aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/HTLPargen.v
blob: d2927224bf51afdad3f3f740eeb991504848008f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Require Import Coq.micromega.Lia.

Require Import compcert.common.AST.
Require compcert.common.Errors.
Require compcert.common.Globalenvs.
Require compcert.lib.Integers.
Require Import compcert.lib.Maps.

Require Import vericert.common.Statemonad.
Require Import vericert.common.Vericertlib.
Require Import vericert.hls.AssocMap.
Require Import vericert.hls.HTL.
Require Import vericert.hls.RTLBlockInstr.
Require Import vericert.hls.RTLPar.
Require Import vericert.hls.ValueInt.
Require Import vericert.hls.Verilog.

Hint Resolve AssocMap.gempty : htlh.
Hint Resolve AssocMap.gso : htlh.
Hint Resolve AssocMap.gss : htlh.
Hint Resolve Ple_refl : htlh.
Hint Resolve Ple_succ : htlh.

Definition assignment : Type := expr -> expr -> stmnt.

Record state: Type := mkstate {
  st_st: reg;
  st_freshreg: reg;
  st_freshstate: node;
  st_scldecls: AssocMap.t (option io * scl_decl);
  st_arrdecls: AssocMap.t (option io * arr_decl);
  st_datapath: datapath;
  st_controllogic: controllogic;
}.

Definition init_state (st : reg) : state :=
  mkstate st
          1%positive
          1%positive
          (AssocMap.empty (option io * scl_decl))
          (AssocMap.empty (option io * arr_decl))
          (AssocMap.empty datapath_stmnt)
          (AssocMap.empty control_stmnt).

Module HTLState <: State.

  Definition st := state.

  Inductive st_incr: state -> state -> Prop :=
    state_incr_intro:
      forall (s1 s2: state),
        st_st s1 = st_st s2 ->
        Ple s1.(st_freshreg) s2.(st_freshreg) ->
        Ple s1.(st_freshstate) s2.(st_freshstate) ->
        (forall n,
            s1.(st_controllogic)!n = None
            \/ s2.(st_controllogic)!n = s1.(st_controllogic)!n) ->
        st_incr s1 s2.
  Hint Constructors st_incr : htlh.

  Definition st_prop := st_incr.
  Hint Unfold st_prop : htlh.

  Lemma st_refl : forall s, st_prop s s.
  Proof. auto with htlh. Qed.

  Lemma st_trans :
    forall s1 s2 s3, st_prop s1 s2 -> st_prop s2 s3 -> st_prop s1 s3.
  Proof.
    intros. inv H. inv H0.
    apply state_incr_intro; eauto using Ple_trans; intros; try congruence.
    destruct H4 with n; destruct H7 with n; intuition congruence.
  Qed.

End HTLState.
Export HTLState.

Module HTLMonad := Statemonad(HTLState).
Export HTLMonad.

Module HTLMonadExtra := Monad.MonadExtra(HTLMonad).
Import HTLMonadExtra.
Export MonadNotation.

Definition state_goto (st : reg) (n : node) : stmnt :=
  Vnonblock (Vvar st) (Vlit (posToValue n)).

Definition state_cond (st : reg) (c : expr) (n1 n2 : node) : stmnt :=
  Vnonblock (Vvar st) (Vternary c (posToExpr n1) (posToExpr n2)).

Definition check_empty_node_datapath:
  forall (s: state) (n: node), { s.(st_datapath)!n = None } + { True }.
Proof.
  intros. case (s.(st_datapath)!n); tauto.
Defined.

Definition check_empty_node_controllogic:
  forall (s: state) (n: node), { s.(st_controllogic)!n = None } + { True }.
Proof.
  intros. case (s.(st_controllogic)!n); tauto.
Defined.

Lemma declare_reg_state_incr :
  forall i s r sz,
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       s.(st_freshstate)
       (AssocMap.set r (i, VScalar sz) s.(st_scldecls))
       s.(st_arrdecls)
       s.(st_datapath)
       s.(st_controllogic)).
Proof. auto with htlh. Qed.

Definition declare_reg (i : option io) (r : reg) (sz : nat) : mon unit :=
  fun s => OK tt (mkstate
                s.(st_st)
                s.(st_freshreg)
                s.(st_freshstate)
                (AssocMap.set r (i, VScalar sz) s.(st_scldecls))
                s.(st_arrdecls)
                s.(st_datapath)
                s.(st_controllogic))
              (declare_reg_state_incr i s r sz).

Lemma add_instr_state_incr :
  forall s n n' st,
    (st_controllogic s)!n = None ->
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (st_freshstate s)
       s.(st_scldecls)
       s.(st_arrdecls)
       (AssocMap.set n st s.(st_datapath))
       (AssocMap.set n (state_goto s.(st_st) n') s.(st_controllogic))).
Proof.
  constructor; intros;
    try (simpl; destruct (peq n n0); subst);
    auto with htlh.
Qed.

Definition add_instr (n : node) (n' : node) (st : stmnt) : mon unit :=
  fun s =>
    match check_empty_node_controllogic s n with
    | left TRANS =>
      OK tt (mkstate
               s.(st_st)
               s.(st_freshreg)
               (st_freshstate s)
               s.(st_scldecls)
               s.(st_arrdecls)
               (AssocMap.set n st s.(st_datapath))
               (AssocMap.set n (state_goto s.(st_st) n') s.(st_controllogic)))
         (add_instr_state_incr s n n' st TRANS)
    | _ => Error (Errors.msg "HTL.add_instr")
    end.

Lemma add_instr_skip_state_incr :
  forall s n st,
    (st_controllogic s)!n = None ->
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (st_freshstate s)
       s.(st_scldecls)
       s.(st_arrdecls)
       (AssocMap.set n st s.(st_datapath))
       (AssocMap.set n Vskip s.(st_controllogic))).
Proof.
  constructor; intros;
    try (simpl; destruct (peq n n0); subst);
    auto with htlh.
Qed.

Definition add_instr_skip (n : node) (st : stmnt) : mon unit :=
  fun s =>
    match check_empty_node_controllogic s n with
    | left TRANS =>
      OK tt (mkstate
               s.(st_st)
               s.(st_freshreg)
               (st_freshstate s)
               s.(st_scldecls)
               s.(st_arrdecls)
               (AssocMap.set n st s.(st_datapath))
               (AssocMap.set n Vskip s.(st_controllogic)))
         (add_instr_skip_state_incr s n st TRANS)
    | _ => Error (Errors.msg "HTL.add_instr_skip")
    end.

Lemma add_node_skip_state_incr :
  forall s n st,
    (st_controllogic s)!n = None ->
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (st_freshstate s)
       s.(st_scldecls)
       s.(st_arrdecls)
       (AssocMap.set n Vskip s.(st_datapath))
       (AssocMap.set n st s.(st_controllogic))).
Proof.
  constructor; intros;
    try (simpl; destruct (peq n n0); subst);
    auto with htlh.
Qed.

Definition add_node_skip (n : node) (st : stmnt) : mon unit :=
  fun s =>
    match check_empty_node_controllogic s n with
    | left TRANS =>
      OK tt (mkstate
               s.(st_st)
               s.(st_freshreg)
               (st_freshstate s)
               s.(st_scldecls)
               s.(st_arrdecls)
               (AssocMap.set n Vskip s.(st_datapath))
               (AssocMap.set n st s.(st_controllogic)))
         (add_node_skip_state_incr s n st TRANS)
    | _ => Error (Errors.msg "HTL.add_node_skip")
    end.

Definition nonblock (dst : reg) (e : expr) := Vnonblock (Vvar dst) e.
Definition block (dst : reg) (e : expr) := Vblock (Vvar dst) e.

Definition bop (op : binop) (r1 r2 : reg) : expr :=
  Vbinop op (Vvar r1) (Vvar r2).

Definition boplit (op : binop) (r : reg) (l : Integers.int) : expr :=
  Vbinop op (Vvar r) (Vlit (intToValue l)).

Definition boplitz (op: binop) (r: reg) (l: Z) : expr :=
  Vbinop op (Vvar r) (Vlit (ZToValue l)).

Definition translate_comparison (c : Integers.comparison) (args : list reg)
  : mon expr :=
  match c, args with
  | Integers.Ceq, r1::r2::nil => ret (bop Veq r1 r2)
  | Integers.Cne, r1::r2::nil => ret (bop Vne r1 r2)
  | Integers.Clt, r1::r2::nil => ret (bop Vlt r1 r2)
  | Integers.Cgt, r1::r2::nil => ret (bop Vgt r1 r2)
  | Integers.Cle, r1::r2::nil => ret (bop Vle r1 r2)
  | Integers.Cge, r1::r2::nil => ret (bop Vge r1 r2)
  | _, _ => error (Errors.msg
                 "Htlgen: comparison instruction not implemented: other")
  end.

Definition translate_comparison_imm (c : Integers.comparison) (args : list reg)
           (i: Integers.int) : mon expr :=
  match c, args with
  | Integers.Ceq, r1::nil => ret (boplit Veq r1 i)
  | Integers.Cne, r1::nil => ret (boplit Vne r1 i)
  | Integers.Clt, r1::nil => ret (boplit Vlt r1 i)
  | Integers.Cgt, r1::nil => ret (boplit Vgt r1 i)
  | Integers.Cle, r1::nil => ret (boplit Vle r1 i)
  | Integers.Cge, r1::nil => ret (boplit Vge r1 i)
  | _, _ => error (Errors.msg
                 "Htlgen: comparison_imm instruction not implemented: other")
  end.

Definition translate_comparisonu (c : Integers.comparison) (args : list reg)
  : mon expr :=
  match c, args with
  | Integers.Clt, r1::r2::nil => ret (bop Vltu r1 r2)
  | Integers.Cgt, r1::r2::nil => ret (bop Vgtu r1 r2)
  | Integers.Cle, r1::r2::nil => ret (bop Vleu r1 r2)
  | Integers.Cge, r1::r2::nil => ret (bop Vgeu r1 r2)
  | _, _ => error (Errors.msg
                 "Htlgen: comparison instruction not implemented: other")
  end.

Definition translate_comparison_immu (c : Integers.comparison)
           (args : list reg) (i: Integers.int) : mon expr :=
  match c, args with
  | Integers.Clt, r1::nil => ret (boplit Vltu r1 i)
  | Integers.Cgt, r1::nil => ret (boplit Vgtu r1 i)
  | Integers.Cle, r1::nil => ret (boplit Vleu r1 i)
  | Integers.Cge, r1::nil => ret (boplit Vgeu r1 i)
  | _, _ => error (Errors.msg
                 "Htlgen: comparison_imm instruction not implemented: other")
  end.

Definition translate_condition (c : Op.condition) (args : list reg)
  : mon expr :=
  match c, args with
  | Op.Ccomp c, _ => translate_comparison c args
  | Op.Ccompu c, _ => translate_comparisonu c args
  | Op.Ccompimm c i, _ => translate_comparison_imm c args i
  | Op.Ccompuimm c i, _ => translate_comparison_immu c args i
  | Op.Cmaskzero n, _ =>
    error (Errors.msg "Htlgen: condition instruction not implemented: Cmaskzero")
  | Op.Cmasknotzero n, _ =>
    error (Errors.msg
         "Htlgen: condition instruction not implemented: Cmasknotzero")
  | _, _ =>
    error (Errors.msg "Htlgen: condition instruction not implemented: other")
  end.

Definition check_address_parameter_signed (p : Z) : bool :=
  Z.leb Integers.Ptrofs.min_signed p
  && Z.leb p Integers.Ptrofs.max_signed.

Definition check_address_parameter_unsigned (p : Z) : bool :=
  Z.leb p Integers.Ptrofs.max_unsigned.

Definition translate_eff_addressing (a: Op.addressing) (args: list reg)
  : mon expr :=
  match a, args with (* TODO: We should be more methodical here; what are the possibilities?*)
  | Op.Aindexed off, r1::nil =>
    if (check_address_parameter_signed off)
    then ret (boplitz Vadd r1 off)
    else error (Errors.msg ("HTLPargen: translate_eff_addressing (Aindexed): address out of bounds"))
  | Op.Ascaled scale offset, r1::nil =>
    if (check_address_parameter_signed scale) && (check_address_parameter_signed offset)
    then ret (Vbinop Vadd (boplitz Vmul r1 scale) (Vlit (ZToValue offset)))
    else error (Errors.msg "HTLPargen: translate_eff_addressing (Ascaled): address out of bounds")
  | Op.Aindexed2 offset, r1::r2::nil =>
    if (check_address_parameter_signed offset)
    then ret (Vbinop Vadd (bop Vadd r1 r2) (Vlit (ZToValue offset)))
    else error (Errors.msg "HTLPargen: translate_eff_addressing (Aindexed2): address out of bounds")
  | Op.Aindexed2scaled scale offset, r1::r2::nil => (* Typical for dynamic array addressing *)
    if (check_address_parameter_signed scale) && (check_address_parameter_signed offset)
    then ret (Vbinop Vadd (Vvar r1) (Vbinop Vadd (boplitz Vmul r2 scale) (Vlit (ZToValue offset))))
    else error (Errors.msg "HTLPargen: translate_eff_addressing (Aindexed2scaled): address out of bounds")
  | Op.Ainstack a, nil => (* We need to be sure that the base address is aligned *)
    let a := Integers.Ptrofs.unsigned a in
    if (check_address_parameter_unsigned a)
    then ret (Vlit (ZToValue a))
    else error (Errors.msg "HTLPargen: translate_eff_addressing (Ainstack): address out of bounds")
  | _, _ => error (Errors.msg "HTLPargen: translate_eff_addressing unsuported addressing")
  end.

(** Translate an instruction to a statement. FIX mulhs mulhu *)
Definition translate_instr (op : Op.operation) (args : list reg) : mon expr :=
  match op, args with
  | Op.Omove, r::nil => ret (Vvar r)
  | Op.Ointconst n, _ => ret (Vlit (intToValue n))
  | Op.Oneg, r::nil => ret (Vunop Vneg (Vvar r))
  | Op.Osub, r1::r2::nil => ret (bop Vsub r1 r2)
  | Op.Omul, r1::r2::nil => ret (bop Vmul r1 r2)
  | Op.Omulimm n, r::nil => ret (boplit Vmul r n)
  | Op.Omulhs, r1::r2::nil => error (Errors.msg "Htlgen: Instruction not implemented: mulhs")
  | Op.Omulhu, r1::r2::nil => error (Errors.msg "Htlgen: Instruction not implemented: mulhu")
  | Op.Odiv, r1::r2::nil => ret (bop Vdiv r1 r2)
  | Op.Odivu, r1::r2::nil => ret (bop Vdivu r1 r2)
  | Op.Omod, r1::r2::nil => ret (bop Vmod r1 r2)
  | Op.Omodu, r1::r2::nil => ret (bop Vmodu r1 r2)
  | Op.Oand, r1::r2::nil => ret (bop Vand r1 r2)
  | Op.Oandimm n, r::nil => ret (boplit Vand r n)
  | Op.Oor, r1::r2::nil => ret (bop Vor r1 r2)
  | Op.Oorimm n, r::nil => ret (boplit Vor r n)
  | Op.Oxor, r1::r2::nil => ret (bop Vxor r1 r2)
  | Op.Oxorimm n, r::nil => ret (boplit Vxor r n)
  | Op.Onot, r::nil => ret (Vunop Vnot (Vvar r))
  | Op.Oshl, r1::r2::nil => ret (bop Vshl r1 r2)
  | Op.Oshlimm n, r::nil => ret (boplit Vshl r n)
  | Op.Oshr, r1::r2::nil => ret (bop Vshr r1 r2)
  | Op.Oshrimm n, r::nil => ret (boplit Vshr r n)
  | Op.Oshrximm n, r::nil =>
    ret (Vternary (Vbinop Vlt (Vvar r) (Vlit (ZToValue 0)))
                  (Vunop Vneg (Vbinop Vshru (Vunop Vneg (Vvar r)) (Vlit n)))
                  (Vbinop Vshru (Vvar r) (Vlit n)))
  | Op.Oshru, r1::r2::nil => ret (bop Vshru r1 r2)
  | Op.Oshruimm n, r::nil => ret (boplit Vshru r n)
  | Op.Ororimm n, r::nil => error (Errors.msg "Htlgen: Instruction not implemented: Ororimm")
  (*ret (Vbinop Vor (boplit Vshru r (Integers.Int.modu n (Integers.Int.repr 32)))
                                        (boplit Vshl r (Integers.Int.sub (Integers.Int.repr 32) (Integers.Int.modu n (Integers.Int.repr 32)))))*)
  | Op.Oshldimm n, r::nil => ret (Vbinop Vor (boplit Vshl r n) (boplit Vshr r (Integers.Int.sub (Integers.Int.repr 32) n)))
  | Op.Ocmp c, _ => translate_condition c args
  | Op.Osel c AST.Tint, r1::r2::rl =>
    do tc <- translate_condition c rl;
    ret (Vternary tc (Vvar r1) (Vvar r2))
  | Op.Olea a, _ => translate_eff_addressing a args
  | _, _ => error (Errors.msg "Htlgen: Instruction not implemented: other")
  end.

Lemma add_branch_instr_state_incr:
  forall s e n n1 n2,
    (st_controllogic s) ! n = None ->
    st_incr s (mkstate
                 s.(st_st)
                (st_freshreg s)
                (st_freshstate s)
                s.(st_scldecls)
                s.(st_arrdecls)
                (AssocMap.set n Vskip (st_datapath s))
                (AssocMap.set n (state_cond s.(st_st) e n1 n2) (st_controllogic s))).
Proof.
  intros. apply state_incr_intro; simpl;
            try (intros; destruct (peq n0 n); subst);
            auto with htlh.
Qed.

Definition add_branch_instr (e: expr) (n n1 n2: node) : mon unit :=
  fun s =>
    match check_empty_node_controllogic s n with
    | left NTRANS =>
      OK tt (mkstate
               s.(st_st)
                (st_freshreg s)
                (st_freshstate s)
                s.(st_scldecls)
                s.(st_arrdecls)
                (AssocMap.set n Vskip (st_datapath s))
                (AssocMap.set n (state_cond s.(st_st) e n1 n2) (st_controllogic s)))
         (add_branch_instr_state_incr s e n n1 n2 NTRANS)
    | _ => Error (Errors.msg "Htlgen: add_branch_instr")
    end.

Definition translate_arr_access (mem : AST.memory_chunk) (addr : Op.addressing)
           (args : list reg) (stack : reg) : mon expr :=
  match mem, addr, args with (* TODO: We should be more methodical here; what are the possibilities?*)
  | Mint32, Op.Aindexed off, r1::nil =>
    if (check_address_parameter_signed off)
    then ret (Vvari stack (Vbinop Vdivu (boplitz Vadd r1 off) (Vlit (ZToValue 4))))
    else error (Errors.msg "HTLgen: translate_arr_access address out of bounds")
  | Mint32, Op.Aindexed2scaled scale offset, r1::r2::nil => (* Typical for dynamic array addressing *)
    if (check_address_parameter_signed scale) && (check_address_parameter_signed offset)
    then ret (Vvari stack
                    (Vbinop Vdivu
                            (Vbinop Vadd (boplitz Vadd r1 offset) (boplitz Vmul r2 scale))
                            (Vlit (ZToValue 4))))
    else error (Errors.msg "HTLgen: translate_arr_access address out of bounds")
  | Mint32, Op.Ainstack a, nil => (* We need to be sure that the base address is aligned *)
    let a := Integers.Ptrofs.unsigned a in
    if (check_address_parameter_unsigned a)
    then ret (Vvari stack (Vlit (ZToValue (a / 4))))
    else error (Errors.msg "HTLgen: eff_addressing out of bounds stack offset")
  | _, _, _ => error (Errors.msg "HTLgen: translate_arr_access unsuported addressing")
  end.

Fixpoint enumerate (i : nat) (ns : list node) {struct ns} : list (nat * node) :=
  match ns with
  | n :: ns' => (i, n) :: enumerate (i+1) ns'
  | nil => nil
  end.

Definition tbl_to_case_expr (st : reg) (ns : list node) : list (expr * stmnt) :=
  List.map (fun a => match a with
                    (i, n) => (Vlit (natToValue i), Vnonblock (Vvar st) (Vlit (posToValue n)))
                  end)
           (enumerate 0 ns).

Definition stack_correct (sz : Z) : bool :=
  (0 <=? sz) && (sz <? Integers.Ptrofs.modulus) && (Z.modulo sz 4 =? 0).

Lemma create_reg_state_incr:
  forall s sz i,
    st_incr s (mkstate
         s.(st_st)
         (Pos.succ (st_freshreg s))
         (st_freshstate s)
         (AssocMap.set s.(st_freshreg) (i, VScalar sz) s.(st_scldecls))
         s.(st_arrdecls)
         (st_datapath s)
         (st_controllogic s)).
Proof. constructor; simpl; auto with htlh. Qed.

Definition create_reg (i : option io) (sz : nat) : mon reg :=
  fun s => let r := s.(st_freshreg) in
           OK r (mkstate
                   s.(st_st)
                   (Pos.succ r)
                   (st_freshstate s)
                   (AssocMap.set s.(st_freshreg) (i, VScalar sz) s.(st_scldecls))
                   (st_arrdecls s)
                   (st_datapath s)
                   (st_controllogic s))
              (create_reg_state_incr s sz i).

Lemma create_arr_state_incr:
  forall s sz ln i,
    st_incr s (mkstate
         s.(st_st)
         (Pos.succ (st_freshreg s))
         (st_freshstate s)
         s.(st_scldecls)
         (AssocMap.set s.(st_freshreg) (i, VArray sz ln) s.(st_arrdecls))
         (st_datapath s)
         (st_controllogic s)).
Proof. constructor; simpl; auto with htlh. Qed.

Definition create_arr (i : option io) (sz : nat) (ln : nat) : mon (reg * nat) :=
  fun s => let r := s.(st_freshreg) in
           OK (r, ln) (mkstate
                   s.(st_st)
                   (Pos.succ r)
                   (st_freshstate s)
                   s.(st_scldecls)
                   (AssocMap.set s.(st_freshreg) (i, VArray sz ln) s.(st_arrdecls))
                   (st_datapath s)
                   (st_controllogic s))
              (create_arr_state_incr s sz ln i).

Definition max_pc_map {A: Type} (m : Maps.PTree.t A) :=
  PTree.fold (fun m pc i => Pos.max m pc) m 1%positive.

Lemma max_pc_map_sound:
  forall A m pc i, m!pc = Some i -> Ple pc (@max_pc_map A m).
Proof.
  intros until i. unfold max_pc_function.
  apply PTree_Properties.fold_rec with (P := fun c m => c!pc = Some i -> Ple pc m).
  (* extensionality *)
  intros. apply H0. rewrite H; auto.
  (* base case *)
  rewrite PTree.gempty. congruence.
  (* inductive case *)
  intros. rewrite PTree.gsspec in H2. destruct (peq pc k).
  inv H2. xomega.
  apply Ple_trans with a. auto. xomega.
Qed.

Lemma max_pc_wf :
  forall T m, Z.pos (max_pc_map m) <= Integers.Int.max_unsigned ->
            @map_well_formed T m.
Proof.
  unfold map_well_formed. intros.
  exploit list_in_map_inv. eassumption. intros [x [A B]]. destruct x.
  apply Maps.PTree.elements_complete in B. apply max_pc_map_sound in B.
  unfold Ple in B. apply Pos2Z.pos_le_pos in B. subst.
  simplify. transitivity (Z.pos (max_pc_map m)); eauto.
Qed.

Definition poslength {A : Type} (l : list A) : positive :=
  match Zlength l with
  | Z.pos p => p
  | _ => 1
  end.

Fixpoint penumerate {A : Type} (p : positive) (l : list A) {struct l}
  : list (positive * A) :=
  match l with
  | x :: xs => (p, x) :: penumerate (Pos.pred p) xs
  | nil => nil
  end.

Fixpoint prange {A: Type} (p1 p2: positive) (l: list A) {struct l} :=
  match l with
  | x :: xs => (p1, p2, x) :: prange p2 (Pos.pred p2) xs
  | nil => nil
  end.

Lemma add_data_instr_state_incr :
  forall s n st,
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (st_freshstate s)
       s.(st_scldecls)
       s.(st_arrdecls)
       (AssocMap.set n (Vseq (AssocMapExt.get_default
                            _ Vskip n s.(st_datapath)) st) s.(st_datapath))
       s.(st_controllogic)).
Proof.
  constructor; intros;
    try (simpl; destruct (peq n n0); subst);
    auto with htlh.
Qed.

Definition add_data_instr (n : node) (st : stmnt) : mon unit :=
  fun s =>
    OK tt (mkstate
         s.(st_st)
         s.(st_freshreg)
         (st_freshstate s)
         s.(st_scldecls)
         s.(st_arrdecls)
         (AssocMap.set n (Vseq (AssocMapExt.get_default
                            _ Vskip n s.(st_datapath)) st) s.(st_datapath))
         s.(st_controllogic))
       (add_data_instr_state_incr s n st).

Lemma add_control_instr_state_incr :
  forall s n st,
  (st_controllogic s) ! n = None ->
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (st_freshstate s)
       s.(st_scldecls)
       s.(st_arrdecls)
       s.(st_datapath)
       (AssocMap.set n st s.(st_controllogic))).
Proof.
  constructor; intros;
    try (simpl; destruct (peq n n0); subst);
    auto with htlh.
Qed.

Definition add_control_instr (n : node) (st : stmnt) : mon unit :=
  fun s =>
    match check_empty_node_controllogic s n with
    | left CTRL =>
      OK tt (mkstate
           s.(st_st)
           s.(st_freshreg)
           (st_freshstate s)
           s.(st_scldecls)
           s.(st_arrdecls)
           s.(st_datapath)
           (AssocMap.set n st s.(st_controllogic)))
         (add_control_instr_state_incr s n st CTRL)
    | _ =>
      Error (Errors.msg "HTLPargen.add_control_instr: control logic is not empty")
    end.

Definition add_control_instr_force_state_incr :
  forall s n st,
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (st_freshstate s)
       s.(st_scldecls)
       s.(st_arrdecls)
       s.(st_datapath)
       (AssocMap.set n st s.(st_controllogic))).
Abort.

(*Definition add_control_instr_force (n : node) (st : stmnt) : mon unit :=
  fun s =>
    OK tt (mkstate
      s.(st_st)
      s.(st_freshreg)
      (st_freshstate s)
      s.(st_scldecls)
      s.(st_arrdecls)
      s.(st_datapath)
      (AssocMap.set n st s.(st_controllogic)))
   (add_control_instr_force_state_incr s n st).

Fixpoint pred_expr (preg: reg) (p: pred_op) :=
  match p with
  | Pvar pred =>
    Vrange preg (Vlit (natToValue pred)) (Vlit (natToValue pred))
  | Pnot pred =>
    Vunop Vnot (pred_expr preg pred)
  | Pand p1 p2 =>
    Vbinop Vand (pred_expr preg p1) (pred_expr preg p2)
  | Por p1 p2 =>
    Vbinop Vor (pred_expr preg p1) (pred_expr preg p2)
  end.

Definition translate_predicate (a : assignment)
           (preg: reg) (p: option pred_op) (dst e: expr) :=
  match p with
  | None => ret (a dst e)
  | Some pos =>
    ret (a dst (Vternary (pred_expr preg pos) e dst))
  end.

Definition translate_inst a (fin rtrn stack preg : reg) (n : node) (i : instr)
  : mon stmnt :=
  match i with
  | RBnop =>
    ret Vskip
  | RBop p op args dst =>
    do instr <- translate_instr op args;
    do _ <- declare_reg None dst 32;
    translate_predicate a preg p (Vvar dst) instr
  | RBload p chunk addr args dst =>
    do src <- translate_arr_access chunk addr args stack;
    do _ <- declare_reg None dst 32;
    translate_predicate a preg p (Vvar dst) src
  | RBstore p chunk addr args src =>
    do dst <- translate_arr_access chunk addr args stack;
    translate_predicate a preg p dst (Vvar src)
  | RBsetpred c args p =>
    do cond <- translate_condition c args;
    ret (a (pred_expr preg (Pvar p)) cond)
  end.

Lemma create_new_state_state_incr:
  forall s p,
  st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (s.(st_freshstate) + p)%positive
       s.(st_scldecls)
       s.(st_arrdecls)
       s.(st_datapath)
       s.(st_controllogic)).
Abort.

Definition create_new_state (p: node): mon node :=
  fun s => OK s.(st_freshstate)
              (mkstate
                s.(st_st)
                s.(st_freshreg)
                (s.(st_freshstate) + p)%positive
                s.(st_scldecls)
                s.(st_arrdecls)
                s.(st_datapath)
                s.(st_controllogic))
              (create_new_state_state_incr s p).

Definition translate_inst_list (fin rtrn stack preg: reg) (ni : node * node * list (list instr)) :=
  match ni with
  | (n, p, li) =>
    do _ <- collectlist
          (fun l =>
             do stmnt <- translate_inst Vblock fin rtrn stack preg n l;
             add_data_instr n stmnt) (concat li);
    do st <- get;
    add_control_instr n (state_goto st.(st_st) p)
  end.

Fixpoint translate_cfi' (fin rtrn stack preg: reg) (cfi: cf_instr)
  : mon (stmnt * stmnt) :=
  match cfi with
  | RBgoto n' =>
    do st <- get;
    ret (Vskip, state_goto st.(st_st) n')
  | RBcond c args n1 n2 =>
    do st <- get;
    do e <- translate_condition c args;
    ret (Vskip, state_cond st.(st_st) e n1 n2)
  | RBreturn r =>
    match r with
    | Some r' =>
      ret ((Vseq (block fin (Vlit (ZToValue 1%Z))) (block rtrn (Vvar r'))),
           Vskip)
    | None =>
      ret ((Vseq (block fin (Vlit (ZToValue 1%Z))) (block rtrn (Vlit (ZToValue 0%Z)))),
           Vskip)
    end
  | RBpred_cf p c1 c2 =>
    do (tc1s, tc1c) <- translate_cfi' fin rtrn stack preg c1;
    do (tc2s, tc2c) <- translate_cfi' fin rtrn stack preg c2;
    ret ((Vcond (pred_expr preg p) tc1s tc2s), (Vcond (pred_expr preg p) tc1c tc2c))
  | RBjumptable r tbl =>
    do s <- get;
    ret (Vskip, Vcase (Vvar r) (list_to_stmnt (tbl_to_case_expr s.(st_st) tbl)) (Some Vskip))
  | RBcall sig ri rl r n =>
    error (Errors.msg "HTLPargen: RPcall not supported.")
  | RBtailcall sig ri lr =>
    error (Errors.msg "HTLPargen: RPtailcall not supported.")
  | RBbuiltin e lb b n =>
    error (Errors.msg "HTLPargen: RPbuildin not supported.")
  end.

Definition translate_cfi (fin rtrn stack preg: reg) (ni: node * cf_instr)
  : mon unit :=
  let (n, cfi) := ni in
  do (s, c) <- translate_cfi' fin rtrn stack preg cfi;
  do _ <- add_control_instr n c;
  add_data_instr n s.

Definition transf_bblock (fin rtrn stack preg: reg) (ni : node * bblock)
  : mon unit :=
  let (n, bb) := ni in
  do nstate <- create_new_state ((poslength bb.(bb_body)))%positive;
  do _ <- collectlist (translate_inst_list fin rtrn stack preg)
                      (prange n (nstate + poslength bb.(bb_body) - 1)%positive
                                  bb.(bb_body));
  match bb.(bb_body) with
  | nil => translate_cfi fin rtrn stack preg (n, bb.(bb_exit))
  | _ => translate_cfi fin rtrn stack preg (nstate, bb.(bb_exit))
  end.

Definition decide_order a b c d e f g : {module_ordering a b c d e f g} + {True}.
  refine (match bool_dec ((a <? b) && (b <? c) && (c <? d)
                          && (d <? e) && (e <? f) && (f <? g))%positive true with
          | left t => left _
          | _ => _
          end); auto.
  simplify; repeat match goal with
                   | H: context[(_ <? _)%positive] |- _ => apply Pos.ltb_lt in H
                   end; unfold module_ordering; auto.
Defined.

Definition transf_module (f: function) : mon HTL.module.
  refine (
  if stack_correct f.(fn_stacksize) then
    do fin <- create_reg (Some Voutput) 1;
    do rtrn <- create_reg (Some Voutput) 32;
    do (stack, stack_len) <- create_arr None 32
                                        (Z.to_nat (f.(fn_stacksize) / 4));
    do preg <- create_reg None 32;
    do _ <- collectlist (transf_bblock fin rtrn stack preg)
                        (Maps.PTree.elements f.(fn_code));
    do _ <- collectlist (fun r => declare_reg (Some Vinput) r 32)
                        f.(fn_params);
    do start <- create_reg (Some Vinput) 1;
    do rst <- create_reg (Some Vinput) 1;
    do clk <- create_reg (Some Vinput) 1;
    do current_state <- get;
    match zle (Z.pos (max_pc_map current_state.(st_datapath)))
              Integers.Int.max_unsigned,
          zle (Z.pos (max_pc_map current_state.(st_controllogic)))
              Integers.Int.max_unsigned,
          decide_order (st_st current_state) fin rtrn stack start rst clk,
          max_list_dec (fn_params f) (st_st current_state)
    with
    | left LEDATA, left LECTRL, left MORD, left WFPARAMS =>
        ret (HTL.mkmodule
           f.(fn_params)
           current_state.(st_datapath)
           current_state.(st_controllogic)
           f.(fn_entrypoint)
           current_state.(st_st)
           stack
           stack_len
           fin
           rtrn
           start
           rst
           clk
           current_state.(st_scldecls)
           current_state.(st_arrdecls)
           None
           (conj (max_pc_wf _ LECTRL) (max_pc_wf _ LEDATA))
           MORD
           _
           WFPARAMS)
    | _, _, _, _ => error (Errors.msg "More than 2^32 states.")
    end
  else error (Errors.msg "Stack size misalignment.")); discriminate.
Defined.

Definition max_state (f: function) : state :=
  let st := Pos.succ (max_reg_function f) in
  mkstate st
          (Pos.succ st)
          (Pos.succ (max_pc_function f))
          (AssocMap.set st (None, VScalar 32) (st_scldecls (init_state st)))
          (st_arrdecls (init_state st))
          (st_datapath (init_state st))
          (st_controllogic (init_state st)).

Definition transl_module (f : function) : Errors.res HTL.module :=
  run_mon (max_state f) (transf_module f).

Definition transl_fundef := transf_partial_fundef transl_module.

Definition main_is_internal (p : RTLPar.program) : bool :=
  let ge := Globalenvs.Genv.globalenv p in
  match Globalenvs.Genv.find_symbol ge p.(AST.prog_main) with
  | Some b =>
    match Globalenvs.Genv.find_funct_ptr ge b with
    | Some (AST.Internal _) => true
    | _ => false
    end
  | _ => false
  end.

Definition transl_program (p : RTLBlockInstr.program) : Errors.res HTL.program :=
  if main_is_internal p
  then transform_partial_program transl_fundef p
  else Errors.Error (Errors.msg "Main function is not Internal.").
*)