 :: r2 :: [] ->
+ begin
+ match is_variant r1 loop, is_variant r2 loop with
+ | true, true -> failwith "Pas de borne dans la boucle "
+ | false, true -> r1
+ | true, false -> r2
+ | false, false -> failwith "deux bornes possibles dans la boucle"
+ end
+ | _ -> failwith "get_bound: condition avec nombre de variables superieur a 2"
+ end
+ | _ -> failwith "get_bound: the node I was given is not a condition\n"
+
+let get_nextpc graph =
+ (G.fold_vertex (fun node max ->
+ if (snd (G.V.label node)) > max
+ then (snd (G.V.label node))
+ else max
+ ) graph 0) + 1
+
+let substitute_pipeline graph loop steady_state prolog epilog min unrolling ru rd params =
+ let n1 = max_reg_of_graph graph params in
+ let n2 = (BinPos.Pos.succ n1) in
+ let n3 = (BinPos.Pos.succ n2) in
+ let n4 = (BinPos.Pos.succ n3) in
+ let way_in = (List.hd loop) in
+ let way_out = (List.hd (List.rev loop)) in
+ let bound = (get_bound way_out loop) in
+ let min = Z.of_sint min in
+ let unrolling = Z.of_sint unrolling in
+ let next_pc = get_nextpc graph in
+ patch_graph graph way_in way_out steady_state bound min unrolling n1 n2 n3 n4 next_pc prolog epilog ru rd
+
+let get_loops cfg =
+ let domi = dominator_tree cfg in
+ let loops = detect_loops cfg.graph domi in
+ print_loops loops;
+ let loops = List.filter (fun loop -> is_pipelinable (snd (loop))) loops in
+ loops
+
+type pipeline = {steady_state : G.V.t list; prolog : G.V.t list; epilog : G.V.t list;
+ min : int; unrolling : int; ramp_up : (reg * reg) list; ramp_down : (reg * reg) list}
+
+let delete_indexes l = List.map (fun e -> fst (G.V.label e) ) l
+
+type reg = Registers.reg
+
+let fresh = ref BinNums.Coq_xH
+
+let distance e =
+ match G.E.label e with
+ | 1 | 2 | 3 -> 0
+ | _ -> 1
+
+type et = IntraRAW | IntraWAW | IntraWAR | InterRAW | InterWAW | InterWAR
+
+let edge_type e =
+ match G.E.label e with
+ | 1 -> IntraRAW
+ | 2 -> IntraWAR
+ | 3 -> IntraWAW
+ | 4 -> InterRAW
+ | 5 -> InterWAR
+ | 6 -> InterWAW
+ | _ -> failwith "Unknown edge type"
+
+let latency n = (* A raffiner *)
+ match fst (G.V.label n) with
+ | Iop (op,args, dst) ->
+ begin
+ match op with
+ | Omove -> 1
+ (*| Oaddimm _ -> 1*)
+ (*| Oadd -> 2*)
+ | Omul -> 4
+ | Odiv -> 30
+ | Omulimm _ -> 4
+ | _ -> 2
+ end
+ | Iload _ -> 1
+ (* | Ialloc _ -> 20*)
+ | _ -> 1
+
+let reforge_writes inst r =
+ G.V.create ((match fst (G.V.label inst) with
+ | Inop -> Inop
+ | Iop (op, args, dst) -> Iop (op, args, r)
+ | Iload (chunk, mode, args, dst) -> Iload (chunk, mode, args, r)
+ | Istore (chunk, mode, args, src) -> Istore (chunk, mode, args, src)
+ | Icall (sign, id, args, dst) -> failwith "reforge_writes: call"
+ | Itailcall (sign, id, args) -> failwith "reforge_writes: tailcall"
+ (* | Ialloc (dst, size) -> Ialloc (r, size)*)
+ | Icond (cond, args) -> Icond (cond, args)
+ | Ireturn (res) -> failwith "reforge_writes: return")
+ , snd (G.V.label inst))
+
+let rec reforge_args args oldr newr =
+ match args with
+ | [] -> []
+ | e :: l -> (if e = oldr then newr else e) :: (reforge_args l oldr newr)
+
+let rec mem_args args r =
+ match args with
+ | [] -> false
+ | e :: l -> if e = r then true else mem_args l r
+
+let check_read_exists inst r =
+ match fst (G.V.label inst) with
+ | Inop -> false
+ | Iop (op, args, dst) -> mem_args args r
+ | Iload (chunk, mode, args, dst) -> mem_args args r
+ | Istore (chunk, mode, args, src) -> src = r || mem_args args r
+ | Icall (sign, id, args, dst) -> mem_args args r
+ | Itailcall (sign, id, args) -> false
+ (*| Ialloc (dst, size) -> false*)
+ | Icond (cond, args) -> mem_args args r
+ | Ireturn (res) -> false
+
+let reforge_reads inst oldr newr =
+ assert (check_read_exists inst oldr);
+ G.V.create ((match fst (G.V.label inst) with
+ | Inop -> Inop
+ | Iop (op, args, dst) -> Iop (op, reforge_args args oldr newr, dst)
+ | Iload (chunk, mode, args, dst) -> Iload (chunk, mode, reforge_args args oldr newr, dst)
+ | Istore (chunk, mode, args, src) -> Istore (chunk, mode, reforge_args args oldr newr , if src = oldr then newr else src)
+ | Icall (sign, id, args, dst) -> failwith "reforge_reads: call"
+ | Itailcall (sign, id, args) -> failwith "reforge_reads: tailcall"
+ (*| Ialloc (dst, size) -> Ialloc (dst, size)*)
+ | Icond (cond, args) -> Icond (cond, reforge_args args oldr newr)
+ | Ireturn (res) -> failwith "reforge_reads: return")
+ , snd (G.V.label inst))
+
+let get_succs_raw ddg node =
+ let succs = G.succ_e ddg node in
+ let succs = List.filter (fun succ ->
+ match G.E.label succ with
+ | 1 | 4 -> true
+ | _ -> false
+ ) succs in
+ List.map (fun e -> G.E.dst e) succs
+
+let written inst =
+ match fst (G.V.label inst) with
+ | Inop -> None
+ | Iop (op, args, dst) -> Some dst
+ | Iload (chunk, mode, args, dst) -> Some dst
+ | Istore (chunk, mode, args, src) -> None
+ | Icall (sign, id, args, dst) -> failwith "written: call"
+ | Itailcall (sign, id, args) -> failwith "written: tailcall"
+ (*| Ialloc (dst, size) -> Some dst*)
+ | Icond (cond, args) -> None
+ | Ireturn (res) -> failwith "written: return"
+
+let fresh_regs n =
+ let t = Array.make n (BinNums.Coq_xH) in
+ for i = 0 to (n - 1) do
+ Array.set t i (!fresh);
+ fresh := BinPos.Pos.succ !fresh
+ done;
+ t
+
+let print_reg r = Printf.fprintf SPDebug.dc "%i " (P.to_int r)
+
+let is_cond node =
+ match fst (G.V.label node) with
+ | Icond _ -> true
+ | _ -> false
+
+
+(*******************************************)
+
+let watch_regs l = List.fold_right (fun (a,b) l ->
+ if List.mem a l then l else a :: l
+ ) l []
+
+let make_moves = List.map (fun (a,b) -> Iop (Omove,[b],a))
+
+let rec repeat l n =
+ match n with
+ | 0 -> []
+ | n -> l @ repeat l (n-1)
+
+let fv = ref 0
+
+let apply_pipeliner f p ?(debug=false) =
+ Printf.fprintf SPDebug.dc "******************** NEW FUNCTION ***********************\n";
+ let cfg = convert f in
+ incr fv;
+ if debug then display cfg.graph ("input" ^ (string_of_int !fv));
+ let loops = get_loops cfg in
+ Printf.fprintf SPDebug.dc "Loops: %d\n" (List.length loops);
+ let ddgs = List.map (fun (qqch,loop) -> (loop,build_inter_dependency_graph loop)) loops in
+
+ let lv = ref 0 in
+
+ let graph = List.fold_right (fun (loop,ddg) graph ->
+ Printf.fprintf SPDebug.dc "__________________ NEW LOOP ____________________\n";
+ Printf.printf "Pipelinable loop: ";
+ incr lv;
+ fresh := (BinPos.Pos.succ
+ (BinPos.Pos.succ
+ (BinPos.Pos.succ
+ (BinPos.Pos.succ
+ (BinPos.Pos.succ
+ (max_reg_of_graph graph (to_caml_list f.fn_params)
+ ))))));
+ Printf.fprintf SPDebug.dc "FRESH = %i \n"
+ (P.to_int !fresh);
+ match p ddg with
+ | Some pipe ->
+ Printf.printf "Rock On ! Min = %i - Unroll = %i\n" pipe.min pipe.unrolling;
+ let p = (make_moves pipe.ramp_up) @ (delete_indexes pipe.prolog) in
+ let e = (delete_indexes pipe.epilog) @ (make_moves pipe.ramp_down) in
+ let b = delete_indexes (List.tl (List.rev loop)) in
+ let bt = (List.tl (delete_indexes pipe.steady_state)) in
+ let cond1 = fst (G.V.label (List.hd (List.rev loop))) in
+ let cond2 = (List.hd (delete_indexes pipe.steady_state)) in
+
+ let bu = symbolic_evaluation (repeat b (pipe.min + 1)) in
+ let pe = symbolic_evaluation (p @ e) in
+ let bte = symbolic_evaluation (bt @ e) in
+ let ebu = symbolic_evaluation (e @ repeat b pipe.unrolling) in
+ let regs = watch_regs pipe.ramp_down in
+ let c1 = symbolic_condition cond1 (repeat b pipe.unrolling) in
+ let d1 = symbolic_condition cond1 (repeat b (pipe.min + 1)) in
+ (*let c2 = symbolic_condition cond2 p in
+ let d2 = symbolic_condition cond2 ((make_moves pipe.ramp_up) @ bt) in*)
+
+
+
+ let sbt = symbolic_evaluation (bt) in
+ let sep = symbolic_evaluation (e @ repeat b (pipe.unrolling - (pipe.min + 1)) @ p) in (* er @ pr *)
+
+ Printf.printf "Initialisation : %s \n"
+ (if symbolic_equivalence bu pe regs then "OK" else "FAIL");
+ Printf.printf "Etat stable : %s \n"
+ (if symbolic_equivalence bte ebu regs then "OK" else "FAIL");
+ Printf.printf "Egalite fondamentale : %s \n"
+ (if symbolic_equivalence sbt sep (watch_regs pipe.ramp_up) then "OK" else "FAIL");
+ (* Printf.printf "Condition initiale : %s \n"
+ (if c1 = c2 then "OK" else "FAIL");
+ Printf.printf "Condition stable : %s \n"
+ (if d1 = d2 then "OK" else "FAIL");
+
+
+ Printf.fprintf SPDebug.dc "pbte\n";*)
+ List.iter (fun e ->
+ Printf.fprintf SPDebug.dc "%s\n"
+ (string_of_node (G.V.create (e,0)))
+ ) (p @ bt @ e);
+ Printf.fprintf SPDebug.dc "bu\n";
+ List.iter (fun e -> Printf.fprintf SPDebug.dc "%s\n"
+ (string_of_node (G.V.create (e,0)))
+ ) (repeat b (pipe.unrolling + pipe.min));
+
+
+
+ if debug then
+ display_st ("pbte"^ (string_of_int !fv) ^ (string_of_int !lv)) (p @ bt @ e) (watch_regs pipe.ramp_down);
+ if debug then
+ display_st ("bu"^ (string_of_int !fv) ^ (string_of_int !lv)) (repeat b (pipe.min + pipe.unrolling)) (watch_regs pipe.ramp_down);
+
+ if debug then display_st ("bt"^ (string_of_int !fv) ^ (string_of_int !lv)) (bt) (watch_regs pipe.ramp_up);
+ if debug then display_st ("ep"^ (string_of_int !fv) ^ (string_of_int !lv)) (e @ repeat b (pipe.unrolling - (pipe.min + 1)) @ p) (watch_regs pipe.ramp_up);
+
+ substitute_pipeline graph loop
+ (delete_indexes pipe.steady_state) (delete_indexes pipe.prolog)
+ (delete_indexes pipe.epilog) (pipe.min + pipe.unrolling)
+ pipe.unrolling pipe.ramp_up
+ pipe.ramp_down
+ (to_caml_list f.fn_params)
+ | None -> Printf.printf "Damn It ! \n"; graph
+ ) ddgs cfg.graph in
+
+ if debug then display graph ("output"^ (string_of_int !fv));
+ let tg = convert_back graph in
+
+ let tg_to_type = {fn_sig = f.fn_sig;
+ fn_params = f.fn_params;
+ fn_stacksize = f.fn_stacksize;
+ fn_code = tg;
+ fn_entrypoint = f.fn_entrypoint;
+ (*fn_nextpc = P.of_int ((get_nextpc (graph)))*)
+ } in
+ (*SPTyping.type_function tg_to_type;*)
+
+ tg_to_type