aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/HTLgenspec.v
blob: bf18c8a882099c1e0a05df5779b8b7b96875731b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
 *               2020 James Pollard <j@mes.dev>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Require Import Coq.micromega.Lia.

Require compcert.backend.RTL.
Require compcert.common.Errors.
Require Import compcert.lib.Integers.
Require Import compcert.lib.Maps.
Require compcert.verilog.Op.

Require Import vericert.common.Vericertlib.
Require Import vericert.hls.Verilog.
Require Import vericert.hls.ValueInt.
Require Import vericert.hls.HTL.
Require Import vericert.hls.HTLgen.
Require Import vericert.hls.AssocMap.

From Hammer Require Import Tactics.

Hint Resolve Maps.PTree.elements_keys_norepet : htlspec.
Hint Resolve Maps.PTree.elements_correct : htlspec.
Hint Resolve Maps.PTree.gss : htlspec.
Hint Resolve -> Z.leb_le : htlspec.

Hint Unfold block : htlspec.
Hint Unfold nonblock : htlspec.

Remark bind_inversion:
  forall (A B: Type) (f: mon A) (g: A -> mon B)
         (y: B) (s1 s3: st) (i: st_incr s1 s3),
    bind f g s1 = OK y s3 i ->
    exists x, exists s2, exists i1, exists i2,
            f s1 = OK x s2 i1 /\ g x s2 = OK y s3 i2.
Proof. unfold bind. sauto. Qed.

Remark bind2_inversion:
  forall (A B C: Type) (f: mon (A*B)) (g: A -> B -> mon C)
         (z: C) (s1 s3: st) (i: st_incr s1 s3),
    bind2 f g s1 = OK z s3 i ->
    exists x, exists y, exists s2, exists i1, exists i2,
              f s1 = OK (x, y) s2 i1 /\ g x y s2 = OK z s3 i2.
Proof. sauto using bind_inversion. Qed.

Ltac monadInv1 H :=
  match type of H with
  | ((match ?x with | _ => _ end) = OK _ _ _) =>
    destruct x eqn:?; try discriminate; try monadInv1 H
  | (OK _ _ _ = OK _ _ _) =>
    inversion H; clear H; try subst
  | (Error _ _ = OK _ _ _) =>
    discriminate
  | (ret _ _ = OK _ _ _) =>
    inversion H; clear H; try subst
  | (error _ _ = OK _ _ _) =>
    discriminate
  | (bind ?F ?G ?S = OK ?X ?S' ?I) =>
    let x := fresh "x" in (
      let s := fresh "s" in (
        let i1 := fresh "INCR" in (
          let i2 := fresh "INCR" in (
            let EQ1 := fresh "EQ" in (
              let EQ2 := fresh "EQ" in (
                destruct (bind_inversion _ _ F G X S S' I H) as [x [s [i1 [i2 [EQ1 EQ2]]]]];
                clear H;
                try (monadInv1 EQ2)))))))
  | (bind2 ?F ?G ?S = OK ?X ?S' ?I) =>
    let x1 := fresh "x" in (
      let x2 := fresh "x" in (
        let s := fresh "s" in (
          let i1 := fresh "INCR" in (
            let i2 := fresh "INCR" in (
              let EQ1 := fresh "EQ" in (
                let EQ2 := fresh "EQ" in (
                  destruct (bind2_inversion _ _ _ F G X S S' I H) as [x1 [x2 [s [i1 [i2 [EQ1 EQ2]]]]]];
                  clear H;
                  try (monadInv1 EQ2))))))))
  end.

Ltac monadInv H :=
  match type of H with
  | (ret _ _ = OK _ _ _) => monadInv1 H
  | (OK _ _ = OK _ _ _) => monadInv1 H
  | (error _ _ = OK _ _ _) => monadInv1 H
  | (bind ?F ?G ?S = OK ?X ?S' ?I) => monadInv1 H
  | (bind2 ?F ?G ?S = OK ?X ?S' ?I) => monadInv1 H
  | (?F _ _ _ _ _ _ _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ _ _ _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ _ _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  end.

Ltac rewrite_states :=
  match goal with
  | [ H: ?x ?s = ?x ?s' |- _ ] =>
    let c1 := fresh "c" in
    let c2 := fresh "c" in
    learn (?x ?s) as c1; learn (?x ?s') as c2; try subst
  end.

Ltac saturate_incr :=
  repeat match goal with
         | [INCR1 : st_prop ?s1 ?s2, INCR2 : st_prop ?s2 ?s3 |- _] =>
           let INCR3 := fresh "INCR" in
           learn (st_trans s1 s2 s3 INCR1 INCR2)
         end.

(** Used to solve goals that follow directly from a single monadic operation *)
Ltac intro_step :=
  match goal with
  | [ H : _ = OK _ _ _  |- _ ] => solve [ monadInv H; simplify; eauto with htlspec ]
  end.

(** Used to transfer a result about one of the maps in the state from one
      state to a latter one *)
Ltac trans_step s1 s2 :=
  saturate_incr;
  match goal with
  | [ INCR : st_prop s1 s2 |- _ ] => try solve [inversion INCR; crush]; destruct INCR
  end;
  solve [
      match goal with
      | [ MAP_INCR : HTLgen.map_incr ?map _ _ |- (?map _) ! ?idx = _ ] =>
        destruct MAP_INCR with idx; try crush_trans; crush
      end
    ].

(* FIXME: monad_crush can be slow when there are a lot of intermediate states. *)

(* Try to prove a goal about a state by first proving it for an earlier state and then transfering it to the final. *)
Ltac monad_crush :=
  crush;
  match reverse goal with
  | [ finalstate : st, prevstate : st |- _] =>
    match reverse goal with
    | [ |- context f[finalstate]] =>
      let inter := context f[prevstate] in
      try solve [
            match inter with
            | context f[finalstate] =>
              let inter := context f[prevstate] in
              solve [assert inter by intro_step; trans_step prevstate finalstate]
            end
          ];
      solve [assert inter by intro_step; trans_step prevstate finalstate]
    end
  end.

Ltac full_split := repeat match goal with [ |- _ /\ _ ] => split end.

(** * Relational specification of the translation *)

(** We now define inductive predicates that characterise the fact that the
statemachine that is created by the translation contains the correct
translations for each of the elements *)

(** [tr_instr] describes the translation of instructions that are directly translated into a single state *)
Inductive tr_instr (fin rtrn st stk : reg) : RTL.instruction -> datapath_stmnt -> control_stmnt -> Prop :=
| tr_instr_Inop :
    forall n,
      Z.pos n <= Int.max_unsigned ->
      tr_instr fin rtrn st stk (RTL.Inop n) Vskip (state_goto st n)
| tr_instr_Iop :
    forall n op args dst s s' e i,
      Z.pos n <= Int.max_unsigned ->
      translate_instr op args s = OK e s' i ->
      tr_instr fin rtrn st stk (RTL.Iop op args dst n) (Vnonblock (Vvar dst) e) (state_goto st n)
| tr_instr_Icond :
    forall n1 n2 cond args s s' i c,
      Z.pos n1 <= Int.max_unsigned ->
      Z.pos n2 <= Int.max_unsigned ->
      translate_condition cond args s = OK c s' i ->
      tr_instr fin rtrn st stk (RTL.Icond cond args n1 n2) Vskip (state_cond st c n1 n2)
| tr_instr_Iload :
    forall mem addr args s s' i c dst n,
      Z.pos n <= Int.max_unsigned ->
      translate_arr_access mem addr args stk s = OK c s' i ->
      tr_instr fin rtrn st stk (RTL.Iload mem addr args dst n) (Vnonblock (Vvar dst) c) (state_goto st n)
| tr_instr_Istore :
    forall mem addr args s s' i c src n,
      Z.pos n <= Int.max_unsigned ->
      translate_arr_access mem addr args stk s = OK c s' i ->
      tr_instr fin rtrn st stk (RTL.Istore mem addr args src n) (Vnonblock c (Vvar src))
               (state_goto st n).
(*| tr_instr_Ijumptable :
    forall cexpr tbl r,
    cexpr = tbl_to_case_expr st tbl ->
    tr_instr fin rtrn st stk (RTL.Ijumptable r tbl) (Vskip) (Vcase (Vvar r) cexpr (Some Vskip)).*)
Hint Constructors tr_instr : htlspec.

Inductive tr_code (c : RTL.code) (pc : RTL.node) (i : RTL.instruction) (stmnts : datapath) (trans : controllogic)
          (externctrl : AssocMap.t (ident * controlsignal)) (fin rtrn st stk : reg) : Prop :=
| tr_code_single :
    forall s t,
      c!pc = Some i ->
      stmnts!pc = Some s ->
      trans!pc = Some t ->
      tr_instr fin rtrn st stk i s t ->
      tr_code c pc i stmnts trans externctrl fin rtrn st stk
| tr_code_call :
    forall sig fn args dst n,
      c!pc = Some (RTL.Icall sig (inr fn) args dst n) ->
      Z.pos n <= Int.max_unsigned ->

      (exists pc2 fn_rst fn_return fn_finish fn_params,
          externctrl ! fn_rst = Some (fn, ctrl_reset) /\
          externctrl ! fn_return = Some (fn, ctrl_return) /\
          externctrl ! fn_finish = Some (fn, ctrl_finish) /\
          (forall n arg, List.nth_error args n = Some arg ->
                    exists r, In (r, arg) (List.combine fn_params args) /\
                         externctrl ! r = Some (fn, ctrl_param n)) /\

          stmnts!pc = Some (fork fn_rst (List.combine fn_params args)) /\
          trans!pc = Some (state_goto st pc2) /\
          stmnts!pc2 = Some (join fn_return fn_rst dst) /\
          trans!pc2 = Some (state_wait st fn_finish n)) ->

      tr_code c pc i stmnts trans externctrl fin rtrn st stk
| tr_code_return :
    forall r,
      c!pc = Some (RTL.Ireturn r) ->

      (exists pc2,
          stmnts!pc = Some (return_val fin rtrn r) /\
          trans!pc = Some (state_goto st pc2) /\
          stmnts!pc2 = Some (idle fin) /\
          trans!pc2 = Some Vskip) ->

      tr_code c pc i stmnts trans externctrl fin rtrn st stk.
Hint Constructors tr_code : htlspec.

Inductive tr_module (f : RTL.function) : module -> Prop :=
  tr_module_intro :
    forall data control fin rtrn st stk stk_len m start rst clk scldecls arrdecls externctrl wf,
      m = (mkmodule f.(RTL.fn_params)
                        data
                        control
                        f.(RTL.fn_entrypoint)
                        st stk stk_len fin rtrn start rst clk scldecls arrdecls externctrl wf) ->
      (forall pc i, Maps.PTree.get pc f.(RTL.fn_code) = Some i ->
               tr_code f.(RTL.fn_code) pc i data control externctrl fin rtrn st stk) ->
      stk_len = Z.to_nat (f.(RTL.fn_stacksize) / 4) ->
      Z.modulo (f.(RTL.fn_stacksize)) 4 = 0 ->
      0 <= f.(RTL.fn_stacksize) < Integers.Ptrofs.modulus ->
      (st > (RTL.max_reg_function f))%positive ->
      (fin > (RTL.max_reg_function f))%positive ->
      (rtrn > (RTL.max_reg_function f))%positive ->
      (stk > (RTL.max_reg_function f))%positive ->
      (start > (RTL.max_reg_function f))%positive ->
      (rst > (RTL.max_reg_function f))%positive ->
      (clk > (RTL.max_reg_function f))%positive ->
      tr_module f m.
Hint Constructors tr_module : htlspec.

Lemma xmap_externctrl_params_combine : forall args k fn s param_pairs s' i,
    xmap_externctrl_params k fn args s = OK param_pairs s' i ->
    exists params, param_pairs = List.combine params args /\ length params = length args.
Proof.
  induction args; intros; monadInv H.
  - exists nil. auto.
  - unshelve (edestruct IHargs with (k:=S k) (s:=s0) (s':=s')); auto.
    subst. exists (x::x1); crush.
Qed.
Hint Resolve xmap_externctrl_params_combine : htlspec.

Lemma map_externctrl_params_combine : forall args fn s param_pairs s' i,
    map_externctrl_params fn args s = OK param_pairs s' i ->
    exists params, param_pairs = List.combine params args /\ length params = length args.
Proof. unfold map_externctrl_params. eauto using xmap_externctrl_params_combine. Qed.
Hint Resolve map_externctrl_params_combine : htlspec.

Lemma helper__map_externctrl_params_spec :
  forall args n arg,
    List.nth_error args n = Some arg ->
    forall k fn s param_pairs s' i,
      xmap_externctrl_params k fn args s = OK param_pairs s' i ->
      exists r, (In (r, arg) param_pairs) /\
           (s'.(st_externctrl) ! r = Some (fn, ctrl_param (n+k))).
Proof.
  induction args.
  - sauto use: nth_error_nil.
  - destruct n; intros * ? * H; monadInv H.
    + eexists. monad_crush.
    + sauto.
Qed.

Lemma map_externctrl_params_spec :
  forall args n arg fn s param_pairs s' i,
    map_externctrl_params fn args s = OK param_pairs s' i ->
    List.nth_error args n = Some arg ->
    exists r, (In (r, arg) param_pairs) /\
         (s'.(st_externctrl) ! r = Some (fn, ctrl_param n)).
Proof. sauto use: helper__map_externctrl_params_spec. Qed.
Hint Resolve map_externctrl_params_spec : htlspec.

Lemma iter_expand_instr_spec :
  forall l fin rtrn stack s s' i x c,
    HTLMonadExtra.collectlist (transf_instr fin rtrn stack) l s = OK x s' i ->
    list_norepet (List.map fst l) ->
    (forall pc instr, In (pc, instr) l -> c!pc = Some instr) ->
    (forall pc instr, In (pc, instr) l -> c!pc = Some instr ->
                 tr_code c pc instr s'.(st_datapath) s'.(st_controllogic) s'.(st_externctrl) fin rtrn s'.(st_st) stack).
Proof.
  (** Used to solve the simpler cases of tr_code: those involving tr_instr *)
  Ltac tr_code_simple_tac :=
    eapply tr_code_single;
    match goal with
    | [ H : (?pc, _) = (?pc, ?instr) \/ In (?pc, ?instr) _ |- _ ] =>
      inversion H;
      do 2
         match goal with
         | [ H' : In (_, _) _ |- _ ] => solve [ eapply in_map with (f:=fst) in H'; contradiction ]
         | [ H' : (pc, _) = (pc, instr) |- _ ] => inversion H'
         end;
      simplify; eauto with htlspec
    end;
    monad_crush.

  induction l; crush.
  destruct a as [pc1 instr1]; simplify. inv H0. monadInv H.
  destruct (peq pc pc1).
  - subst.
    destruct instr1 eqn:instr_eq;
      repeat destruct_match; try discriminate; try monadInv1 EQ.
    + (* Inop *) tr_code_simple_tac.
    + (* Iop *) tr_code_simple_tac.
    + (* Iload *) tr_code_simple_tac.
    + (* Istore *) tr_code_simple_tac.
    + (* Icall *)
      eapply tr_code_call; crush.
      destruct (map_externctrl_params_combine _ _ _ _ _ _ EQ1) as [? [? ?]]; subst.
      repeat (eapply ex_intro).
      repeat split; try monad_crush. (* slow *)
      * intros.
        destruct (map_externctrl_params_spec _ _ _ _ _ _ _ _ EQ1 H) as [param [? ?]].
        exists param; crush; trans_step s3 s'.
    + (* Icond *) tr_code_simple_tac.
    + (* Ireturn *) eapply tr_code_return; crush; eexists; monad_crush.
  - clear EQ. (* EQ is very big and sauto gets lost *)
    sauto q: on.
Qed.
Hint Resolve iter_expand_instr_spec : htlspec.

Lemma map_incr_some : forall {A} map (s s' : st) idx (x : A),
    (map s) ! idx = Some x ->
    map_incr map s s' ->
    (map s') ! idx = Some x.
Proof. intros * ? Hincr. destruct Hincr with idx; crush. Qed.
Hint Resolve map_incr_some : htlspec.

Lemma tr_code_trans : forall c pc instr fin rtrn stack s s',
  tr_code c pc instr (st_datapath s) (st_controllogic s) (st_externctrl s) fin rtrn (st_st s) stack ->
  st_prop s s' ->
  tr_code c pc instr (st_datapath s') (st_controllogic s') (st_externctrl s') fin rtrn (st_st s') stack.
Proof.
  intros * Htr Htrans.
  destruct Htr.
  + eapply tr_code_single.
    * trans_step s s'.
    * inversion Htrans.
      destruct H6 with pc. crush.
      rewrite H11. eauto.
    * inversion Htrans.
      destruct H7 with pc. crush.
      rewrite H11. eauto.
    * inversion Htrans. crush.
  + eapply tr_code_call; eauto with htlspec.
    simplify.
    inversion Htrans.
    replace (st_st s').
    repeat (eapply ex_intro).
    repeat split; try (eapply map_incr_some; inversion Htrans; eauto with htlspec); try eauto with htlspec.
    intros.
    insterU H4.
    destruct H4 as [r [? ?]].
    eexists. split; eauto with htlspec.

  + eapply tr_code_return; eauto with htlspec.
    inversion Htrans.
    simplify. eexists.
    replace (st_st s').
    repeat split; eauto with htlspec.
    Unshelve. eauto.
Qed.

Hint Resolve tr_code_trans : htlspec.
Hint Resolve PTree.elements_complete : htlspec.

Theorem transl_module_correct :
  forall i f m,
    transl_module i f = Errors.OK m -> tr_module f m.
Proof.
  intros * H.
  unfold transl_module in *.
  unfold run_mon in *.
  unfold_match H.
  inv H.
  inversion s; subst.

  unfold transf_module in *.
  unfold stack_correct in *.
  unfold_match Heqr.
  destruct (0 <=? RTL.fn_stacksize f) eqn:STACK_BOUND_LOW;
    destruct (RTL.fn_stacksize f <? Integers.Ptrofs.modulus) eqn:STACK_BOUND_HIGH;
    destruct (RTL.fn_stacksize f mod 4 =? 0) eqn:STACK_ALIGN;
    crush.
  monadInv Heqr.

  repeat unfold_match EQ9. monadInv EQ9.

  monadInv EQ7.
  econstructor; eauto with htlspec; try lia;
    try (
        multimatch goal with
        | [ EQ : _ ?s = OK ?x _ _ |- context[?x] ] => monadInv EQ
        | [ EQ : _ ?s = OK (?x, _) _ _ |- context[?x] ] => monadInv EQ
        | [ EQ : _ ?s = OK (_, ?x) _ _ |- context[?x] ] => monadInv EQ
        end;
        saturate_incr;
        multimatch goal with
        | [ INCR : st_prop (max_state f) _ |- _ ] => inversion INCR
        end;
        simplify; unfold Ple in *; lia
      ).
  monadInv EQ6. simpl in EQ7.
  monadInv EQ7.
  simplify. unfold Ple in *. lia.
Qed.