aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/RTLPargen.v
blob: 5ad3f909918554747d1b40b04a02e449bcf6d1c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Require Import compcert.backend.Registers.
Require Import compcert.common.AST.
Require Import compcert.common.Globalenvs.
Require compcert.common.Memory.
Require Import compcert.common.Values.
Require Import compcert.lib.Floats.
Require Import compcert.lib.Integers.
Require Import compcert.lib.Maps.
Require compcert.verilog.Op.

Require Import vericert.common.Vericertlib.
Require Import vericert.hls.RTLBlock.
Require Import vericert.hls.RTLPar.
Require Import vericert.hls.RTLBlockInstr.

(*|
Schedule Oracle
===============

This oracle determines if a schedule was valid by performing symbolic execution on the input and
output and showing that these behave the same.  This acts on each basic block separately, as the
rest of the functions should be equivalent.
|*)

Definition reg := positive.

Inductive resource : Set :=
| Reg : reg -> resource
| Mem : resource.

(*|
The following defines quite a few equality comparisons automatically, however, these can be
optimised heavily if written manually, as their proofs are not needed.
|*)

Lemma resource_eq : forall (r1 r2 : resource), {r1 = r2} + {r1 <> r2}.
Proof.
  decide equality. apply Pos.eq_dec.
Defined.

Lemma comparison_eq: forall (x y : comparison), {x = y} + {x <> y}.
Proof.
  decide equality.
Defined.

Lemma condition_eq: forall (x y : Op.condition), {x = y} + {x <> y}.
Proof.
  generalize comparison_eq; intro.
  generalize Int.eq_dec; intro.
  generalize Int64.eq_dec; intro.
  decide equality.
Defined.

Lemma addressing_eq : forall (x y : Op.addressing), {x = y} + {x <> y}.
Proof.
  generalize Int.eq_dec; intro.
  generalize AST.ident_eq; intro.
  generalize Z.eq_dec; intro.
  generalize Ptrofs.eq_dec; intro.
  decide equality.
Defined.

Lemma typ_eq : forall (x y : AST.typ), {x = y} + {x <> y}.
Proof.
  decide equality.
Defined.

Lemma operation_eq: forall (x y : Op.operation), {x = y} + {x <> y}.
Proof.
  generalize Int.eq_dec; intro.
  generalize Int64.eq_dec; intro.
  generalize Float.eq_dec; intro.
  generalize Float32.eq_dec; intro.
  generalize AST.ident_eq; intro.
  generalize condition_eq; intro.
  generalize addressing_eq; intro.
  generalize typ_eq; intro.
  decide equality.
Defined.

Lemma memory_chunk_eq : forall (x y : AST.memory_chunk), {x = y} + {x <> y}.
Proof.
  decide equality.
Defined.

Lemma list_typ_eq: forall (x y : list AST.typ), {x = y} + {x <> y}.
Proof.
  generalize typ_eq; intro.
  decide equality.
Defined.

Lemma option_typ_eq : forall (x y : option AST.typ), {x = y} + {x <> y}.
Proof.
  generalize typ_eq; intro.
  decide equality.
Defined.

Lemma signature_eq: forall (x y : AST.signature), {x = y} + {x <> y}.
Proof.
  repeat decide equality.
Defined.

Lemma list_operation_eq : forall (x y : list Op.operation), {x = y} + {x <> y}.
Proof.
  generalize operation_eq; intro.
  decide equality.
Defined.

Lemma list_reg_eq : forall (x y : list reg), {x = y} + {x <> y}.
Proof.
  generalize Pos.eq_dec; intros.
  decide equality.
Defined.

Lemma sig_eq : forall (x y : AST.signature), {x = y} + {x <> y}.
Proof.
  repeat decide equality.
Defined.

Lemma instr_eq: forall (x y : instr), {x = y} + {x <> y}.
Proof.
  generalize Pos.eq_dec; intro.
  generalize typ_eq; intro.
  generalize Int.eq_dec; intro.
  generalize memory_chunk_eq; intro.
  generalize addressing_eq; intro.
  generalize operation_eq; intro.
  generalize condition_eq; intro.
  generalize signature_eq; intro.
  generalize list_operation_eq; intro.
  generalize list_reg_eq; intro.
  generalize AST.ident_eq; intro.
  repeat decide equality.
Defined.

Lemma cf_instr_eq: forall (x y : cf_instr), {x = y} + {x <> y}.
Proof.
  generalize Pos.eq_dec; intro.
  generalize typ_eq; intro.
  generalize Int.eq_dec; intro.
  generalize Int64.eq_dec; intro.
  generalize Float.eq_dec; intro.
  generalize Float32.eq_dec; intro.
  generalize Ptrofs.eq_dec; intro.
  generalize memory_chunk_eq; intro.
  generalize addressing_eq; intro.
  generalize operation_eq; intro.
  generalize condition_eq; intro.
  generalize signature_eq; intro.
  generalize list_operation_eq; intro.
  generalize list_reg_eq; intro.
  generalize AST.ident_eq; intro.
  repeat decide equality.
Defined.

(*|
We then create equality lemmas for a resource and a module to index resources uniquely.  The
indexing is done by setting Mem to 1, whereas all other infinitely many registers will all be
shifted right by 1.  This means that they will never overlap.
|*)

Module R_indexed.
  Definition t := resource.
  Definition index (rs: resource) : positive :=
    match rs with
    | Reg r => xO r
    | Mem => 1%positive
    end.

  Lemma index_inj:  forall (x y: t), index x = index y -> x = y.
  Proof. destruct x; destruct y; crush. Qed.

  Definition eq := resource_eq.
End R_indexed.

(*|
We can then create expressions that mimic the expressions defined in RTLBlock and RTLPar, which use
expressions instead of registers as their inputs and outputs.  This means that we can accumulate all
the results of the operations as general expressions that will be present in those registers.

- Ebase: the starting value of the register.
- Eop: Some arithmetic operation on a number of registers.
- Eload: A load from a memory location into a register.
- Estore: A store from a register to a memory location.

Then, to make recursion over expressions easier, expression_list is also defined in the datatype, as
that enables mutual recursive definitions over the datatypes.
|*)

Inductive expression : Set :=
| Ebase : resource -> expression
| Eop : Op.operation -> expression_list -> expression
| Eload : AST.memory_chunk -> Op.addressing -> expression_list -> expression -> expression
| Estore : expression -> AST.memory_chunk -> Op.addressing -> expression_list -> expression -> expression
with expression_list : Set :=
| Enil : expression_list
| Econs : expression -> expression_list -> expression_list.

(*|
Using IMap we can create a map from resources to any other type, as resources can be uniquely
identified as positive numbers.
|*)

Module Rtree := ITree(R_indexed).

Definition forest : Type := Rtree.t expression.

Definition regset := Registers.Regmap.t val.

Definition get_forest v f :=
  match Rtree.get v f with
  | None => Ebase v
  | Some v' => v'
  end.

Notation "a # b" := (get_forest b a) (at level 1).
Notation "a # b <- c" := (Rtree.set b c a) (at level 1, b at next level).

Record sem_state := mk_sem_state {
                    sem_state_regset : regset;
                    sem_state_memory : Memory.mem
                    }.

(*|
Finally we want to define the semantics of execution for the expressions with symbolic values, so
the result of executing the expressions will be an expressions.
|*)

Section SEMANTICS.

Context (A : Set) (genv : Genv.t A unit).

Inductive sem_value :
      val -> sem_state -> expression -> val -> Prop :=
  | Sbase_reg:
          forall sp st r,
          sem_value sp st (Ebase (Reg r)) (Registers.Regmap.get r (sem_state_regset st))
  | Sop:
          forall st op args v lv sp,
          sem_val_list sp st args lv ->
          Op.eval_operation genv sp op lv (sem_state_memory st) = Some v ->
          sem_value sp st (Eop op args) v
  | Sload :
          forall st mem_exp addr chunk args a v m' lv sp,
          sem_mem sp st mem_exp m' ->
          sem_val_list sp st args lv ->
          Op.eval_addressing genv sp addr lv = Some a ->
          Memory.Mem.loadv chunk m' a = Some v ->
          sem_value sp st (Eload chunk addr args mem_exp) v
with sem_mem :
          val -> sem_state -> expression -> Memory.mem -> Prop :=
  | Sstore :
          forall st mem_exp val_exp m'' addr v a m' chunk args lv sp,
          sem_mem sp st mem_exp m' ->
          sem_value sp st val_exp v ->
          sem_val_list sp st args lv ->
          Op.eval_addressing genv sp addr lv = Some a ->
          Memory.Mem.storev chunk m' a v = Some m'' ->
          sem_mem sp st (Estore mem_exp chunk addr args val_exp) m''
    | Sbase_mem :
            forall st m sp,
            sem_mem sp st (Ebase Mem) m
with sem_val_list :
          val -> sem_state -> expression_list -> list val -> Prop :=
    | Snil :
            forall st sp,
            sem_val_list sp st Enil nil
    | Scons :
            forall st e v l lv sp,
            sem_value sp st e v ->
            sem_val_list sp st l lv ->
            sem_val_list sp st (Econs e l) (v :: lv).

Inductive sem_regset :
  val -> sem_state -> forest -> regset -> Prop :=
  | Sregset:
        forall st f rs' sp,
        (forall x, sem_value sp st (f # (Reg x)) (Registers.Regmap.get x rs')) ->
        sem_regset sp st f rs'.

Inductive sem :
  val -> sem_state -> forest -> sem_state -> Prop :=
  | Sem:
        forall st rs' m' f sp,
        sem_regset sp st f rs' ->
        sem_mem sp st (f # Mem) m' ->
        sem sp st f (mk_sem_state rs' m').

End SEMANTICS.

Fixpoint beq_expression (e1 e2: expression) {struct e1}: bool :=
  match e1, e2 with
  | Ebase r1, Ebase r2 => if resource_eq r1 r2 then true else false
  | Eop op1 el1, Eop op2 el2 =>
      if operation_eq op1 op2 then beq_expression_list el1 el2 else false
  | Eload chk1 addr1 el1 e1, Eload chk2 addr2 el2 e2 =>
      if memory_chunk_eq chk1 chk2
      then if addressing_eq addr1 addr2
      then if beq_expression_list el1 el2
      then beq_expression e1 e2 else false else false else false
  | Estore m1 chk1 addr1 el1 e1, Estore m2 chk2 addr2 el2 e2=>
      if memory_chunk_eq chk1 chk2
      then if addressing_eq addr1 addr2
      then if beq_expression_list el1 el2
      then if beq_expression m1 m2
      then beq_expression e1 e2 else false else false else false else false
  | _, _ => false
  end
with beq_expression_list (el1 el2: expression_list) {struct el1} : bool :=
  match el1, el2 with
  | Enil, Enil => true
  | Econs e1 t1, Econs e2 t2 => beq_expression e1 e2 && beq_expression_list t1 t2
  | _, _ => false
  end.

Scheme expression_ind2 := Induction for expression Sort Prop
  with expression_list_ind2 := Induction for expression_list Sort Prop.

Lemma beq_expression_correct:
  forall e1 e2, beq_expression e1 e2 = true -> e1 = e2.
Proof.
  intro e1;
  apply expression_ind2 with
      (P := fun (e1 : expression) =>
            forall e2, beq_expression e1 e2 = true -> e1 = e2)
      (P0 := fun (e1 : expression_list) =>
             forall e2, beq_expression_list e1 e2 = true -> e1 = e2); simplify;
    repeat match goal with
           | [ H : context[match ?x with _ => _ end] |- _ ] => destruct x eqn:?
           | [ H : context[if ?x then _ else _] |- _ ] => destruct x eqn:?
           end; subst; f_equal; crush.
Qed.

Definition empty : forest := Rtree.empty _.

(*|
This function checks if all the elements in [fa] are in [fb], but not the other way round.
|*)

Definition check := Rtree.beq beq_expression.

Lemma check_correct: forall (fa fb : forest) (x : resource),
  check fa fb = true -> (forall x, fa # x = fb # x).
Proof.
  unfold check, get_forest; intros;
  pose proof beq_expression_correct;
  match goal with
    [ Hbeq : context[Rtree.beq], y : Rtree.elt |- _ ] =>
    apply (Rtree.beq_sound beq_expression fa fb) with (x := y) in Hbeq
  end;
  repeat destruct_match; crush.
Qed.

Lemma get_empty:
  forall r, empty#r = Ebase r.
Proof.
  intros; unfold get_forest;
  destruct_match; auto; [ ];
  match goal with
    [ H : context[Rtree.get _ empty] |- _ ] => rewrite Rtree.gempty in H
  end; discriminate.
Qed.

Fixpoint beq2 {A B : Type} (beqA : A -> B -> bool) (m1 : PTree.t A) (m2 : PTree.t B) {struct m1} : bool :=
  match m1, m2 with
  | PTree.Leaf, _ => PTree.bempty m2
  | _, PTree.Leaf => PTree.bempty m1
  | PTree.Node l1 o1 r1, PTree.Node l2 o2 r2 =>
    match o1, o2 with
    | None, None => true
    | Some y1, Some y2 => beqA y1 y2
    | _, _ => false
    end
    && beq2 beqA l1 l2 && beq2 beqA r1 r2
  end.

Lemma beq2_correct:
  forall A B beqA m1 m2,
    @beq2 A B beqA m1 m2 = true <->
    (forall (x: PTree.elt),
        match PTree.get x m1, PTree.get x m2 with
        | None, None => True
        | Some y1, Some y2 => beqA y1 y2 = true
        | _, _ => False
        end).
Proof.
  induction m1; intros.
  - simpl. rewrite PTree.bempty_correct. split; intros.
    rewrite PTree.gleaf. rewrite H. auto.
    generalize (H x). rewrite PTree.gleaf. destruct (PTree.get x m2); tauto.
  - destruct m2.
    + unfold beq2. rewrite PTree.bempty_correct. split; intros.
      rewrite H. rewrite PTree.gleaf. auto.
      generalize (H x). rewrite PTree.gleaf.
      destruct (PTree.get x (PTree.Node m1_1 o m1_2)); tauto.
    + simpl. split; intros.
      * destruct (andb_prop _ _ H). destruct (andb_prop _ _ H0).
        rewrite IHm1_1 in H3. rewrite IHm1_2 in H1.
        destruct x; simpl. apply H1. apply H3.
        destruct o; destruct o0; auto || congruence.
      * apply andb_true_intro. split. apply andb_true_intro. split.
        generalize (H xH); simpl. destruct o; destruct o0; tauto.
        apply IHm1_1. intros; apply (H (xO x)).
        apply IHm1_2. intros; apply (H (xI x)).
Qed.

Lemma map0:
  forall r,
  empty # r = Ebase r.
Proof. intros; eapply get_empty. Qed.

Lemma map1:
  forall w dst dst',
  dst <> dst' ->
  (empty # dst <- w) # dst' = Ebase dst'.
Proof. intros; unfold get_forest; rewrite Rtree.gso; auto; apply map0. Qed.

Lemma genmap1:
  forall (f : forest) w dst dst',
  dst <> dst' ->
  (f # dst <- w) # dst' = f # dst'.
Proof. intros; unfold get_forest; rewrite Rtree.gso; auto. Qed.

Lemma map2:
  forall (v : expression) x rs,
  (rs # x <- v) # x = v.
Proof. intros; unfold get_forest; rewrite Rtree.gss; trivial. Qed.

Lemma tri1:
  forall x y,
  Reg x <> Reg y -> x <> y.
Proof. crush. Qed.

Definition ge_preserved {A B C D: Type} (ge: Genv.t A B) (tge: Genv.t C D) : Prop :=
  (forall sp op vl, Op.eval_operation ge sp op vl =
                    Op.eval_operation tge sp op vl)
  /\ (forall sp addr vl, Op.eval_addressing ge sp addr vl =
                         Op.eval_addressing tge sp addr vl).

Lemma ge_preserved_same:
  forall A B ge, @ge_preserved A B A B ge ge.
Proof. unfold ge_preserved; auto. Qed.
Hint Resolve ge_preserved_same : rtlpar.

Inductive sem_state_ld : sem_state -> sem_state -> Prop :=
| sem_state_ld_intro:
  forall rs rs' m m',
    regs_lessdef rs rs' ->
    m = m' ->
    sem_state_ld (mk_sem_state rs m) (mk_sem_state rs' m').

Lemma sems_det:
  forall A ge tge sp st f,
  ge_preserved ge tge ->
  forall v v' mv mv',
  (sem_value A ge sp st f v /\ sem_value A tge sp st f v' -> v = v') /\
  (sem_mem A ge sp st f mv /\ sem_mem A tge sp st f mv' -> mv = mv').
Proof. Abort.

(*Lemma sem_value_det:
  forall A ge tge sp st f v v',
  ge_preserved ge tge ->
  sem_value A ge sp st f v ->
  sem_value A tge sp st f v' ->
  v = v'.
Proof.
  intros;
  generalize (sems_det A ge tge sp st f H v v'
                      st.(sem_state_memory) st.(sem_state_memory));
  crush.
Qed.
Hint Resolve sem_value_det : rtlpar.

Lemma sem_value_det':
  forall FF ge sp s f v v',
  sem_value FF ge sp s f v ->
  sem_value FF ge sp s f v' ->
  v = v'.
Proof.
  simplify; eauto with rtlpar.
Qed.

Lemma sem_mem_det:
  forall A ge tge sp st f m m',
  ge_preserved ge tge ->
  sem_mem A ge sp st f m ->
  sem_mem A tge sp st f m' ->
  m = m'.
Proof.
  intros;
  generalize (sems_det A ge tge sp st f H sp sp m m');
  crush.
Qed.
Hint Resolve sem_mem_det : rtlpar.

Lemma sem_mem_det':
  forall FF ge sp s f m m',
    sem_mem FF ge sp s f m ->
    sem_mem FF ge sp s f m' ->
    m = m'.
Proof.
  simplify; eauto with rtlpar.
Qed.

Hint Resolve Val.lessdef_same : rtlpar.

Lemma sem_regset_det:
  forall FF ge tge sp st f v v',
    ge_preserved ge tge ->
    sem_regset FF ge sp st f v ->
    sem_regset FF tge sp st f v' ->
    regs_lessdef v v'.
Proof.
  intros; unfold regs_lessdef.
  inv H0; inv H1;
  eauto with rtlpar.
Qed.
Hint Resolve sem_regset_det : rtlpar.

Lemma sem_det:
  forall FF ge tge sp st f st' st'',
    ge_preserved ge tge ->
    sem FF ge sp st f st' ->
    sem FF tge sp st f st'' ->
    sem_state_ld st' st''.
Proof.
  intros.
  destruct st; destruct st'; destruct st''.
  inv H0; inv H1.
  constructor; eauto with rtlpar.
Qed.
Hint Resolve sem_det : rtlpar.

Lemma sem_det':
  forall FF ge sp st f st' st'',
    sem FF ge sp st f st' ->
    sem FF ge sp st f st'' ->
    sem_state_ld st' st''.
Proof. eauto with rtlpar. Qed.

(*|
Update functions.
|*)

Fixpoint list_translation (l : list reg) (f : forest) {struct l} : expression_list :=
  match l with
  | nil => Enil
  | i :: l => Econs (f # (Reg i)) (list_translation l f)
  end.

Definition update (f : forest) (i : instr) : forest :=
  match i with
  | RBnop => f
  | RBop p op rl r =>
    f # (Reg r) <- (Eop op (list_translation rl f))
  | RBload p chunk addr rl r =>
    f # (Reg r) <- (Eload chunk addr (list_translation rl f) (f # Mem))
  | RBstore p chunk addr rl r =>
    f # Mem <- (Estore (f # Mem) chunk addr (list_translation rl f) (f # (Reg r)))
  | RBsetpred c addr p => f
  end.

(*|
Implementing which are necessary to show the correctness of the translation validation by showing
that there aren't any more effects in the resultant RTLPar code than in the RTLBlock code.

Get a sequence from the basic block.
|*)

Fixpoint abstract_sequence (f : forest) (b : list instr) : forest :=
  match b with
  | nil => f
  | i :: l => update (abstract_sequence f l) i
  end.

(*|
Check equivalence of control flow instructions.  As none of the basic blocks should have been moved,
none of the labels should be different, meaning the control-flow instructions should match exactly.
|*)

Definition check_control_flow_instr (c1 c2: cf_instr) : bool :=
  if cf_instr_eq c1 c2 then true else false.

(*|
We define the top-level oracle that will check if two basic blocks are equivalent after a scheduling
transformation.
|*)

Definition empty_trees (bb: RTLBlock.bb) (bbt: RTLPar.bb) : bool :=
  match bb with
  | nil =>
    match bbt with
    | nil => true
    | _ => false
    end
  | _ => true
  end.

Definition schedule_oracle (bb: RTLBlock.bblock) (bbt: RTLPar.bblock) : bool :=
  check (abstract_sequence empty (bb_body bb))
        (abstract_sequence empty (concat (concat (bb_body bbt)))) &&
  check_control_flow_instr (bb_exit bb) (bb_exit bbt) &&
  empty_trees (bb_body bb) (bb_body bbt).

Definition check_scheduled_trees := beq2 schedule_oracle.

Ltac solve_scheduled_trees_correct :=
  intros; unfold check_scheduled_trees in *;
  match goal with
  | [ H: context[beq2 _ _ _], x: positive |- _ ] =>
    rewrite beq2_correct in H; specialize (H x)
  end; repeat destruct_match; crush.

Lemma check_scheduled_trees_correct:
  forall f1 f2,
    check_scheduled_trees f1 f2 = true ->
    (forall x y1,
        PTree.get x f1 = Some y1 ->
        exists y2, PTree.get x f2 = Some y2 /\ schedule_oracle y1 y2 = true).
Proof. solve_scheduled_trees_correct; eexists; crush. Qed.

Lemma check_scheduled_trees_correct2:
  forall f1 f2,
    check_scheduled_trees f1 f2 = true ->
    (forall x,
        PTree.get x f1 = None ->
        PTree.get x f2 = None).
Proof. solve_scheduled_trees_correct. Qed.

(*|
Abstract computations
=====================
|*)

Lemma abstract_execution_correct:
  forall bb bb' cfi ge tge sp rs m rs' m',
    ge_preserved ge tge ->
    schedule_oracle (mk_bblock bb cfi) (mk_bblock bb' cfi) = true ->
    RTLBlock.step_instr_list ge sp (InstrState rs m) bb (InstrState rs' m') ->
    exists rs'', RTLPar.step_instr_block tge sp (InstrState rs m) bb' (InstrState rs'' m')
                 /\ regs_lessdef rs' rs''.
Proof. Abort.

(*|
Top-level functions
===================
|*)

Parameter schedule : RTLBlock.function -> RTLPar.function.

Definition transl_function (f: RTLBlock.function) : Errors.res RTLPar.function :=
  let tfcode := fn_code (schedule f) in
  if check_scheduled_trees f.(fn_code) tfcode then
    Errors.OK (mkfunction f.(fn_sig)
                          f.(fn_params)
                          f.(fn_stacksize)
                          tfcode
                          f.(fn_entrypoint))
  else
    Errors.Error (Errors.msg "RTLPargen: Could not prove the blocks equivalent.").

Definition transl_function_temp (f: RTLBlock.function) : Errors.res RTLPar.function :=
  let tfcode := fn_code (schedule f) in
    Errors.OK (mkfunction f.(fn_sig)
                          f.(fn_params)
                          f.(fn_stacksize)
                          tfcode
                          f.(fn_entrypoint)).

Definition transl_fundef := transf_partial_fundef transl_function_temp.

Definition transl_program (p : RTLBlock.program) : Errors.res RTLPar.program :=
  transform_partial_program transl_fundef p.
*)