aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/DHTLgen.v
blob: d9e1cd42c19cfdcb9e2992471cdd2bfdda1a694e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
(* 
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2023 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Require Import Coq.micromega.Lia.

Require Import compcert.lib.Maps.
Require Import compcert.common.Errors.
Require compcert.common.Globalenvs.
Require compcert.lib.Integers.
Require Import compcert.common.AST.

Require Import vericert.common.Statemonad.
Require Import vericert.common.Vericertlib.
Require Import vericert.hls.AssocMap.
Require Import vericert.hls.DHTL.
Require Import vericert.hls.ValueInt.
Require Import vericert.hls.Verilog.
Require Import vericert.hls.Gible.
Require Import vericert.hls.GibleSubPar.
Require Import vericert.hls.Predicate.
Require Import vericert.common.Errormonad.
Import ErrorMonad.
Import ErrorMonadExtra.
Import MonadNotation.

#[local] Open Scope monad_scope.

#[local] Hint Resolve AssocMap.gempty : htlh.
#[local] Hint Resolve AssocMap.gso : htlh.
#[local] Hint Resolve AssocMap.gss : htlh.
#[local] Hint Resolve Ple_refl : htlh.
#[local] Hint Resolve Ple_succ : htlh.

Record control_regs: Type := mk_control_regs {
  ctrl_st : reg;
  ctrl_stack : reg;
  ctrl_fin : reg;
  ctrl_return : reg;
}.

(* Definition pred_lit (preg: reg) (pred: predicate) := *)
(*   Vrange preg (Vlit (posToValue pred)) (Vlit (posToValue pred)). *)

(* Fixpoint pred_expr (preg: reg) (p: pred_op) := *)
(*   match p with *)
(*   | Plit (b, pred) => *)
(*     if b *)
(*     then pred_lit preg pred *)
(*     else Vunop Vnot (pred_lit preg pred) *)
(*   | Ptrue => Vlit (ZToValue 1) *)
(*   | Pfalse => Vlit (ZToValue 0) *)
(*   | Pand p1 p2 => *)
(*     Vbinop Vand (pred_expr preg p1) (pred_expr preg p2) *)
(*   | Por p1 p2 => *)
(*     Vbinop Vor (pred_expr preg p1) (pred_expr preg p2) *)
(*   end. *)

Definition pred_enc (pred: predicate) :=
  xI pred.

Definition reg_enc (r: reg) :=
  xO r.

Fixpoint pred_expr (p: pred_op) :=
  match p with
  | Plit (b, pred) =>
    if b
    then Vvar (pred_enc pred)
    else (Vbinop Veq (Vvar (pred_enc pred)) (Vlit Integers.Int.zero))
  | Ptrue => Vlit (boolToValue true)
  | Pfalse => Vlit (boolToValue false)
  | Pand p1 p2 =>
    Vbinop Vand (pred_expr p1) (pred_expr p2)
  | Por p1 p2 =>
    Vbinop Vor (pred_expr p1) (pred_expr p2)
  end.

Definition assignment : Type := expr -> expr -> stmnt.

Definition translate_predicate (a : assignment)
           (p: option pred_op) (dst e: expr) :=
  match p with
  | None => a dst e
  | Some pos =>
    let pos' := deep_simplify peq pos in
    match sat_pred_simple (negate pos') with
    | None => a dst e
    | Some _ => a dst (Vternary (pred_expr pos') e dst)
    end
  end.

Definition state_goto (p: option pred_op) (st : reg) (n : node) : stmnt :=
  translate_predicate Vblock p (Vvar st) (Vlit (posToValue n)).

Definition state_cond (p: option pred_op) (st : reg) (c : expr) (n1 n2 : node) : stmnt :=
  translate_predicate Vblock p (Vvar st) (Vternary c (posToExpr n1) (posToExpr n2)).

Definition nonblock (dst : reg) (e : expr) := Vnonblock (Vvar (reg_enc dst)) e.
Definition block (dst : reg) (e : expr) := Vblock (Vvar (reg_enc dst)) e.

Definition bop (op : binop) (r1 r2 : reg) : expr :=
  Vbinop op (Vvar (reg_enc r1)) (Vvar (reg_enc r2)).

Definition boplit (op : binop) (r : reg) (l : Integers.int) : expr :=
  Vbinop op (Vvar (reg_enc r)) (Vlit (intToValue l)).

Definition boplitz (op: binop) (r: reg) (l: Z) : expr :=
  Vbinop op (Vvar (reg_enc r)) (Vlit (ZToValue l)).

Definition error {A} m := @Errors.Error A (Errors.msg m).

Definition translate_comparison (c : Integers.comparison) (args : list reg) : Errors.res expr :=
  match c, args with
  | Integers.Ceq, r1::r2::nil => ret (bop Veq r1 r2)
  | Integers.Cne, r1::r2::nil => ret (bop Vne r1 r2)
  | Integers.Clt, r1::r2::nil => ret (bop Vlt r1 r2)
  | Integers.Cgt, r1::r2::nil => ret (bop Vgt r1 r2)
  | Integers.Cle, r1::r2::nil => ret (bop Vle r1 r2)
  | Integers.Cge, r1::r2::nil => ret (bop Vge r1 r2)
  | _, _ => error "Htlpargen: comparison instruction not implemented: other"
  end.

Definition translate_comparison_imm (c : Integers.comparison) (args : list reg) (i: Integers.int)
  : Errors.res expr :=
  match c, args with
  | Integers.Ceq, r1::nil => Errors.OK (boplit Veq r1 i)
  | Integers.Cne, r1::nil => Errors.OK (boplit Vne r1 i)
  | Integers.Clt, r1::nil => Errors.OK (boplit Vlt r1 i)
  | Integers.Cgt, r1::nil => Errors.OK (boplit Vgt r1 i)
  | Integers.Cle, r1::nil => Errors.OK (boplit Vle r1 i)
  | Integers.Cge, r1::nil => Errors.OK (boplit Vge r1 i)
  | _, _ => error "Htlpargen: comparison_imm instruction not implemented: other"
  end.

Definition translate_comparisonu (c : Integers.comparison) (args : list reg) : Errors.res expr :=
  match c, args with
  | Integers.Clt, r1::r2::nil => Errors.OK (bop Vltu r1 r2)
  | Integers.Cgt, r1::r2::nil => Errors.OK (bop Vgtu r1 r2)
  | Integers.Cle, r1::r2::nil => Errors.OK (bop Vleu r1 r2)
  | Integers.Cge, r1::r2::nil => Errors.OK (bop Vgeu r1 r2)
  | _, _ => Errors.Error (Errors.msg "Htlpargen: comparison instruction not implemented: other")
  end.

Definition translate_comparison_immu (c : Integers.comparison) (args : list reg) (i: Integers.int)
  : Errors.res expr :=
  match c, args with
  | Integers.Clt, r1::nil => Errors.OK (boplit Vltu r1 i)
  | Integers.Cgt, r1::nil => Errors.OK (boplit Vgtu r1 i)
  | Integers.Cle, r1::nil => Errors.OK (boplit Vleu r1 i)
  | Integers.Cge, r1::nil => Errors.OK (boplit Vgeu r1 i)
  | _, _ => Errors.Error (Errors.msg "Htlpargen: comparison_imm instruction not implemented: other")
  end.

Definition translate_condition (c : Op.condition) (args : list reg) : Errors.res expr :=
  match c, args with
  | Op.Ccomp c, _ => translate_comparison c args
  | Op.Ccompu c, _ => translate_comparisonu c args
  | Op.Ccompimm c i, _ => translate_comparison_imm c args i
  | Op.Ccompuimm c i, _ => translate_comparison_immu c args i
  | Op.Cmaskzero n, _ => Errors.Error (Errors.msg "Htlpargen: condition instruction not implemented: Cmaskzero")
  | Op.Cmasknotzero n, _ => Errors.Error (Errors.msg "Htlpargen: condition instruction not implemented: Cmasknotzero")
  | _, _ => Errors.Error (Errors.msg "Htlpargen: condition instruction not implemented: other")
  end.

Definition check_address_parameter_signed (p : Z) : bool :=
  Z.leb Integers.Ptrofs.min_signed p
  && Z.leb p Integers.Ptrofs.max_signed.

Definition check_address_parameter_unsigned (p : Z) : bool :=
  Z.leb p Integers.Ptrofs.max_unsigned.

Definition translate_eff_addressing (a: Op.addressing) (args: list reg) : Errors.res expr :=
  match a, args with (* TODO: We should be more methodical here; what are the possibilities?*)
  | Op.Aindexed off, r1::nil =>
    if (check_address_parameter_signed off)
    then Errors.OK (boplitz Vadd r1 off)
    else Errors.Error (Errors.msg "Veriloggen: translate_eff_addressing (Aindexed): address out of bounds")
  | Op.Ascaled scale offset, r1::nil =>
    if (check_address_parameter_signed scale) && (check_address_parameter_signed offset)
    then Errors.OK (Vbinop Vadd (boplitz Vmul r1 scale) (Vlit (ZToValue offset)))
    else Errors.Error (Errors.msg "Veriloggen: translate_eff_addressing (Ascaled): address out of bounds")
  | Op.Aindexed2 offset, r1::r2::nil =>
    if (check_address_parameter_signed offset)
    then Errors.OK (Vbinop Vadd (bop Vadd r1 r2) (Vlit (ZToValue offset)))
    else Errors.Error (Errors.msg "Veriloggen: translate_eff_addressing (Aindexed2): address out of bounds")
  | Op.Aindexed2scaled scale offset, r1::r2::nil => (* Typical for dynamic array addressing *)
    if (check_address_parameter_signed scale) && (check_address_parameter_signed offset)
    then Errors.OK (Vbinop Vadd (Vvar (reg_enc r1)) (Vbinop Vadd (boplitz Vmul r2 scale) (Vlit (ZToValue offset))))
    else Errors.Error (Errors.msg "Veriloggen: translate_eff_addressing (Aindexed2scaled): address out of bounds")
  | Op.Ainstack a, nil => (* We need to be sure that the base address is aligned *)
    let a := Integers.Ptrofs.unsigned a in
    if (check_address_parameter_unsigned a)
    then Errors.OK (Vlit (ZToValue a))
    else Errors.Error (Errors.msg "Veriloggen: translate_eff_addressing (Ainstack): address out of bounds")
  | _, _ => Errors.Error (Errors.msg "Veriloggen: translate_eff_addressing unsuported addressing")
  end.

#[local] Close Scope monad_scope.
#[local] Open Scope error_monad_scope.

(** Translate an instruction to a statement. FIX mulhs mulhu *)
Definition translate_instr (op : Op.operation) (args : list reg) : Errors.res expr :=
  match op, args with
  | Op.Omove, r::nil => Errors.OK (Vvar (reg_enc r))
  | Op.Ointconst n, _ => Errors.OK (Vlit (intToValue n))
  | Op.Oneg, r::nil => Errors.OK (Vunop Vneg (Vvar (reg_enc r)))
  | Op.Osub, r1::r2::nil => Errors.OK (bop Vsub r1 r2)
  | Op.Omul, r1::r2::nil => Errors.OK (bop Vmul r1 r2)
  | Op.Omulimm n, r::nil => Errors.OK (boplit Vmul r n)
  | Op.Omulhs, r1::r2::nil => Errors.Error (Errors.msg "Htlpargen: Instruction not implemented: mulhs")
  | Op.Omulhu, r1::r2::nil => Errors.Error (Errors.msg "Htlpargen: Instruction not implemented: mulhu")
  | Op.Odiv, r1::r2::nil => Errors.OK (bop Vdiv r1 r2)
  | Op.Odivu, r1::r2::nil => Errors.OK (bop Vdivu r1 r2)
  | Op.Omod, r1::r2::nil => Errors.OK (bop Vmod r1 r2)
  | Op.Omodu, r1::r2::nil => Errors.OK (bop Vmodu r1 r2)
  | Op.Oand, r1::r2::nil => Errors.OK (bop Vand r1 r2)
  | Op.Oandimm n, r::nil => Errors.OK (boplit Vand r n)
  | Op.Oor, r1::r2::nil => Errors.OK (bop Vor r1 r2)
  | Op.Oorimm n, r::nil => Errors.OK (boplit Vor r n)
  | Op.Oxor, r1::r2::nil => Errors.OK (bop Vxor r1 r2)
  | Op.Oxorimm n, r::nil => Errors.OK (boplit Vxor r n)
  | Op.Onot, r::nil => Errors.OK (Vunop Vnot (Vvar (reg_enc r)))
  | Op.Oshl, r1::r2::nil => Errors.OK (bop Vshl r1 r2)
  | Op.Oshlimm n, r::nil => Errors.OK (boplit Vshl r n)
  | Op.Oshr, r1::r2::nil => Errors.OK (bop Vshr r1 r2)
  | Op.Oshrimm n, r::nil => Errors.OK (boplit Vshr r n)
  | Op.Oshrximm n, r::nil =>
    Errors.OK (Vternary (Vbinop Vlt (Vvar (reg_enc r)) (Vlit (ZToValue 0)))
                  (Vunop Vneg (Vbinop Vshru (Vunop Vneg (Vvar (reg_enc r))) (Vlit n)))
                  (Vbinop Vshru (Vvar (reg_enc r)) (Vlit n)))
  | Op.Oshru, r1::r2::nil => Errors.OK (bop Vshru r1 r2)
  | Op.Oshruimm n, r::nil => Errors.OK (boplit Vshru r n)
  | Op.Ororimm n, r::nil => Errors.Error (Errors.msg "Htlpargen: Instruction not implemented: Ororimm")
  (*Errors.OK (Vbinop Vor (boplit Vshru r (Integers.Int.modu n (Integers.Int.repr 32)))
                                        (boplit Vshl r (Integers.Int.sub (Integers.Int.repr 32) (Integers.Int.modu n (Integers.Int.repr 32)))))*)
  | Op.Oshldimm n, r::nil => Errors.OK (Vbinop Vor (boplit Vshl r n) (boplit Vshr r (Integers.Int.sub (Integers.Int.repr 32) n)))
  | Op.Ocmp c, _ => translate_condition c args
  | Op.Osel c AST.Tint, r1::r2::rl =>
    do tc <- translate_condition c rl;
    Errors.OK (Vternary tc (Vvar (reg_enc r1)) (Vvar (reg_enc r2)))
  | Op.Olea a, _ => translate_eff_addressing a args
  | _, _ => Errors.Error (Errors.msg "Htlpargen: Instruction not implemented: other")
  end.

Definition translate_arr_access (mem : AST.memory_chunk) (addr : Op.addressing)
           (args : list reg) (stack : reg) : Errors.res expr :=
  match mem, addr, args with (* TODO: We should be more methodical here; what are the possibilities?*)
  | Mint32, Op.Aindexed off, r1::nil =>
    if (check_address_parameter_signed off)
    then Errors.OK (Vvari stack (Vbinop Vdivu (boplitz Vadd r1 off) (Vlit (ZToValue 4))))
    else Errors.Error (Errors.msg "HTLPargen: translate_arr_access address out of bounds")
  | Mint32, Op.Aindexed2scaled scale offset, r1::r2::nil => (* Typical for dynamic array addressing *)
    if (check_address_parameter_signed scale) && (check_address_parameter_signed offset)
    then Errors.OK (Vvari stack
                    (Vbinop Vdivu
                            (Vbinop Vadd (boplitz Vadd r1 offset) (boplitz Vmul r2 scale))
                            (Vlit (ZToValue 4))))
    else Errors.Error (Errors.msg "HTLPargen: translate_arr_access address out of bounds")
  | Mint32, Op.Ainstack a, nil => (* We need to be sure that the base address is aligned *)
    let a := Integers.Ptrofs.unsigned a in
    if (check_address_parameter_unsigned a)
    then Errors.OK (Vvari stack (Vlit (ZToValue (a / 4))))
    else Errors.Error (Errors.msg "HTLPargen: eff_addressing out of bounds stack offset")
  | _, _, _ => Errors.Error (Errors.msg "HTLPargen: translate_arr_access unsuported addressing")
  end.

Fixpoint enumerate (i : nat) (ns : list node) {struct ns} : list (nat * node) :=
  match ns with
  | n :: ns' => (i, n) :: enumerate (i+1) ns'
  | nil => nil
  end.

Definition tbl_to_case_expr (st : reg) (ns : list node) : list (expr * stmnt) :=
  List.map (fun a => match a with
                    (i, n) => (Vlit (natToValue i), Vblock (Vvar st) (Vlit (posToValue n)))
                  end)
           (enumerate 0 ns).

Definition translate_cfi curr_n (ctrl: control_regs) p (cfi: cf_instr)
  : Errors.res stmnt :=
  match cfi with
  | RBgoto n' =>
    Errors.OK (state_goto p ctrl.(ctrl_st) n')
  | RBcond c args n1 n2 =>
    do e <- translate_condition c args;
    Errors.OK (state_cond p ctrl.(ctrl_st) e n1 n2)
  | RBreturn r =>
    match r with
    | Some r' =>
      Errors.OK (Vseq (Vseq (translate_predicate Vblock p (Vvar ctrl.(ctrl_fin)) (Vlit (ZToValue 1)))
                 (translate_predicate Vblock p (Vvar ctrl.(ctrl_return)) (Vvar (reg_enc r')))) 
                 (state_goto p ctrl.(ctrl_st) curr_n))
    | None =>
      Errors.OK (Vseq (Vseq (translate_predicate Vblock p (Vvar ctrl.(ctrl_fin)) (Vlit (ZToValue 1)))
                 (translate_predicate Vblock p (Vvar ctrl.(ctrl_return)) (Vlit (ZToValue 0)))) 
                 (state_goto p ctrl.(ctrl_st) curr_n))
    end
  | RBjumptable r tbl =>
    Errors.OK (Vcase (Vvar (reg_enc r)) (list_to_stmnt (tbl_to_case_expr ctrl.(ctrl_st) tbl)) (Some Vskip))
  | RBcall sig ri rl r n =>
    Errors.Error (Errors.msg "HTLPargen: RBcall not supported.")
  | RBtailcall sig ri lr =>
    Errors.Error (Errors.msg "HTLPargen: RBtailcall not supported.")
  | RBbuiltin e lb b n =>
    Errors.Error (Errors.msg "HTLPargen: RBbuildin not supported.")
  end.

Definition assert_ (b: bool) m: res unit :=
  if b then OK tt else Error (msg m).

Definition check_cfi n (cfi: cf_instr): res unit :=
  do _assert <- assert_ (Z.pos n <=? Integers.Int.max_unsigned) "DHTLgen: State larger than 2^32";
  match cfi with
  | RBgoto n' =>
    assert_ (Z.pos n' <=? Integers.Int.max_unsigned) "DHTLgen: State larger than 2^32"
  | RBcond c args n1 n2 =>
    assert_ ((Z.pos n1 <=? Integers.Int.max_unsigned) 
             && (Z.pos n2 <=? Integers.Int.max_unsigned)) "DHTLgen: State larger than 2^32"
  | RBjumptable r tbl =>
    assert_ (forallb (fun x => Z.pos x <=? Integers.Int.max_unsigned) tbl) "DHTLgen: State larger than 2^32"
  | _ => OK tt
  end.

Definition transf_instr n (ctrl: control_regs) (dc: pred_op * stmnt) (i: instr)
           : Errors.res (pred_op * stmnt) :=
  let '(curr_p, d) := dc in
  let npred p := Some (Pand curr_p (dfltp p)) in
  match i with
  | RBnop => Errors.OK dc
  | RBop p op args dst => 
    do instr <- translate_instr op args;
    let stmnt := translate_predicate Vblock (npred p) (Vvar (reg_enc dst)) instr in
    Errors.OK (curr_p, Vseq d stmnt)
  | RBload p mem addr args dst =>
    do src <- translate_arr_access mem addr args ctrl.(ctrl_stack);
    let stmnt := translate_predicate Vblock (npred p) (Vvar (reg_enc dst)) src in
    Errors.OK (curr_p, Vseq d stmnt)
  | RBstore p mem addr args src =>
    do dst <- translate_arr_access mem addr args ctrl.(ctrl_stack);
    let stmnt := translate_predicate Vblock (npred p) dst (Vvar (reg_enc src)) in
    Errors.OK (curr_p, Vseq d stmnt)
  | RBsetpred p' cond args p =>
    do cond' <- translate_condition cond args;
    let stmnt := translate_predicate Vblock (npred p') (pred_expr (Plit (true, p))) cond' in
    Errors.OK (curr_p, Vseq d stmnt)
  | RBexit p cf => 
    do _check <- check_cfi n cf;
    do d_stmnt <- translate_cfi n ctrl (npred p) cf;
    Errors.OK (Pand curr_p (negate (dfltp p)), Vseq d d_stmnt)
  end.

Definition transf_chained_block n (ctrl: control_regs) (dc: @pred_op positive * stmnt) (block: list instr)
           : Errors.res (pred_op * stmnt) :=
  mfold_left (transf_instr n ctrl) block (OK dc).

Definition transf_parallel_block n (ctrl: control_regs) (block: list (list instr))
           : Errors.res (pred_op * stmnt) :=
  mfold_left (transf_chained_block n ctrl) block (OK (Ptrue, Vskip)).

Definition transf_seq_block (ctrl: control_regs) (d: datapath) (ni: node * SubParBB.t)
           : Errors.res datapath :=
  let (n, bb) := ni in
  match d ! n with
  | None => 
    do (_pred, stmnt) <- transf_chained_block n ctrl (Ptrue, Vskip) (concat bb);
    OK (PTree.set n stmnt d)
  | _ => Error (msg "DHTLgen: overwriting location")
  end.

Definition stack_correct (sz : Z) : bool :=
  (0 <=? sz) && (sz <? Integers.Ptrofs.modulus) && (Z.modulo sz 4 =? 0).

Definition max_pc_map (m : Maps.PTree.t stmnt) :=
  PTree.fold (fun m pc i => Pos.max m pc) m 1%positive.

Lemma max_pc_map_sound:
  forall m pc i, m!pc = Some i -> Ple pc (max_pc_map m).
Proof.
  intros until i. unfold max_pc_function.
  apply PTree_Properties.fold_rec with (P := fun c m => c!pc = Some i -> Ple pc m).
  (* extensionality *)
  intros. apply H0. rewrite H; auto.
  (* base case *)
  rewrite PTree.gempty. congruence.
  (* inductive case *)
  intros. rewrite PTree.gsspec in H2. destruct (peq pc k).
  inv H2. unfold Ple; lia.
  apply Ple_trans with a. auto. unfold Ple; lia.
Qed.

Lemma max_pc_wf :
  forall m, Z.pos (max_pc_map m) <= Integers.Int.max_unsigned ->
            map_well_formed m.
Proof.
  unfold map_well_formed. intros.
  exploit list_in_map_inv. eassumption. intros [x [A B]]. destruct x.
  apply Maps.PTree.elements_complete in B. apply max_pc_map_sound in B.
  unfold Ple in B. apply Pos2Z.pos_le_pos in B. subst.
  simplify. transitivity (Z.pos (max_pc_map m)); eauto.
Qed.

Definition decide_order a b c d e f g : {module_ordering a b c d e f g} + {True}.
  refine (match bool_dec ((a <? b) && (b <? c) && (c <? d)
                          && (d <? e) && (e <? f) && (f <? g))%positive true with
          | left t => left _
          | _ => _
          end); auto.
  simplify; repeat match goal with
                   | H: context[(_ <? _)%positive] |- _ => apply Pos.ltb_lt in H
                   end; unfold module_ordering; auto.
Defined.

Definition max_resource_function (f: function) :=
  Pos.max (reg_enc (max_reg_function f)) (pred_enc (max_pred_function f)).

Program Definition transl_module (f: function) : res DHTL.module :=
  if stack_correct f.(fn_stacksize) then
    let st := Pos.succ (max_resource_function f) in
    let fin := Pos.succ st in
    let rtrn := Pos.succ fin in
    let stack := Pos.succ rtrn in
    let start := Pos.succ stack in
    let rst := Pos.succ start in
    let clk := Pos.succ rst in
    do _stmnt <- mfold_left (transf_seq_block (mk_control_regs st stack fin rtrn)) 
                            (Maps.PTree.elements f.(GibleSubPar.fn_code)) (ret (PTree.empty _));
    match zle (Z.pos (max_pc_map _stmnt)) Integers.Int.max_unsigned,
            decide_order st fin rtrn stack start rst clk,
            max_list_dec (List.map reg_enc (GibleSubPar.fn_params f)) st
    with
    | left LEDATA, left MORD, left WFPARAMS =>
        ret (DHTL.mkmodule
           (List.map reg_enc f.(GibleSubPar.fn_params))
           _stmnt
           f.(fn_entrypoint)
           st
           stack
           (Z.to_nat (f.(fn_stacksize) / 4))
           fin
           rtrn
           start
           rst
           clk
           (AssocMap.empty _)
           (AssocMap.empty _)
           None
           (max_pc_wf _ LEDATA)
           MORD
           _
           WFPARAMS)
    | _, _, _ => error "More than 2^32 states"
    end
  else error "Stack size misalignment".

Definition transl_fundef := transf_partial_fundef transl_module.

Definition main_is_internal (p : GibleSubPar.program) : bool :=
  let ge := Globalenvs.Genv.globalenv p in
  match Globalenvs.Genv.find_symbol ge p.(AST.prog_main) with
  | Some b =>
    match Globalenvs.Genv.find_funct_ptr ge b with
    | Some (AST.Internal _) => true
    | _ => false
    end
  | _ => false
  end.

Definition transl_program (p : GibleSubPar.program) : Errors.res DHTL.program :=
  if main_is_internal p
  then transform_partial_program transl_fundef p
  else Errors.Error (Errors.msg "Main function is not Internal").