aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/GiblePargenproof.v
blob: 05467ed192ba38c4181bfe1678a599061933f71a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2020-2022 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Require Import compcert.backend.Registers.
Require Import compcert.common.AST.
Require Import compcert.common.Errors.
Require Import compcert.common.Linking.
Require Import compcert.common.Globalenvs.
Require Import compcert.common.Memory.
Require Import compcert.common.Values.
Require Import compcert.lib.Maps.

Require Import vericert.common.Vericertlib.
Require Import vericert.hls.GibleSeq.
Require Import vericert.hls.GiblePar.
Require Import vericert.hls.Gible.
Require Import vericert.hls.GiblePargen.
Require Import vericert.hls.Predicate.
Require Import vericert.hls.Abstr.
Require Import vericert.common.Monad.

Module OptionExtra := MonadExtra(Option).
Import OptionExtra.

#[local] Open Scope positive.
#[local] Open Scope forest.
#[local] Open Scope pred_op.

#[local] Opaque simplify.
#[local] Opaque deep_simplify.

(*|
==============
RTLPargenproof
==============

RTLBlock to abstract translation
================================

Correctness of translation from RTLBlock to the abstract interpretation language.
|*)

Definition is_regs i := match i with mk_instr_state rs _ _ => rs end.
Definition is_mem i := match i with mk_instr_state _ _ m => m end.
Definition is_ps i := match i with mk_instr_state _ p _ => p end.

Inductive state_lessdef : instr_state -> instr_state -> Prop :=
  state_lessdef_intro :
    forall rs1 rs2 ps1 ps2 m1,
      (forall x, rs1 !! x = rs2 !! x) ->
      (forall x, ps1 !! x = ps2 !! x) ->
      state_lessdef (mk_instr_state rs1 ps1 m1) (mk_instr_state rs2 ps2 m1).

Lemma state_lessdef_refl x : state_lessdef x x.
Proof. destruct x; constructor; auto. Qed.

Lemma state_lessdef_symm x y : state_lessdef x y -> state_lessdef y x.
Proof. destruct x; destruct y; inversion 1; subst; simplify; constructor; auto. Qed.

Lemma state_lessdef_trans :
  forall a b c,
    state_lessdef a b ->
    state_lessdef b c ->
    state_lessdef a c.
Proof.
  inversion 1; inversion 1; subst; simplify.
  constructor; eauto; intros. rewrite H0. auto.
Qed.

#[global] Instance Equivalence_state_lessdef : Equivalence state_lessdef :=
  { Equivalence_Reflexive := state_lessdef_refl;
    Equivalence_Symmetric := state_lessdef_symm;
    Equivalence_Transitive := state_lessdef_trans;
  }.

Definition check_dest i r' :=
  match i with
  | RBop p op rl r => (r =? r')%positive
  | RBload p chunk addr rl r => (r =? r')%positive
  | _ => false
  end.

Lemma check_dest_dec i r : {check_dest i r = true} + {check_dest i r = false}.
Proof. destruct (check_dest i r); tauto. Qed.

Fixpoint check_dest_l l r :=
  match l with
  | nil => false
  | a :: b => check_dest a r || check_dest_l b r
  end.

Lemma check_dest_l_forall :
  forall l r,
  check_dest_l l r = false ->
  Forall (fun x => check_dest x r = false) l.
Proof. induction l; crush. Qed.

Lemma check_dest_l_dec i r : {check_dest_l i r = true} + {check_dest_l i r = false}.
Proof. destruct (check_dest_l i r); tauto. Qed.

Lemma match_states_list :
  forall A (rs: Regmap.t A) rs',
  (forall r, rs !! r = rs' !! r) ->
  forall l, rs ## l = rs' ## l.
Proof. induction l; crush. Qed.

Lemma PTree_matches :
  forall A (v: A) res rs rs',
  (forall r, rs !! r = rs' !! r) ->
  forall x, (Regmap.set res v rs) !! x = (Regmap.set res v rs') !! x.
Proof.
  intros; destruct (Pos.eq_dec x res); subst;
  [ repeat rewrite Regmap.gss by auto
  | repeat rewrite Regmap.gso by auto ]; auto.
Qed.

Definition match_prog (prog : GibleSeq.program) (tprog : GiblePar.program) :=
  match_program (fun cu f tf => transl_fundef f = Errors.OK tf) eq prog tprog.

(* TODO: Fix the `bb` and add matches for them. *)
Inductive match_stackframes: GibleSeq.stackframe -> GiblePar.stackframe -> Prop :=
| match_stackframe:
    forall f tf res sp pc rs rs' ps ps',
      transl_function f = OK tf ->
      (forall x, rs !! x = rs' !! x) ->
      (forall x, ps !! x = ps' !! x) ->
      match_stackframes (GibleSeq.Stackframe res f sp pc rs ps)
                        (Stackframe res tf sp pc rs' ps').

Inductive match_states: GibleSeq.state -> GiblePar.state -> Prop :=
| match_state:
    forall sf f sp pc rs rs' m sf' tf ps ps'
      (TRANSL: transl_function f = OK tf)
      (STACKS: list_forall2 match_stackframes sf sf')
      (REG: forall x, rs !! x = rs' !! x)
      (REG: forall x, ps !! x = ps' !! x),
      match_states (GibleSeq.State sf f sp pc rs ps m)
                   (State sf' tf sp pc rs' ps' m)
| match_returnstate:
    forall stack stack' v m
      (STACKS: list_forall2 match_stackframes stack stack'),
      match_states (GibleSeq.Returnstate stack v m)
                   (Returnstate stack' v m)
| match_callstate:
    forall stack stack' f tf args m
      (TRANSL: transl_fundef f = OK tf)
      (STACKS: list_forall2 match_stackframes stack stack'),
      match_states (GibleSeq.Callstate stack f args m)
                   (Callstate stack' tf args m).

Section CORRECTNESS.

  Context (prog: GibleSeq.program) (tprog : GiblePar.program).
  Context (TRANSL: match_prog prog tprog).

  Let ge : GibleSeq.genv := Globalenvs.Genv.globalenv prog.
  Let tge : GiblePar.genv := Globalenvs.Genv.globalenv tprog.

  Lemma symbols_preserved:
    forall (s: AST.ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
  Proof using TRANSL. intros. eapply (Genv.find_symbol_match TRANSL). Qed.
  Hint Resolve symbols_preserved : rtlgp.

  Lemma function_ptr_translated:
    forall (b: Values.block) (f: GibleSeq.fundef),
      Genv.find_funct_ptr ge b = Some f ->
      exists tf,
        Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = Errors.OK tf.
  Proof using TRANSL.
    intros. exploit (Genv.find_funct_ptr_match TRANSL); eauto.
    intros (cu & tf & P & Q & R); exists tf; auto.
  Qed.

  Lemma functions_translated:
    forall (v: Values.val) (f: GibleSeq.fundef),
      Genv.find_funct ge v = Some f ->
      exists tf,
        Genv.find_funct tge v = Some tf /\ transl_fundef f = Errors.OK tf.
  Proof using TRANSL.
    intros. exploit (Genv.find_funct_match TRANSL); eauto.
    intros (cu & tf & P & Q & R); exists tf; auto.
  Qed.

  Lemma senv_preserved:
    Senv.equiv (Genv.to_senv ge) (Genv.to_senv tge).
  Proof (Genv.senv_transf_partial TRANSL).
  Hint Resolve senv_preserved : rtlgp.

  Lemma sig_transl_function:
    forall (f: GibleSeq.fundef) (tf: GiblePar.fundef),
      transl_fundef f = OK tf ->
      funsig tf = GibleSeq.funsig f.
  Proof using .
    unfold transl_fundef, transf_partial_fundef, transl_function; intros;
    repeat destruct_match; crush;
    match goal with H: OK _ = OK _ |- _ => inv H end; auto.
  Qed.
  Hint Resolve sig_transl_function : rtlgp.

  Hint Resolve Val.lessdef_same : rtlgp.
  Hint Resolve regs_lessdef_regs : rtlgp.

  Lemma find_function_translated:
    forall ros rs rs' f,
      (forall x, rs !! x = rs' !! x) ->
      GibleSeq.find_function ge ros rs = Some f ->
      exists tf, find_function tge ros rs' = Some tf
                 /\ transl_fundef f = OK tf.
  Proof using TRANSL.
    Ltac ffts := match goal with
                 | [ H: forall _, Val.lessdef _ _, r: Registers.reg |- _ ] =>
                   specialize (H r); inv H
                 | [ H: Vundef = ?r, H1: Genv.find_funct _ ?r = Some _ |- _ ] =>
                   rewrite <- H in H1
                 | [ H: Genv.find_funct _ Vundef = Some _ |- _] => solve [inv H]
                 | _ => solve [exploit functions_translated; eauto]
                 end.
    destruct ros; simplify; try rewrite <- H;
    [| rewrite symbols_preserved; destruct_match;
      try (apply function_ptr_translated); crush ];
    intros;
    repeat ffts.
  Qed.

  Lemma schedule_oracle_nil:
    forall bb,
      schedule_oracle nil bb = true ->
      bb = nil.
  Proof using .
    unfold schedule_oracle, check_control_flow_instr.
    simplify; repeat destruct_match; crush.
  Qed.

  Lemma schedule_oracle_nil2:
      schedule_oracle nil nil = true.
  Proof using .
    unfold schedule_oracle, check_control_flow_instr.
    simplify; repeat destruct_match; crush.
  Admitted.

  Lemma eval_op_eq:
    forall (sp0 : Values.val) (op : Op.operation) (vl : list Values.val) m,
      Op.eval_operation ge sp0 op vl m = Op.eval_operation tge sp0 op vl m.
  Proof using TRANSL.
    intros.
    destruct op; auto; unfold Op.eval_operation, Genv.symbol_address, Op.eval_addressing32;
    [| destruct a; unfold Genv.symbol_address ];
    try rewrite symbols_preserved; auto.
  Qed.
  Hint Resolve eval_op_eq : rtlgp.

  Lemma eval_addressing_eq:
    forall sp addr vl,
      Op.eval_addressing ge sp addr vl = Op.eval_addressing tge sp addr vl.
  Proof using TRANSL.
    intros.
    destruct addr;
    unfold Op.eval_addressing, Op.eval_addressing32;
    unfold Genv.symbol_address;
    try rewrite symbols_preserved; auto.
  Qed.
  Hint Resolve eval_addressing_eq : rtlgp.

  Lemma ge_preserved_lem:
    ge_preserved ge tge.
  Proof using TRANSL.
    unfold ge_preserved.
    eauto with rtlgp.
  Qed.
  Hint Resolve ge_preserved_lem : rtlgp.

  Lemma lessdef_regmap_optget:
    forall or rs rs',
      regs_lessdef rs rs' ->
      Val.lessdef (regmap_optget or Vundef rs) (regmap_optget or Vundef rs').
  Proof using. destruct or; crush. Qed.
  Hint Resolve lessdef_regmap_optget : rtlgp.

  Lemma regmap_equiv_lessdef:
    forall rs rs',
      (forall x, rs !! x = rs' !! x) ->
      regs_lessdef rs rs'.
  Proof using.
    intros; unfold regs_lessdef; intros.
    rewrite H. apply Val.lessdef_refl.
  Qed.
  Hint Resolve regmap_equiv_lessdef : rtlgp.

  Lemma int_lessdef:
    forall rs rs',
      regs_lessdef rs rs' ->
      (forall arg v,
          rs !! arg = Vint v ->
          rs' !! arg = Vint v).
  Proof using. intros ? ? H; intros; specialize (H arg); inv H; crush. Qed.
  Hint Resolve int_lessdef : rtlgp.

  Ltac semantics_simpl :=
    match goal with
    | [ H: match_states _ _ |- _ ] =>
      let H2 := fresh "H" in
      learn H as H2; inv H2
    | [ H: transl_function ?f = OK _ |- _ ] =>
      let H2 := fresh "TRANSL" in
      learn H as H2;
      unfold transl_function in H2;
      destruct (check_scheduled_trees
                  (GibleSeq.fn_code f)
                  (fn_code (schedule f))) eqn:?;
               [| discriminate ]; inv H2
    | [ H: context[check_scheduled_trees] |- _ ] =>
      let H2 := fresh "CHECK" in
      learn H as H2;
      eapply check_scheduled_trees_correct in H2; [| solve [eauto] ]
    | [ H: schedule_oracle nil ?bb = true |- _ ] =>
      let H2 := fresh "SCHED" in
      learn H as H2;
      apply schedule_oracle_nil in H2
    | [ H: find_function _ _ _ = Some _, H2: forall x, ?rs !! x = ?rs' !! x |- _ ] =>
      learn H; exploit find_function_translated; try apply H2; eauto; inversion 1
    | [ H: Mem.free ?m _ _ _ = Some ?m', H2: Mem.extends ?m ?m'' |- _ ] =>
      learn H; exploit Mem.free_parallel_extends; eauto; intros
    | [ H: Events.eval_builtin_args _ _ _ _ _ _, H2: regs_lessdef ?rs ?rs' |- _ ] =>
      let H3 := fresh "H" in
      learn H; exploit Events.eval_builtin_args_lessdef; [apply H2 | | |];
      eauto with rtlgp; intro H3; learn H3
    | [ H: Events.external_call _ _ _ _ _ _ _ |- _ ] =>
      let H2 := fresh "H" in
      learn H; exploit Events.external_call_mem_extends;
      eauto; intro H2; learn H2
    | [ H: exists _, _ |- _ ] => inv H
    | _ => progress simplify
    end.

  Hint Resolve Events.eval_builtin_args_preserved : rtlgp.
  Hint Resolve Events.external_call_symbols_preserved : rtlgp.
  Hint Resolve set_res_lessdef : rtlgp.
  Hint Resolve set_reg_lessdef : rtlgp.
  Hint Resolve Op.eval_condition_lessdef : rtlgp.

  Hint Constructors Events.eval_builtin_arg: barg.

  Lemma eval_builtin_arg_eq:
    forall A ge a v1 m1 e1 e2 sp,
      (forall x, e1 x = e2 x) ->
      @Events.eval_builtin_arg A ge e1 sp m1 a v1 ->
      Events.eval_builtin_arg ge e2 sp m1 a v1.
Proof. induction 2; try rewrite H; eauto with barg. Qed.

  Lemma eval_builtin_args_eq:
    forall A ge e1 sp m1 e2 al vl1,
      (forall x, e1 x = e2 x) ->
      @Events.eval_builtin_args A ge e1 sp m1 al vl1 ->
      Events.eval_builtin_args ge e2 sp m1 al vl1.
  Proof.
    induction 2.
    - econstructor; split.
    - exploit eval_builtin_arg_eq; eauto. intros.
      destruct IHlist_forall2 as [| y]. constructor; eauto.
      constructor. constructor; auto.
      constructor; eauto.
  Qed.

  #[local] Hint Resolve Events.external_call_symbols_preserved : core.
  #[local] Hint Resolve eval_builtin_args_eq : core.
  #[local] Hint Resolve symbols_preserved : core.
  #[local] Hint Resolve senv_preserved : core.
  #[local] Hint Resolve eval_op_eq : core.
  #[local] Hint Resolve eval_addressing_eq : core.

  Lemma step_instr_ge :
    forall sp a i i',
      step_instr ge sp i a i' ->
      step_instr tge sp i a i'.
  Proof.
    inversion 1; subst; simplify; try solve [econstructor; eauto].
    - constructor; auto; rewrite <- eval_op_eq; eauto.
    - econstructor; eauto; rewrite <- eval_addressing_eq; eauto.
    - econstructor; eauto; rewrite <- eval_addressing_eq; eauto.
  Qed.
  #[local] Hint Resolve step_instr_ge : core.

  Lemma seqbb_step_step_instr_list :
    forall sp a i i',
      SeqBB.step ge sp i a i' ->
      ParBB.step_instr_list tge sp i a i'.
  Proof.
    induction a; simplify; inv H.
    econstructor; eauto. eapply IHa; eauto.
    econstructor; eauto. constructor.
  Qed.
  #[local] Hint Resolve seqbb_step_step_instr_list : core.

  Lemma step_list2_step_instr_list :
    forall sp a i i',
      step_list2 (step_instr ge) sp i a i' ->
      ParBB.step_instr_list tge sp i a i'.
  Proof.
    induction a; simplify; inv H.
    econstructor; eauto.
    destruct i; try solve [inv H4].
    econstructor; eauto. apply IHa; auto.
  Qed.
  #[local] Hint Resolve step_list2_step_instr_list : core.

  Lemma seqbb_step_step_instr_seq :
    forall sp x i i' cf,
      SeqBB.step ge sp (Iexec i) (concat x) (Iterm i' cf) ->
      ParBB.step_instr_seq tge sp (Iexec i) x (Iterm i' cf).
  Proof.
    induction x; crush. inv H. eapply step_options in H.
    inv H. econstructor. eauto. constructor.
    simplify. econstructor; eauto.
    eapply IHx; eauto.
  Qed.

  Lemma step_list2_step_instr_seq :
    forall sp x i i',
      step_list2 (step_instr ge) sp (Iexec i) (concat x) (Iexec i') ->
      ParBB.step_instr_seq tge sp (Iexec i) x (Iexec i').
  Proof.
    induction x; crush. inv H. constructor.
    eapply step_options2 in H. simplify.
    econstructor; eauto.
    eapply IHx; eauto.
  Qed.

  Lemma seqbb_step_parbb_step :
    forall sp x i i' cf,
      SeqBB.step ge sp (Iexec i) (concat (concat x)) (Iterm i' cf) ->
      ParBB.step tge sp (Iexec i) x (Iterm i' cf).
  Proof.
    induction x; crush. inv H.
    rewrite concat_app in H.
    eapply step_options in H. inv H.
    constructor. eapply seqbb_step_step_instr_seq; eauto.
    simplify. econstructor.
    eapply step_list2_step_instr_seq; eauto.
    eapply IHx; eauto.
  Qed.

  Lemma eval_predf_negate :
    forall ps p,
      eval_predf ps (negate p) = negb (eval_predf ps p).
  Proof.
    unfold eval_predf; intros. rewrite negate_correct. auto.
  Qed.

  Lemma is_truthy_negate :
    forall ps p pred,
      truthy ps p ->
      falsy ps (combine_pred (Some (negate (Option.default T p))) pred).
  Proof.
    inversion 1; subst; simplify.
    - destruct pred; constructor; auto.
    - destruct pred; constructor.
      rewrite eval_predf_Pand. rewrite eval_predf_negate. rewrite H0. auto.
      rewrite eval_predf_negate. rewrite H0. auto.
  Qed.

  Lemma sem_update_instr :
    forall f i' i'' a sp p i p' f',
      sem (mk_ctx i sp ge) f (i', None) ->
      step_instr ge sp (Iexec i') a (Iexec i'') ->
      update (p, f) a = Some (p', f') ->
      sem (mk_ctx i sp ge) f' (i'', None).
  Proof. Admitted.

  Lemma truthy_dflt :
    forall ps p,
      truthy ps p -> eval_predf ps (dfltp p) = true.
  Proof. intros. destruct p; cbn; inv H; auto. Qed.

  Lemma Pand_true_left :
    forall ps a b,
      eval_predf ps a = false ->
      eval_predf ps (a ∧ b) = false.
  Proof.
    intros.
    rewrite eval_predf_Pand. now rewrite H.
  Qed.

  Lemma eval_predf_simplify :
    forall ps x,
      eval_predf ps (simplify x) = eval_predf ps x.
  Proof. Admitted.

  Lemma sem_update_instr_term :
    forall f i' i'' sp i cf p p' p'' f',
      sem (mk_ctx i sp ge) f (i', None) ->
      step_instr ge sp (Iexec i') (RBexit p cf) (Iterm i'' cf) ->
      update (p', f) (RBexit p cf) = Some (p'', f') ->
      eval_predf (is_ps i') p' = true ->
      sem (mk_ctx i sp ge) f' (i'', Some cf)
           /\ eval_predf (is_ps i') p'' = false.
  Proof.
    intros. inv H0. simpl in *.
    unfold Option.bind in *. destruct_match; try discriminate.
    apply truthy_dflt in H6. inv H1.
    assert (eval_predf (Gible.is_ps i'') (¬ dfltp p) = false).
    { rewrite eval_predf_negate. now rewrite negb_false_iff. }
    apply Pand_true_left with (b := p') in H0.
    rewrite <- eval_predf_simplify in H0. split; auto.
    unfold "<-e".
    destruct i''.
    inv H. constructor; auto. admit. admit. simplify.
  Admitted.

  Lemma step_instr_lessdef_term :
    forall sp a i i' ti cf,
      step_instr ge sp (Iexec i) a (Iterm i' cf) ->
      state_lessdef i ti ->
      exists ti', step_instr ge sp (Iexec ti) a (Iterm ti' cf) /\ state_lessdef i' ti'.
  Proof. Admitted.

  Lemma combined_falsy :
    forall i o1 o,
      falsy i o1 ->
      falsy i (combine_pred o o1).
  Proof.
    inversion 1; subst; crush. destruct o; simplify.
    constructor. rewrite eval_predf_Pand. rewrite H0. crush.
    constructor. auto.
  Qed.

  Lemma state_lessdef_sem :
    forall i sp f i' ti cf,
      sem (mk_ctx i sp ge) f (i', cf) ->
      state_lessdef i ti ->
      exists ti', sem (mk_ctx ti sp ge) f (ti', cf) /\ state_lessdef i' ti'.
  Proof. Admitted.

  (* #[local] Opaque update. *)

  Lemma mfold_left_update_Some :
    forall xs x v,
      mfold_left update xs x = Some v ->
      exists y, x = Some y.
  Proof. Admitted.

  Lemma step_instr_term_exists :
    forall A B ge sp v x v2 cf,
      @step_instr A B ge sp (Iexec v) x (Iterm v2 cf) ->
      exists p, x = RBexit p cf.
  Proof using. inversion 1; eauto. Qed.

  Lemma abstr_fold_falsy :
    forall A i sp ge f i' cf p f' ilist p',
      @sem A (mk_ctx i sp ge) f (i', cf) ->
      mfold_left update ilist (Some (p, f)) = Some (p', f') ->
      eval_predf (is_ps i') p = false ->
      sem (mk_ctx i sp ge) f' (i', cf).
  Proof. Admitted.

  Ltac destr := destruct_match; try discriminate; [].

  Lemma eval_predf_update_true :
    forall i i' curr_p next_p f f_next instr sp,
      update (curr_p, f) instr = Some (next_p, f_next) ->
      step_instr ge sp (Iexec i) instr (Iexec i') ->
      eval_predf (is_ps i) curr_p = true ->
      eval_predf (is_ps i') next_p = true.
  Proof.
    intros * UPD STEP EVAL. destruct instr; cbn [update] in UPD;
      try solve [unfold Option.bind in *; try destr; inv UPD; inv STEP; auto].
    - unfold Option.bind in *. destr. inv UPD. inv STEP; auto. cbn [is_ps] in *.
      admit.
    - unfold Option.bind in *. destr. inv UPD. inv STEP. inv H3. admit.
  Admitted. (* This only needs the addition of the property that any setpreds will not contain the
  predicate in the name. *)

  Lemma eval_predf_lessdef :
    forall p a b,
      state_lessdef a b ->
      eval_predf (is_ps a) p = eval_predf (is_ps b) p.
  Proof using.
    induction p; crush.
    - inv H. simpl. unfold eval_predf. simpl.
      repeat destr. inv Heqp0. rewrite H1. auto.
    - rewrite !eval_predf_Pand.
      erewrite IHp1 by eassumption.
      now erewrite IHp2 by eassumption.
    - rewrite !eval_predf_Por.
      erewrite IHp1 by eassumption.
      now erewrite IHp2 by eassumption.
  Qed.

  Lemma abstr_fold_correct :
    forall sp x i i' i'' cf f p f' curr_p,
      SeqBB.step ge sp (Iexec i') x (Iterm i'' cf) ->
      sem (mk_ctx i sp ge) f (i', None) ->
      eval_predf (is_ps i') curr_p = true ->
      mfold_left update x (Some (curr_p, f)) = Some (p, f') ->
      forall ti,
        state_lessdef i ti ->
        exists ti', sem (mk_ctx ti sp ge) f' (ti', Some cf)
               /\ state_lessdef i'' ti'.
  Proof.
    induction x as [| x xs IHx ]; intros; cbn -[update] in *; inv H; cbn [fst snd] in *.
    - (* inductive case *)
      exploit mfold_left_update_Some; eauto; intros Hexists;
        inversion Hexists as [[curr_p_inter f_inter] EXEQ]; clear Hexists.
        exploit eval_predf_update_true; eauto; intros EVALTRUE.
      rewrite EXEQ in H2. eapply IHx in H2; eauto; cbn [fst snd] in *.
      eapply sem_update_instr; eauto.
    - (* terminal case *)
      exploit mfold_left_update_Some; eauto; intros Hexists;
        inversion Hexists as [[curr_p_inter f_inter] EXEQ]; clear Hexists. rewrite EXEQ in H2.
      exploit state_lessdef_sem; eauto; intros H; inversion H as [v [Hi LESSDEF]]; clear H.
      exploit step_instr_lessdef_term; eauto; intros H; inversion H as [v2 [Hi2 LESSDEF2]]; clear H.
      exploit step_instr_term_exists; eauto; inversion 1 as [? ?]; subst; clear H.
      erewrite eval_predf_lessdef in H1 by eassumption.
      exploit sem_update_instr_term; eauto; intros [A B].
      exists v2. split. inv Hi2.
      eapply abstr_fold_falsy; try eassumption. auto.
  Qed.

  Lemma sem_regset_empty :
    forall A ctx, @sem_regset A ctx empty (ctx_rs ctx).
  Proof using.
    intros; constructor; intros.
    constructor; auto. constructor.
    constructor.
  Qed.

  Lemma sem_predset_empty :
    forall A ctx, @sem_predset A ctx empty (ctx_ps ctx).
  Proof using.
    intros; constructor; intros.
    constructor; auto. constructor.
  Qed.

  Lemma sem_empty :
    forall A ctx, @sem A ctx empty (ctx_is ctx, None).
  Proof using.
    intros. destruct ctx. destruct ctx_is.
    constructor; try solve [constructor; constructor; crush].
    eapply sem_regset_empty.
    eapply sem_predset_empty.
  Qed.

  Lemma abstr_sequence_correct :
    forall sp x i i'' cf x',
      SeqBB.step ge sp (Iexec i) x (Iterm i'' cf) ->
      abstract_sequence x = Some x' ->
      forall ti,
        state_lessdef i ti ->
        exists ti', sem (mk_ctx ti sp ge) x' (ti', Some cf)
               /\ state_lessdef i'' ti'.
  Proof.
    unfold abstract_sequence. intros. unfold Option.map in H0.
    destruct_match; try easy.
    destruct p; simplify.
    eapply abstr_fold_correct; eauto.
    simplify. eapply sem_empty. auto.
  Qed.

  Lemma abstr_check_correct :
    forall sp i i' a b cf ti,
      check a b = true ->
      sem (mk_ctx i sp ge) a (i', cf) ->
      state_lessdef i ti ->
      exists ti', sem (mk_ctx ti sp ge) b (ti', cf)
             /\ state_lessdef i' ti'.
  Proof. Admitted.

  Lemma abstr_seq_reverse_correct :
    forall sp x i i' ti cf x',
      abstract_sequence x = Some x' ->
      sem (mk_ctx i sp ge) x' (i', (Some cf)) ->
      state_lessdef i ti ->
     exists ti', SeqBB.step ge sp (Iexec ti) x (Iterm ti' cf)
             /\ state_lessdef i' ti'.
  Proof. Admitted.

  Lemma schedule_oracle_correct :
    forall x y sp i i' ti cf,
      schedule_oracle x y = true ->
      SeqBB.step ge sp (Iexec i) x (Iterm i' cf) ->
      state_lessdef i ti ->
      exists ti', ParBB.step tge sp (Iexec ti) y (Iterm ti' cf)
             /\ state_lessdef i' ti'.
  Proof.
    unfold schedule_oracle; intros. repeat (destruct_match; try discriminate). simplify.
    exploit abstr_sequence_correct; eauto; simplify.
    exploit abstr_check_correct; eauto. apply state_lessdef_refl. simplify.
    exploit abstr_seq_reverse_correct; eauto. apply state_lessdef_refl. simplify.
    exploit seqbb_step_parbb_step; eauto; intros.
    econstructor; split; eauto.
    etransitivity; eauto.
    etransitivity; eauto.
  Qed.

  Lemma step_cf_correct :
    forall cf ts s s' t,
      GibleSeq.step_cf_instr ge s cf t s' ->
      match_states s ts ->
      exists ts', step_cf_instr tge ts cf t ts'
             /\ match_states s' ts'.
  Proof. Admitted.

  Lemma match_states_stepBB :
    forall s f sp pc rs pr m sf' f' trs tps tm rs' pr' m' trs' tpr' tm',
      match_states (GibleSeq.State s f sp pc rs pr m) (State sf' f' sp pc trs tps tm) ->
      state_lessdef (mk_instr_state rs' pr' m') (mk_instr_state trs' tpr' tm') ->
      match_states (GibleSeq.State s f sp pc rs' pr' m') (State sf' f' sp pc trs' tpr' tm').
  Proof.
    inversion 1; subst; simplify.
    inv H0. econstructor; eauto.
  Qed.

  Theorem transl_step_correct :
    forall (S1 : GibleSeq.state) t S2,
      GibleSeq.step ge S1 t S2 ->
      forall (R1 : GiblePar.state),
        match_states S1 R1 ->
        exists R2, Smallstep.plus GiblePar.step tge R1 t R2 /\ match_states S2 R2.
  Proof.
    induction 1; repeat semantics_simpl.
    {
      exploit schedule_oracle_correct; eauto. constructor; eauto. simplify.
      destruct x0.
      pose proof H2 as X. eapply match_states_stepBB in X; eauto.
      exploit step_cf_correct; eauto. simplify.
      eexists; split. apply Smallstep.plus_one.
      econstructor; eauto. auto.
    }
    { unfold bind in *. inv TRANSL0. clear Learn. inv H0. destruct_match; crush.
      inv H2. unfold transl_function in Heqr. destruct_match; crush.
      inv Heqr.
      repeat econstructor; eauto.
      unfold bind in *. destruct_match; crush. }
    { inv TRANSL0.
      repeat econstructor;
        eauto using Events.E0_right. }
    { inv STACKS. inv H2. repeat econstructor; eauto.
      intros. apply PTree_matches; eauto. }
    Qed.

  Lemma transl_initial_states:
    forall S,
      GibleSeq.initial_state prog S ->
      exists R, GiblePar.initial_state tprog R /\ match_states S R.
  Proof.
    induction 1.
    exploit function_ptr_translated; eauto. intros [tf [A B]].
    econstructor; split.
    econstructor. apply (Genv.init_mem_transf_partial TRANSL); eauto.
    replace (prog_main tprog) with (prog_main prog). rewrite symbols_preserved; eauto.
    symmetry; eapply match_program_main; eauto.
    eexact A.
    rewrite <- H2. apply sig_transl_function; auto.
    constructor. auto. constructor.
  Qed.

  Lemma transl_final_states:
    forall S R r,
      match_states S R -> GibleSeq.final_state S r -> GiblePar.final_state R r.
  Proof.
    intros. inv H0. inv H. inv STACKS. constructor.
  Qed.

  Theorem transf_program_correct:
    Smallstep.forward_simulation (GibleSeq.semantics prog) (GiblePar.semantics tprog).
  Proof.
    eapply Smallstep.forward_simulation_plus.
    apply senv_preserved.
    eexact transl_initial_states.
    eexact transl_final_states.
    exact transl_step_correct.
  Qed.

End CORRECTNESS.