aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/CondElimproof.v
blob: cc97665664c755b894886ab74d135d0c382f0e39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
(*|
..
   Vericert: Verified high-level synthesis.
   Copyright (C) 2022 Yann Herklotz <yann@yannherklotz.com>

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <https://www.gnu.org/licenses/>.

================
RTLBlockgenproof
================

.. coq:: none
|*)

Require Import compcert.common.AST.
Require Import compcert.common.Errors.
Require Import compcert.common.Globalenvs.
Require Import compcert.lib.Maps.
Require Import compcert.backend.Registers.
Require Import compcert.common.Smallstep.
Require Import compcert.common.Events.
Require Import compcert.common.Memory.
Require Import compcert.common.Values.

Require Import vericert.common.Vericertlib.
Require Import vericert.common.DecEq.
Require Import vericert.hls.Gible.
Require Import vericert.hls.GibleSeq.
Require Import vericert.hls.CondElim.
Require Import vericert.hls.Predicate.

#[local] Open Scope positive.

Lemma cf_in_step :
  forall A B ge sp is_ is_' bb cf,
    @SeqBB.step A B ge sp (Iexec is_) bb (Iterm is_' cf) ->
    exists p, In (RBexit p cf) bb
              /\ Option.default true (Option.map (eval_predf (is_ps is_')) p) = true.
  Proof. Admitted.

Lemma forbidden_term_trans :
  forall A B ge sp i c b i' c',
    ~ @SeqBB.step A B ge sp (Iterm i c) b (Iterm i' c').
Proof. induction b; unfold not; intros; inv H. Qed.

Lemma random1 :
  forall A B ge sp is_ b is_' cf,
    @SeqBB.step A B ge sp (Iexec is_) b (Iterm is_' cf) ->
    exists p b', SeqBB.step ge sp (Iexec is_) (b' ++ (RBexit p cf) :: nil) (Iterm is_' cf)
                 /\ Forall2 eq (b' ++ (RBexit p cf) :: nil) b.
Proof.
Admitted.

Lemma append :
  forall A B cf i0 i1 l0 l1 sp ge,
      (exists i0', step_list2 (@step_instr A B ge) sp (Iexec i0) l0 (Iexec i0') /\
                    @SeqBB.step A B ge sp (Iexec i0') l1 (Iterm i1 cf)) ->
    @SeqBB.step A B ge sp (Iexec i0) (l0 ++ l1) (Iterm i1 cf).
Proof. Admitted.

Lemma append2 :
  forall A B cf i0 i1 l0 l1 sp ge,
    @SeqBB.step A B ge sp (Iexec i0) l0 (Iterm i1 cf) ->
    @SeqBB.step A B ge sp (Iexec i0) (l0 ++ l1) (Iterm i1 cf).
Proof. Admitted.

Definition to_cf c :=
  match c with | Iterm _ cf => Some cf | _ => None end.

#[local] Notation "'mki'" := (mk_instr_state) (at level 1).

Variant match_ps : positive -> predset -> predset -> Prop :=
| match_ps_intro :
  forall ps ps' m,
    (forall x, x <= m -> ps !! x = ps' !! x) ->
    match_ps m ps ps'.

Lemma eval_pred_under_match:
  forall rs m rs' m' ps tps tps' ps' v p1 rs'' ps'' m'',
    eval_pred (Some p1) (mki rs ps m) (mki rs' ps' m') (mki rs'' ps'' m'') ->
    max_predicate p1 <= v ->
    match_ps v ps tps ->
    match_ps v ps' tps' ->
    exists tps'',
      eval_pred (Some p1) (mki rs tps m) (mki rs' tps' m') (mki rs'' tps'' m'')
      /\ match_ps v ps'' tps''.
Proof.
  inversion 1; subst; simplify.
    Admitted.

Lemma eval_pred_eq_predset :
  forall p rs ps m rs' m' ps' rs'' m'',
    eval_pred p (mki rs ps m) (mki rs' ps m') (mki rs'' ps' m'') ->
    ps' = ps.
Proof. inversion 1; subst; crush. Qed.

Lemma elim_cond_s_spec :
  forall A B ge sp rs m rs' m' ps tps ps' p a p0 l v,
    step_instr ge sp (Iexec (mki rs ps m)) a (Iexec (mki rs' ps' m')) ->
    max_pred_instr v a <= v ->
    match_ps v ps tps ->
    elim_cond_s p a = (p0, l) ->
    exists tps',
      step_list2 (@step_instr A B ge) sp (Iexec (mki rs tps m)) l (Iexec (mki rs' tps' m'))
      /\ match_ps v ps' tps'.
Proof.
  inversion 1; subst; simplify; inv H.
  - inv H2. econstructor. split; eauto; econstructor; econstructor.
  - inv H2. destruct p1.
    + exploit eval_pred_under_match; eauto; try lia; simplify.
      econstructor. split. econstructor. econstructor; eauto. eauto. econstructor.
      eauto.
    + inv H15. econstructor. split. econstructor. econstructor. eauto. constructor; eauto.
      constructor. auto.
  - inv H2. destruct p1.
    + exploit eval_pred_under_match; eauto; try lia; simplify.
      econstructor. split. econstructor. econstructor; eauto.
      constructor. eauto.
    + inv H18. econstructor. split. econstructor. econstructor; eauto. constructor; eauto.
      constructor. auto.
  - inv H2. destruct p1.
    + exploit eval_pred_under_match; eauto; try lia; simplify.
      econstructor. split. econstructor. econstructor; eauto.
      constructor. auto.
    + inv H18. econstructor. split. econstructor. econstructor; eauto. constructor; eauto.
      constructor. auto.
  - inv H2. destruct p'.
    exploit eval_pred_under_match; eauto. lia. Admitted.

Lemma elim_cond_s_spec2 :
  forall ge rs m rs' m' ps tps ps' p a p0 l v cf stk f sp pc t pc' rs'' m'' ps'',
    step_instr ge sp (Iexec (mki rs ps m)) a (Iterm (mki rs' ps' m') cf) ->
    step_cf_instr ge (State stk f sp pc rs' ps' m') cf t (State stk f sp pc' rs'' ps'' m'') ->
    max_pred_instr v a <= v ->
    match_ps v ps tps ->
    elim_cond_s p a = (p0, l) ->
    exists tps' tps'' cf',
      SeqBB.step ge sp (Iexec (mki rs tps m)) l (Iterm (mki rs' tps' m') cf')
      /\ match_ps v ps' tps'
      /\ step_cf_instr ge (State stk f sp pc rs' tps' m') cf' t (State stk f sp pc' rs'' tps'' m'')
      /\ match_ps v ps'' tps''.
Proof.
  inversion 1; subst; simplify; inv H.
    Admitted.

Lemma replace_section_spec :
  forall ge sp bb rs ps m rs' ps' m' stk f t cf pc pc' rs'' ps'' m'' tps v n p p' bb',
    SeqBB.step ge sp (Iexec (mki rs ps m)) bb (Iterm (mki rs' ps' m') cf) ->
    step_cf_instr ge (State stk f sp pc rs' ps' m') cf t (State stk f sp pc' rs'' ps'' m'') ->
    match_ps v ps tps ->
    max_pred_block v n bb <= v ->
    replace_section elim_cond_s p bb = (p', bb') ->
    exists tps' tps'' cf',
      SeqBB.step ge sp (Iexec (mki rs tps m)) bb' (Iterm (mki rs' tps' m') cf')
      /\ match_ps v ps' tps'
      /\ step_cf_instr ge (State stk f sp pc rs' tps' m') cf' t (State stk f sp pc' rs'' tps'' m'')
      /\ match_ps v ps'' tps''.
Proof.
  induction bb; simplify; inv H.
  - destruct state'. repeat destruct_match. inv H3.
    exploit elim_cond_s_spec; eauto. admit. simplify.
    exploit IHbb; eauto; simplify. admit.
    do 3 econstructor. simplify.
    eapply append. econstructor; simplify.
    eauto. eauto. eauto. eauto. eauto.
  - repeat destruct_match; simplify. inv H3.
    exploit elim_cond_s_spec2; eauto. admit. simplify.
    do 3 econstructor; simplify; eauto.
    eapply append2; eauto.
    Unshelve. exact 1.
Admitted.

Lemma transf_block_spec :
  forall f pc b,
    f.(fn_code) ! pc = Some b ->
    exists p,
      (transf_function f).(fn_code) ! pc
      = Some (snd (replace_section elim_cond_s p b)). Admitted.

Variant match_stackframe : stackframe -> stackframe -> Prop :=
  | match_stackframe_init :
    forall res f tf sp pc rs p p'
           (TF: transf_function f = tf),
      match_stackframe (Stackframe res f sp pc rs p) (Stackframe res tf sp pc rs p').

Variant match_states : state -> state -> Prop :=
  | match_state :
    forall stk stk' f tf sp pc rs p p0 m
           (TF: transf_function f = tf)
           (STK: Forall2 match_stackframe stk stk')
           (PS: match_ps (max_pred_function f) p p0),
      match_states (State stk f sp pc rs p m) (State stk' tf sp pc rs p0 m)
  | match_callstate :
    forall cs cs' f tf args m
           (TF: transf_fundef f = tf)
           (STK: Forall2 match_stackframe cs cs'),
      match_states (Callstate cs f args m) (Callstate cs' tf args m)
  | match_returnstate :
    forall cs cs' v m
           (STK: Forall2 match_stackframe cs cs'),
      match_states (Returnstate cs v m) (Returnstate cs' v m)
.

Definition match_prog (p: program) (tp: program) :=
  Linking.match_program (fun cu f tf => tf = transf_fundef f) eq p tp.

Section CORRECTNESS.

  Context (prog tprog : program).

  Let ge : genv := Globalenvs.Genv.globalenv prog.
  Let tge : genv := Globalenvs.Genv.globalenv tprog.

  Context (TRANSL : match_prog prog tprog).

  Lemma symbols_preserved:
    forall (s: AST.ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
  Proof using TRANSL. intros. eapply (Genv.find_symbol_match TRANSL). Qed.

  Lemma senv_preserved:
    Senv.equiv (Genv.to_senv ge) (Genv.to_senv tge).
  Proof using TRANSL. intros; eapply (Genv.senv_transf TRANSL). Qed.

  Lemma function_ptr_translated:
    forall b f,
      Genv.find_funct_ptr ge b = Some f ->
      Genv.find_funct_ptr tge b = Some (transf_fundef f).
  Proof (Genv.find_funct_ptr_transf TRANSL).

  Lemma sig_transf_function:
    forall (f tf: fundef),
      funsig (transf_fundef f) = funsig f.
  Proof using.
    unfold transf_fundef. unfold AST.transf_fundef; intros. destruct f.
    unfold transf_function. auto. auto.
  Qed.

  Lemma transf_initial_states :
    forall s1,
      initial_state prog s1 ->
      exists s2, initial_state tprog s2 /\ match_states s1 s2.
  Proof using TRANSL.
    induction 1.
    exploit function_ptr_translated; eauto; intros.
    do 2 econstructor; simplify. econstructor.
    apply (Genv.init_mem_transf TRANSL); eauto.
    replace (prog_main tprog) with (prog_main prog). rewrite symbols_preserved; eauto.
    symmetry; eapply Linking.match_program_main; eauto. eauto.
    erewrite sig_transf_function; eauto. constructor. auto. auto.
  Qed.

  Lemma transf_final_states :
    forall s1 s2 r,
      match_states s1 s2 -> final_state s1 r -> final_state s2 r.
  Proof using.
    inversion 2; crush. subst. inv H. inv STK. econstructor.
  Qed.

  Lemma transf_step_correct:
    forall (s1 : state) (t : trace) (s1' : state),
      step ge s1 t s1' ->
      forall s2 : state,
        match_states s1 s2 ->
        exists s2' : state, step tge s2 t s2' /\ match_states s1' s2'.
  Proof.
    induction 1; intros.
    + inv H2. eapply cf_in_step in H0; simplify.
      exploit transf_block_spec; eauto; simplify.
      do 2 econstructor. econstructor; eauto.
      simplify. Admitted.

  Theorem transf_program_correct:
    forward_simulation (semantics prog) (semantics tprog).
  Proof using TRANSL.
    eapply forward_simulation_step.
    + apply senv_preserved.
    + apply transf_initial_states.
    + apply transf_final_states.
    + apply transf_step_correct.
  Qed.


End CORRECTNESS.