aboutsummaryrefslogtreecommitdiffstats
path: root/docs/proof/ValueVal.html
blob: dbb0a234606194f1e6dee2e59c0b24328a464251 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" class="alectryon-standalone" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.16: http://docutils.sourceforge.net/" />
<title>ValueVal.v</title>
<link rel="stylesheet" href="alectryon.css" type="text/css" />
<link rel="stylesheet" href="docutils_basic.css" type="text/css" />
<link rel="stylesheet" href="tango_subtle.css" type="text/css" />
<link rel="stylesheet" href="tango_subtle.min.css" type="text/css" />
<script type="text/javascript" src="alectryon.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/IBM-type/0.5.4/css/ibm-type.min.css" integrity="sha512-sky5cf9Ts6FY1kstGOBHSybfKqdHR41M0Ldb0BjNiv3ifltoQIsg0zIaQ+wwdwgQ0w9vKFW7Js50lxH9vqNSSw==" crossorigin="anonymous" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/firacode/5.2.0/fira_code.min.css" integrity="sha512-MbysAYimH1hH2xYzkkMHB6MqxBqfP0megxsCLknbYqHVwXTCg9IqHbk+ZP/vnhO8UEW6PaXAkKe2vQ+SWACxxA==" crossorigin="anonymous" />
</head>
<body>
<div class="alectryon-root alectryon-floating"><div class="document">


<pre class="alectryon-io"><!-- Generator: Alectryon v1.0 --><span class="coq-wsp"><span class="highlight"><span class="c">(*</span>
<span class="c"> * Vericert: Verified high-level synthesis.</span>
<span class="c"> * Copyright (C) 2020 Yann Herklotz &lt;yann@yannherklotz.com&gt;</span>
<span class="c"> *</span>
<span class="c"> * This program is free software: you can redistribute it and/or modify</span>
<span class="c"> * it under the terms of the GNU General Public License as published by</span>
<span class="c"> * the Free Software Foundation, either version 3 of the License, or</span>
<span class="c"> * (at your option) any later version.</span>
<span class="c"> *</span>
<span class="c"> * This program is distributed in the hope that it will be useful,</span>
<span class="c"> * but WITHOUT ANY WARRANTY; without even the implied warranty of</span>
<span class="c"> * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the</span>
<span class="c"> * GNU General Public License for more details.</span>
<span class="c"> *</span>
<span class="c"> * You should have received a copy of the GNU General Public License</span>
<span class="c"> * along with this program.  If not, see &lt;https://www.gnu.org/licenses/&gt;.</span>
<span class="c"> *)</span>

<span class="c">(* begin hide *)</span>
</span></span><span class="coq-sentence"><span class="coq-input"><span class="highlight"><span class="kn">From</span> Coq <span class="kn">Require Import</span> ZArith.ZArith FSets.FMapPositive Lia.</span></span><span class="coq-wsp">
</span></span><span class="coq-sentence"><span class="coq-input"><span class="highlight"><span class="kn">From</span> compcert <span class="kn">Require Export</span> lib.Integers common.Values.</span></span><span class="coq-wsp">
</span></span><span class="coq-sentence"><span class="coq-input"><span class="highlight"><span class="kn">From</span> vericert <span class="kn">Require Import</span> Vericertlib.</span></span><span class="coq-wsp">
</span></span><span class="coq-wsp"><span class="highlight"><span class="c">(* end hide *)</span>

<span class="sd">(** * Value</span>

<span class="sd">A [value] is a bitvector with a specific size. We are using the implementation</span>
<span class="sd">of the bitvector by mit-plv/bbv, because it has many theorems that we can reuse.</span>
<span class="sd">However, we need to wrap it with an [Inductive] so that we can specify and match</span>
<span class="sd">on the size of the [value]. This is necessary so that we can easily store</span>
<span class="sd">[value]s of different sizes in a list or in a map.</span>

<span class="sd">Using the default [word], this would not be possible, as the size is part of the type. *)</span>

<span class="c">(* Definition value : Type := val.</span>

<span class="c">(** ** Value conversions</span>

<span class="c">Various conversions to different number types such as [N], [Z], [positive] and</span>
<span class="c">[int], where the last one is a theory of integers of powers of 2 in CompCert. *)</span>

<span class="c">Definition valueToNat (v : value) : nat :=</span>
<span class="c">  match v with</span>
<span class="c">  | value_bool b =&gt; Nat.b2n b</span>
<span class="c">  | value_int i =&gt; Z.to_nat (Int.unsigned i)</span>
<span class="c">  | value_int64 i =&gt; Z.to_nat (Int64.unsigned i)</span>
<span class="c">  end.</span>

<span class="c">Definition natToValue (n : nat) : value :=</span>
<span class="c">  value_int (Int.repr (Z.of_nat n)).</span>

<span class="c">Definition natToValue64 (n : nat) : value :=</span>
<span class="c">  value_int64 (Int64.repr (Z.of_nat n)).</span>

<span class="c">Definition valueToN (v : value) : N :=</span>
<span class="c">  match v with</span>
<span class="c">  | value_bool b =&gt; N.b2n b</span>
<span class="c">  | value_int i =&gt; Z.to_N (Int.unsigned i)</span>
<span class="c">  | value_int64 i =&gt; Z.to_N (Int64.unsigned i)</span>
<span class="c">  end.</span>

<span class="c">Definition NToValue (n : N) : value :=</span>
<span class="c">  value_int (Int.repr (Z.of_N n)).</span>

<span class="c">Definition NToValue64 (n : N) : value :=</span>
<span class="c">  value_int64 (Int64.repr (Z.of_N n)).</span>

<span class="c">Definition ZToValue (z : Z) : value :=</span>
<span class="c">  value_int (Int.repr z).</span>

<span class="c">Definition ZToValue64 (z : Z) : value :=</span>
<span class="c">  value_int64 (Int64.repr z).</span>

<span class="c">Definition valueToZ (v : value) : Z :=</span>
<span class="c">  match v with</span>
<span class="c">  | value_bool b =&gt; Z.b2z b</span>
<span class="c">  | value_int i =&gt; Int.signed i</span>
<span class="c">  | value_int64 i =&gt; Int64.signed i</span>
<span class="c">  end.</span>

<span class="c">Definition uvalueToZ (v : value) : Z :=</span>
<span class="c">  match v with</span>
<span class="c">  | value_bool b =&gt; Z.b2z b</span>
<span class="c">  | value_int i =&gt; Int.unsigned i</span>
<span class="c">  | value_int64 i =&gt; Int64.unsigned i</span>
<span class="c">  end.</span>

<span class="c">Definition posToValue (p : positive) : value :=</span>
<span class="c">  value_int (Int.repr (Z.pos p)).</span>

<span class="c">Definition posToValue64 (p : positive) : value :=</span>
<span class="c">  value_int64 (Int64.repr (Z.pos p)).</span>

<span class="c">Definition valueToPos (v : value) : positive :=</span>
<span class="c">  match v with</span>
<span class="c">  | value_bool b =&gt; 1%positive</span>
<span class="c">  | value_int i =&gt; Z.to_pos (Int.unsigned i)</span>
<span class="c">  | value_int64 i =&gt; Z.to_pos (Int64.unsigned i)</span>
<span class="c">  end.</span>

<span class="c">Definition intToValue (i : Integers.int) : value := value_int i.</span>

<span class="c">Definition int64ToValue (i : Integers.int64) : value := value_int64 i.</span>

<span class="c">Definition valueToInt (v : value) : Integers.int :=</span>
<span class="c">  match v with</span>
<span class="c">  | value_bool b =&gt; Int.repr (if b then 1 else 0)</span>
<span class="c">  | value_int i =&gt; i</span>
<span class="c">  | value_int64 i =&gt; Int.repr (Int64.unsigned i)</span>
<span class="c">  end.</span>

<span class="c">(*Definition ptrToValue (i : ptrofs) : value :=</span>
<span class="c">  value_int (Ptrofs.to_int i).</span>

<span class="c">Definition valueToPtr (i : value) : Integers.ptrofs :=</span>
<span class="c">  Ptrofs.of_int i.</span>

<span class="c">Definition valToValue (v : Values.val) : option value :=</span>
<span class="c">  match v with</span>
<span class="c">  | Values.Vint i =&gt; Some (intToValue i)</span>
<span class="c">  | Values.Vint64 i =&gt; Some (intToValue i)</span>
<span class="c">  | Values.Vptr b off =&gt; Some (ptrToValue off)</span>
<span class="c">  | Values.Vundef =&gt; Some (ZToValue 0%Z)</span>
<span class="c">  | _ =&gt; None</span>
<span class="c">  end.</span>

<span class="c">(** Convert a [value] to a [bool], so that choices can be made based on the</span>
<span class="c">result. This is also because comparison operators will give back [value] instead</span>
<span class="c">of [bool], so if they are in a condition, they will have to be converted before</span>
<span class="c">they can be used. *)</span>

<span class="c">Definition valueToBool (v : value) : bool :=</span>
<span class="c">  if Z.eqb (uvalueToZ v) 0 then false else true.</span>

<span class="c">Definition boolToValue (b : bool) : value :=</span>
<span class="c">  natToValue (if b then 1 else 0).</span>

<span class="c">(** ** Arithmetic operations *)</span>

<span class="c">Definition unify_word (sz1 sz2 : nat) (w1 : word sz2): sz1 = sz2 -&gt; word sz1.</span>
<span class="c">intros; subst; assumption. Defined.</span>

<span class="c">Lemma unify_word_unfold :</span>
<span class="c">  forall sz w,</span>
<span class="c">  unify_word sz sz w eq_refl = w.</span>
<span class="c">Proof. auto. Qed.</span>

<span class="c">Inductive val_value_lessdef: val -&gt; value -&gt; Prop :=</span>
<span class="c">| val_value_lessdef_int:</span>
<span class="c">    forall i v&#39;,</span>
<span class="c">    i = valueToInt v&#39; -&gt;</span>
<span class="c">    val_value_lessdef (Vint i) v&#39;</span>
<span class="c">| val_value_lessdef_ptr:</span>
<span class="c">    forall b off v&#39;,</span>
<span class="c">    off = valueToPtr v&#39; -&gt;</span>
<span class="c">    val_value_lessdef (Vptr b off) v&#39;</span>
<span class="c">| lessdef_undef: forall v, val_value_lessdef Vundef v.</span>

<span class="c">Inductive opt_val_value_lessdef: option val -&gt; value -&gt; Prop :=</span>
<span class="c">| opt_lessdef_some:</span>
<span class="c">    forall v v&#39;, val_value_lessdef v v&#39; -&gt; opt_val_value_lessdef (Some v) v&#39;</span>
<span class="c">| opt_lessdef_none: forall v, opt_val_value_lessdef None v.</span>

<span class="c">Lemma valueToZ_ZToValue :</span>
<span class="c">  forall z,</span>
<span class="c">  (Int.min_signed &lt;= z &lt;= Int.max_signed)%Z -&gt;</span>
<span class="c">  valueToZ (ZToValue z) = z.</span>
<span class="c">Proof. auto using Int.signed_repr. Qed.</span>

<span class="c">Lemma uvalueToZ_ZToValue :</span>
<span class="c">  forall z,</span>
<span class="c">  (0 &lt;= z &lt;= Int.max_unsigned)%Z -&gt;</span>
<span class="c">  uvalueToZ (ZToValue z) = z.</span>
<span class="c">Proof. auto using Int.unsigned_repr. Qed.</span>

<span class="c">Lemma valueToPos_posToValue :</span>
<span class="c">  forall v,</span>
<span class="c">  0 &lt;= Z.pos v &lt;= Int.max_unsigned -&gt;</span>
<span class="c">  valueToPos (posToValue v) = v.</span>
<span class="c">Proof.</span>
<span class="c">  unfold valueToPos, posToValue.</span>
<span class="c">  intros. rewrite Int.unsigned_repr.</span>
<span class="c">  apply Pos2Z.id. assumption.</span>
<span class="c">Qed.</span>

<span class="c">Lemma valueToInt_intToValue :</span>
<span class="c">  forall v,</span>
<span class="c">  valueToInt (intToValue v) = v.</span>
<span class="c">Proof. auto. Qed.</span>

<span class="c">Lemma valToValue_lessdef :</span>
<span class="c">  forall v v&#39;,</span>
<span class="c">    valToValue v = Some v&#39; -&gt;</span>
<span class="c">    val_value_lessdef v v&#39;.</span>
<span class="c">Proof.</span>
<span class="c">  intros.</span>
<span class="c">  destruct v; try discriminate; constructor.</span>
<span class="c">  unfold valToValue in H. inversion H.</span>
<span class="c">  unfold valueToInt. unfold intToValue in H1. auto.</span>
<span class="c">  inv H. symmetry. unfold valueToPtr, ptrToValue. apply Ptrofs.of_int_to_int. trivial.</span>
<span class="c">Qed.</span>

<span class="c">Ltac simplify_val := repeat (simplify; unfold uvalueToZ, valueToPtr, Ptrofs.of_int, valueToInt, intToValue,</span>
<span class="c">                                       ptrToValue in *)</span>

<span class="c">(*Ltac crush_val := simplify_val; try discriminate; try congruence; try lia; liapp; try assumption.*)</span>
<span class="c">*)</span></span></span></pre>
</div>
</div></body>
</html>