aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/Memorygen.v
blob: 864419d820680c585d014a8116659e20ccb55045 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2021 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Require Import Coq.micromega.Lia.

Require Import compcert.backend.Registers.
Require Import compcert.common.AST.
Require Import compcert.common.Globalenvs.
Require compcert.common.Memory.
Require Import compcert.common.Values.
Require Import compcert.lib.Floats.
Require Import compcert.lib.Integers.
Require Import compcert.lib.Maps.
Require compcert.common.Smallstep.
Require compcert.verilog.Op.

Require Import vericert.common.Vericertlib.
Require Import vericert.hls.ValueInt.
Require Import vericert.hls.Verilog.
Require Import vericert.hls.HTL.
Require Import vericert.hls.AssocMap.
Require Import vericert.hls.Array.

Local Open Scope positive.
Local Open Scope assocmap.

Hint Resolve max_reg_stmnt_le_stmnt_tree : mgen.
Hint Resolve max_reg_stmnt_lt_stmnt_tree : mgen.
Hint Resolve max_stmnt_lt_module : mgen.

Lemma int_eq_not_false : forall x, Int.eq x (Int.not x) = false.
Proof.
  intros. unfold Int.eq.
  rewrite Int.unsigned_not.
  replace Int.max_unsigned with 4294967295%Z by crush.
  assert (X: forall x, (x <> 4294967295 - x)%Z) by lia.
  specialize (X (Int.unsigned x)). apply zeq_false; auto.
Qed.

Definition transf_maps state ram in_ (dc: PTree.t stmnt * PTree.t stmnt) :=
  match dc, in_ with
  | (d, c), (i, n) =>
    match PTree.get i d, PTree.get i c with
    | Some (Vnonblock (Vvari r e1) e2), Some c_s =>
      if r =? (ram_mem ram) then
        let nd := Vseq (Vnonblock (Vvar (ram_u_en ram)) (Vunop Vnot (Vvar (ram_u_en ram))))
                       (Vseq (Vnonblock (Vvar (ram_wr_en ram)) (Vlit (ZToValue 1)))
                             (Vseq (Vnonblock (Vvar (ram_d_in ram)) e2)
                                   (Vnonblock (Vvar (ram_addr ram)) e1)))
        in
        (PTree.set i nd d, c)
      else dc
    | Some (Vnonblock (Vvar e1) (Vvari r e2)), Some (Vnonblock (Vvar st') e3) =>
      if (r =? (ram_mem ram)) && (st' =? state) && (Z.pos n <=? Int.max_unsigned)%Z
         && (e1 <? state) && (max_reg_expr e2 <? state) && (max_reg_expr e3 <? state)
      then
        let nd :=
            Vseq (Vnonblock (Vvar (ram_u_en ram)) (Vunop Vnot (Vvar (ram_u_en ram))))
                 (Vseq (Vnonblock (Vvar (ram_wr_en ram)) (Vlit (ZToValue 0)))
                       (Vnonblock (Vvar (ram_addr ram)) e2))
        in
        let aout := Vnonblock (Vvar e1) (Vvar (ram_d_out ram)) in
        let redirect := Vnonblock (Vvar state) (Vlit (posToValue n)) in
        (PTree.set i nd (PTree.set n aout d),
         PTree.set i redirect (PTree.set n (Vnonblock (Vvar st') e3) c))
      else dc
    | _, _ => dc
    end
  end.

Lemma transf_maps_wf :
  forall state ram d c d' c' i,
    map_well_formed c /\ map_well_formed d ->
    transf_maps state ram i (d, c) = (d', c') ->
    map_well_formed c' /\ map_well_formed d'.
Proof.
  unfold transf_maps; intros; repeat destruct_match;
  match goal with
  | H: (_, _) = (_, _) |- _ => inv H
  end; auto.
  unfold map_well_formed.
  simplify; intros.
  destruct (Pos.eq_dec p0 p1); subst; auto.
  destruct (Pos.eq_dec p p1); subst. unfold map_well_formed in *.
  apply AssocMap.elements_correct in Heqo.
  eapply in_map with (f := fst) in Heqo. simplify.
  apply H1 in Heqo. auto.
  apply AssocMapExt.elements_iff in H3. inv H3.
  repeat rewrite AssocMap.gso in H8 by lia.
  apply AssocMap.elements_correct in H8.
  eapply in_map with (f := fst) in H8. simplify.
  unfold map_well_formed in *. apply H0 in H8. auto.
  apply AssocMapExt.elements_iff in H3. inv H3.
  destruct (Pos.eq_dec p0 p1); subst; auto.
  destruct (Pos.eq_dec p p1); subst. unfold map_well_formed in *.
  apply AssocMap.elements_correct in Heqo.
  eapply in_map with (f := fst) in Heqo. simplify.
  apply H1 in Heqo. auto.
  repeat rewrite AssocMap.gso in H8 by lia.
  apply AssocMap.elements_correct in H8.
  eapply in_map with (f := fst) in H8. simplify.
  unfold map_well_formed in *. apply H1 in H8. auto.
  unfold map_well_formed in *; simplify; intros.
  destruct (Pos.eq_dec p0 p1); subst; auto.
  destruct (Pos.eq_dec p p1); subst. unfold map_well_formed in *.
  apply AssocMap.elements_correct in Heqo.
  eapply in_map with (f := fst) in Heqo. simplify.
  apply H1 in Heqo. auto.
  apply AssocMapExt.elements_iff in H. inv H.
  repeat rewrite AssocMap.gso in H2 by lia.
  apply AssocMap.elements_correct in H2.
  eapply in_map with (f := fst) in H2. simplify.
  unfold map_well_formed in *. apply H1 in H2. auto.
Qed.

Definition max_pc {A: Type} (m: PTree.t A) :=
  fold_right Pos.max 1%positive (map fst (PTree.elements m)).

Fixpoint zip_range {A: Type} n (l: list A) {struct l} :=
  match l with
  | nil => nil
  | a :: b => (a, n) :: zip_range (n+1) b
  end.

Lemma zip_range_fst_idem : forall A (l: list A) a, map fst (zip_range a l) = l.
Proof. induction l; crush. Qed.

Lemma zip_range_not_in_snd :
  forall A (l: list A) a n, a < n -> ~ In a (map snd (zip_range n l)).
Proof.
  unfold not; induction l; crush.
  inv H0; try lia. eapply IHl.
  assert (X: a0 < n + 1) by lia. apply X; auto. auto.
Qed.

Lemma zip_range_snd_no_repet :
  forall A (l: list A) a, list_norepet (map snd (zip_range a l)).
Proof.
  induction l; crush; constructor; auto; [].
  apply zip_range_not_in_snd; lia.
Qed.

Lemma zip_range_in :
  forall A (l: list A) a n i, In (a, i) (zip_range n l) -> In a l.
Proof.
  induction l; crush. inv H. inv H0. auto. right. eapply IHl; eauto.
Qed.

Lemma zip_range_not_in :
  forall A (l: list A) a i n, ~ In a l -> ~ In (a, i) (zip_range n l).
Proof.
  unfold not; induction l; crush. inv H0. inv H1. apply H. left. auto.
  apply H. right. eapply zip_range_in; eauto.
Qed.

Lemma zip_range_no_repet :
  forall A (l: list A) a, list_norepet l -> list_norepet (zip_range a l).
Proof.
  induction l; simplify; constructor;
  match goal with H: list_norepet _ |- _ => inv H end;
  [apply zip_range_not_in|]; auto.
Qed.

Definition transf_code state ram d c :=
  fold_right (transf_maps state ram) (d, c)
             (zip_range (Pos.max (max_pc c) (max_pc d) + 1)
                        (map fst (PTree.elements d))).

Lemma transf_code_wf' :
  forall l c d state ram c' d',
    map_well_formed c /\ map_well_formed d ->
    fold_right (transf_maps state ram) (d, c) l = (d', c') ->
    map_well_formed c' /\ map_well_formed d'.
Proof.
  induction l; intros; simpl in *. inv H0; auto.
  remember (fold_right (transf_maps state ram) (d, c) l). destruct p.
  apply transf_maps_wf in H0. auto. eapply IHl; eauto.
Qed.

Lemma transf_code_wf :
  forall c d state ram c' d',
    map_well_formed c /\ map_well_formed d ->
    transf_code state ram d c = (d', c') ->
    map_well_formed c' /\ map_well_formed d'.
Proof. eauto using transf_code_wf'. Qed.

Lemma ram_wf : forall x, ram_ordering (x + 1) (x + 2) (x + 3) (x + 4) (x + 5) (x + 6).
Proof. unfold ram_ordering. lia. Qed.

Lemma module_ram_wf' :
  forall m addr,
    addr = max_reg_module m + 1 ->
    mod_clk m < addr.
Proof. unfold max_reg_module; lia. Qed.

Definition transf_module (m: module): module.
  refine (
  let max_reg := max_reg_module m in
  let addr := max_reg+1 in
  let en := max_reg+2 in
  let d_in := max_reg+3 in
  let d_out := max_reg+4 in
  let wr_en := max_reg+5 in
  let u_en := max_reg+6 in
  let new_size := (mod_stk_len m) in
  let ram := mk_ram new_size (mod_stk m) en u_en addr wr_en d_in d_out ltac:(eauto using ram_wf) in
  let tc := transf_code (mod_st m) ram (mod_datapath m) (mod_controllogic m) in
  match mod_ram m with
  | None =>
    mkmodule m.(mod_params)
                 (fst tc)
                 (snd tc)
                 (mod_entrypoint m)
                 (mod_st m)
                 (mod_stk m)
                 (mod_stk_len m)
                 (mod_finish m)
                 (mod_return m)
                 (mod_start m)
                 (mod_reset m)
                 (mod_clk m)
                 (AssocMap.set u_en (None, VScalar 1)
                  (AssocMap.set en (None, VScalar 1)
                   (AssocMap.set wr_en (None, VScalar 1)
                    (AssocMap.set d_out (None, VScalar 32)
                     (AssocMap.set d_in (None, VScalar 32)
                      (AssocMap.set addr (None, VScalar 32) m.(mod_scldecls)))))))
                       (AssocMap.set m.(mod_stk)
                                 (None, VArray 32 (2 ^ Nat.log2_up new_size))%nat m.(mod_arrdecls))
                 (mod_externctrl m)
                 (Some ram)
                 _ (mod_ordering_wf m) _ (mod_params_wf m)
  | _ => m
  end).
  eapply transf_code_wf. apply (mod_wf m). destruct tc eqn:?; simpl.
  rewrite <- Heqp. intuition.
  inversion 1; subst. auto using module_ram_wf'.
Defined.

Definition transf_fundef := transf_fundef transf_module.

Definition transf_program (p : program) :=
  transform_program transf_fundef p.

Inductive match_assocmaps : positive -> assocmap -> assocmap -> Prop :=
  match_assocmap: forall p rs rs',
    (forall r, r < p -> rs!r = rs'!r) ->
    match_assocmaps p rs rs'.

Inductive match_arrs : assocmap_arr -> assocmap_arr -> Prop :=
| match_assocmap_arr_intro: forall ar ar',
    (forall s arr,
        ar ! s = Some arr ->
        exists arr',
          ar' ! s = Some arr'
          /\ (forall addr,
                 array_get_error addr arr = array_get_error addr arr')
          /\ arr_length arr = arr_length arr')%nat ->
    (forall s, ar ! s = None -> ar' ! s = None) ->
    match_arrs ar ar'.

Inductive match_arrs_size : assocmap_arr -> assocmap_arr -> Prop :=
  match_arrs_size_intro :
    forall nasa basa,
      (forall s arr,
          nasa ! s = Some arr ->
          exists arr',
            basa ! s = Some arr' /\ arr_length arr = arr_length arr') ->
      (forall s arr,
          basa ! s = Some arr ->
          exists arr',
            nasa ! s = Some arr' /\ arr_length arr = arr_length arr') ->
      (forall s, basa ! s = None <-> nasa ! s = None) ->
      match_arrs_size nasa basa.

Definition match_empty_size (m : module) (ar : assocmap_arr) : Prop :=
  match_arrs_size (empty_stack m) ar.
Hint Unfold match_empty_size : mgen.

Definition disable_ram (ram: option ram) (asr : assocmap_reg) : Prop :=
  match ram with
  | Some r => Int.eq (asr # ((ram_en r), 32)) (asr # ((ram_u_en r), 32)) = true
  | None => True
  end.

Inductive match_stackframes : stackframe -> stackframe -> Prop :=
  match_stackframe_intro :
    forall r m pc asr asa asr' asa'
      (DISABLE_RAM: disable_ram (mod_ram (transf_module m)) asr')
      (MATCH_ASSOC: match_assocmaps (max_reg_module m + 1) asr asr')
      (MATCH_ARRS: match_arrs asa asa')
      (MATCH_EMPT1: match_empty_size m asa)
      (MATCH_EMPT2: match_empty_size m asa')
      (MATCH_RES: r < mod_st m),
      match_stackframes (Stackframe r m pc asr asa)
                        (Stackframe r (transf_module m) pc asr' asa').

Inductive match_states : state -> state -> Prop :=
| match_state :
    forall res res' mid m st asr asr' asa asa'
           (ASSOC: match_assocmaps (max_reg_module m + 1) asr asr')
           (ARRS: match_arrs asa asa')
           (STACKS: list_forall2 match_stackframes res res')
           (ARRS_SIZE: match_empty_size m asa)
           (ARRS_SIZE2: match_empty_size m asa')
           (DISABLE_RAM: disable_ram (mod_ram (transf_module m)) asr'),
      match_states (State res mid m st asr asa)
                   (State res' mid (transf_module m) st asr' asa')
| match_returnstate :
    forall res res' mid i
           (STACKS: list_forall2 match_stackframes res res'),
      match_states (Returnstate res mid i) (Returnstate res' mid i)
| match_initial_call :
    forall m mid,
      match_states (Callstate nil mid m nil)
                   (Callstate nil mid (transf_module m) nil).
Hint Constructors match_states : htlproof.

Definition empty_stack_ram r :=
  AssocMap.set (ram_mem r) (Array.arr_repeat None (ram_size r)) (AssocMap.empty arr).

Definition empty_stack' len st :=
  AssocMap.set st (Array.arr_repeat None len) (AssocMap.empty arr).

Definition match_empty_size' l s (ar : assocmap_arr) : Prop :=
  match_arrs_size (empty_stack' l s) ar.
Hint Unfold match_empty_size : mgen.

Definition merge_reg_assocs r :=
  Verilog.mkassociations (Verilog.merge_regs (assoc_nonblocking r) (assoc_blocking r)) empty_assocmap.

Definition merge_arr_assocs st len r :=
  Verilog.mkassociations (Verilog.merge_arrs (assoc_nonblocking r) (assoc_blocking r)) (empty_stack' len st).

Inductive match_reg_assocs : positive -> reg_associations -> reg_associations -> Prop :=
  match_reg_association:
    forall p rab rab' ran ran',
      match_assocmaps p rab rab' ->
      match_assocmaps p ran ran' ->
      match_reg_assocs p (mkassociations rab ran) (mkassociations rab' ran').

Inductive match_arr_assocs : arr_associations -> arr_associations -> Prop :=
  match_arr_association:
    forall rab rab' ran ran',
      match_arrs rab rab' ->
      match_arrs ran ran' ->
      match_arr_assocs (mkassociations rab ran) (mkassociations rab' ran').

Ltac mgen_crush := crush; eauto with mgen.

Lemma match_assocmaps_equiv : forall p a, match_assocmaps p a a.
Proof. constructor; auto. Qed.
Hint Resolve match_assocmaps_equiv : mgen.

Lemma match_arrs_equiv : forall a, match_arrs a a.
Proof. econstructor; mgen_crush. Qed.
Hint Resolve match_arrs_equiv : mgen.

Lemma match_reg_assocs_equiv : forall p a, match_reg_assocs p a a.
Proof. destruct a; constructor; mgen_crush. Qed.
Hint Resolve match_reg_assocs_equiv : mgen.

Lemma match_arr_assocs_equiv : forall a, match_arr_assocs a a.
Proof. destruct a; constructor; mgen_crush. Qed.
Hint Resolve match_arr_assocs_equiv : mgen.

Lemma match_arrs_size_equiv : forall a, match_arrs_size a a.
Proof. intros; repeat econstructor; eauto. Qed.
Hint Resolve match_arrs_size_equiv : mgen.

Lemma match_stacks_equiv :
  forall m s l,
    mod_stk m = s ->
    mod_stk_len m = l ->
    empty_stack' l s = empty_stack m.
Proof. unfold empty_stack', empty_stack; mgen_crush. Qed.
Hint Rewrite match_stacks_equiv : mgen.

Lemma match_assocmaps_max1 :
  forall p p' a b,
    match_assocmaps (Pos.max p' p) a b ->
    match_assocmaps p a b.
Proof.
  intros. inv H. constructor. intros.
  apply H0. lia.
Qed.
Hint Resolve match_assocmaps_max1 : mgen.

Lemma match_assocmaps_max2 :
  forall p p' a b,
    match_assocmaps (Pos.max p p') a b ->
    match_assocmaps p a b.
Proof.
  intros. inv H. constructor. intros.
  apply H0. lia.
Qed.
Hint Resolve match_assocmaps_max2 : mgen.

Lemma match_assocmaps_ge :
  forall p p' a b,
    match_assocmaps p' a b ->
    p <= p' ->
    match_assocmaps p a b.
Proof.
  intros. inv H. constructor. intros.
  apply H1. lia.
Qed.
Hint Resolve match_assocmaps_ge : mgen.

Lemma match_reg_assocs_max1 :
  forall p p' a b,
    match_reg_assocs (Pos.max p' p) a b ->
    match_reg_assocs p a b.
Proof. intros; inv H; econstructor; mgen_crush. Qed.
Hint Resolve match_reg_assocs_max1 : mgen.

Lemma match_reg_assocs_max2 :
  forall p p' a b,
    match_reg_assocs (Pos.max p p') a b ->
    match_reg_assocs p a b.
Proof. intros; inv H; econstructor; mgen_crush. Qed.
Hint Resolve match_reg_assocs_max2 : mgen.

Lemma match_reg_assocs_ge :
  forall p p' a b,
    match_reg_assocs p' a b ->
    p <= p' ->
    match_reg_assocs p a b.
Proof. intros; inv H; econstructor; mgen_crush. Qed.
Hint Resolve match_reg_assocs_ge : mgen.

Definition forall_ram (P: reg -> Prop) ram :=
  P (ram_en ram)
  /\ P (ram_u_en ram)
  /\ P (ram_addr ram)
  /\ P (ram_wr_en ram)
  /\ P (ram_d_in ram)
  /\ P (ram_d_out ram).

Lemma forall_ram_lt :
  forall m r,
    (mod_ram m) = Some r ->
    forall_ram (fun x => x < max_reg_module m + 1) r.
Proof.
  assert (X: forall a b c, a < b + 1 -> a < Pos.max c b + 1) by lia.
  unfold forall_ram; simplify; unfold max_reg_module; repeat apply X;
  unfold max_reg_ram; rewrite H; try lia.
Qed.
Hint Resolve forall_ram_lt : mgen.

Definition exec_all d_s c_s rs1 ar1 rs3 ar3 :=
  exists f rs2 ar2,
    stmnt_runp f rs1 ar1 c_s rs2 ar2
    /\ stmnt_runp f rs2 ar2 d_s rs3 ar3.

Definition exec_all_ram r d_s c_s rs1 ar1 rs4 ar4 :=
  exists f rs2 ar2 rs3 ar3,
    stmnt_runp f rs1 ar1 c_s rs2 ar2
    /\ stmnt_runp f rs2 ar2 d_s rs3 ar3
    /\ exec_ram (merge_reg_assocs rs3) (merge_arr_assocs (ram_mem r) (ram_size r) ar3) (Some r) rs4 ar4.

Lemma merge_reg_idempotent :
  forall rs, merge_reg_assocs (merge_reg_assocs rs) = merge_reg_assocs rs.
Proof. auto. Qed.
Hint Rewrite merge_reg_idempotent : mgen.

Lemma merge_arr_idempotent :
  forall ar st len v v',
    (assoc_nonblocking ar)!st = Some v ->
    (assoc_blocking ar)!st = Some v' ->
    arr_length v' = len ->
    arr_length v = len ->
    (assoc_blocking (merge_arr_assocs st len (merge_arr_assocs st len ar)))!st
    = (assoc_blocking (merge_arr_assocs st len ar))!st
    /\ (assoc_nonblocking (merge_arr_assocs st len (merge_arr_assocs st len ar)))!st
       = (assoc_nonblocking (merge_arr_assocs st len ar))!st.
Proof.
  split; simplify; eauto.
  unfold merge_arrs.
  rewrite AssocMap.gcombine by reflexivity.
  unfold empty_stack'.
  rewrite AssocMap.gss.
  setoid_rewrite merge_arr_empty2; auto.
  rewrite AssocMap.gcombine by reflexivity.
  unfold merge_arr, arr.
  rewrite H. rewrite H0. auto.
  unfold combine.
  simplify.
  rewrite list_combine_length.
  rewrite (arr_wf v). rewrite (arr_wf v').
  lia.
Qed.

Lemma empty_arr :
  forall m s,
    (exists l, (empty_stack m) ! s = Some (arr_repeat None l))
    \/ (empty_stack m) ! s = None.
Proof.
  unfold empty_stack. simplify.
  destruct (Pos.eq_dec s (mod_stk m)); subst.
  left. eexists. apply AssocMap.gss.
  right. rewrite AssocMap.gso; auto. apply AssocMap.gempty.
Qed.

Lemma merge_arr_empty':
  forall m ar s v,
    match_empty_size m ar ->
    (merge_arrs (empty_stack m) ar) ! s = v ->
    ar ! s = v.
Proof.
  inversion 1; subst.
  pose proof (empty_arr m s).
  simplify.
  destruct (merge_arrs (empty_stack m) ar) ! s eqn:?; subst.
  - inv H3. inv H4.
    learn H3 as H5. apply H0 in H5. inv H5. simplify.
    unfold merge_arrs in *. rewrite AssocMap.gcombine in Heqo; auto.
    rewrite H3 in Heqo. erewrite merge_arr_empty2 in Heqo. auto. eauto.
    rewrite list_repeat_len in H6. auto.
    learn H4 as H6. apply H2 in H6.
    unfold merge_arrs in *. rewrite AssocMap.gcombine in Heqo; auto.
    rewrite H4 in Heqo. unfold Verilog.arr in *. rewrite H6 in Heqo.
    discriminate.
  - inv H3. inv H4. learn H3 as H4. apply H0 in H4. inv H4. simplify.
    rewrite list_repeat_len in H6.
    unfold merge_arrs in *. rewrite AssocMap.gcombine in Heqo; auto. rewrite H3 in Heqo.
    unfold Verilog.arr in *. rewrite H4 in Heqo.
    discriminate.
    apply H2 in H4; auto.
Qed.

Lemma merge_arr_empty :
  forall m ar ar',
    match_empty_size m ar ->
    match_arrs ar ar' ->
    match_arrs (merge_arrs (empty_stack m) ar) ar'.
Proof.
  inversion 1; subst; inversion 1; subst;
  econstructor; intros; apply merge_arr_empty' in H6; auto.
Qed.
Hint Resolve merge_arr_empty : mgen.

Lemma merge_arr_empty'':
  forall m ar s v,
    match_empty_size m ar ->
    ar ! s = v ->
    (merge_arrs (empty_stack m) ar) ! s = v.
Proof.
  inversion 1; subst.
  pose proof (empty_arr m s).
  simplify.
  destruct (merge_arrs (empty_stack m) ar) ! s eqn:?; subst.
  - inv H3. inv H4.
    learn H3 as H5. apply H0 in H5. inv H5. simplify.
    unfold merge_arrs in *. rewrite AssocMap.gcombine in Heqo; auto.
    rewrite H3 in Heqo. erewrite merge_arr_empty2 in Heqo. auto. eauto.
    rewrite list_repeat_len in H6. auto.
    learn H4 as H6. apply H2 in H6.
    unfold merge_arrs in *. rewrite AssocMap.gcombine in Heqo; auto.
    rewrite H4 in Heqo. unfold Verilog.arr in *. rewrite H6 in Heqo.
    discriminate.
  - inv H3. inv H4. learn H3 as H4. apply H0 in H4. inv H4. simplify.
    rewrite list_repeat_len in H6.
    unfold merge_arrs in *. rewrite AssocMap.gcombine in Heqo; auto. rewrite H3 in Heqo.
    unfold Verilog.arr in *. rewrite H4 in Heqo.
    discriminate.
    apply H2 in H4; auto.
Qed.

Lemma merge_arr_empty_match :
  forall m ar,
    match_empty_size m ar ->
    match_empty_size m (merge_arrs (empty_stack m) ar).
Proof.
  inversion 1; subst.
  constructor; simplify.
  learn H3 as H4. apply H0 in H4. inv H4. simplify.
  eexists; split; eauto. apply merge_arr_empty''; eauto.
  apply merge_arr_empty' in H3; auto.
  split; simplify.
  unfold merge_arrs in H3. rewrite AssocMap.gcombine in H3; auto.
  unfold merge_arr in *.
  destruct (empty_stack m) ! s eqn:?;
           destruct ar ! s; try discriminate; eauto.
  apply merge_arr_empty''; auto. apply H2 in H3; auto.
Qed.
Hint Resolve merge_arr_empty_match : mgen.

Definition ram_present {A: Type} ar r v v' :=
  (assoc_nonblocking ar)!(ram_mem r) = Some v
  /\ @arr_length A v = ram_size r
  /\ (assoc_blocking ar)!(ram_mem r) = Some v'
  /\ arr_length v' = ram_size r.

Lemma find_assoc_get :
  forall rs r trs,
    rs ! r = trs ! r ->
    rs # r = trs # r.
Proof.
  intros; unfold find_assocmap, AssocMapExt.get_default; rewrite H; auto.
Qed.
Hint Resolve find_assoc_get : mgen.

Lemma find_assoc_get2 :
  forall rs p r v trs,
    (forall r, r < p -> rs ! r = trs ! r) ->
    r < p ->
    rs # r = v ->
    trs # r = v.
Proof.
  intros; unfold find_assocmap, AssocMapExt.get_default; rewrite <- H; auto.
Qed.
Hint Resolve find_assoc_get2 : mgen.

Lemma get_assoc_gt :
  forall A (rs : AssocMap.t A) p r v trs,
    (forall r, r < p -> rs ! r = trs ! r) ->
    r < p ->
    rs ! r = v ->
    trs ! r = v.
Proof. intros. rewrite <- H; auto. Qed.
Hint Resolve get_assoc_gt : mgen.

Lemma expr_runp_matches :
  forall f rs ar e v,
    expr_runp f rs ar e v ->
    forall trs tar,
      match_assocmaps (max_reg_expr e + 1) rs trs ->
      match_arrs ar tar ->
      expr_runp f trs tar e v.
Proof.
  induction 1.
  - intros. econstructor.
  - intros. econstructor. inv H0. symmetry.
    apply find_assoc_get.
    apply H2. crush.
  - intros. econstructor. apply IHexpr_runp; eauto.
    inv H1. constructor. simplify.
    assert (forall a b c, a < b + 1 -> a < Pos.max c b + 1) by lia.
    eapply H4 in H1. eapply H3 in H1. auto.
    inv H2.
    unfold arr_assocmap_lookup in *.
    destruct (stack ! r) eqn:?; [|discriminate].
    inv H1.
    inv H0.
    eapply H3 in Heqo. inv Heqo. inv H0.
    unfold arr in *. rewrite H1. inv H5.
    rewrite H0. auto.
  - intros. econstructor; eauto. eapply IHexpr_runp1; eauto.
    econstructor. inv H2. intros.
    assert (forall a b c, a < b + 1 -> a < Pos.max b c + 1) by lia.
    simplify.
    eapply H5 in H2. apply H4 in H2. auto.
    apply IHexpr_runp2; eauto.
    econstructor. inv H2. intros.
    assert (forall a b c, a < b + 1 -> a < Pos.max c b + 1) by lia.
    simplify. eapply H5 in H2. apply H4 in H2. auto.
  - intros. econstructor; eauto.
  - intros. econstructor; eauto. apply IHexpr_runp1; eauto.
    constructor. inv H2. intros. simplify.
    assert (forall a b c, a < b + 1 -> a < Pos.max b c + 1) by lia.
    eapply H5 in H2. apply H4 in H2. auto.
    apply IHexpr_runp2; eauto. simplify.
    assert (forall a b c d, a < b + 1 -> a < Pos.max c (Pos.max b d) + 1) by lia.
    constructor. intros. eapply H4 in H5. inv H2. apply H6 in H5. auto.
  - intros. eapply erun_Vternary_false. apply IHexpr_runp1; eauto. constructor. inv H2.
    intros. simplify. assert (forall a b c, a < b + 1 -> a < Pos.max b c + 1) by lia.
    eapply H5 in H2. apply H4 in H2. auto.
    apply IHexpr_runp2; eauto. econstructor. inv H2. simplify.
    assert (forall a b c d, a < b + 1 -> a < Pos.max c (Pos.max d b) + 1) by lia.
    eapply H5 in H2. apply H4 in H2. auto. auto.
Qed.
Hint Resolve expr_runp_matches : mgen.

Lemma expr_runp_matches2 :
  forall f rs ar e v p,
    expr_runp f rs ar e v ->
    max_reg_expr e < p ->
    forall trs tar,
      match_assocmaps p rs trs ->
      match_arrs ar tar ->
      expr_runp f trs tar e v.
Proof.
  intros. eapply expr_runp_matches; eauto.
  assert (max_reg_expr e + 1 <= p) by lia.
  mgen_crush.
Qed.
Hint Resolve expr_runp_matches2 : mgen.

Lemma match_assocmaps_gss :
  forall p rab rab' r rhsval,
    match_assocmaps p rab rab' ->
    match_assocmaps p rab # r <- rhsval rab' # r <- rhsval.
Proof.
  intros. inv H. econstructor.
  intros.
  unfold find_assocmap. unfold AssocMapExt.get_default.
  destruct (Pos.eq_dec r r0); subst.
  repeat rewrite PTree.gss; auto.
  repeat rewrite PTree.gso; auto.
Qed.
Hint Resolve match_assocmaps_gss : mgen.

Lemma match_assocmaps_gt :
  forall p s ra ra' v,
    p <= s ->
    match_assocmaps p ra ra' ->
    match_assocmaps p ra (ra' # s <- v).
Proof.
  intros. inv H0. constructor.
  intros. rewrite AssocMap.gso; try lia. apply H1; auto.
Qed.
Hint Resolve match_assocmaps_gt : mgen.

Lemma match_reg_assocs_block :
  forall p rab rab' r rhsval,
    match_reg_assocs p rab rab' ->
    match_reg_assocs p (block_reg r rab rhsval) (block_reg r rab' rhsval).
Proof. inversion 1; econstructor; eauto with mgen. Qed.
Hint Resolve match_reg_assocs_block : mgen.

Lemma match_reg_assocs_nonblock :
  forall p rab rab' r rhsval,
    match_reg_assocs p rab rab' ->
    match_reg_assocs p (nonblock_reg r rab rhsval) (nonblock_reg r rab' rhsval).
Proof. inversion 1; econstructor; eauto with mgen. Qed.
Hint Resolve match_reg_assocs_nonblock : mgen.

Lemma some_inj :
  forall A (x: A) y,
    Some x = Some y ->
    x = y.
Proof. inversion 1; auto. Qed.

Lemma arrs_present :
  forall r i v ar arr,
    (arr_assocmap_set r i v ar) ! r = Some arr ->
    exists b, ar ! r = Some b.
Proof.
  intros. unfold arr_assocmap_set in *.
  destruct ar!r eqn:?.
  rewrite AssocMap.gss in H.
  inv H. eexists. auto. rewrite Heqo in H. discriminate.
Qed.

Ltac inv_exists :=
  match goal with
  | H: exists _, _ |- _ => inv H
  end.

Lemma array_get_error_bound_gt :
  forall A i (a : Array A),
    (i >= arr_length a)%nat ->
    array_get_error i a = None.
Proof.
  intros. unfold array_get_error.
  apply nth_error_None. destruct a. simplify.
  lia.
Qed.
Hint Resolve array_get_error_bound_gt : mgen.

Lemma array_get_error_each :
  forall A addr i (v : A) a x,
    arr_length a = arr_length x ->
    array_get_error addr a = array_get_error addr x ->
    array_get_error addr (array_set i v a) = array_get_error addr (array_set i v x).
Proof.
  intros.
  destruct (Nat.eq_dec addr i); subst.
  destruct (lt_dec i (arr_length a)).
  repeat rewrite array_get_error_set_bound; auto.
  rewrite <- H. auto.
  apply Nat.nlt_ge in n.
  repeat rewrite array_get_error_bound_gt; auto.
  rewrite <- array_set_len. rewrite <- H. lia.
  repeat rewrite array_gso; auto.
Qed.
Hint Resolve array_get_error_each : mgen.

Lemma match_arrs_gss :
  forall ar ar' r v i,
    match_arrs ar ar' ->
    match_arrs (arr_assocmap_set r i v ar) (arr_assocmap_set r i v ar').
Proof.
  Ltac mag_tac :=
    match goal with
    | H: ?ar ! _ = Some _, H2: forall s arr, ?ar ! s = Some arr -> _ |- _ =>
      let H3 := fresh "H" in
      learn H as H3; apply H2 in H3; inv_exists; simplify
    | H: ?ar ! _ = None, H2: forall s, ?ar ! s = None -> _ |- _ =>
      let H3 := fresh "H" in
      learn H as H3; apply H2 in H3; inv_exists; simplify
    | H: ?ar ! _ = _ |- context[match ?ar ! _ with _ => _ end] =>
      unfold Verilog.arr in *; rewrite H
    | H: ?ar ! _ = _, H2: context[match ?ar ! _ with _ => _ end] |- _ =>
      unfold Verilog.arr in *; rewrite H in H2
    | H: context[(_ # ?s <- _) ! ?s] |- _ => rewrite AssocMap.gss in H
    | H: context[(_ # ?r <- _) ! ?s], H2: ?r <> ?s |- _ => rewrite AssocMap.gso in H; auto
    | |- context[(_ # ?s <- _) ! ?s] => rewrite AssocMap.gss
    | H: ?r <> ?s |- context[(_ # ?r <- _) ! ?s] => rewrite AssocMap.gso; auto
    end.
  intros.
  inv H. econstructor; simplify.
  destruct (Pos.eq_dec r s); subst.
  - unfold arr_assocmap_set, Verilog.arr in *.
    destruct ar!s eqn:?.
    mag_tac.
    econstructor; simplify.
    repeat mag_tac; auto.
    intros. repeat mag_tac. simplify.
    apply array_get_error_each; auto.
    repeat mag_tac; crush.
    repeat mag_tac; crush.
  - unfold arr_assocmap_set in *.
    destruct ar ! r eqn:?. rewrite AssocMap.gso in H; auto.
    apply H0 in Heqo. apply H0 in H. repeat inv_exists. simplify.
    econstructor. unfold Verilog.arr in *. rewrite H3. simplify.
    rewrite AssocMap.gso; auto. eauto. intros. auto. auto.
    apply H1 in Heqo. apply H0 in H. repeat inv_exists; simplify.
    econstructor. unfold Verilog.arr in *. rewrite Heqo. simplify; eauto.
  - destruct (Pos.eq_dec r s); unfold arr_assocmap_set, Verilog.arr in *; simplify; subst.
    destruct ar!s eqn:?; repeat mag_tac; crush.
    apply H1 in H. mag_tac; crush.
    destruct ar!r eqn:?; repeat mag_tac; crush.
    apply H1 in Heqo. repeat mag_tac; auto.
Qed.
Hint Resolve match_arrs_gss : mgen.

Lemma match_arr_assocs_block :
  forall rab rab' r i rhsval,
    match_arr_assocs rab rab' ->
    match_arr_assocs (block_arr r i rab rhsval) (block_arr r i rab' rhsval).
Proof. inversion 1; econstructor; eauto with mgen. Qed.
Hint Resolve match_arr_assocs_block : mgen.

Lemma match_arr_assocs_nonblock :
  forall rab rab' r i rhsval,
    match_arr_assocs rab rab' ->
    match_arr_assocs (nonblock_arr r i rab rhsval) (nonblock_arr r i rab' rhsval).
Proof. inversion 1; econstructor; eauto with mgen. Qed.
Hint Resolve match_arr_assocs_nonblock : mgen.

Lemma match_states_same :
  forall f rs1 ar1 c rs2 ar2 p,
    stmnt_runp f rs1 ar1 c rs2 ar2 ->
    max_reg_stmnt c < p ->
    forall trs1 tar1,
      match_reg_assocs p rs1 trs1 ->
      match_arr_assocs ar1 tar1 ->
      exists trs2 tar2,
        stmnt_runp f trs1 tar1 c trs2 tar2
        /\ match_reg_assocs p rs2 trs2
        /\ match_arr_assocs ar2 tar2.
Proof.
  Ltac match_states_same_facts :=
    match goal with
    | H: match_reg_assocs _ _ _ |- _ =>
      let H2 := fresh "H" in
      learn H as H2; inv H2
    | H: match_arr_assocs _ _ |- _ =>
      let H2 := fresh "H" in
      learn H as H2; inv H2
    | H1: context[exists _, _], H2: context[exists _, _] |- _ =>
      learn H1; learn H2;
      exploit H1; mgen_crush; exploit H2; mgen_crush
    | H1: context[exists _, _] |- _ =>
      learn H1; exploit H1; mgen_crush
    end.
  Ltac match_states_same_tac :=
    match goal with
    | |- exists _, _ => econstructor
    | |- _ < _ => lia
    | H: context[_ <> _] |- stmnt_runp _ _ _ (Vcase _ (Stmntcons _ _ _) _) _ _ =>
      eapply stmnt_runp_Vcase_nomatch
    | |- stmnt_runp _ _ _ (Vcase _ (Stmntcons _ _ _) _) _ _ =>
      eapply stmnt_runp_Vcase_match
    | H: valueToBool _ = false |- stmnt_runp _ _ _ _ _ _ =>
      eapply stmnt_runp_Vcond_false
    | |- stmnt_runp _ _ _ _ _ _ => econstructor
    | |- expr_runp _ _ _ _ _ => eapply expr_runp_matches2
    end; mgen_crush; try lia.
  induction 1; simplify; repeat match_states_same_facts;
    try destruct_match; try solve [repeat match_states_same_tac].
  - inv H. exists (block_reg r {| assoc_blocking := rab'; assoc_nonblocking := ran' |} rhsval);
      repeat match_states_same_tac; econstructor.
  - exists (nonblock_reg r {| assoc_blocking := rab'; assoc_nonblocking := ran' |} rhsval);
      repeat match_states_same_tac; inv H; econstructor.
  - econstructor. exists (block_arr r i {| assoc_blocking := rab'0; assoc_nonblocking := ran'0 |} rhsval).
    simplify; repeat match_states_same_tac. inv H. econstructor.
    repeat match_states_same_tac. eauto. mgen_crush.
  - econstructor. exists (nonblock_arr r i {| assoc_blocking := rab'0; assoc_nonblocking := ran'0 |} rhsval).
    simplify; repeat match_states_same_tac. inv H. econstructor.
    repeat match_states_same_tac. eauto. mgen_crush.
Qed.

Lemma match_reg_assocs_merge :
  forall p rs rs',
    match_reg_assocs p rs rs' ->
    match_reg_assocs p (merge_reg_assocs rs) (merge_reg_assocs rs').
Proof.
  inversion 1.
  econstructor; econstructor; crush. inv H3.  inv H.
  inv H7. inv H9.
  unfold merge_regs.
  destruct (ran!r) eqn:?; destruct (rab!r) eqn:?.
  erewrite AssocMapExt.merge_correct_1; eauto.
  erewrite AssocMapExt.merge_correct_1; eauto.
  rewrite <- H2; eauto.
  erewrite AssocMapExt.merge_correct_1; eauto.
  erewrite AssocMapExt.merge_correct_1; eauto.
  rewrite <- H2; eauto.
  erewrite AssocMapExt.merge_correct_2; eauto.
  erewrite AssocMapExt.merge_correct_2; eauto.
  rewrite <- H2; eauto.
  rewrite <- H; eauto.
  erewrite AssocMapExt.merge_correct_3; eauto.
  erewrite AssocMapExt.merge_correct_3; eauto.
  rewrite <- H2; eauto.
  rewrite <- H; eauto.
Qed.
Hint Resolve match_reg_assocs_merge : mgen.

Lemma transf_not_changed :
  forall state ram n d c i d_s c_s,
    (forall e1 e2 r, d_s <> Vnonblock (Vvari r e1) e2) ->
    (forall e1 e2 r, d_s <> Vnonblock e1 (Vvari r e2)) ->
    d!i = Some d_s ->
    c!i = Some c_s ->
    transf_maps state ram (i, n) (d, c) = (d, c).
Proof. intros; unfold transf_maps; repeat destruct_match; mgen_crush. Qed.

Lemma transf_not_changed_neq :
  forall state ram n d c d' c' i a d_s c_s,
    transf_maps state ram (a, n) (d, c) = (d', c') ->
    d!i = Some d_s ->
    c!i = Some c_s ->
    a <> i -> n <> i ->
    d'!i = Some d_s /\ c'!i = Some c_s.
Proof.
  unfold transf_maps; intros; repeat destruct_match; mgen_crush;
  match goal with [ H: (_, _) = (_, _) |- _ ] => inv H end;
  repeat (rewrite AssocMap.gso; auto).
Qed.

Lemma forall_gt :
  forall l, Forall (Pos.ge (fold_right Pos.max 1 l)) l.
Proof.
  induction l; auto.
  constructor. inv IHl; simplify; lia.
  simplify. destruct (Pos.max_dec a (fold_right Pos.max 1 l)).
  rewrite e. apply Pos.max_l_iff in e. apply Pos.le_ge in e.
  apply Forall_forall. rewrite Forall_forall in IHl.
  intros.
  assert (X: forall a b c, a >= c -> c >= b -> a >= b) by lia.
  apply X with (b := x) in e; auto.
  rewrite e; auto.
Qed.

Lemma max_index_list :
  forall A (l : list (positive * A)) i d_s,
    In (i, d_s) l ->
    list_norepet (map fst l) ->
    i <= fold_right Pos.max 1 (map fst l).
Proof.
  induction l; crush.
  inv H. inv H0. simplify. lia.
  inv H0.
  let H := fresh "H" in
  assert (H: forall a b c, c <= b -> c <= Pos.max a b) by lia;
  apply H; eapply IHl; eauto.
Qed.

Lemma max_index :
  forall A d i (d_s: A), d ! i = Some d_s -> i <= max_pc d.
Proof.
  unfold max_pc;
  eauto using max_index_list,
  PTree.elements_correct, PTree.elements_keys_norepet.
Qed.

Lemma max_index_2' :
  forall l i, i > fold_right Pos.max 1 l -> Forall (Pos.gt i) l.
Proof. induction l; crush; constructor; [|apply IHl]; lia. Qed.

Lemma max_index_2'' :
  forall l i, Forall (Pos.gt i) l -> ~ In i l.
Proof.
  induction l; crush. unfold not in *.
  intros. inv H0. inv H. lia. eapply IHl.
  inv H. apply H4. auto.
Qed.

Lemma elements_correct_none :
  forall A am k,
    ~ List.In k (List.map (@fst _ A) (AssocMap.elements am)) ->
    AssocMap.get k am = None.
Proof.
  intros. apply AssocMapExt.elements_correct' in H. unfold not in *.
  destruct am ! k eqn:?; auto. exfalso. apply H. eexists. auto.
Qed.
Hint Resolve elements_correct_none : assocmap.

Lemma max_index_2 :
  forall A (d: AssocMap.t A) i, i > max_pc d -> d ! i = None.
Proof.
  intros. unfold max_pc in *. apply max_index_2' in H.
  apply max_index_2'' in H. apply elements_correct_none. auto.
Qed.

Definition match_prog (p: program) (tp: program) :=
  Linking.match_program (fun cu f tf => tf = transf_fundef f) eq p tp.

Lemma transf_program_match:
  forall p, match_prog p (transf_program p).
Proof.
  intros. unfold transf_program, match_prog.
  apply Linking.match_transform_program.
Qed.

Lemma exec_all_Vskip :
  forall rs ar,
    exec_all Vskip Vskip rs ar rs ar.
Proof.
  unfold exec_all.
  intros. repeat econstructor.
  Unshelve. unfold fext. exact tt.
Qed.

Lemma match_assocmaps_trans:
  forall p rs1 rs2 rs3,
    match_assocmaps p rs1 rs2 ->
    match_assocmaps p rs2 rs3 ->
    match_assocmaps p rs1 rs3.
Proof.
  intros. inv H. inv H0. econstructor; eauto.
  intros. rewrite H1 by auto. auto.
Qed.

Lemma match_reg_assocs_trans:
  forall p rs1 rs2 rs3,
    match_reg_assocs p rs1 rs2 ->
    match_reg_assocs p rs2 rs3 ->
    match_reg_assocs p rs1 rs3.
Proof.
  intros. inv H. inv H0.
  econstructor; eapply match_assocmaps_trans; eauto.
Qed.

Lemma empty_arrs_match :
  forall m,
    match_arrs (empty_stack m) (empty_stack (transf_module m)).
Proof.
  intros;
  unfold empty_stack, transf_module; repeat destruct_match; mgen_crush.
Qed.
Hint Resolve empty_arrs_match : mgen.

Lemma max_module_stmnts :
  forall m,
    Pos.max (max_stmnt_tree (mod_controllogic m))
            (max_stmnt_tree (mod_datapath m)) < max_reg_module m + 1.
Proof. intros. unfold max_reg_module. lia. Qed.
Hint Resolve max_module_stmnts : mgen.

Lemma transf_module_code :
  forall m,
    mod_ram m = None ->
    transf_code (mod_st m)
                {| ram_size := mod_stk_len m;
                   ram_mem := mod_stk m;
                   ram_en := max_reg_module m + 2;
                   ram_addr := max_reg_module m + 1;
                   ram_wr_en := max_reg_module m + 5;
                   ram_d_in := max_reg_module m + 3;
                   ram_d_out := max_reg_module m + 4;
                   ram_u_en := max_reg_module m + 6;
                   ram_ordering_wf := ram_wf (max_reg_module m) |}
                (mod_datapath m) (mod_controllogic m)
    = ((mod_datapath (transf_module m)), mod_controllogic (transf_module m)).
Proof. unfold transf_module; intros; repeat destruct_match; crush.
       apply surjective_pairing. Qed.
Hint Resolve transf_module_code : mgen.

Lemma transf_module_code_ram :
  forall m r, mod_ram m = Some r -> transf_module m = m.
Proof. unfold transf_module; intros; repeat destruct_match; crush. Qed.
Hint Resolve transf_module_code_ram : mgen.

Lemma mod_reset_lt : forall m, mod_reset m < max_reg_module m + 1.
Proof. intros; unfold max_reg_module; lia. Qed.
Hint Resolve mod_reset_lt : mgen.

Lemma mod_finish_lt : forall m, mod_finish m < max_reg_module m + 1.
Proof. intros; unfold max_reg_module; lia. Qed.
Hint Resolve mod_finish_lt : mgen.

Lemma mod_return_lt : forall m, mod_return m < max_reg_module m + 1.
Proof. intros; unfold max_reg_module; lia. Qed.
Hint Resolve mod_return_lt : mgen.

Lemma mod_start_lt : forall m, mod_start m < max_reg_module m + 1.
Proof. intros; unfold max_reg_module; lia. Qed.
Hint Resolve mod_start_lt : mgen.

Lemma mod_stk_lt : forall m, mod_stk m < max_reg_module m + 1.
Proof. intros; unfold max_reg_module; lia. Qed.
Hint Resolve mod_stk_lt : mgen.

Lemma mod_st_lt : forall m, mod_st m < max_reg_module m + 1.
Proof. intros; unfold max_reg_module; lia. Qed.
Hint Resolve mod_st_lt : mgen.

Lemma mod_reset_modify :
  forall m ar ar' v,
    match_assocmaps (max_reg_module m + 1) ar ar' ->
    ar ! (mod_reset m) = Some v ->
    ar' ! (mod_reset (transf_module m)) = Some v.
Proof.
  inversion 1. intros.
  unfold transf_module; repeat destruct_match; simplify;
  rewrite <- H0; eauto with mgen.
Qed.
Hint Resolve mod_reset_modify : mgen.

Lemma mod_finish_modify :
  forall m ar ar' v,
    match_assocmaps (max_reg_module m + 1) ar ar' ->
    ar ! (mod_finish m) = Some v ->
    ar' ! (mod_finish (transf_module m)) = Some v.
Proof.
  inversion 1. intros.
  unfold transf_module; repeat destruct_match; simplify;
  rewrite <- H0; eauto with mgen.
Qed.
Hint Resolve mod_finish_modify : mgen.

Lemma mod_return_modify :
  forall m ar ar' v,
    match_assocmaps (max_reg_module m + 1) ar ar' ->
    ar ! (mod_return m) = Some v ->
    ar' ! (mod_return (transf_module m)) = Some v.
Proof.
  inversion 1. intros.
  unfold transf_module; repeat destruct_match; simplify;
  rewrite <- H0; eauto with mgen.
Qed.
Hint Resolve mod_return_modify : mgen.

Lemma mod_start_modify :
  forall m ar ar' v,
    match_assocmaps (max_reg_module m + 1) ar ar' ->
    ar ! (mod_start m) = Some v ->
    ar' ! (mod_start (transf_module m)) = Some v.
Proof.
  inversion 1. intros.
  unfold transf_module; repeat destruct_match; simplify;
  rewrite <- H0; eauto with mgen.
Qed.
Hint Resolve mod_start_modify : mgen.

Lemma mod_st_modify :
  forall m ar ar' v,
    match_assocmaps (max_reg_module m + 1) ar ar' ->
    ar ! (mod_st m) = Some v ->
    ar' ! (mod_st (transf_module m)) = Some v.
Proof.
  inversion 1. intros.
  unfold transf_module; repeat destruct_match; simplify;
  rewrite <- H0; eauto with mgen.
Qed.
Hint Resolve mod_st_modify : mgen.

Lemma match_arrs_read :
  forall ra ra' addr v mem,
    arr_assocmap_lookup ra mem addr = Some v ->
    match_arrs ra ra' ->
    arr_assocmap_lookup ra' mem addr = Some v.
Proof.
  unfold arr_assocmap_lookup. intros. destruct_match; destruct_match; try discriminate.
  inv H0. eapply H1 in Heqo0. inv Heqo0. simplify. unfold arr in *.
  rewrite H in Heqo. inv Heqo.
  rewrite H0. auto.
  inv H0. eapply H1 in Heqo0. inv Heqo0. inv H0. unfold arr in *.
  rewrite H3 in Heqo. discriminate.
Qed.
Hint Resolve match_arrs_read : mgen.

Lemma match_reg_implies_equal :
  forall ra ra' p a b c,
    Int.eq (ra # a) (ra # b) = c ->
    a < p -> b < p ->
    match_assocmaps p ra ra' ->
    Int.eq (ra' # a) (ra' # b) = c.
Proof.
  unfold find_assocmap, AssocMapExt.get_default; intros.
  inv H2. destruct (ra ! a) eqn:?; destruct (ra ! b) eqn:?;
  repeat rewrite <- H3 by lia; rewrite Heqo; rewrite Heqo0; auto.
Qed.
Hint Resolve match_reg_implies_equal : mgen.

Lemma exec_ram_same :
  forall rs1 ar1 ram rs2 ar2 p,
    exec_ram rs1 ar1 (Some ram) rs2 ar2 ->
    forall_ram (fun x => x < p) ram ->
    forall trs1 tar1,
      match_reg_assocs p rs1 trs1 ->
      match_arr_assocs ar1 tar1 ->
      exists trs2 tar2,
        exec_ram trs1 tar1 (Some ram) trs2 tar2
        /\ match_reg_assocs p rs2 trs2
        /\ match_arr_assocs ar2 tar2.
Proof.
  Ltac exec_ram_same_facts :=
    match goal with
    | H: match_reg_assocs _ _ _ |- _ => let H2 := fresh "H" in learn H as H2; inv H2
    | H: match_assocmaps _ _ _ |- _ => let H2 := fresh "H" in learn H as H2; inv H2
    | H: match_arr_assocs _ _ |- _ => let H2 := fresh "H" in learn H as H2; inv H2
    | H: match_arrs _ _ |- _ => let H2 := fresh "H" in learn H as H2; inv H2
    end.
  inversion 1; subst; destruct ram; unfold forall_ram; simplify; repeat exec_ram_same_facts.
  - repeat (econstructor; mgen_crush).
  - do 2 econstructor; simplify;
      [eapply exec_ram_Some_write; [ apply H1 | apply H2 | | | | | ] | | ];
      mgen_crush.
  - do 2 econstructor; simplify; [eapply exec_ram_Some_read | | ];
      repeat (try econstructor; mgen_crush).
Qed.

Lemma match_assocmaps_merge :
  forall p nasr basr nasr' basr',
    match_assocmaps p nasr nasr' ->
    match_assocmaps p basr basr' ->
    match_assocmaps p (merge_regs nasr basr) (merge_regs nasr' basr').
Proof.
  unfold merge_regs.
  intros. inv H. inv H0. econstructor.
  intros.
  destruct nasr ! r eqn:?; destruct basr ! r eqn:?.
  erewrite AssocMapExt.merge_correct_1; mgen_crush.
  erewrite AssocMapExt.merge_correct_1; mgen_crush.
  erewrite AssocMapExt.merge_correct_1; mgen_crush.
  erewrite AssocMapExt.merge_correct_1; mgen_crush.
  erewrite AssocMapExt.merge_correct_2; mgen_crush.
  erewrite AssocMapExt.merge_correct_2; mgen_crush.
  erewrite AssocMapExt.merge_correct_3; mgen_crush.
  erewrite AssocMapExt.merge_correct_3; mgen_crush.
Qed.
Hint Resolve match_assocmaps_merge : mgen.

Lemma list_combine_nth_error1 :
  forall l l' addr v,
    length l = length l' ->
    nth_error l addr = Some (Some v) ->
    nth_error (list_combine merge_cell l l') addr = Some (Some v).
Proof. induction l; destruct l'; destruct addr; crush. Qed.

Lemma list_combine_nth_error2 :
  forall l' l addr v,
    length l = length l' ->
    nth_error l addr = Some None ->
    nth_error l' addr = Some (Some v) ->
    nth_error (list_combine merge_cell l l') addr = Some (Some v).
Proof. induction l'; try rewrite nth_error_nil in *; destruct l; destruct addr; crush. Qed.

Lemma list_combine_nth_error3 :
  forall l l' addr,
    length l = length l' ->
    nth_error l addr = Some None ->
    nth_error l' addr = Some None ->
    nth_error (list_combine merge_cell l l') addr = Some None.
Proof. induction l; destruct l'; destruct addr; crush. Qed.

Lemma list_combine_nth_error4 :
  forall l l' addr,
    length l = length l' ->
    nth_error l addr = None ->
    nth_error (list_combine merge_cell l l') addr = None.
Proof. induction l; destruct l'; destruct addr; crush. Qed.

Lemma list_combine_nth_error5 :
  forall l l' addr,
    length l = length l' ->
    nth_error l' addr = None ->
    nth_error (list_combine merge_cell l l') addr = None.
Proof. induction l; destruct l'; destruct addr; crush. Qed.

Lemma array_get_error_merge1 :
  forall a a0 addr v,
    arr_length a = arr_length a0 ->
    array_get_error addr a = Some (Some v) ->
    array_get_error addr (combine merge_cell a a0) = Some (Some v).
Proof.
  unfold array_get_error, combine in *; intros;
  apply list_combine_nth_error1; destruct a; destruct a0; crush.
Qed.

Lemma array_get_error_merge2 :
  forall a a0 addr v,
    arr_length a = arr_length a0 ->
    array_get_error addr a0 = Some (Some v) ->
    array_get_error addr a = Some None ->
    array_get_error addr (combine merge_cell a a0) = Some (Some v).
Proof.
  unfold array_get_error, combine in *; intros;
  apply list_combine_nth_error2; destruct a; destruct a0; crush.
Qed.

Lemma array_get_error_merge3 :
  forall a a0 addr,
    arr_length a = arr_length a0 ->
    array_get_error addr a0 = Some None ->
    array_get_error addr a = Some None ->
    array_get_error addr (combine merge_cell a a0) = Some None.
Proof.
  unfold array_get_error, combine in *; intros;
  apply list_combine_nth_error3; destruct a; destruct a0; crush.
Qed.

Lemma array_get_error_merge4 :
  forall a a0 addr,
    arr_length a = arr_length a0 ->
    array_get_error addr a = None ->
    array_get_error addr (combine merge_cell a a0) = None.
Proof.
  unfold array_get_error, combine in *; intros;
  apply list_combine_nth_error4; destruct a; destruct a0; crush.
Qed.

Lemma array_get_error_merge5 :
  forall a a0 addr,
    arr_length a = arr_length a0 ->
    array_get_error addr a0 = None ->
    array_get_error addr (combine merge_cell a a0) = None.
Proof.
  unfold array_get_error, combine in *; intros;
  apply list_combine_nth_error5; destruct a; destruct a0; crush.
Qed.

Lemma match_arrs_merge' :
  forall addr nasa basa arr s x x0 a a0 nasa' basa',
    (AssocMap.combine merge_arr nasa basa) ! s = Some arr ->
    nasa ! s = Some a ->
    basa ! s = Some a0 ->
    nasa' ! s = Some x0 ->
    basa' ! s = Some x ->
    arr_length x = arr_length x0 ->
    array_get_error addr a0 = array_get_error addr x ->
    arr_length a0 = arr_length x ->
    array_get_error addr a = array_get_error addr x0 ->
    arr_length a = arr_length x0 ->
    array_get_error addr arr = array_get_error addr (combine merge_cell x0 x).
Proof.
  intros. rewrite AssocMap.gcombine in H by auto.
  unfold merge_arr in H.
  rewrite H0 in H. rewrite H1 in H. inv H.
  destruct (array_get_error addr a0) eqn:?; destruct (array_get_error addr a) eqn:?.
  destruct o; destruct o0.
  erewrite array_get_error_merge1; eauto. erewrite array_get_error_merge1; eauto.
  rewrite <- H6 in H4. rewrite <- H8 in H4. auto.
  erewrite array_get_error_merge2; eauto. erewrite array_get_error_merge2; eauto.
  rewrite <- H6 in H4. rewrite <- H8 in H4. auto.
  erewrite array_get_error_merge1; eauto. erewrite array_get_error_merge1; eauto.
  rewrite <- H6 in H4. rewrite <- H8 in H4. auto.
  erewrite array_get_error_merge3; eauto. erewrite array_get_error_merge3; eauto.
  rewrite <- H6 in H4. rewrite <- H8 in H4. auto.
  erewrite array_get_error_merge4; eauto. erewrite array_get_error_merge4; eauto.
  rewrite <- H6 in H4. rewrite <- H8 in H4. auto.
  erewrite array_get_error_merge5; eauto. erewrite array_get_error_merge5; eauto.
  rewrite <- H6 in H4. rewrite <- H8 in H4. auto.
  erewrite array_get_error_merge5; eauto. erewrite array_get_error_merge5; eauto.
  rewrite <- H6 in H4. rewrite <- H8 in H4. auto.
Qed.

Lemma match_arrs_merge :
  forall nasa nasa' basa basa',
    match_arrs_size nasa basa ->
    match_arrs nasa nasa' ->
    match_arrs basa basa' ->
    match_arrs (merge_arrs nasa basa) (merge_arrs nasa' basa').
Proof.
  unfold merge_arrs.
  intros. inv H. inv H0. inv H1. econstructor.
  - intros. destruct nasa ! s eqn:?; destruct basa ! s eqn:?; unfold Verilog.arr in *.
    + pose proof Heqo. apply H in Heqo. pose proof Heqo0. apply H0 in Heqo0.
      repeat inv_exists. simplify.
      eexists. simplify. rewrite AssocMap.gcombine; eauto.
      unfold merge_arr. unfold Verilog.arr in *. rewrite H11. rewrite H12. auto.
      intros. eapply match_arrs_merge'; eauto. eapply H2 in H7; eauto.
      inv_exists. simplify. congruence.
      rewrite AssocMap.gcombine in H1; auto. unfold merge_arr in H1.
      rewrite H7 in H1. rewrite H8 in H1. inv H1.
      repeat rewrite combine_length; auto.
      eapply H2 in H7; eauto. inv_exists; simplify; congruence.
      eapply H2 in H7; eauto. inv_exists; simplify; congruence.
    + apply H2 in Heqo; inv_exists; crush.
    + apply H3 in Heqo0; inv_exists; crush.
    + rewrite AssocMap.gcombine in H1 by auto. unfold merge_arr in *.
      rewrite Heqo in H1. rewrite Heqo0 in H1. discriminate.
  - intros. rewrite AssocMap.gcombine in H1 by auto. unfold merge_arr in H1.
    repeat destruct_match; crush.
    rewrite AssocMap.gcombine by auto; unfold merge_arr.
    apply H5 in Heqo. apply H6 in Heqo0.
    unfold Verilog.arr in *.
    rewrite Heqo. rewrite Heqo0. auto.
Qed.
Hint Resolve match_arrs_merge : mgen.

Lemma match_empty_size_merge :
  forall nasa2 basa2 m,
  match_empty_size m nasa2 ->
  match_empty_size m basa2 ->
  match_empty_size m (merge_arrs nasa2 basa2).
Proof.
  intros. inv H. inv H0. constructor.
  simplify. unfold merge_arrs. rewrite AssocMap.gcombine by auto.
  pose proof H0 as H6. apply H1 in H6. inv_exists; simplify.
  pose proof H0 as H9. apply H in H9. inv_exists; simplify.
  eexists. simplify. unfold merge_arr. unfold Verilog.arr in *. rewrite H6.
  rewrite H9. auto. rewrite H8. symmetry. apply combine_length. congruence.
  intros.
  destruct (nasa2 ! s) eqn:?; destruct (basa2 ! s) eqn:?.
  unfold merge_arrs in H0. rewrite AssocMap.gcombine in H0 by auto.
  unfold merge_arr in *. setoid_rewrite Heqo in H0. setoid_rewrite Heqo0 in H0. inv H0.
  apply H2 in Heqo. apply H4 in Heqo0. repeat inv_exists; simplify.
  eexists. simplify. eauto. rewrite list_combine_length.
  rewrite (arr_wf a). rewrite (arr_wf a0). lia.
  unfold merge_arrs in H0. rewrite AssocMap.gcombine in H0 by auto.
  unfold merge_arr in *.  setoid_rewrite Heqo in H0. setoid_rewrite Heqo0 in H0.
  apply H2 in Heqo. inv_exists; simplify.
  econstructor; eauto.
  unfold merge_arrs in H0. rewrite AssocMap.gcombine in H0 by auto.
  unfold merge_arr in *.  setoid_rewrite Heqo in H0. setoid_rewrite Heqo0 in H0.
  inv H0. apply H4 in Heqo0. inv_exists; simplify. econstructor; eauto.
  unfold merge_arrs in H0. rewrite AssocMap.gcombine in H0 by auto.
  unfold merge_arr in *.  setoid_rewrite Heqo in H0. setoid_rewrite Heqo0 in H0.
  discriminate.
  split; intros.
  unfold merge_arrs in H0. rewrite AssocMap.gcombine in H0 by auto.
  unfold merge_arr in *. repeat destruct_match; crush. apply H5 in Heqo0; auto.
  pose proof H0.
  apply H5 in H0.
  apply H3 in H6. unfold merge_arrs. rewrite AssocMap.gcombine by auto.
  setoid_rewrite H0. setoid_rewrite H6. auto.
Qed.
Hint Resolve match_empty_size_merge : mgen.

Lemma match_empty_size_match :
  forall m nasa2 basa2,
    match_empty_size m nasa2 ->
    match_empty_size m basa2 ->
    match_arrs_size nasa2 basa2.
Proof.
  Ltac match_empty_size_match_solve :=
    match goal with
    | H: context[forall s arr, ?ar ! s = Some arr -> _], H2: ?ar ! _ = Some _ |- _ =>
      let H3 := fresh "H" in
      learn H; pose proof H2 as H3; apply H in H3; repeat inv_exists
    | H: context[forall s, ?ar ! s = None <-> _], H2: ?ar ! _ = None |- _ =>
      let H3 := fresh "H" in
      learn H; pose proof H2 as H3; apply H in H3
    | H: context[forall s, _ <-> ?ar ! s = None], H2: ?ar ! _ = None |- _ =>
      let H3 := fresh "H" in
      learn H; pose proof H2 as H3; apply H in H3
    | |- exists _, _ => econstructor
    | |- _ ! _ = Some _ => eassumption
    | |- _ = _ => congruence
    | |- _ <-> _ => split
    end; simplify.
  inversion 1; inversion 1; constructor; simplify; repeat match_empty_size_match_solve.
Qed.
Hint Resolve match_empty_size_match : mgen.

Lemma match_get_merge :
  forall p ran ran' rab rab' s v,
    s < p ->
    match_assocmaps p ran ran' ->
    match_assocmaps p rab rab' ->
    (merge_regs ran rab) ! s = Some v ->
    (merge_regs ran' rab') ! s = Some v.
Proof.
  intros.
  assert (X: match_assocmaps p (merge_regs ran rab) (merge_regs ran' rab')) by auto with mgen.
  inv X. rewrite <- H3; auto.
Qed.
Hint Resolve match_get_merge : mgen.

Ltac masrp_tac :=
  match goal with
  | H: context[forall s arr, ?ar ! s = Some arr -> _], H2: ?ar ! _ = Some _ |- _ =>
    let H3 := fresh "H" in
    learn H; pose proof H2 as H3; apply H in H3; repeat inv_exists
  | H: context[forall s, ?ar ! s = None <-> _], H2: ?ar ! _ = None |- _ =>
    let H3 := fresh "H" in
    learn H; pose proof H2 as H3; apply H in H3
  | H: context[forall s, _ <-> ?ar ! s = None], H2: ?ar ! _ = None |- _ =>
    let H3 := fresh "H" in
    learn H; pose proof H2 as H3; apply H in H3
  | ra: arr_associations |- _ =>
    let ra1 := fresh "ran" in let ra2 := fresh "rab" in destruct ra as [ra1 ra2]
  | |- _ ! _ = _ => solve [mgen_crush]
  | |- _ = _ => congruence
  | |- _ <> _ => lia
  | H: ?ar ! ?s = _ |- context[match ?ar ! ?r with _ => _ end] => learn H; destruct (Pos.eq_dec s r); subst
  | H: ?ar ! ?s = _ |- context[match ?ar ! ?s with _ => _ end] => setoid_rewrite H
  | |- context[match ?ar ! ?s with _ => _ end] => destruct (ar ! s) eqn:?
  | H: ?s <> ?r |- context[(_ # ?r <- _) ! ?s] => rewrite AssocMap.gso
  | H: ?r <> ?s |- context[(_ # ?r <- _) ! ?s] => rewrite AssocMap.gso
  | |- context[(_ # ?s <- _) ! ?s] => rewrite AssocMap.gss
  | H: context[match ?ar ! ?r with _ => _ end ! ?s] |- _ =>
    destruct (ar ! r) eqn:?; destruct (Pos.eq_dec r s); subst
  | H: ?ar ! ?s = _, H2: context[match ?ar ! ?s with _ => _ end] |- _ =>
    setoid_rewrite H in H2
  | H: context[match ?ar ! ?s with _ => _ end] |- _ => destruct (ar ! s) eqn:?
  | H: ?s <> ?r, H2: context[(_ # ?r <- _) ! ?s] |- _ => rewrite AssocMap.gso in H2
  | H: ?r <> ?s, H2: context[(_ # ?r <- _) ! ?s] |- _ => rewrite AssocMap.gso in H2
  | H: context[(_ # ?s <- _) ! ?s] |- _ => rewrite AssocMap.gss in H
  | |- context[match_empty_size] => constructor
  | |- context[arr_assocmap_set] => unfold arr_assocmap_set
  | H: context[arr_assocmap_set] |- _ => unfold arr_assocmap_set in H
  | |- exists _, _ => econstructor
  | |- _ <-> _ => split
  end; simplify.

Lemma match_empty_assocmap_set :
  forall m r i rhsval asa,
    match_empty_size m asa ->
    match_empty_size m (arr_assocmap_set r i rhsval asa).
Proof.
  inversion 1; subst; simplify.
  constructor. intros.
  repeat masrp_tac.
  intros. do 5 masrp_tac; try solve [repeat masrp_tac].
  apply H1 in H3. inv_exists. simplify.
  econstructor. simplify. apply H3. congruence.
  repeat masrp_tac. destruct (Pos.eq_dec r s); subst.
  rewrite AssocMap.gss in H8. discriminate.
  rewrite AssocMap.gso in H8; auto. apply H2 in H8. auto.
  destruct (Pos.eq_dec r s); subst. apply H1 in H5. inv_exists. simplify.
  rewrite H5 in H8. discriminate.
  rewrite AssocMap.gso; auto.
  apply H2 in H5. auto. apply H2 in H5. auto.
  Unshelve. auto.
Qed.
Hint Resolve match_empty_assocmap_set : mgen.

Lemma match_arrs_size_stmnt_preserved :
  forall m f rs1 ar1 ar2 c rs2,
    stmnt_runp f rs1 ar1 c rs2 ar2 ->
    match_empty_size m (assoc_nonblocking ar1) ->
    match_empty_size m (assoc_blocking ar1) ->
    match_empty_size m (assoc_nonblocking ar2) /\ match_empty_size m (assoc_blocking ar2).
Proof.
  induction 1; inversion 1; inversion 1; eauto; simplify; try solve [repeat masrp_tac].
  subst. apply IHstmnt_runp2; apply IHstmnt_runp1; auto.
  apply IHstmnt_runp2; apply IHstmnt_runp1; auto.
  apply match_empty_assocmap_set. auto.
  apply match_empty_assocmap_set. auto.
Qed.

Lemma match_arrs_size_stmnt_preserved2 :
  forall m f rs1 na ba na' ba' c rs2,
    stmnt_runp f rs1 {| assoc_nonblocking := na; assoc_blocking := ba |} c rs2
               {| assoc_nonblocking := na'; assoc_blocking := ba' |} ->
    match_empty_size m na ->
    match_empty_size m ba ->
    match_empty_size m na' /\ match_empty_size m ba'.
Proof.
  intros.
  remember ({| assoc_blocking := ba; assoc_nonblocking := na |}) as ar1.
  remember ({| assoc_blocking := ba'; assoc_nonblocking := na' |}) as ar2.
  assert (X1: na' = (assoc_nonblocking ar2)) by (rewrite Heqar2; auto). rewrite X1.
  assert (X2: ba' = (assoc_blocking ar2)) by (rewrite Heqar2; auto). rewrite X2.
  assert (X3: na = (assoc_nonblocking ar1)) by (rewrite Heqar1; auto). rewrite X3 in *.
  assert (X4: ba = (assoc_blocking ar1)) by (rewrite Heqar1; auto). rewrite X4 in *.
  eapply match_arrs_size_stmnt_preserved; mgen_crush.
Qed.
Hint Resolve match_arrs_size_stmnt_preserved2 : mgen.

Lemma match_arrs_size_ram_preserved :
  forall m rs1 ar1 ar2 ram rs2,
    exec_ram rs1 ar1 ram rs2 ar2 ->
    match_empty_size m (assoc_nonblocking ar1) ->
    match_empty_size m (assoc_blocking ar1) ->
    match_empty_size m (assoc_nonblocking ar2)
    /\ match_empty_size m (assoc_blocking ar2).
Proof.
  induction 1; inversion 1; inversion 1; subst; simplify; try solve [repeat masrp_tac].
  masrp_tac. masrp_tac. solve [repeat masrp_tac].
  masrp_tac. masrp_tac. masrp_tac. masrp_tac. masrp_tac. masrp_tac. masrp_tac.
  masrp_tac. masrp_tac. masrp_tac. masrp_tac. masrp_tac. masrp_tac. masrp_tac.
  masrp_tac. apply H8 in H1; inv_exists; simplify. repeat masrp_tac. auto.
  repeat masrp_tac.
  repeat masrp_tac.
  repeat masrp_tac.
  destruct (Pos.eq_dec (ram_mem r) s); subst; repeat masrp_tac.
  destruct (Pos.eq_dec (ram_mem r) s); subst; repeat masrp_tac.
  apply H9 in H17; auto. apply H9 in H17; auto.
  Unshelve. eauto.
Qed.
Hint Resolve match_arrs_size_ram_preserved : mgen.

Lemma match_arrs_size_ram_preserved2 :
  forall m rs1 na na' ba ba' ram rs2,
    exec_ram rs1 {| assoc_nonblocking := na; assoc_blocking := ba |} ram rs2
    {| assoc_nonblocking := na'; assoc_blocking := ba' |} ->
    match_empty_size m na -> match_empty_size m ba ->
    match_empty_size m na' /\ match_empty_size m ba'.
Proof.
  intros.
  remember ({| assoc_blocking := ba; assoc_nonblocking := na |}) as ar1.
  remember ({| assoc_blocking := ba'; assoc_nonblocking := na' |}) as ar2.
  assert (X1: na' = (assoc_nonblocking ar2)) by (rewrite Heqar2; auto). rewrite X1.
  assert (X2: ba' = (assoc_blocking ar2)) by (rewrite Heqar2; auto). rewrite X2.
  assert (X3: na = (assoc_nonblocking ar1)) by (rewrite Heqar1; auto). rewrite X3 in *.
  assert (X4: ba = (assoc_blocking ar1)) by (rewrite Heqar1; auto). rewrite X4 in *.
  eapply match_arrs_size_ram_preserved; mgen_crush.
Qed.
Hint Resolve match_arrs_size_ram_preserved2 : mgen.

Lemma empty_stack_m :
  forall m, empty_stack m = empty_stack' (mod_stk_len m) (mod_stk m).
Proof. unfold empty_stack, empty_stack'; mgen_crush. Qed.
Hint Rewrite empty_stack_m : mgen.

Ltac clear_forall :=
  repeat match goal with
  | H: context[forall _, _] |- _ => clear H
  end.

Lemma list_combine_none :
  forall n l,
    length l = n ->
    list_combine Verilog.merge_cell (list_repeat None n) l = l.
Proof.
  induction n; intros; crush.
  - symmetry. apply length_zero_iff_nil. auto.
  - destruct l; crush.
    rewrite list_repeat_cons.
    crush. f_equal.
    eauto.
Qed.

Lemma combine_none :
  forall n a,
    a.(arr_length) = n ->
    arr_contents (combine Verilog.merge_cell (arr_repeat None n) a) = arr_contents a.
Proof.
  intros.
  unfold combine.
  crush.

  rewrite <- (arr_wf a) in H.
  apply list_combine_none.
  assumption.
Qed.

Lemma combine_none2 :
  forall n a addr,
    arr_length a = n ->
    array_get_error addr (combine Verilog.merge_cell (arr_repeat None n) a)
    = array_get_error addr a.
Proof. intros; auto using array_get_error_equal, combine_none. Qed.

Lemma list_combine_lookup_first :
  forall l1 l2 n,
    length l1 = length l2 ->
    nth_error l1 n = Some None ->
    nth_error (list_combine Verilog.merge_cell l1 l2) n = nth_error l2 n.
Proof.
  induction l1; intros; crush.

  rewrite nth_error_nil in H0.
  discriminate.

  destruct l2 eqn:EQl2. crush.
  simpl in H. invert H.
  destruct n; simpl in *.
  invert H0. simpl. reflexivity.
  eauto.
Qed.

Lemma combine_lookup_first :
  forall a1 a2 n,
    a1.(arr_length) = a2.(arr_length) ->
    array_get_error n a1 = Some None ->
    array_get_error n (combine Verilog.merge_cell a1 a2) = array_get_error n a2.
Proof.
  intros.

  unfold array_get_error in *.
  apply list_combine_lookup_first; eauto.
  rewrite a1.(arr_wf). rewrite a2.(arr_wf).
  assumption.
Qed.

Lemma list_combine_lookup_second :
  forall l1 l2 n x,
    length l1 = length l2 ->
    nth_error l1 n = Some (Some x) ->
    nth_error (list_combine Verilog.merge_cell l1 l2) n = Some (Some x).
Proof.
  induction l1; intros; crush; auto.

  destruct l2 eqn:EQl2. crush.
  simpl in H. invert H.
  destruct n; simpl in *.
  invert H0. simpl. reflexivity.
  eauto.
Qed.

Lemma combine_lookup_second :
  forall a1 a2 n x,
    a1.(arr_length) = a2.(arr_length) ->
    array_get_error n a1 = Some (Some x) ->
    array_get_error n (combine Verilog.merge_cell a1 a2) = Some (Some x).
Proof.
  intros.

  unfold array_get_error in *.
  apply list_combine_lookup_second; eauto.
  rewrite a1.(arr_wf). rewrite a2.(arr_wf).
  assumption.
Qed.

Lemma match_get_arrs2 :
  forall a i v l,
    length a = l ->
    list_combine merge_cell (list_set i (Some v) (list_repeat None l)) a =
    list_combine merge_cell (list_repeat None l) (list_set i (Some v) a).
Proof.
  induction a; crush; subst.
  - destruct i. unfold list_repeat. unfold list_repeat'. auto.
    unfold list_repeat. unfold list_repeat'. auto.
  - destruct i.
    rewrite list_repeat_cons. simplify. auto.
    rewrite list_repeat_cons. simplify. f_equal. apply IHa. auto.
Qed.

Lemma match_get_arrs :
  forall addr i v x4 x x3,
    x4 = arr_length x ->
    x4 = arr_length x3 ->
    array_get_error addr (combine merge_cell (array_set i (Some v) (arr_repeat None x4))
                                  (combine merge_cell x x3))
    = array_get_error addr (combine merge_cell (arr_repeat None x4)
                                    (array_set i (Some v) (combine merge_cell x x3))).
Proof.
  intros. apply array_get_error_equal. unfold combine. simplify.
  destruct x; destruct x3; simplify.
  apply match_get_arrs2. rewrite list_combine_length. subst.
  rewrite H0. lia.
Qed.

Lemma combine_array_set' :
  forall a b i v,
    length a = length b ->
    list_combine merge_cell (list_set i (Some v) a) b =
    list_set i (Some v) (list_combine merge_cell a b).
Proof.
  induction a; simplify; crush.
  - destruct i; crush.
  - destruct i; destruct b; crush.
    f_equal. apply IHa. auto.
Qed.

Lemma combine_array_set :
  forall a b i v addr,
    arr_length a = arr_length b ->
    array_get_error addr (combine merge_cell (array_set i (Some v) a) b)
    = array_get_error addr (array_set i (Some v) (combine merge_cell a b)).
Proof.
  intros. destruct a; destruct b. unfold array_set. simplify.
  unfold array_get_error. simplify. f_equal.
  apply combine_array_set'. crush.
Qed.

Lemma array_get_combine' :
  forall a b a' b' addr,
    length a = length b ->
    length a = length b' ->
    length a = length a' ->
    nth_error a addr = nth_error a' addr ->
    nth_error b addr = nth_error b' addr ->
    nth_error (list_combine merge_cell a b) addr =
    nth_error (list_combine merge_cell a' b') addr.
Proof.
  induction a; crush.
  - destruct b; crush; destruct b'; crush; destruct a'; crush.
  - destruct b; crush; destruct b'; crush; destruct a'; crush;
    destruct addr; crush; apply IHa.
Qed.

Lemma array_get_combine :
  forall a b a' b' addr,
    arr_length a = arr_length b ->
    arr_length a = arr_length b' ->
    arr_length a = arr_length a' ->
    array_get_error addr a = array_get_error addr a' ->
    array_get_error addr b = array_get_error addr b' ->
    array_get_error addr (combine merge_cell a b)
    = array_get_error addr (combine merge_cell a' b').
Proof.
  intros; unfold array_get_error, combine in *; destruct a; destruct b;
  destruct a'; destruct b'; simplify; apply array_get_combine'; crush.
Qed.

Lemma match_empty_size_exists_Some :
  forall m rab s v,
    match_empty_size m rab ->
    rab ! s = Some v ->
    exists v', (empty_stack m) ! s = Some v' /\ arr_length v = arr_length v'.
Proof. inversion 1; intros; repeat masrp_tac. Qed.

Lemma match_empty_size_exists_None :
  forall m rab s,
    match_empty_size m rab ->
    rab ! s = None ->
    (empty_stack m) ! s = None.
Proof. inversion 1; intros; repeat masrp_tac. Qed.

Lemma match_empty_size_exists_None' :
  forall m rab s,
    match_empty_size m rab ->
    (empty_stack m) ! s = None ->
    rab ! s = None.
Proof. inversion 1; intros; repeat masrp_tac. Qed.

Lemma match_empty_size_exists_Some' :
  forall m rab s v,
    match_empty_size m rab ->
    (empty_stack m) ! s = Some v ->
    exists v', rab ! s = Some v' /\ arr_length v = arr_length v'.
Proof. inversion 1; intros; repeat masrp_tac. Qed.

Lemma match_arrs_Some :
  forall ra ra' s v,
    match_arrs ra ra' ->
    ra ! s = Some v ->
    exists v', ra' ! s = Some v'
               /\ (forall addr, array_get_error addr v = array_get_error addr v')
               /\ arr_length v = arr_length v'.
Proof. inversion 1; intros; repeat masrp_tac. intros. rewrite H5. auto. Qed.

Lemma match_arrs_None :
  forall ra ra' s,
    match_arrs ra ra' ->
    ra ! s = None ->
    ra' ! s = None.
Proof. inversion 1; intros; repeat masrp_tac. Qed.

Ltac learn_next :=
  match goal with
  | H: match_empty_size _ ?rab, H2: ?rab ! _ = Some _ |- _ =>
    let H3 := fresh "H" in
    learn H2 as H3; eapply match_empty_size_exists_Some in H3;
    eauto; inv_exists; simplify
  | H: match_empty_size _ ?rab, H2: ?rab ! _ = None |- _ =>
    let H3 := fresh "H" in
    learn H2 as H3; eapply match_empty_size_exists_None in H3; eauto
  end.

Ltac learn_empty :=
  match goal with
  | H: match_empty_size _ _, H2: (empty_stack _) ! _ = Some _ |- _ =>
    let H3 := fresh "H" in
    learn H as H3; eapply match_empty_size_exists_Some' in H3;
    [| eassumption]; inv_exists; simplify
  | H: match_arrs ?ar _, H2: ?ar ! _ = Some _ |- _ =>
    let H3 := fresh "H" in
    learn H as H3; eapply match_arrs_Some in H3;
    [| eassumption]; inv_exists; simplify
  | H: match_empty_size _ _, H2: (empty_stack _) ! _ = None |- _ =>
    let H3 := fresh "H" in
    learn H as H3; eapply match_empty_size_exists_None' in H3;
    [| eassumption]; simplify
  end.

Lemma empty_set_none :
  forall m ran rab s i v s0,
    match_empty_size m ran ->
    match_empty_size m rab ->
    (arr_assocmap_set s i v ran) ! s0 = None ->
    (arr_assocmap_set s i v rab) ! s0 = None.
Proof.
  unfold arr_assocmap_set; inversion 1; subst; simplify.
  destruct (Pos.eq_dec s s0); subst.
  destruct ran ! s0 eqn:?.
  rewrite AssocMap.gss in H4. inv H4.
  learn_next. learn_empty. rewrite H6; auto.
  destruct ran ! s eqn:?. rewrite AssocMap.gso in H4.
  learn_next. learn_empty. rewrite H6. rewrite AssocMap.gso.
  repeat match goal with
  | H: Learnt _ |- _ => clear H
  end. clear Heqo. clear H5. clear H6.
  learn_next. repeat learn_empty. auto. auto. auto.
  pose proof Heqo. learn_next; repeat learn_empty.
  repeat match goal with
  | H: Learnt _ |- _ => clear H
  end.
  pose proof H4. learn_next; repeat learn_empty.
  rewrite H7. auto.
Qed.

Ltac clear_learnt :=
  repeat match goal with
  | H: Learnt _ |- _ => clear H
  end.

Lemma match_arrs_size_assoc :
  forall a b,
    match_arrs_size a b ->
    match_arrs_size b a.
Proof. inversion 1; constructor; crush; split; apply H2. Qed.
Hint Resolve match_arrs_size_assoc : mgen.

Lemma match_arrs_merge_set2 :
  forall rab rab' ran ran' s m i v,
    match_empty_size m rab ->
    match_empty_size m ran ->
    match_empty_size m rab' ->
    match_empty_size m ran' ->
    match_arrs rab rab' ->
    match_arrs ran ran' ->
    match_arrs (merge_arrs (arr_assocmap_set s i v ran) rab)
               (merge_arrs (arr_assocmap_set s i v (empty_stack m))
                           (merge_arrs ran' rab')).
Proof.
  simplify.
  constructor; intros.
  unfold arr_assocmap_set in *. destruct (Pos.eq_dec s s0); subst.
  destruct ran ! s0 eqn:?. unfold merge_arrs in *. rewrite AssocMap.gcombine in *; auto.
  learn_next. repeat learn_empty.
  econstructor. simplify. rewrite H6. rewrite AssocMap.gcombine by auto.
  rewrite AssocMap.gss. simplify. setoid_rewrite H9. setoid_rewrite H7. simplify.
  intros. rewrite AssocMap.gss in H5. setoid_rewrite H13 in H5.
  simplify. pose proof (empty_arr m s0). inv H5. inv_exists. setoid_rewrite H5 in H6. inv H6.
  unfold arr_repeat in H8. simplify. rewrite list_repeat_len in H8. rewrite list_repeat_len in H10.
  rewrite match_get_arrs. crush. rewrite combine_none2. rewrite combine_array_set; try congruence.
  apply array_get_error_each. rewrite combine_length; try congruence.
  rewrite combine_length; try congruence.
  apply array_get_combine; crush.
  rewrite <- array_set_len. rewrite combine_length; crush. crush. crush.
  setoid_rewrite H21 in H6; discriminate. rewrite combine_length.
  rewrite <- array_set_len; crush.
  unfold merge_arr in *. rewrite AssocMap.gss in H5. setoid_rewrite H13 in H5.
  inv H5. rewrite combine_length. rewrite <- array_set_len; crush.
  rewrite <- array_set_len; crush.
  rewrite combine_length; crush.
  destruct rab ! s0 eqn:?. learn_next. repeat learn_empty.
  rewrite H11 in Heqo. discriminate.
  unfold merge_arrs in H5. rewrite AssocMap.gcombine in H5; auto. rewrite Heqo in H5.
  rewrite Heqo0 in H5. crush.

  destruct ran ! s eqn:?.
  learn_next. repeat learn_empty. rewrite H6.
  unfold merge_arrs in *. rewrite AssocMap.gcombine in H5; auto.
  rewrite AssocMap.gcombine; auto. rewrite AssocMap.gso in H5; auto.
  rewrite AssocMap.gso; auto.
  destruct ran ! s0 eqn:?.
  learn_next.
  repeat match goal with
  | H: Learnt _ |- _ => clear H
  end.
  repeat learn_empty.
  repeat match goal with
  | H: Learnt _ |- _ => clear H
  end.
  rewrite AssocMap.gcombine; auto. setoid_rewrite Heqo0 in H5. setoid_rewrite H29 in H5.
  simplify.
  pose proof (empty_arr m s0). inv H5. inv_exists. rewrite H5 in H21. inv H21.
  econstructor. simplify. setoid_rewrite H23. rewrite H25. setoid_rewrite H5.
  simplify. intros. rewrite combine_none2. apply array_get_combine; solve [crush].
  crush. rewrite list_combine_length. rewrite (arr_wf x5). rewrite (arr_wf x6).
  rewrite <- H26. rewrite <- H28. rewrite list_repeat_len. lia. rewrite list_combine_length.
  rewrite (arr_wf a). rewrite (arr_wf x7). rewrite combine_length. rewrite arr_repeat_length.
  rewrite H24. rewrite <- H32. rewrite list_repeat_len. lia.
  rewrite arr_repeat_length. rewrite combine_length. rewrite <- H26. symmetry. apply list_repeat_len.
  congruence.
  rewrite H37 in H21; discriminate.
  repeat match goal with
  | H: Learnt _ |- _ => clear H
  end. eapply match_empty_size_exists_None in H0; eauto.
  clear H6. repeat learn_empty. setoid_rewrite Heqo0 in H5.
  setoid_rewrite H29 in H5. discriminate.
  pose proof (match_arrs_merge ran ran' rab rab').
  eapply match_empty_size_match in H; [|apply H0].
  apply H6 in H; auto. inv H. apply H7 in H5. inv_exists. simplify.
  learn_next. rewrite H9. econstructor. simplify.
  apply merge_arr_empty''; mgen_crush.
  auto. auto.
  unfold merge_arrs in *. rewrite AssocMap.gcombine in H5; auto. rewrite AssocMap.gcombine; auto.
  destruct (arr_assocmap_set s i v ran) ! s0 eqn:?; destruct rab ! s0 eqn:?; crush.
  learn_next. repeat learn_empty.
  repeat match goal with
  | H: Learnt _ |- _ => clear H
  end.
  erewrite empty_set_none. rewrite AssocMap.gcombine; auto.
  simplify. rewrite H7. rewrite H8. auto. apply H0. mgen_crush. auto.
Qed.

Definition all_match_empty_size m ar :=
  match_empty_size m (assoc_nonblocking ar) /\ match_empty_size m (assoc_blocking ar).
Hint Unfold all_match_empty_size : mgen.

Definition match_module_to_ram m ram :=
  ram_size ram = mod_stk_len m /\ ram_mem ram = mod_stk m.
Hint Unfold match_module_to_ram : mgen.

Lemma zip_range_forall_le :
  forall A (l: list A) n, Forall (Pos.le n) (map snd (zip_range n l)).
Proof.
  induction l; crush; constructor; [lia|].
  assert (forall n x, n+1 <= x -> n <= x) by lia.
  apply Forall_forall. intros. apply H. generalize dependent x.
  apply Forall_forall. apply IHl.
Qed.

Lemma transf_code_fold_correct:
  forall l m state ram d' c' n,
    fold_right (transf_maps state ram) (mod_datapath m, mod_controllogic m) l = (d', c') ->
    Forall (fun x => x < n) (map fst l) ->
    Forall (Pos.le n) (map snd l) ->
    list_norepet (map fst l) ->
    list_norepet (map snd l) ->
    (forall p i c_s rs1 ar1 rs2 ar2 trs1 tar1 d_s,
        i < n ->
        all_match_empty_size m ar1 ->
        all_match_empty_size m tar1 ->
        match_module_to_ram m ram ->
        (mod_datapath m)!i = Some d_s ->
        (mod_controllogic m)!i = Some c_s ->
        match_reg_assocs p rs1 trs1 ->
        match_arr_assocs ar1 tar1 ->
        max_reg_module m < p ->
        exec_all d_s c_s rs1 ar1 rs2 ar2 ->
        exists d_s' c_s' trs2 tar2,
          d'!i = Some d_s' /\ c'!i = Some c_s'
          /\ exec_all_ram ram d_s' c_s' trs1 tar1 trs2 tar2
          /\ match_reg_assocs p (merge_reg_assocs rs2) (merge_reg_assocs trs2)
          /\ match_arr_assocs (merge_arr_assocs (ram_mem ram) (ram_size ram) ar2)
                              (merge_arr_assocs (ram_mem ram) (ram_size ram) tar2)).
Proof.
  induction l as [| a l IHl]; simplify.
  - match goal with
    | H: (_, _) = (_, _) |- _ => inv H
    end;
    unfold exec_all in *; repeat inv_exists; simplify.
    exploit match_states_same;
    try match goal with
    | H: stmnt_runp _ _ _ ?c _ _, H2: (mod_controllogic _) ! _ = Some ?c |- _ => apply H
    end; eauto; mgen_crush;
    try match goal with
    | H: (mod_controllogic _) ! _ = Some ?c |- _ =>
      apply max_reg_stmnt_le_stmnt_tree in H; unfold max_reg_module in *; lia
    end; intros;
    exploit match_states_same;
    try match goal with
    | H: stmnt_runp _ _ _ ?c _ _, H2: (mod_datapath _) ! _ = Some ?c |- _ => apply H
    end; eauto; mgen_crush;
    try match goal with
    | H: (mod_datapath _) ! _ = Some ?c |- _ =>
      apply max_reg_stmnt_le_stmnt_tree in H; unfold max_reg_module in *; lia
    end; intros;
    repeat match goal with
    | |- exists _, _ => eexists
    end; simplify; eauto;
    unfold exec_all_ram;
    repeat match goal with
    | |- exists _, _ => eexists
    end; simplify; eauto.
    constructor. admit.
  Abort.

Lemma empty_stack_transf : forall m, empty_stack (transf_module m) = empty_stack m.
Proof. unfold empty_stack, transf_module; intros; repeat destruct_match; crush. Qed.

Definition alt_unchanged (d : AssocMap.t stmnt) (c: AssocMap.t stmnt) d' c' i :=
  d ! i = d' ! i /\ c ! i = c' ! i.

Definition alt_store ram d (c : AssocMap.t stmnt) d' c' i :=
  exists e1 e2,
    d' ! i = Some (Vseq (Vnonblock (Vvar (ram_u_en ram)) (Vunop Vnot (Vvar (ram_u_en ram))))
                        (Vseq (Vnonblock (Vvar (ram_wr_en ram)) (Vlit (ZToValue 1)))
                              (Vseq (Vnonblock (Vvar (ram_d_in ram)) e2)
                                    (Vnonblock (Vvar (ram_addr ram)) e1))))
    /\ c' ! i = c ! i
    /\ d ! i = Some (Vnonblock (Vvari (ram_mem ram) e1) e2).

Definition alt_load state ram d (c : AssocMap.t stmnt) d' c' i n :=
  exists ns e1 e2,
    d' ! i = Some (Vseq (Vnonblock (Vvar (ram_u_en ram)) (Vunop Vnot (Vvar (ram_u_en ram))))
                        (Vseq (Vnonblock (Vvar (ram_wr_en ram)) (Vlit (ZToValue 0)))
                              (Vnonblock (Vvar (ram_addr ram)) e2)))
    /\ d' ! n = Some (Vnonblock (Vvar e1) (Vvar (ram_d_out ram)))
    /\ c' ! i = Some (Vnonblock (Vvar state) (Vlit (posToValue n)))
    /\ c' ! n = Some (Vnonblock (Vvar state) ns)
    /\ c ! i = Some (Vnonblock (Vvar state) ns)
    /\ d ! i = Some (Vnonblock (Vvar e1) (Vvari (ram_mem ram) e2))
    /\ e1 < state
    /\ max_reg_expr e2 < state
    /\ max_reg_expr ns < state
    /\ (Z.pos n <= Int.max_unsigned)%Z.

Definition alternatives state ram d c d' c' i n :=
  alt_unchanged d c d' c' i
  \/ alt_store ram d c d' c' i
  \/ alt_load state ram d c d' c' i n.

Lemma transf_alternatives :
  forall ram n d c state i d' c',
    transf_maps state ram (i, n) (d, c) = (d', c') ->
    i <> n ->
    alternatives state ram d c d' c' i n.
Proof.
  intros. unfold transf_maps in *.
  repeat destruct_match; match goal with
                         | H: (_, _) = (_, _) |- _ => inv H
                         end; try solve [left; econstructor; crush]; simplify;
  repeat match goal with
  | H: (_ =? _) = true |- _ => apply Peqb_true_eq in H; subst
  end; unfold alternatives; right;
  match goal with
  | H: context[Vnonblock (Vvari _ _) _] |- _ => left
  | _ => right
  end; repeat econstructor; simplify;
  repeat match goal with
         | |- ( _ # ?s <- _ ) ! ?s = Some _ => apply AssocMap.gss
         | |- ( _ # ?s <- _ ) ! ?r = Some _ => rewrite AssocMap.gso by lia
         | |- _ = None => apply max_index_2; lia
         | H: context[_ <? _] |- _ => apply Pos.ltb_lt in H
         end; auto.
Qed.

Lemma transf_alternatives_neq :
  forall state ram a n' n d'' c'' d' c' i d c,
    transf_maps state ram (a, n) (d, c) = (d', c') ->
    a <> i -> n' <> n -> i <> n' -> a <> n' ->
    i <> n -> a <> n ->
    alternatives state ram d'' c'' d c i n' ->
    alternatives state ram d'' c'' d' c' i n'.
Proof.
  unfold alternatives, alt_unchanged, alt_store, alt_load, transf_maps; intros;
  repeat match goal with H: _ \/ _ |- _ => inv H | H: _ /\ _ |- _ => destruct H end;
  [left | right; left | right; right];
  repeat inv_exists; simplify;
  repeat destruct_match;
  repeat match goal with
         | H: (_, _) = (_, _) |- _ => inv H
         | |- exists _, _ => econstructor
         end; repeat split; repeat rewrite AssocMap.gso by lia; eauto; lia.
Qed.

Lemma transf_alternatives_neq2 :
  forall state ram a n' n d'' c'' d' c' i d c,
    transf_maps state ram (a, n) (d', c') = (d, c) ->
    a <> i -> n' <> n -> i <> n' -> a <> n' -> i <> n ->
    alternatives state ram d c d'' c'' i n' ->
    alternatives state ram d' c' d'' c'' i n'.
Proof.
  unfold alternatives, alt_unchanged, alt_store, alt_load, transf_maps; intros;
  repeat match goal with H: _ \/ _ |- _ => inv H | H: _ /\ _ |- _ => destruct H end;
  [left | right; left | right; right];
  repeat inv_exists; simplify;
  repeat destruct_match;
  repeat match goal with
         | H: (_, _) = (_, _) |- _ => inv H
         | |- exists _, _ => econstructor
         end; repeat split; repeat rewrite AssocMap.gso in * by lia; eauto; lia.
Qed.

Lemma transf_alt_unchanged_neq :
  forall i c'' d'' d c d' c',
    alt_unchanged d' c' d'' c'' i ->
    d' ! i = d ! i ->
    c' ! i = c ! i ->
    alt_unchanged d c d'' c'' i.
Proof. unfold alt_unchanged; simplify; congruence. Qed.

Lemma transf_maps_neq :
  forall state ram d c i n d' c' i' n' va vb vc vd,
    transf_maps state ram (i, n) (d, c) = (d', c') ->
    d ! i' = va -> d ! n' = vb ->
    c ! i' = vc -> c ! n' = vd ->
    i <> i' -> i <> n' -> n <> i' -> n <> n' ->
    d' ! i' = va /\ d' ! n' = vb /\ c' ! i' = vc /\ c' ! n' = vd.
Proof.
  unfold transf_maps; intros; repeat destruct_match; simplify;
  repeat match goal with
         | H: (_, _) = (_, _) |- _ => inv H
         | H: (_ =? _) = true |- _ => apply Peqb_true_eq in H; subst
         | |- context[( _ # ?s <- _ ) ! ?r] => rewrite AssocMap.gso by lia
         end; crush.
Qed.

Lemma alternatives_different_map :
  forall l state ram d c d'' c'' d' c' n i p,
    i <= p -> n > p ->
    Forall (Pos.lt p) (map snd l) ->
    Forall (Pos.ge p) (map fst l) ->
    ~ In n (map snd l) ->
    ~ In i (map fst l) ->
    fold_right (transf_maps state ram) (d, c) l = (d', c') ->
    alternatives state ram d' c' d'' c'' i n ->
    alternatives state ram d c d'' c'' i n.
Proof.
  Opaque transf_maps.
  induction l; intros.
  - crush.
  - simplify; repeat match goal with
                     | H: context[_ :: _] |- _ => inv H
                     | H: transf_maps _ _ _ (fold_right (transf_maps ?s ?r) (?d, ?c) ?l) = (_, _) |- _ =>
                       let X := fresh "X" in
                       remember (fold_right (transf_maps s r) (d, c) l) as X
                     | X: _ * _ |- _ => destruct X
                     | H: (_, _) = _ |- _ => symmetry in H
                     end; simplify.
    remember p0 as i'. symmetry in Heqi'. subst.
    remember p1 as n'. symmetry in Heqn'. subst.
    assert (i <> n') by lia.
    assert (n <> i') by lia.
    assert (n <> n') by lia.
    assert (i <> i') by lia.
    eapply IHl; eauto.
    eapply transf_alternatives_neq2; eauto; try lia.
Qed.

Lemma transf_fold_alternatives :
  forall l state ram d c d' c' i n d_s c_s,
    fold_right (transf_maps state ram) (d, c) l = (d', c') ->
    Pos.max (max_pc c) (max_pc d) < n ->
    Forall (Pos.lt (Pos.max (max_pc c) (max_pc d))) (map snd l) ->
    Forall (Pos.ge (Pos.max (max_pc c) (max_pc d))) (map fst l) ->
    list_norepet (map fst l) ->
    list_norepet (map snd l) ->
    In (i, n) l ->
    d ! i = Some d_s ->
    c ! i = Some c_s ->
    alternatives state ram d c d' c' i n.
Proof.
  Opaque transf_maps.
  induction l; crush; [].
  repeat match goal with
         | H: context[_ :: _] |- _ => inv H
         | H: transf_maps _ _ _ (fold_right (transf_maps ?s ?r) (?d, ?c) ?l) = (_, _) |- _ =>
           let X := fresh "X" in
           remember (fold_right (transf_maps s r) (d, c) l) as X
         | X: _ * _ |- _ => destruct X
         | H: (_, _) = _ |- _ => symmetry in H
         end.
  inv H5. inv H1. simplify.
  eapply alternatives_different_map; eauto.
  simplify; lia. simplify; lia. apply transf_alternatives; auto. lia.
  simplify.
  assert (X: In i (map fst l)). { replace i with (fst (i, n)) by auto. apply in_map; auto. }
  assert (X2: In n (map snd l)). { replace n with (snd (i, n)) by auto. apply in_map; auto. }
  assert (X3: n <> p0). { destruct (Pos.eq_dec n p0); subst; crush. }
  assert (X4: i <> p). { destruct (Pos.eq_dec i p); subst; crush. }
  eapply transf_alternatives_neq; eauto; apply max_index in H7; lia.
  Transparent transf_maps.
Qed.

Lemma zip_range_inv :
  forall A (l: list A) i n,
    In i l ->
    exists n', In (i, n') (zip_range n l) /\ n' >= n.
Proof.
  induction l; crush.
  inv H. econstructor.
  split. left. eauto. lia.
  eapply IHl in H0. inv H0. inv H.
  econstructor. split. right. apply H0. lia.
Qed.

Lemma zip_range_not_in_fst :
  forall A (l: list A) a n, ~ In a l -> ~ In a (map fst (zip_range n l)).
Proof. unfold not; induction l; crush; inv H0; firstorder. Qed.

Lemma zip_range_no_repet_fst :
  forall A (l: list A) a, list_norepet l -> list_norepet (map fst (zip_range a l)).
Proof.
  induction l; simplify; constructor; inv H; firstorder;
  eapply zip_range_not_in_fst; auto.
Qed.

Lemma transf_code_alternatives :
  forall state ram d c d' c' i d_s c_s,
    transf_code state ram d c = (d', c') ->
    d ! i = Some d_s ->
    c ! i = Some c_s ->
    exists n, alternatives state ram d c d' c' i n.
Proof.
  unfold transf_code;
  intros.
  pose proof H0 as X.
  apply PTree.elements_correct in X. assert (In i (map fst (PTree.elements d))).
  { replace i with (fst (i, d_s)) by auto. apply in_map. auto. }
  exploit zip_range_inv. apply H2. intros. inv H3. simplify.
  instantiate (1 := (Pos.max (max_pc c) (max_pc d) + 1)) in H3.
  exists x.
  eapply transf_fold_alternatives;
  eauto using forall_gt, PTree.elements_keys_norepet, max_index. lia.
  assert (Forall (Pos.le (Pos.max (max_pc c) (max_pc d) + 1))
    (map snd (zip_range (Pos.max (max_pc c) (max_pc d) + 1)
                        (map fst (PTree.elements d))))) by apply zip_range_forall_le.
  apply Forall_forall; intros. eapply Forall_forall in H4; eauto. lia.
  rewrite zip_range_fst_idem. apply Forall_forall; intros.
  apply AssocMapExt.elements_iff in H4. inv H4. apply max_index in H6. lia.
  eapply zip_range_no_repet_fst. apply PTree.elements_keys_norepet.
  eapply zip_range_snd_no_repet.
Qed.

Lemma max_reg_stmnt_not_modified :
  forall s f rs ar rs' ar',
    stmnt_runp f rs ar s rs' ar' ->
    forall r,
      max_reg_stmnt s < r ->
      (assoc_blocking rs) ! r = (assoc_blocking rs') ! r.
Proof.
  induction 1; crush;
  try solve [repeat destruct_match; apply IHstmnt_runp; try lia; auto].
  assert (X: (assoc_blocking asr1) ! r = (assoc_blocking asr2) ! r) by (apply IHstmnt_runp2; lia).
  assert (X2: (assoc_blocking asr0) ! r = (assoc_blocking asr1) ! r) by (apply IHstmnt_runp1; lia).
  congruence.
  inv H. simplify. rewrite AssocMap.gso by lia; auto.
Qed.

Lemma max_reg_stmnt_not_modified_nb :
  forall s f rs ar rs' ar',
    stmnt_runp f rs ar s rs' ar' ->
    forall r,
      max_reg_stmnt s < r ->
      (assoc_nonblocking rs) ! r = (assoc_nonblocking rs') ! r.
Proof.
  induction 1; crush;
  try solve [repeat destruct_match; apply IHstmnt_runp; try lia; auto].
  assert (X: (assoc_nonblocking asr1) ! r = (assoc_nonblocking asr2) ! r) by (apply IHstmnt_runp2; lia).
  assert (X2: (assoc_nonblocking asr0) ! r = (assoc_nonblocking asr1) ! r) by (apply IHstmnt_runp1; lia).
  congruence.
  inv H. simplify. rewrite AssocMap.gso by lia; auto.
Qed.

Lemma int_eq_not_changed :
  forall ar ar' r r2 b,
    Int.eq (ar # r) (ar # r2) = b ->
    ar ! r = ar' ! r ->
    ar ! r2 = ar' ! r2 ->
    Int.eq (ar' # r) (ar' # r2) = b.
Proof.
  unfold find_assocmap, AssocMapExt.get_default. intros.
  rewrite <- H0. rewrite <- H1. auto.
Qed.

Lemma merge_find_assocmap :
  forall ran rab x,
    ran ! x = None ->
    (merge_regs ran rab) # x = rab # x.
Proof.
  unfold merge_regs, find_assocmap, AssocMapExt.get_default.
  intros. destruct (rab ! x) eqn:?.
  erewrite AssocMapExt.merge_correct_2; eauto.
  erewrite AssocMapExt.merge_correct_3; eauto.
Qed.

Lemma max_reg_module_controllogic_gt :
  forall m i v p,
    (mod_controllogic m) ! i = Some v ->
    max_reg_module m < p ->
    max_reg_stmnt v < p.
Proof.
  intros. unfold max_reg_module in *.
  apply max_reg_stmnt_le_stmnt_tree in H. lia.
Qed.

Lemma max_reg_module_datapath_gt :
  forall m i v p,
    (mod_datapath m) ! i = Some v ->
    max_reg_module m < p ->
    max_reg_stmnt v < p.
Proof.
  intros. unfold max_reg_module in *.
  apply max_reg_stmnt_le_stmnt_tree in H. lia.
Qed.

Lemma merge_arr_empty2 :
  forall m ar ar',
    match_empty_size m ar' ->
    match_arrs ar ar' ->
    match_arrs ar (merge_arrs (empty_stack m) ar').
Proof.
  inversion 1; subst; inversion 1; subst.
  econstructor; intros. apply H4 in H6; inv_exists. simplify.
  eapply merge_arr_empty'' in H6; eauto.
  apply H5 in H6. pose proof H6. apply H2 in H7.
  unfold merge_arrs. rewrite AssocMap.gcombine; auto. setoid_rewrite H6.
  setoid_rewrite H7. auto.
Qed.
Hint Resolve merge_arr_empty2 : mgen.

Lemma find_assocmap_gso :
  forall ar x y v, x <> y -> (ar # y <- v) # x = ar # x.
Proof.
  unfold find_assocmap, AssocMapExt.get_default; intros; rewrite AssocMap.gso; auto.
Qed.

Lemma find_assocmap_gss :
  forall ar x v, (ar # x <- v) # x = v.
Proof.
  unfold find_assocmap, AssocMapExt.get_default; intros; rewrite AssocMap.gss; auto.
Qed.

Lemma expr_lt_max_module_datapath :
  forall m x,
    max_reg_stmnt x <= max_stmnt_tree (mod_datapath m) ->
    max_reg_stmnt x < max_reg_module m + 1.
Proof. unfold max_reg_module. lia. Qed.

Lemma expr_lt_max_module_controllogic :
  forall m x,
    max_reg_stmnt x <= max_stmnt_tree (mod_controllogic m) ->
    max_reg_stmnt x < max_reg_module m + 1.
Proof. unfold max_reg_module. lia. Qed.

Lemma int_eq_not :
  forall x y, Int.eq x y = true -> Int.eq x (Int.not y) = false.
Proof.
  intros. pose proof (Int.eq_spec x y). rewrite H in H0. subst.
  apply int_eq_not_false.
Qed.

Lemma match_assocmaps_gt2 :
  forall (p s : positive) (ra ra' : assocmap) (v : value),
  p <= s -> match_assocmaps p ra ra' -> match_assocmaps p (ra # s <- v) ra'.
Proof.
  intros; inv H0; constructor; intros.
  destruct (Pos.eq_dec r s); subst. lia.
  rewrite AssocMap.gso by lia. auto.
Qed.

Lemma match_assocmaps_switch_neq :
  forall p ra ra' r v' s v,
    match_assocmaps p ra ((ra' # r <- v') # s <- v) ->
    s <> r ->
    match_assocmaps p ra ((ra' # s <- v) # r <- v').
Proof.
  inversion 1; constructor; simplify.
  destruct (Pos.eq_dec r0 s); destruct (Pos.eq_dec r0 r); subst; try lia.
  rewrite AssocMap.gso by lia. specialize (H0 s). apply H0 in H5.
  rewrite AssocMap.gss in H5. rewrite AssocMap.gss. auto.
  rewrite AssocMap.gss. apply H0 in H5. rewrite AssocMap.gso in H5 by lia.
  rewrite AssocMap.gss in H5. auto.
  repeat rewrite AssocMap.gso by lia.
  apply H0 in H5. repeat rewrite AssocMap.gso in H5 by lia.
  auto.
Qed.

Lemma match_assocmaps_duplicate :
  forall p ra ra' v' s v,
    match_assocmaps p ra (ra' # s <- v) ->
    match_assocmaps p ra ((ra' # s <- v') # s <- v).
Proof.
  inversion 1; constructor; simplify.
  destruct (Pos.eq_dec r s); subst.
  rewrite AssocMap.gss. apply H0 in H4. rewrite AssocMap.gss in H4. auto.
  repeat rewrite AssocMap.gso by lia. apply H0 in H4. rewrite AssocMap.gso in H4 by lia.
  auto.
Qed.

Lemma translation_correct :
  forall m mid asr nasa1 basa1 nasr1 basr1 basr2 nasr2 nasa2 basa2 nasr3 basr3
         nasa3 basa3 asr'0 asa'0 res' st tge pstval sf asa ctrl data f,
    asr ! (mod_reset m) = Some (ZToValue 0) ->
    asr ! (mod_finish m) = Some (ZToValue 0) ->
    asr ! (mod_st m) = Some (posToValue st) ->
    (mod_controllogic m) ! st = Some ctrl ->
    (mod_datapath m) ! st = Some data ->
    stmnt_runp f {| assoc_blocking := asr; assoc_nonblocking := empty_assocmap |}
               {| assoc_blocking := asa; assoc_nonblocking := empty_stack m |} ctrl
               {| assoc_blocking := basr1; assoc_nonblocking := nasr1 |}
               {| assoc_blocking := basa1; assoc_nonblocking := nasa1 |} ->
    basr1 ! (mod_st m) = Some (posToValue st) ->
    stmnt_runp f {| assoc_blocking := basr1; assoc_nonblocking := nasr1 |}
               {| assoc_blocking := basa1; assoc_nonblocking := nasa1 |} data
               {| assoc_blocking := basr2; assoc_nonblocking := nasr2 |}
               {| assoc_blocking := basa2; assoc_nonblocking := nasa2 |} ->
    exec_ram {| assoc_blocking := merge_regs nasr2 basr2; assoc_nonblocking := empty_assocmap |}
             {| assoc_blocking := merge_arrs nasa2 basa2; assoc_nonblocking := empty_stack m |} None
             {| assoc_blocking := basr3; assoc_nonblocking := nasr3 |}
             {| assoc_blocking := basa3; assoc_nonblocking := nasa3 |} ->
    (merge_regs nasr3 basr3) ! (mod_st m) = Some (posToValue pstval) ->
    (Z.pos pstval <= 4294967295)%Z ->
    match_states (State sf mid m st asr asa) (State res' mid (transf_module m) st asr'0 asa'0) ->
    mod_ram m = None ->
    exists R2 : state,
      Smallstep.plus step tge (State res' mid (transf_module m) st asr'0 asa'0) Events.E0 R2 /\
      match_states (State sf mid m pstval (merge_regs nasr3 basr3) (merge_arrs nasa3 basa3)) R2.
Proof.
  Ltac tac0 :=
    repeat match goal with
           | H: match_reg_assocs _ _ _ |- _ => inv H
           | H: match_arr_assocs _ _ |- _ => inv H
           end.
  intros.
  repeat match goal with
  | H: match_states _ _ |- _ => inv H
  | H: context[exec_ram] |- _ => inv H
  | H: mod_ram _ = None |- _ =>
    let H2 := fresh "TRANSF" in learn H as H2; apply transf_module_code in H2
  end.
  eapply transf_code_alternatives in TRANSF; eauto; simplify; unfold alternatives in *.
  repeat match goal with H: _ \/ _ |- _ => inv H end.
  - unfold alt_unchanged in *; simplify.
    assert (MATCH_SIZE1: match_empty_size m nasa1 /\ match_empty_size m basa1).
    { eapply match_arrs_size_stmnt_preserved2; eauto. unfold match_empty_size; eauto with mgen. }
    assert (MATCH_SIZE2: match_empty_size m nasa2 /\ match_empty_size m basa2).
    { eapply match_arrs_size_stmnt_preserved2; mgen_crush. } simplify.
    assert (MATCH_ARR3: match_arrs_size nasa2 basa2) by eauto with mgen.
    exploit match_states_same; try solve [apply H4 | eapply max_stmnt_lt_module; eauto
                                          | econstructor; eauto with mgen];
    intros; repeat inv_exists; simplify; tac0.
    exploit match_states_same; try solve [eapply H6 | eapply max_stmnt_lt_module; eauto
                                          | econstructor; eauto with mgen];
    intros; repeat inv_exists; simplify; tac0.
    assert (MATCH_SIZE1': match_empty_size m ran'0 /\ match_empty_size m rab'0).
    { eapply match_arrs_size_stmnt_preserved2; eauto. unfold match_empty_size; eauto with mgen.
      rewrite empty_stack_transf; eauto with mgen. }
    assert (MATCH_SIZE2': match_empty_size m ran'2 /\ match_empty_size m rab'2).
    { eapply match_arrs_size_stmnt_preserved2; mgen_crush. } simplify.
    assert (MATCH_ARR3': match_arrs_size ran'2 rab'2) by eauto with mgen.
    do 2 econstructor. apply Smallstep.plus_one. econstructor.
    eauto with mgen. eauto with mgen. eauto with mgen.
    replace ((mod_controllogic (transf_module m)) ! st) with ((mod_controllogic m) ! st). eassumption.
    replace ((mod_datapath (transf_module m)) ! st) with ((mod_datapath m) ! st). eassumption.
    eauto. eauto with mgen. eauto.
    rewrite empty_stack_transf. unfold transf_module; repeat destruct_match; try discriminate.
    econstructor. simplify.
    unfold disable_ram in *. unfold transf_module in DISABLE_RAM.
    repeat destruct_match; try discriminate; []. simplify.
    pose proof H17 as R1. apply max_reg_stmnt_not_modified with (r := max_reg_module m + 2) in R1.
    pose proof H17 as R2. eapply max_reg_stmnt_not_modified_nb with (r := max_reg_module m + 2) in R2.
    pose proof H18 as R3. eapply max_reg_stmnt_not_modified with (r := max_reg_module m + 2) in R3.
    pose proof H18 as R4. eapply max_reg_stmnt_not_modified_nb with (r := max_reg_module m + 2) in R4.
    pose proof H17 as R1'. apply max_reg_stmnt_not_modified with (r := max_reg_module m + 6) in R1'.
    pose proof H17 as R2'. eapply max_reg_stmnt_not_modified_nb with (r := max_reg_module m + 6) in R2'.
    pose proof H18 as R3'. eapply max_reg_stmnt_not_modified with (r := max_reg_module m + 6) in R3'.
    pose proof H18 as R4'. eapply max_reg_stmnt_not_modified_nb with (r := max_reg_module m + 6) in R4'.
    simplify.
    pose proof DISABLE_RAM as DISABLE_RAM1.
    eapply int_eq_not_changed with (ar' := rab') in DISABLE_RAM; try congruence.
    eapply int_eq_not_changed with (ar' := rab'1) in DISABLE_RAM; try congruence.
    rewrite AssocMap.gempty in R2. rewrite <- R2 in R4.
    rewrite AssocMap.gempty in R2'. rewrite <- R2' in R4'.
    eapply int_eq_not_changed in DISABLE_RAM; auto. repeat (rewrite merge_find_assocmap; try congruence).
    eapply max_reg_module_datapath_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_datapath_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_controllogic_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_controllogic_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_datapath_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_datapath_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_controllogic_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_controllogic_gt; eauto; remember (max_reg_module m); lia.
    auto. auto. eauto with mgen. auto.
    econstructor; mgen_crush. apply merge_arr_empty; mgen_crush.
    unfold disable_ram in *. unfold transf_module in DISABLE_RAM.
    repeat destruct_match; crush. unfold transf_module in Heqo; repeat destruct_match; crush.
    pose proof H17 as R1. apply max_reg_stmnt_not_modified with (r := max_reg_module m + 2) in R1.
    pose proof H17 as R2. eapply max_reg_stmnt_not_modified_nb with (r := max_reg_module m + 2) in R2.
    pose proof H18 as R3. eapply max_reg_stmnt_not_modified with (r := max_reg_module m + 2) in R3.
    pose proof H18 as R4. eapply max_reg_stmnt_not_modified_nb with (r := max_reg_module m + 2) in R4.
    pose proof H17 as R1'. apply max_reg_stmnt_not_modified with (r := max_reg_module m + 6) in R1'.
    pose proof H17 as R2'. eapply max_reg_stmnt_not_modified_nb with (r := max_reg_module m + 6) in R2'.
    pose proof H18 as R3'. eapply max_reg_stmnt_not_modified with (r := max_reg_module m + 6) in R3'.
    pose proof H18 as R4'. eapply max_reg_stmnt_not_modified_nb with (r := max_reg_module m + 6) in R4'.
    simplify.
    pose proof DISABLE_RAM as DISABLE_RAM1.
    eapply int_eq_not_changed with (ar' := rab') in DISABLE_RAM; try congruence.
    eapply int_eq_not_changed with (ar' := rab'1) in DISABLE_RAM; try congruence.
    rewrite AssocMap.gempty in R2. rewrite <- R2 in R4.
    rewrite AssocMap.gempty in R2'. rewrite <- R2' in R4'.
    eapply int_eq_not_changed in DISABLE_RAM; auto. repeat (rewrite merge_find_assocmap; try congruence).
    eapply max_reg_module_datapath_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_datapath_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_controllogic_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_controllogic_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_datapath_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_datapath_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_controllogic_gt; eauto; remember (max_reg_module m); lia.
    eapply max_reg_module_controllogic_gt; eauto; remember (max_reg_module m); lia.
  - admit.
  (* - unfold alt_store in *; simplify. inv H6. inv H19. inv H19. simplify. *)
  (*   exploit match_states_same; try solve [eapply H4 | eapply max_stmnt_lt_module; eauto *)
  (*                                         | econstructor; eauto with mgen]; *)
  (*   intros; repeat inv_exists; simplify; tac0. *)
  (*   do 2 econstructor. apply Smallstep.plus_one. econstructor. solve [eauto with mgen]. solve [eauto with mgen]. *)
  (*   solve [eauto with mgen]. *)
  (*   rewrite H7. eassumption. eassumption. eassumption. solve [eauto with mgen]. *)
  (*   econstructor. econstructor. econstructor. econstructor. econstructor. *)
  (*   auto. auto. auto. econstructor. econstructor. econstructor. *)
  (*   econstructor. econstructor. econstructor. econstructor. *)
  (*   eapply expr_runp_matches2. eassumption. 2: { eassumption. } *)
  (*   pose proof H3 as X. apply max_reg_stmnt_le_stmnt_tree in X. *)
  (*   apply expr_lt_max_module_datapath in X; simplify; remember (max_reg_module m); lia. *)
  (*   auto. *)
  (*   econstructor. econstructor. eapply expr_runp_matches2; eauto. *)
  (*   pose proof H3 as X. apply max_reg_stmnt_le_stmnt_tree in X. *)
  (*   apply expr_lt_max_module_datapath in X. *)
  (*   remember (max_reg_module m); simplify; lia. *)

  (*   rewrite empty_stack_transf. *)
  (*   unfold transf_module; repeat destruct_match; try discriminate; simplify; []. *)
  (*   eapply exec_ram_Some_write. *)
  (*   3: { *)
  (*     simplify. unfold merge_regs. repeat rewrite AssocMapExt.merge_add_assoc. *)
  (*     repeat rewrite find_assocmap_gso by lia. *)
  (*     pose proof H12 as X. *)
  (*     eapply max_reg_stmnt_not_modified_nb with (r := (max_reg_module m + 2)) in X. *)
  (*     rewrite AssocMap.gempty in X. *)
  (*     apply merge_find_assocmap. auto. *)
  (*     apply max_reg_stmnt_le_stmnt_tree in H2. *)
  (*     apply expr_lt_max_module_controllogic in H2. lia. *)
  (*   } *)
  (*   3: { *)
  (*     simplify. unfold merge_regs. repeat rewrite AssocMapExt.merge_add_assoc. *)
  (*     repeat rewrite AssocMap.gso by lia. apply AssocMap.gss. *)
  (*   } *)
  (*   { unfold disable_ram in *. unfold transf_module in DISABLE_RAM; *)
  (*                              repeat destruct_match; try discriminate. *)
  (*     simplify. *)
  (*     pose proof H12 as X2. *)
  (*     pose proof H12 as X4. *)
  (*     apply max_reg_stmnt_not_modified with (r := max_reg_module m + 2) in X2. *)
  (*     apply max_reg_stmnt_not_modified with (r := max_reg_module m + 6) in X4. *)
  (*     assert (forall ar ar' x, ar ! x = ar' ! x -> ar # x = ar' # x). *)
  (*     { intros. unfold find_assocmap, AssocMapExt.get_default. rewrite H6. auto. } *)
  (*     apply H6 in X2. apply H6 in X4. simplify. rewrite <- X2. rewrite <- X4. *)
  (*     apply int_eq_not. auto. *)
  (*     apply max_reg_stmnt_le_stmnt_tree in H2. *)
  (*     apply expr_lt_max_module_controllogic in H2. simplify. remember (max_reg_module m). lia. *)
  (*     apply max_reg_stmnt_le_stmnt_tree in H2. *)
  (*     apply expr_lt_max_module_controllogic in H2. simplify. remember (max_reg_module m). lia. *)
  (*   } *)
  (*   2: { *)
  (*     simplify. unfold merge_regs. repeat rewrite AssocMapExt.merge_add_assoc. *)
  (*     repeat rewrite AssocMap.gso by lia. apply AssocMap.gss. *)
  (*   } *)
  (*   solve [auto]. *)
  (*   simplify. unfold merge_regs. repeat rewrite AssocMapExt.merge_add_assoc. *)
  (*   repeat rewrite AssocMap.gso by lia. apply AssocMap.gss. *)
  (*   simplify. unfold merge_regs. repeat rewrite AssocMapExt.merge_add_assoc. *)
  (*   repeat rewrite AssocMap.gso by lia. apply AssocMap.gss. *)
  (*   simplify. auto. *)
  (*   simplify. auto. *)
  (*   unfold merge_regs. repeat rewrite AssocMapExt.merge_add_assoc. *)
  (*   unfold_merge. *)
  (*   assert (mod_st (transf_module m) < max_reg_module m + 1). *)
  (*   { unfold max_reg_module, transf_module; repeat destruct_match; try discriminate; simplify; lia. } *)
  (*   remember (max_reg_module m). *)
  (*   repeat rewrite AssocMap.gso by lia. *)
  (*   unfold transf_module; repeat destruct_match; try discriminate; simplify. *)
  (*   replace (AssocMapExt.merge value ran' rab') with (merge_regs ran' rab'); *)
  (*   [|unfold merge_regs; auto]. *)
  (*   pose proof H19 as X. *)
  (*   eapply match_assocmaps_merge in X. *)
  (*   2: { apply H21. } *)
  (*   inv X. rewrite <- H14. eassumption. unfold transf_module in H6; repeat destruct_match; *)
  (*                                       try discriminate; simplify. *)
  (*   lia. auto. *)

  (*   econstructor. unfold merge_regs. repeat rewrite AssocMapExt.merge_add_assoc. *)
  (*   rewrite AssocMapExt.merge_base_1. *)
  (*   remember (max_reg_module m). *)
  (*   repeat (apply match_assocmaps_gt; [lia|]). *)
  (*   solve [eauto with mgen]. *)

  (*   apply merge_arr_empty. apply match_empty_size_merge. *)
  (*   apply match_empty_assocmap_set. *)
  (*   eapply match_arrs_size_stmnt_preserved in H4; mgen_crush. *)
  (*   eapply match_arrs_size_stmnt_preserved in H4; mgen_crush. *)
  (*   apply match_arrs_merge_set2; auto. *)
  (*   eapply match_arrs_size_stmnt_preserved in H4; mgen_crush. *)
  (*   eapply match_arrs_size_stmnt_preserved in H4; mgen_crush. *)
  (*   eapply match_arrs_size_stmnt_preserved in H12; mgen_crush. *)
  (*   rewrite empty_stack_transf. mgen_crush. *)
  (*   eapply match_arrs_size_stmnt_preserved in H12; mgen_crush. *)
  (*   rewrite empty_stack_transf. mgen_crush. *)
  (*   auto. *)
  (*   apply merge_arr_empty_match. *)
  (*   apply match_empty_size_merge. apply match_empty_assocmap_set. *)
  (*   eapply match_arrs_size_stmnt_preserved in H4; mgen_crush. *)
  (*   eapply match_arrs_size_stmnt_preserved in H4; mgen_crush. *)
  (*   apply match_empty_size_merge. apply match_empty_assocmap_set. *)
  (*   mgen_crush. eapply match_arrs_size_stmnt_preserved in H12; mgen_crush. *)
  (*   rewrite empty_stack_transf; mgen_crush. *)
  (*   unfold disable_ram. unfold transf_module; repeat destruct_match; try discriminate; simplify. *)
  (*   unfold merge_regs. unfold_merge. *)
  (*   remember (max_reg_module m). *)
  (*   rewrite find_assocmap_gss. *)
  (*   repeat rewrite find_assocmap_gso by lia. *)
  (*   rewrite find_assocmap_gss. apply Int.eq_true. *)
  - admit.
  (* - unfold alt_load in *; simplify. inv H6. *)
  (*   2: { match goal with H: context[location_is] |- _ => inv H end. } *)
  (*   match goal with H: context[location_is] |- _ => inv H end. *)
  (*   inv H30. simplify. inv H4. *)
  (*   2: { match goal with H: context[location_is] |- _ => inv H end. } *)
  (*   inv H27. simplify. *)
  (*   do 2 econstructor. eapply Smallstep.plus_two. *)
  (*   econstructor. mgen_crush. mgen_crush. mgen_crush. eassumption. *)
  (*   eassumption. econstructor. simplify. econstructor. econstructor. *)
  (*   solve [eauto with mgen]. econstructor. econstructor. econstructor. *)
  (*   econstructor. econstructor. auto. auto. auto. *)
  (*   econstructor. econstructor. econstructor. *)
  (*   econstructor. econstructor. econstructor. eapply expr_runp_matches2; auto. eassumption. *)
  (*   2: { eassumption. } *)
  (*   pose proof H3 as X. apply max_reg_stmnt_le_stmnt_tree in X. *)
  (*   apply expr_lt_max_module_datapath in X. simplify. remember (max_reg_module m); lia. *)
  (*   auto. *)

  (*   simplify. rewrite empty_stack_transf. unfold transf_module; repeat destruct_match; crush. *)
  (*   eapply exec_ram_Some_read; simplify. *)
  (*   2: { *)
  (*     unfold merge_regs. unfold_merge. repeat rewrite find_assocmap_gso; try (remember (max_reg_module m); lia). *)
  (*     auto. unfold max_reg_module. lia. *)
  (*   } *)
  (*   2: { *)
  (*     unfold merge_regs. unfold_merge. rewrite AssocMap.gso by lia. rewrite AssocMap.gso by lia. *)
  (*     rewrite AssocMap.gss. auto. *)
  (*   } *)
  (*   { unfold disable_ram, transf_module in DISABLE_RAM; *)
  (*     repeat destruct_match; try discriminate. simplify. apply int_eq_not. auto. } *)
  (*   { unfold merge_regs; unfold_merge. repeat rewrite AssocMap.gso by lia. apply AssocMap.gss. } *)
  (*   { unfold merge_regs; unfold_merge. apply AssocMap.gss. } *)
  (*   { eapply match_arrs_read. eassumption. mgen_crush. } *)
  (*   { crush. } *)
  (*   { crush. } *)
  (*   { unfold merge_regs. unfold_merge. *)
  (*     unfold transf_module; repeat destruct_match; try discriminate; simplify. *)
  (*     assert (mod_st m < max_reg_module m + 1). *)
  (*     { unfold max_reg_module; lia. } *)
  (*     remember (max_reg_module m). repeat rewrite AssocMap.gso by lia. *)
  (*     apply AssocMap.gss. *)
  (*   } *)
  (*   { auto. } *)

  (*   { econstructor. *)
  (*     { unfold merge_regs. unfold_merge. *)
  (*       assert (mod_reset m < max_reg_module m + 1). *)
  (*       { unfold max_reg_module; lia. } *)
  (*       unfold transf_module; repeat destruct_match; try discriminate; simplify. *)
  (*       assert (mod_st m < mod_reset m). *)
  (*       { pose proof (mod_ordering_wf m); unfold module_ordering in *. simplify. *)
  (*         repeat match goal with *)
  (*                | H: context[_ <? _] |- _ => apply Pos.ltb_lt in H *)
  (*                end; lia. *)
  (*       } *)
  (*       repeat rewrite AssocMap.gso by lia. *)
  (*       inv ASSOC. rewrite <- H19. auto. lia. *)
  (*     } *)
  (*     { unfold merge_regs. unfold_merge. *)
  (*       assert (mod_finish m < max_reg_module m + 1). *)
  (*       { unfold max_reg_module; lia. } *)
  (*       unfold transf_module; repeat destruct_match; try discriminate; simplify. *)
  (*       assert (mod_st m < mod_finish m). *)
  (*       { pose proof (mod_ordering_wf m). unfold module_ordering in *. simplify. *)
  (*         repeat match goal with *)
  (*                | H: context[_ <? _] |- _ => apply Pos.ltb_lt in H *)
  (*                end; lia. *)
  (*       } *)
  (*       repeat rewrite AssocMap.gso by lia. *)
  (*       inv ASSOC. rewrite <- H19. auto. lia. *)
  (*     } *)
  (*     { unfold merge_regs. unfold_merge. *)
  (*       assert (mod_st m < max_reg_module m + 1). *)
  (*       { unfold max_reg_module; lia. } *)
  (*       unfold transf_module; repeat destruct_match; try discriminate; simplify. *)
  (*       repeat rewrite AssocMap.gso by lia. apply AssocMap.gss. *)
  (*     } *)
  (*     { eassumption. } *)
  (*     { eassumption. } *)
  (*     { econstructor. econstructor. simplify. unfold merge_regs. unfold_merge. *)
  (*       eapply expr_runp_matches. eassumption. *)
  (*       assert (max_reg_expr x0 + 1 <= max_reg_module m + 1). *)
  (*       { pose proof H2 as X. apply max_reg_stmnt_le_stmnt_tree in X. *)
  (*         apply expr_lt_max_module_controllogic in X. simplify. remember (max_reg_module m). lia. } *)
  (*       assert (max_reg_expr x0 + 1 <= mod_st m). *)
  (*       { unfold module_ordering in *. simplify. *)
  (*         repeat match goal with *)
  (*                | H: context[_ <? _] |- _ => apply Pos.ltb_lt in H *)
  (*                end. *)
  (*         pose proof H2 as X. apply max_reg_stmnt_le_stmnt_tree in X. *)
  (*         simplify. lia. *)
  (*       } *)
  (*       remember (max_reg_module m). *)
  (*       apply match_assocmaps_gt; [lia|]. *)
  (*       apply match_assocmaps_gt; [lia|]. *)
  (*       apply match_assocmaps_gt; [lia|]. *)
  (*       apply match_assocmaps_gt; [lia|]. *)
  (*       apply match_assocmaps_gt; [lia|]. *)
  (*       apply match_assocmaps_gt; [lia|]. *)
  (*       simplify. *)
  (*       eapply match_assocmaps_ge. eauto. lia. *)
  (*       mgen_crush. *)
  (*     } *)
  (*     { simplify. unfold merge_regs. unfold_merge. *)
  (*       unfold transf_module; repeat destruct_match; try discriminate; simplify. *)
  (*       assert (mod_st m < max_reg_module m + 1). *)
  (*       { unfold max_reg_module; lia. } *)
  (*       remember (max_reg_module m). *)
  (*       repeat rewrite AssocMap.gso by lia. apply AssocMap.gss. *)
  (*     } *)
  (*     { *)
  (*       simplify. econstructor. econstructor. econstructor. simplify. *)
  (*       unfold merge_regs; unfold_merge. *)
  (*       repeat rewrite find_assocmap_gso by lia. apply find_assocmap_gss. *)
  (*     } *)
  (*     { simplify. rewrite empty_stack_transf. *)
  (*       unfold transf_module; repeat destruct_match; try discriminate; simplify. *)
  (*       econstructor. simplify. *)
  (*       unfold merge_regs; unfold_merge. simplify. *)
  (*       assert (r < max_reg_module m + 1). *)
  (*       { pose proof H3 as X. eapply max_reg_module_datapath_gt with (p := max_reg_module m + 1) in X. *)
  (*         unfold max_reg_stmnt in X. simplify. *)
  (*         lia. lia. } *)
  (*       assert (mod_st m < max_reg_module m + 1). *)
  (*       { unfold max_reg_module; lia. } *)
  (*       repeat rewrite find_assocmap_gso by lia. rewrite find_assocmap_gss. *)
  (*       repeat rewrite find_assocmap_gso by lia. rewrite find_assocmap_gss. *)
  (*       apply Int.eq_true. *)
  (*     } *)
  (*     { crush. } *)
  (*     { crush. } *)
  (*     { unfold merge_regs. unfold_merge. simplify. *)
  (*       assert (r < mod_st m). *)
  (*       { unfold module_ordering in *. simplify. *)
  (*         repeat match goal with *)
  (*                | H: context[_ <? _] |- _ => apply Pos.ltb_lt in H *)
  (*                end. *)
  (*         pose proof H3 as X. apply max_reg_stmnt_le_stmnt_tree in X. *)
  (*         simplify. lia. *)
  (*       } *)
  (*       unfold merge_regs in H8. repeat rewrite AssocMapExt.merge_add_assoc in H8. *)
  (*       simplify. rewrite AssocMap.gso in H8 by lia. rewrite AssocMap.gss in H8. *)
  (*       unfold transf_module; repeat destruct_match; try discriminate; simplify. *)
  (*       repeat rewrite AssocMap.gso by lia. *)
  (*       apply AssocMap.gss. } *)
  (*     { eassumption. } *)
  (*   } *)
  (*   { eauto. } *)
  (*   { econstructor. *)
  (*     { unfold merge_regs. unfold_merge. simplify. *)
  (*       apply match_assocmaps_gss. *)
  (*       unfold merge_regs in H8. repeat rewrite AssocMapExt.merge_add_assoc in H8. *)
  (*       rewrite AssocMap.gso in H8. rewrite AssocMap.gss in H8. inv H8. *)
  (*       remember (max_reg_module m). *)
  (*       assert (mod_st m < max_reg_module m + 1). *)
  (*       { unfold max_reg_module; lia. } *)
  (*       apply match_assocmaps_switch_neq; [|lia]. *)
  (*       apply match_assocmaps_gt; [lia|]. *)
  (*       apply match_assocmaps_switch_neq; [|lia]. *)
  (*       apply match_assocmaps_gt; [lia|]. *)
  (*       apply match_assocmaps_switch_neq; [|lia]. *)
  (*       apply match_assocmaps_gt; [lia|]. *)
  (*       apply match_assocmaps_switch_neq; [|lia]. *)
  (*       apply match_assocmaps_gt; [lia|]. *)
  (*       apply match_assocmaps_switch_neq; [|lia]. *)
  (*       apply match_assocmaps_gt; [lia|]. *)
  (*       apply match_assocmaps_duplicate. *)
  (*       apply match_assocmaps_gss. auto. *)
  (*       assert (r < mod_st m). *)
  (*       { unfold module_ordering in *. simplify. *)
  (*         repeat match goal with *)
  (*                | H: context[_ <? _] |- _ => apply Pos.ltb_lt in H *)
  (*                end. *)
  (*         pose proof H3 as X. apply max_reg_stmnt_le_stmnt_tree in X. *)
  (*         simplify. lia. *)
  (*       } lia. *)
  (*     } *)
  (*     { *)
  (*       apply merge_arr_empty. mgen_crush. *)
  (*       apply merge_arr_empty2. mgen_crush. *)
  (*       apply merge_arr_empty2. mgen_crush. *)
  (*       apply merge_arr_empty2. mgen_crush. *)
  (*       mgen_crush. *)
  (*     } *)
  (*     { auto. } *)
  (*     { mgen_crush. } *)
  (*     { mgen_crush. } *)
  (*     { unfold disable_ram. *)
  (*       unfold transf_module; repeat destruct_match; try discriminate; simplify. *)
  (*       unfold merge_regs. unfold_merge. simplify. *)
  (*       assert (mod_st m < max_reg_module m + 1). *)
  (*       { unfold max_reg_module; lia. } *)
  (*       assert (r < max_reg_module m + 1). *)
  (*       { pose proof H3 as X. eapply max_reg_module_datapath_gt with (p := max_reg_module m + 1) in X. *)
  (*         unfold max_reg_stmnt in X. simplify. *)
  (*         lia. lia. } *)
  (*       repeat rewrite find_assocmap_gso by lia. *)
  (*       rewrite find_assocmap_gss. *)
  (*       repeat rewrite find_assocmap_gso by lia. *)
  (*       rewrite find_assocmap_gss. apply Int.eq_true. *)
  (*     } *)
  (*   } *)
Admitted.

Lemma exec_ram_resets_en :
  forall rs ar rs' ar' r,
    exec_ram rs ar (Some r) rs' ar' ->
    assoc_nonblocking rs = empty_assocmap ->
    Int.eq ((assoc_blocking (merge_reg_assocs rs')) # (ram_en r, 32))
           ((assoc_blocking (merge_reg_assocs rs')) # (ram_u_en r, 32)) = true.
Proof.
  inversion 1; intros; subst; unfold merge_reg_assocs; simplify.
  - rewrite H6. mgen_crush.
  - unfold merge_regs. rewrite H12. unfold_merge.
    unfold find_assocmap, AssocMapExt.get_default in *.
    rewrite AssocMap.gss; auto. rewrite AssocMap.gso; auto. setoid_rewrite H4. apply Int.eq_true.
    pose proof (ram_ordering_wf r); unfold ram_ordering in *; lia.
  - unfold merge_regs. rewrite H11. unfold_merge.
    unfold find_assocmap, AssocMapExt.get_default in *.
    rewrite AssocMap.gss; auto.
    repeat rewrite AssocMap.gso by (pose proof (ram_ordering_wf r); unfold ram_ordering in *; lia).
    setoid_rewrite H3. apply Int.eq_true.
Qed.

Lemma disable_ram_set_gso :
  forall rs r i v,
    disable_ram (Some r) rs ->
    i <> (ram_en r) -> i <> (ram_u_en r) ->
    disable_ram (Some r) (rs # i <- v).
Proof.
  unfold disable_ram, find_assocmap, AssocMapExt.get_default; intros;
  repeat rewrite AssocMap.gso by lia; auto.
Qed.
Hint Resolve disable_ram_set_gso : mgen.

Lemma disable_ram_None rs : disable_ram None rs.
Proof. unfold disable_ram; auto. Qed.
Hint Resolve disable_ram_None : mgen.

Lemma init_regs_equal_empty l st :
  Forall (Pos.gt st) l -> (init_regs nil l) ! st = None.
Proof. induction l; simplify; apply AssocMap.gempty. Qed.

Lemma forall_lt_num :
  forall l p p', Forall (Pos.gt p) l -> p < p' -> Forall (Pos.gt p') l.
Proof. induction l; crush; inv H; constructor; [lia | eauto]. Qed.

Section CORRECTNESS.

  Context (prog tprog: program).
  Context (TRANSL: match_prog prog tprog).

  Let ge : genv := Genv.globalenv prog.
  Let tge : genv := Genv.globalenv tprog.

  Lemma symbols_preserved:
    forall (s: AST.ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
  Proof using TRANSL. intros. eapply (Genv.find_symbol_match TRANSL). Qed.
  Hint Resolve symbols_preserved : mgen.

  Lemma function_ptr_translated:
    forall (b: Values.block) (f: fundef),
      Genv.find_funct_ptr ge b = Some f ->
      exists tf,
        Genv.find_funct_ptr tge b = Some tf /\ transf_fundef f = tf.
  Proof using TRANSL.
    intros. exploit (Genv.find_funct_ptr_match TRANSL); eauto.
    intros (cu & tf & P & Q & R); exists tf; auto.
  Qed.
  Hint Resolve function_ptr_translated : mgen.

  Lemma functions_translated:
    forall (v: Values.val) (f: fundef),
      Genv.find_funct ge v = Some f ->
      exists tf,
        Genv.find_funct tge v = Some tf /\ transf_fundef f = tf.
  Proof using TRANSL.
    intros. exploit (Genv.find_funct_match TRANSL); eauto.
    intros (cu & tf & P & Q & R); exists tf; auto.
  Qed.
  Hint Resolve functions_translated : mgen.

  Lemma senv_preserved:
    Senv.equiv (Genv.to_senv ge) (Genv.to_senv tge).
  Proof (Genv.senv_transf TRANSL).
  Hint Resolve senv_preserved : mgen.

  Theorem transf_step_correct:
    forall (S1 : state) t S2,
      step ge S1 t S2 ->
      forall R1,
        match_states S1 R1 ->
        exists R2, Smallstep.plus step tge R1 t R2 /\ match_states S2 R2.
  Proof.
    Ltac transf_step_correct_assum :=
      match goal with
      | H: match_states _ _ |- _ => let H2 := fresh "MATCH" in learn H as H2; inv H2
      | H: mod_ram ?m = Some ?r |- _ =>
        let H2 := fresh "RAM" in learn H;
          pose proof (transf_module_code_ram m r H) as H2
      | H: mod_ram ?m = None |- _ =>
        let H2 := fresh "RAM" in learn H;
          pose proof (transf_module_code m H) as H2
      end.
    Ltac transf_step_correct_tac :=
      match goal with
      | |- Smallstep.plus _ _ _ _ _ => apply Smallstep.plus_one
      end.
    (** FIXME: Breaks because of initcall constructor of step *)
    admit.
    (* induction 1; destruct (mod_ram m) eqn:RAM; simplify; repeat transf_step_correct_assum; *)
    (*   repeat transf_step_correct_tac. *)
    (* - assert (MATCH_SIZE1: match_empty_size m nasa1 /\ match_empty_size m basa1). *)
    (*   { eapply match_arrs_size_stmnt_preserved2; eauto. unfold match_empty_size; mgen_crush. } *)
    (*   simplify. *)
    (*   assert (MATCH_SIZE2: match_empty_size m nasa2 /\ match_empty_size m basa2). *)
    (*   { eapply match_arrs_size_stmnt_preserved2; mgen_crush. } simplify. *)
    (*   assert (MATCH_SIZE2: match_empty_size m nasa3 /\ match_empty_size m basa3). *)
    (*   { eapply match_arrs_size_ram_preserved2; mgen_crush. } simplify. *)
    (*   assert (MATCH_ARR3: match_arrs_size nasa3 basa3) by mgen_crush. *)
    (*   exploit match_states_same. apply H4. eauto with mgen. *)
    (*   econstructor; eauto. econstructor; eauto. econstructor; eauto. econstructor; eauto. *)
    (*   intros. repeat inv_exists. simplify. inv H18. inv H21. *)
    (*   exploit match_states_same. apply H6. eauto with mgen. *)
    (*   econstructor; eauto. econstructor; eauto. intros. repeat inv_exists. simplify. inv H18. inv H23. *)
    (*   exploit exec_ram_same; eauto. eauto with mgen. *)
    (*   econstructor. eapply match_assocmaps_merge; eauto. eauto with mgen. *)
    (*   econstructor. *)
    (*   apply match_arrs_merge; eauto with mgen. eauto with mgen. *)
    (*   intros. repeat inv_exists. simplify. inv H18. inv H28. *)
    (*   econstructor; simplify. apply Smallstep.plus_one. econstructor. *)
    (*   mgen_crush. mgen_crush. mgen_crush. rewrite RAM0; eassumption. rewrite RAM0; eassumption. *)
    (*   rewrite RAM0. eassumption. mgen_crush. eassumption. rewrite RAM0 in H21. rewrite RAM0. *)
    (*   rewrite RAM. eassumption. eauto. eauto. eauto with mgen. eauto. *)
    (*   econstructor. mgen_crush. apply match_arrs_merge; mgen_crush. eauto. *)
    (*   apply match_empty_size_merge; mgen_crush; mgen_crush. *)
    (*   assert (MATCH_SIZE1': match_empty_size m ran'0 /\ match_empty_size m rab'0). *)
    (*   { eapply match_arrs_size_stmnt_preserved2; eauto. unfold match_empty_size; mgen_crush. } *)
    (*   simplify. *)
    (*   assert (MATCH_SIZE2': match_empty_size m ran'2 /\ match_empty_size m rab'2). *)
    (*   { eapply match_arrs_size_stmnt_preserved2; mgen_crush. } simplify. *)
    (*   assert (MATCH_SIZE2': match_empty_size m ran'4 /\ match_empty_size m rab'4). *)
    (*   { eapply match_arrs_size_ram_preserved2; mgen_crush. *)
    (*     unfold match_empty_size, transf_module, empty_stack. *)
    (*     repeat destruct_match; crush. mgen_crush.  } *)
    (*   apply match_empty_size_merge; mgen_crush; mgen_crush. *)
    (*   unfold disable_ram. *)
    (*   unfold transf_module; repeat destruct_match; crush. *)
    (*   apply exec_ram_resets_en in H21. unfold merge_reg_assocs in H21. *)
    (*   simplify. auto. auto. *)
    (* - eapply translation_correct; eauto. *)
    (* - do 2 econstructor. apply Smallstep.plus_one. *)
    (*   apply step_finish; mgen_crush. constructor; eauto. *)
    (* - do 2 econstructor. apply Smallstep.plus_one. *)
    (*   apply step_finish; mgen_crush. econstructor; eauto. *)
    (* - econstructor. econstructor. apply Smallstep.plus_one. econstructor. *)
    (*   replace (mod_entrypoint (transf_module m)) with (mod_entrypoint m) by (rewrite RAM0; auto). *)
    (*   replace (mod_reset (transf_module m)) with (mod_reset m) by (rewrite RAM0; auto). *)
    (*   replace (mod_finish (transf_module m)) with (mod_finish m) by (rewrite RAM0; auto). *)
    (*   replace (empty_stack (transf_module m)) with (empty_stack m) by (rewrite RAM0; auto). *)
    (*   replace (mod_params (transf_module m)) with (mod_params m) by (rewrite RAM0; auto). *)
    (*   replace (mod_st (transf_module m)) with (mod_st m) by (rewrite RAM0; auto). *)
    (*   repeat econstructor; mgen_crush. *)
    (*   unfold disable_ram. unfold transf_module; repeat destruct_match; crush. *)
    (*   pose proof (mod_ordering_wf m); unfold module_ordering in *. *)
    (*   pose proof (mod_params_wf m). *)
    (*   pose proof (mod_ram_wf m r Heqo0). *)
    (*   pose proof (ram_ordering r). *)
    (*   simplify. *)
    (*   repeat rewrite find_assocmap_gso by lia. *)
    (*   assert ((init_regs nil (mod_params m)) ! (ram_en r) = None). *)
    (*   { apply init_regs_equal_empty. eapply forall_lt_num. eassumption. lia. } *)
    (*   assert ((init_regs nil (mod_params m)) ! (ram_u_en r) = None). *)
    (*   { apply init_regs_equal_empty. eapply forall_lt_num. eassumption. lia. } *)
    (*   unfold find_assocmap, AssocMapExt.get_default. rewrite H7. rewrite H14. auto. *)
    (* - econstructor. econstructor. apply Smallstep.plus_one. econstructor. *)
    (*   replace (mod_entrypoint (transf_module m)) with (mod_entrypoint m). *)
    (*   replace (mod_reset (transf_module m)) with (mod_reset m). *)
    (*   replace (mod_finish (transf_module m)) with (mod_finish m). *)
    (*   replace (empty_stack (transf_module m)) with (empty_stack m). *)
    (*   replace (mod_params (transf_module m)) with (mod_params m). *)
    (*   replace (mod_st (transf_module m)) with (mod_st m). *)
    (*   all: try solve [unfold transf_module; repeat destruct_match; mgen_crush]. *)
    (*   repeat econstructor; mgen_crush. *)
    (*   unfold disable_ram. unfold transf_module; repeat destruct_match; crush. *)
    (*   unfold max_reg_module. *)
    (*   repeat rewrite find_assocmap_gso by lia. *)
    (*   assert (max_reg_module m + 1 > max_list (mod_params m)). *)
    (*   { unfold max_reg_module. lia. } *)
    (*   apply max_list_correct in H0. *)
    (*   unfold find_assocmap, AssocMapExt.get_default. *)
    (*   rewrite init_regs_equal_empty. rewrite init_regs_equal_empty. auto. *)
    (*   eapply forall_lt_num. eassumption. unfold max_reg_module. lia. *)
    (*   eapply forall_lt_num. eassumption. unfold max_reg_module. lia. *)
    (* - inv STACKS. destruct b1; subst. *)
    (*   econstructor. econstructor. apply Smallstep.plus_one. *)
    (*   econstructor. eauto. *)
    (*   clear Learn. inv H0. inv H3. inv STACKS. inv H3. constructor. *)
    (*   constructor. intros. *)
    (*   rewrite RAM0. *)
    (*   destruct (Pos.eq_dec r res); subst. *)
    (*   rewrite AssocMap.gss. *)
    (*   rewrite AssocMap.gss. auto. *)
    (*   rewrite AssocMap.gso; auto. *)
    (*   symmetry. rewrite AssocMap.gso; auto. *)
    (*   destruct (Pos.eq_dec (mod_st m) r); subst. *)
    (*   rewrite AssocMap.gss. *)
    (*   rewrite AssocMap.gss. auto. *)
    (*   rewrite AssocMap.gso; auto. *)
    (*   symmetry. rewrite AssocMap.gso; auto. inv MATCH_ASSOC0. apply H1. auto. *)
    (*   auto. auto. auto. auto. *)
    (*   rewrite RAM0. rewrite RAM. rewrite RAM0 in DISABLE_RAM. rewrite RAM in DISABLE_RAM. *)
    (*   apply disable_ram_set_gso. *)
    (*   apply disable_ram_set_gso. auto. *)
    (*   pose proof (mod_ordering_wf m); unfold module_ordering in *. *)
    (*   pose proof (ram_ordering r0). simplify. *)
    (*   pose proof (mod_ram_wf m r0 H). lia. *)
    (*   pose proof (mod_ordering_wf m); unfold module_ordering in *. *)
    (*   pose proof (ram_ordering r0). simplify. *)
    (*   pose proof (mod_ram_wf m r0 H). lia. *)
    (*   pose proof (mod_ordering_wf m); unfold module_ordering in *. *)
    (*   pose proof (ram_ordering r0). simplify. *)
    (*   pose proof (mod_ram_wf m r0 H). lia. *)
    (*   pose proof (mod_ordering_wf m); unfold module_ordering in *. *)
    (*   pose proof (ram_ordering r0). simplify. *)
    (*   pose proof (mod_ram_wf m r0 H). lia. *)
    (* - inv STACKS. destruct b1; subst. *)
    (*   econstructor. econstructor. apply Smallstep.plus_one. *)
    (*   econstructor. eauto. *)
    (*   clear Learn. inv H0. inv H3. inv STACKS. constructor. *)
    (*   constructor. intros. *)
    (*   unfold transf_module. repeat destruct_match; crush. *)
    (*   destruct (Pos.eq_dec r res); subst. *)
    (*   rewrite AssocMap.gss. *)
    (*   rewrite AssocMap.gss. auto. *)
    (*   rewrite AssocMap.gso; auto. *)
    (*   symmetry. rewrite AssocMap.gso; auto. *)
    (*   destruct (Pos.eq_dec (mod_st m) r); subst. *)
    (*   rewrite AssocMap.gss. *)
    (*   rewrite AssocMap.gss. auto. *)
    (*   rewrite AssocMap.gso; auto. *)
    (*   symmetry. rewrite AssocMap.gso; auto. inv MATCH_ASSOC. apply H. auto. *)
    (*   auto. auto. auto. auto. *)
    (*   Opaque disable_ram. *)
    (*   unfold transf_module in *; repeat destruct_match; crush. *)
    (*   apply disable_ram_set_gso. *)
    (*   apply disable_ram_set_gso. *)
    (*   auto. *)
    (*   simplify. unfold max_reg_module. lia. *)
    (*   simplify. unfold max_reg_module. lia. *)
    (*   simplify. unfold max_reg_module. lia. *)
    (*   simplify. unfold max_reg_module. lia. *)
  Admitted.
  Hint Resolve transf_step_correct : mgen.

  Lemma transf_initial_states :
    forall s1 : state,
      initial_state prog s1 ->
      exists s2 : state,
        initial_state tprog s2 /\ match_states s1 s2.
  Proof using TRANSL.
    simplify. inv H.
    exploit function_ptr_translated. eauto. intros.
    inv H. inv H3.
    eexists. split.
    - econstructor.
      + eapply (Genv.init_mem_match TRANSL); eauto.
      + setoid_rewrite (Linking.match_program_main TRANSL).
        rewrite symbols_preserved.
        eauto.
      + eauto.
    - replace (prog_main prog) with (prog_main tprog) by (eapply Linking.match_program_main; eauto).
      econstructor.
  Qed.
  Hint Resolve transf_initial_states : mgen.

  Lemma transf_final_states :
    forall (s1 : state)
           (s2 : state)
           (r : Int.int),
      match_states s1 s2 ->
      final_state s1 r ->
      final_state s2 r.
  Proof using TRANSL.
    intros. inv H0. inv H. inv STACKS. unfold valueToInt. constructor. auto.
  Qed.
  Hint Resolve transf_final_states : mgen.

  Theorem transf_program_correct:
    Smallstep.forward_simulation (semantics prog) (semantics tprog).
  Proof using TRANSL.
    eapply Smallstep.forward_simulation_plus; mgen_crush.
    apply senv_preserved.
  Qed.

End CORRECTNESS.