aboutsummaryrefslogtreecommitdiffstats
path: root/src/common/Vericertlib.v
blob: 805dbdae6d4929152802b6baa5e01fe48a8d4e3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2019-2021 Yann Herklotz <yann@yannherklotz.com>
 *               2020 James Pollard <j@mes.dev>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Set Implicit Arguments.

Require Export Coq.Bool.Bool.
Require Export Coq.Lists.List.
Require Export Coq.Strings.String.
Require Export Coq.ZArith.ZArith.
Require Export Coq.ZArith.Znumtheory.
Require Import Coq.micromega.Lia.

Require Export compcert.lib.Coqlib.
Require Import compcert.lib.Integers.

Require Import vericert.common.Show.

(* Depend on CompCert for the basic library, as they declare and prove some
   useful theorems. *)

Local Open Scope Z_scope.

(* This tactic due to Clement Pit-Claudel with some minor additions by JDP to
   allow the result to be named: https://pit-claudel.fr/clement/MSc/#org96a1b5f *)
Inductive Learnt {A: Type} (a: A) :=
  | AlreadyKnown : Learnt a.

Ltac learn_tac fact name :=
  lazymatch goal with
  | [ H: Learnt fact |- _ ] =>
    fail 0 "fact" fact "has already been learnt"
  | _ => let type := type of fact in
        lazymatch goal with
        | [ H: @Learnt type _ |- _ ] =>
          fail 0 "fact" fact "of type" type "was already learnt through" H
        | _ => let learnt := fresh "Learn" in
              pose proof (AlreadyKnown fact) as learnt; pose proof fact as name
        end
  end.

Tactic Notation "learn" constr(fact) := let name := fresh "H" in learn_tac fact name.
Tactic Notation "learn" constr(fact) "as" simple_intropattern(name) := learn_tac fact name.

Ltac auto_apply fact :=
  let H' := fresh "H" in
  match goal with
  | H : _ |- _ => pose proof H as H'; apply fact in H'
  end.

(** Specialize all hypotheses with a forall to a specific term *)
Tactic Notation "specialize_all" constr(v) :=
  let t := type of v in
  repeat match goal with
         | [H : (forall (x: t), _) |- _ ] => learn H; destruct H with v
         end.

Ltac unfold_rec c := unfold c; fold c.

Ltac solve_by_inverts n :=
  match goal with | H : ?T |- _ =>
    match type of T with Prop =>
      inversion H;
      match n with S (S (?n')) => subst; try constructor; solve_by_inverts (S n') end
    end
  end.

Ltac solve_by_invert := solve_by_inverts 1.

Ltac invert x := inversion x; subst; clear x.

(** For a hypothesis of a forall-type, instantiate every variable to a fresh existential *)
Ltac insterU1 H :=
  match type of H with
  | forall x : ?T, _ =>
    let x := fresh "x" in
    evar (x : T);
    let x' := eval unfold x in x in
        clear x; specialize (H x')
  end.

Ltac insterU H :=
  repeat (insterU1 H).

Ltac destruct_match :=
  match goal with
  | [ |- context[match ?x with | _ => _ end ] ] => destruct x eqn:?
  | [ H: context[match ?x with | _ => _ end] |- _ ] => destruct x eqn:?
  end.

Ltac unfold_match H :=
  match type of H with
  | context[match ?g with _ => _ end] => destruct g eqn:?; try discriminate
  end.

Ltac auto_destruct x := destruct x eqn:?; simpl in *; try discriminate; try congruence.

Ltac nicify_hypotheses :=
  repeat match goal with
         | [ H : ex _ |- _ ] => invert H
         | [ H : Some _ = Some _ |- _ ] => invert H
         | [ H : ?x = ?x |- _ ] => clear H
         | [ H : _ /\ _ |- _ ] => invert H
         end.

Ltac nicify_goals :=
  repeat match goal with
         | [ |- _ /\ _ ] => split
         | [ |- Some _ = Some _ ] => f_equal
         | [ |- S _ = S _ ] => f_equal
         end.

Ltac kill_bools :=
  repeat match goal with
         | [ H : _ && _ = true |- _ ] => apply andb_prop in H
         | [ H : _ || _ = false |- _ ] => apply orb_false_elim in H

         | [ H : _ <=? _ = true |- _ ] => apply Z.leb_le in H
         | [ H : _ <=? _ = false |- _ ] => apply Z.leb_gt in H
         | [ H : _ <? _ = true |- _ ] => apply Z.ltb_lt in H
         | [ H : _ <? _ = false |- _ ] => apply Z.ltb_ge in H
         | [ H : _ >=? _ = _ |- _ ] => rewrite Z.geb_leb in H
         | [ H : _ >? _ = _ |- _ ] => rewrite Z.gtb_ltb in H

         | [ H : _ =? _ = true |- _ ] => apply Z.eqb_eq in H
         | [ H : _ =? _ = false |- _ ] => apply Z.eqb_neq in H
         end.

Ltac unfold_constants :=
  repeat match goal with
         | [ |- context[Integers.Ptrofs.modulus] ] =>
           replace Integers.Ptrofs.modulus with 4294967296 by reflexivity
         | [ H : context[Integers.Ptrofs.modulus] |- _ ] =>
           replace Integers.Ptrofs.modulus with 4294967296 in H by reflexivity

         | [ |- context[Integers.Ptrofs.min_signed] ] =>
           replace Integers.Ptrofs.min_signed with (-2147483648) by reflexivity
         | [ H : context[Integers.Ptrofs.min_signed] |- _ ] =>
           replace Integers.Ptrofs.min_signed with (-2147483648) in H by reflexivity

         | [ |- context[Integers.Ptrofs.max_signed] ] =>
           replace Integers.Ptrofs.max_signed with 2147483647 by reflexivity
         | [ H : context[Integers.Ptrofs.max_signed] |- _ ] =>
           replace Integers.Ptrofs.max_signed with 2147483647 in H by reflexivity

         | [ |- context[Integers.Ptrofs.max_unsigned] ] =>
           replace Integers.Ptrofs.max_unsigned with 4294967295 by reflexivity
         | [ H : context[Integers.Ptrofs.max_unsigned] |- _ ] =>
           replace Integers.Ptrofs.max_unsigned with 4294967295 in H by reflexivity

         | [ |- context[Integers.Int.modulus] ] =>
           replace Integers.Int.modulus with 4294967296 by reflexivity
         | [ H : context[Integers.Int.modulus] |- _ ] =>
           replace Integers.Int.modulus with 4294967296 in H by reflexivity

         | [ |- context[Integers.Int.min_signed] ] =>
           replace Integers.Int.min_signed with (-2147483648) by reflexivity
         | [ H : context[Integers.Int.min_signed] |- _ ] =>
           replace Integers.Int.min_signed with (-2147483648) in H by reflexivity

         | [ |- context[Integers.Int.max_signed] ] =>
           replace Integers.Int.max_signed with 2147483647 by reflexivity
         | [ H : context[Integers.Int.max_signed] |- _ ] =>
           replace Integers.Int.max_signed with 2147483647 in H by reflexivity

         | [ |- context[Integers.Int.max_unsigned] ] =>
           replace Integers.Int.max_unsigned with 4294967295 by reflexivity
         | [ H : context[Integers.Int.max_unsigned] |- _ ] =>
           replace Integers.Int.max_unsigned with 4294967295 in H by reflexivity

         | [ |- context[Integers.Ptrofs.unsigned (Integers.Ptrofs.repr ?x) ] ] =>
           match (eval compute in (0 <=? x)) with
           | true => replace (Integers.Ptrofs.unsigned (Integers.Ptrofs.repr x))
                    with x by reflexivity
           | false => idtac
           end
         end.

Ltac substpp :=
  repeat match goal with
         | [ H1 : ?x = Some _, H2 : ?x = Some _ |- _ ] =>
           let EQ := fresh "EQ" in
           learn H1 as EQ; rewrite H2 in EQ; invert EQ
         | _ => idtac
         end.

Ltac simplify := intros; unfold_constants; simpl in *;
                 repeat (nicify_hypotheses; nicify_goals; kill_bools; substpp);
                 simpl in *.

Infix "==nat" := eq_nat_dec (no associativity, at level 50).
Infix "==Z" := Z.eq_dec (no associativity, at level 50).

Ltac liapp :=
  repeat match goal with
         | [ |- (?x | ?y) ] =>
           match (eval compute in (Z.rem y x ==Z 0)) with
           | left _ =>
             let q := (eval compute in (Z.div y x))
             in exists q; reflexivity
           | _ => idtac
          end
         | _ => idtac
         end.

Ltac plia := solve [ unfold Ple in *; lia ].

Ltac xomega := unfold Plt, Ple in *; zify; lia.

Ltac crush := simplify; try discriminate; try congruence; try plia; liapp;
              try assumption; try (solve [auto]).

Ltac crush_trans :=
  match goal with
  | [ H : ?g = ?inter |- ?g = _ ] => transitivity inter; crush
  | [ H : ?inter = ?g |- ?g = _ ] => transitivity inter; crush
  | [ H : ?g = ?inter |- _ = ?g ] => transitivity inter; crush
  | [ H : ?inter = ?g |- _ = ?g ] => transitivity inter; crush
  end.

Ltac maybe t := t + idtac.

Global Opaque Nat.div.
Global Opaque Z.mul.

Inductive Ascending : list positive -> Prop :=
  | Ascending_nil : Ascending nil
  | Ascending_single : forall x, Ascending (x::nil)
  | Ascending_cons : forall x y l, (x < y)%positive -> Ascending (y::l) -> Ascending (x::y::l).

Lemma map_fst_split : forall A B (l : list (A * B)), List.map fst l = fst (List.split l).
Proof.
  induction l; crush.
  destruct a; destruct (split l).
  crush.
Qed.

Lemma Ascending_Forall : forall l x, Ascending (x :: l) -> Forall (fun y => x < y)%positive l.
Proof.
  induction l; crush.
  inv H.
  specialize (IHl _ H4).
  apply Forall_cons.
  - crush.
  - apply Forall_impl with (P:=(fun y : positive => (a < y)%positive)); crush.
Qed.

Lemma Ascending_NoDup : forall l, Ascending l -> NoDup l.
Proof.
  induction 1; simplify.
  - constructor.
  - constructor. crush. constructor.
  - constructor; auto.
    intro contra. inv contra; crush.
    auto_apply Ascending_Forall.
    rewrite Forall_forall in *.
    specialize (H2 x ltac:(auto)).
    lia.
Qed.

(* Definition const (A B : Type) (a : A) (b : B) : A := a.

Definition compose (A B C : Type) (f : B -> C) (g : A -> B) (x : A) : C := f (g x). *)

Module Option.

Definition default {T : Type} (x : T) (u : option T) : T :=
  match u with
  | Some y => y
  | _ => x
  end.

Definition map {S : Type} {T : Type} (f : S -> T) (u : option S) : option T :=
  match u with
  | Some y => Some (f y)
  | _ => None
  end.

Definition liftA2 {T : Type} (f : T -> T -> T) (a : option T) (b : option T) : option T :=
  match a with
  | Some x => map (f x) b
  | _ => None
  end.

Definition bind {A B : Type} (f : option A) (g : A -> option B) : option B :=
  match f with
  | Some a => g a
  | _ => None
  end.

Definition join {A : Type} (a : option (option A)) : option A :=
  match a with
  | None => None
  | Some a' => a'
  end.

Fixpoint map_option {A B : Type} (f : A -> option B) (l : list A) : list B :=
  match l with
  | nil => nil
  | x::xs => match f x with
           | None => map_option f xs
           | Some x' => x'::map_option f xs
           end
  end.

Module Notation.
Notation "'do' X <- A ; B" := (bind A (fun X => B))
   (at level 200, X ident, A at level 100, B at level 200).
End Notation.

End Option.

Parameter debug_print : string -> unit.

Definition debug_show {A B : Type} `{Show A} (a : A) (b : B) : B :=
  let unused := debug_print (show a) in b.

Definition debug_show_msg {A B : Type} `{Show A} (s : string) (a : A) (b : B) : B :=
  let unused := debug_print (s ++ show a) in b.