aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/HTL.v
blob: d777d66e5ace147b6d91c178e119acc0f6f14c6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
 *               2020 James Pollard <j@mes.dev>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Require Import Coq.FSets.FMapPositive.

Require compcert.common.Events.
Require compcert.common.Globalenvs.
Require compcert.common.Smallstep.
Require compcert.common.Values.
Require compcert.lib.Integers.
Require Import compcert.lib.Maps.

Require Import vericert.common.Vericertlib.
Require Import vericert.hls.ValueInt.
Require Import vericert.hls.AssocMap.
Require Import vericert.hls.Array.
Require Import vericert.common.Maps.
Require vericert.hls.Verilog.

(** The purpose of the hardware transfer language (HTL) is to create a more
hardware-like layout that is still similar to the register transfer language
(RTL) that it came from. The main change is that function calls become module
instantiations and that we now describe a state machine instead of a
control-flow graph. *)

Local Open Scope assocmap.

Definition reg := positive.
Definition node := positive.
Definition ident := positive.

Definition datapath_stmnt := Verilog.stmnt.
Definition datapath := PTree.t datapath_stmnt.
Definition control_stmnt := Verilog.stmnt.
Definition controllogic := PTree.t control_stmnt.

Definition map_well_formed {A : Type} (m : PTree.t A) : Prop :=
  forall p0 : positive,
    In p0 (map fst (Maps.PTree.elements m)) ->
    Z.pos p0 <= Integers.Int.max_unsigned.

Inductive controlsignal : Type :=
  | ctrl_finish : controlsignal
  | ctrl_return : controlsignal
  | ctrl_start : controlsignal
  | ctrl_reset : controlsignal
  | ctrl_clk : controlsignal
  | ctrl_param (idx : nat) : controlsignal.

Definition controlsignal_sz (s : controlsignal) : nat :=
  match s with
  | ctrl_param _ => 32
  | ctrl_return => 32
  | _ => 1
  end.

Record module: Type :=
  mkmodule {
    mod_params : list reg;
    mod_datapath : datapath;
    mod_controllogic : controllogic;
    mod_entrypoint : node;
    mod_st : reg;
    mod_stk : reg;
    mod_stk_len : nat;
    mod_finish : reg;
    mod_return : reg;
    mod_start : reg;
    mod_reset : reg;
    mod_clk : reg;
    mod_scldecls : AssocMap.t (option Verilog.io * Verilog.scl_decl);
    mod_arrdecls : AssocMap.t (option Verilog.io * Verilog.arr_decl);
    (** Map from registers in this module to control registers in other modules.
        These will be mapped to the same verilog register. *)
    mod_externctrl : AssocMap.t (ident * controlsignal);
    mod_wf : (map_well_formed mod_controllogic /\ map_well_formed mod_datapath);
  }.

Definition fundef := AST.fundef module.

Definition program := AST.program fundef unit.

Fixpoint init_regs (vl : list value) (rl : list reg) {struct rl} :=
  match rl, vl with
  | r :: rl', v :: vl' => AssocMap.set r v (init_regs vl' rl')
  | _, _ => empty_assocmap
  end.

Definition empty_stack (m : module) : Verilog.assocmap_arr :=
  (AssocMap.set m.(mod_stk) (Array.arr_repeat None m.(mod_stk_len)) (AssocMap.empty Verilog.arr)).


Definition prog_modmap (p : HTL.program) :=
  PTree_Properties.of_list (Option.map_option
                               (fun a => match a with
                                      | (ident, (AST.Gfun (AST.Internal f))) => Some (ident, f)
                                      | _ => None
                                      end)
                               (AST.prog_defs p)).

Lemma max_pc_wf :
  forall T m, Z.pos (max_pc_map m) <= Integers.Int.max_unsigned ->
            @map_well_formed T m.
Proof.
  unfold map_well_formed. intros.
  exploit list_in_map_inv. eassumption. intros [x [A B]]. destruct x.
  apply Maps.PTree.elements_complete in B. apply max_pc_map_sound in B.
  unfold Ple in B. apply Pos2Z.pos_le_pos in B. subst.
  simplify. transitivity (Z.pos (max_pc_map m)); eauto.
Qed.

(** * Operational Semantics *)

Definition genv := Globalenvs.Genv.t fundef unit.

Definition find_func {F V} (ge : Globalenvs.Genv.t F V) (symb : AST.ident) : option F :=
  match Globalenvs.Genv.find_symbol ge symb with
  | None => None
  | Some b => Globalenvs.Genv.find_funct_ptr ge b
  end.

Inductive stackframe : Type :=
  Stackframe : forall (mid : ident)
                 (m : module)
                 (st : node)
                 (reg_assoc : Verilog.assocmap_reg)
                 (arr_assoc : Verilog.assocmap_arr),
    stackframe.

Inductive state : Type :=
| State :
    forall (stack : list stackframe)
           (mid : ident)
           (m : module)
           (st : node)
           (reg_assoc : Verilog.assocmap_reg)
           (arr_assoc : Verilog.assocmap_arr), state
| Returnstate :
    forall (res : list stackframe)
           (mid : ident) (** Name of the callee *)
           (v : value), state
| Callstate :
    forall (stack : list stackframe)
           (mid : ident)
           (m : module)
           (args : list value), state.

Inductive step : genv -> state -> Events.trace -> state -> Prop :=
| step_module :
    forall g mid m st sf ctrl_stmnt data_stmnt
      asr asa
      basr1 basa1 nasr1 nasa1
      basr2 basa2 nasr2 nasa2
      asr' asa'
      f pstval,
      asr!(mod_reset m) = Some (ZToValue 0) ->
      asr!(mod_finish m) = Some (ZToValue 0) ->
      asr!(m.(mod_st)) = Some (posToValue st) ->
      m.(mod_controllogic)!st = Some ctrl_stmnt ->
      m.(mod_datapath)!st = Some data_stmnt ->
      Verilog.stmnt_runp f
        (Verilog.mkassociations asr empty_assocmap)
        (Verilog.mkassociations asa (empty_stack m))
        ctrl_stmnt
        (Verilog.mkassociations basr1 nasr1)
        (Verilog.mkassociations basa1 nasa1) ->
      basr1!(m.(mod_st)) = Some (posToValue st) ->
      Verilog.stmnt_runp f
        (Verilog.mkassociations basr1 nasr1)
        (Verilog.mkassociations basa1 nasa1)
        data_stmnt
        (Verilog.mkassociations basr2 nasr2)
        (Verilog.mkassociations basa2 nasa2) ->
      asr' = Verilog.merge_regs nasr2 basr2 ->
      asa' = Verilog.merge_arrs nasa2 basa2 ->
      asr'!(m.(mod_st)) = Some (posToValue pstval) ->
      Z.pos pstval <= Integers.Int.max_unsigned ->
      step g
           (State sf mid m st     asr  asa) Events.E0
           (State sf mid m pstval asr' asa')
| step_finish :
    forall g m st asr asa retval sf mid,
    asr!(m.(mod_finish)) = Some (ZToValue 1) ->
    asr!(m.(mod_return)) = Some retval ->

    step g
         (State sf mid m st asr asa) Events.E0
         (Returnstate sf mid retval)
| step_initcall :
    forall g callerid caller st asr asa sf callee_id callee callee_reset callee_params callee_param_vals,
    find_func g callee_id = Some (AST.Internal callee) ->

    caller.(mod_externctrl)!callee_reset = Some (callee_id, ctrl_reset) ->
    (forall n param, nth_error callee_params n = Some param ->
          caller.(mod_externctrl)!param = Some (callee_id, ctrl_param n)) ->

    (* The fact that this is the only condition on the current state to trigger
       a call introduces non-determinism into the semantics. The semantics
       permit initiating a call from any state where a reset has been set to 0.
     *)
    asr!callee_reset = Some (ZToValue 0) ->
    callee_param_vals = List.map (fun p => asr#p) callee_params ->

    step g
         (State sf callerid caller st asr asa) Events.E0
         (Callstate (Stackframe callerid caller st asr asa :: sf)
                    callee_id callee callee_param_vals)

| step_call :
    forall g mid m args res,
      step g
           (Callstate res mid m args) Events.E0
           (State res mid m m.(mod_entrypoint)
             (AssocMap.set (mod_reset m) (ZToValue 0)
              (AssocMap.set (mod_finish m) (ZToValue 0)
               (AssocMap.set (mod_st m) (posToValue m.(mod_entrypoint))
                (init_regs args m.(mod_params)))))
             (empty_stack m))

| step_return :
    forall g callerid caller asr asa callee_id callee_return callee_finish i sf pc mst,
      mst = mod_st caller ->

      caller.(mod_externctrl)!callee_return = Some (callee_id, ctrl_return) ->
      caller.(mod_externctrl)!callee_finish = Some (callee_id, ctrl_finish) ->

      step g
           (Returnstate (Stackframe callerid caller pc asr asa :: sf) callee_id i) Events.E0
           (State sf callerid caller pc
                  (asr # mst <- (posToValue pc) # callee_finish <- (ZToValue 1) # callee_return <- i)
                  asa).
Hint Constructors step : htl.

Inductive initial_state (p: program): state -> Prop :=
  | initial_state_intro: forall b m0 m,
      let ge := Globalenvs.Genv.globalenv p in
      Globalenvs.Genv.init_mem p = Some m0 ->
      Globalenvs.Genv.find_symbol ge p.(AST.prog_main) = Some b ->
      Globalenvs.Genv.find_funct_ptr ge b = Some (AST.Internal m) ->
      initial_state p (Callstate nil p.(AST.prog_main) m nil).

Inductive final_state : state -> Integers.int -> Prop :=
| final_state_intro : forall retval mid retvali,
    retvali = valueToInt retval ->
    final_state (Returnstate nil mid retval) retvali.

Definition semantics (m : program) :=
  Smallstep.Semantics step (initial_state m) final_state
                      (Globalenvs.Genv.globalenv m).