aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/Value.v
blob: 0d3ea6656c5bbaf4bc0d78ef82cdeaebbafbed59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
(*(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

(* begin hide *)
From bbv Require Import Word.
From bbv Require HexNotation WordScope.
From Coq Require Import ZArith.ZArith FSets.FMapPositive Lia.
From compcert Require Import lib.Integers common.Values.
From vericert Require Import Vericertlib.
(* end hide *)

(** * Value

A [value] is a bitvector with a specific size. We are using the implementation
of the bitvector by mit-plv/bbv, because it has many theorems that we can reuse.
However, we need to wrap it with an [Inductive] so that we can specify and match
on the size of the [value]. This is necessary so that we can easily store
[value]s of different sizes in a list or in a map.

Using the default [word], this would not be possible, as the size is part of the type. *)

Record value : Type :=
  mkvalue {
    vsize: nat;
    vword: word vsize
  }.

(** ** Value conversions

Various conversions to different number types such as [N], [Z], [positive] and
[int], where the last one is a theory of integers of powers of 2 in CompCert. *)

Definition wordToValue : forall sz : nat, word sz -> value := mkvalue.

Definition valueToWord : forall v : value, word (vsize v) := vword.

Definition valueToNat (v :value) : nat :=
  wordToNat (vword v).

Definition natToValue sz (n : nat) : value :=
  mkvalue sz (natToWord sz n).

Definition valueToN (v : value) : N :=
  wordToN (vword v).

Definition NToValue sz (n : N) : value :=
  mkvalue sz (NToWord sz n).

Definition ZToValue (s : nat) (z : Z) : value :=
  mkvalue s (ZToWord s z).

Definition valueToZ (v : value) : Z :=
  wordToZ (vword v).

Definition uvalueToZ (v : value) : Z :=
  uwordToZ (vword v).

Definition posToValue sz (p : positive) : value :=
  ZToValue sz (Zpos p).

Definition posToValueAuto (p : positive) : value :=
  let size := Pos.to_nat (Pos.size p) in
  ZToValue size (Zpos p).

Definition valueToPos (v : value) : positive :=
  Z.to_pos (uvalueToZ v).

Definition intToValue (i : Integers.int) : value :=
  ZToValue Int.wordsize (Int.unsigned i).

Definition valueToInt (i : value) : Integers.int :=
  Int.repr (uvalueToZ i).

Definition ptrToValue (i : Integers.ptrofs) : value :=
  ZToValue Ptrofs.wordsize (Ptrofs.unsigned i).

Definition valueToPtr (i : value) : Integers.ptrofs :=
  Ptrofs.repr (uvalueToZ i).

Definition valToValue (v : Values.val) : option value :=
  match v with
  | Values.Vint i => Some (intToValue i)
  | Values.Vptr b off => if Z.eqb (Z.modulo (uvalueToZ (ptrToValue off)) 4) 0%Z
                         then Some (ptrToValue off)
                         else None
  | Values.Vundef => Some (ZToValue 32 0%Z)
  | _ => None
  end.

(** Convert a [value] to a [bool], so that choices can be made based on the
result. This is also because comparison operators will give back [value] instead
of [bool], so if they are in a condition, they will have to be converted before
they can be used. *)

Definition valueToBool (v : value) : bool :=
  negb (weqb (@wzero (vsize v)) (vword v)).

Definition boolToValue (sz : nat) (b : bool) : value :=
  natToValue sz (if b then 1 else 0).

(** ** Arithmetic operations *)

Definition unify_word (sz1 sz2 : nat) (w1 : word sz2): sz1 = sz2 -> word sz1.
intros; subst; assumption. Defined.

Lemma unify_word_unfold :
  forall sz w,
  unify_word sz sz w eq_refl = w.
Proof. auto. Qed.

Definition value_eq_size:
  forall v1 v2 : value, { vsize v1 = vsize v2 } + { True }.
Proof.
  intros; destruct (Nat.eqb (vsize v1) (vsize v2)) eqn:?.
  left; apply Nat.eqb_eq in Heqb; assumption.
  right; trivial.
Defined.

Definition map_any {A : Type} (v1 v2 : value) (f : word (vsize v1) -> word (vsize v1) -> A)
           (EQ : vsize v1 = vsize v2) : A :=
    let w2 := unify_word (vsize v1) (vsize v2) (vword v2) EQ in
    f (vword v1) w2.

Definition map_any_opt {A : Type} (sz : nat) (v1 v2 : value) (f : word (vsize v1) -> word (vsize v1) -> A)
  : option A :=
  match value_eq_size v1 v2 with
  | left EQ =>
    Some (map_any v1 v2 f EQ)
  | _ => None
  end.

Definition map_word (f : forall sz : nat, word sz -> word sz) (v : value) : value :=
  mkvalue (vsize v) (f (vsize v) (vword v)).

Definition map_word2 (f : forall sz : nat, word sz -> word sz -> word sz) (v1 v2 : value)
           (EQ : (vsize v1 = vsize v2)) : value :=
    let w2 := unify_word (vsize v1) (vsize v2) (vword v2) EQ in
    mkvalue (vsize v1) (f (vsize v1) (vword v1) w2).

Definition map_word2_opt (f : forall sz : nat, word sz -> word sz -> word sz) (v1 v2 : value)
  : option value :=
  match value_eq_size v1 v2 with
  | left EQ => Some (map_word2 f v1 v2 EQ)
  | _ => None
  end.

Definition eq_to_opt (v1 v2 : value) (f : vsize v1 = vsize v2 -> value)
  : option value :=
  match value_eq_size v1 v2 with
  | left EQ => Some (f EQ)
  | _ => None
  end.

Lemma eqvalue {sz : nat} (x y : word sz) : x = y <-> mkvalue sz x = mkvalue sz y.
Proof.
  split; intros.
  subst. reflexivity. inversion H. apply existT_wordToZ in H1.
  apply wordToZ_inj. assumption.
Qed.

Lemma eqvaluef {sz : nat} (x y : word sz) : x = y -> mkvalue sz x = mkvalue sz y.
Proof. apply eqvalue. Qed.

Lemma nevalue {sz : nat} (x y : word sz) : x <> y <-> mkvalue sz x <> mkvalue sz y.
Proof. split; intros; intuition. apply H. apply eqvalue. assumption.
       apply H. rewrite H0. trivial.
Qed.

Lemma nevaluef {sz : nat} (x y : word sz) : x <> y -> mkvalue sz x <> mkvalue sz y.
Proof. apply nevalue. Qed.

(*Definition rewrite_word_size (initsz finalsz : nat) (w : word initsz)
  : option (word finalsz) :=
  match Nat.eqb initsz finalsz return option (word finalsz) with
  | true => Some _
  | false => None
  end.*)

Definition valueeq (sz : nat) (x y : word sz) :
  {mkvalue sz x = mkvalue sz y} + {mkvalue sz x <> mkvalue sz y} :=
  match weq x y with
  | left eq => left (eqvaluef x y eq)
  | right ne => right (nevaluef x y ne)
  end.

Definition valueeqb (x y : value) : bool :=
  match value_eq_size x y with
  | left EQ =>
    weqb (vword x) (unify_word (vsize x) (vsize y) (vword y) EQ)
  | right _ => false
  end.

Definition value_projZ_eqb (v1 v2 : value) : bool := Z.eqb (valueToZ v1) (valueToZ v2).

Theorem value_projZ_eqb_true :
  forall v1 v2,
  v1 = v2 -> value_projZ_eqb v1 v2 = true.
Proof. intros. subst. unfold value_projZ_eqb. apply Z.eqb_eq. trivial. Qed.

Theorem valueeqb_true_iff :
  forall v1 v2,
  valueeqb v1 v2 = true <-> v1 = v2.
Proof.
  split; intros.
  unfold valueeqb in H. destruct (value_eq_size v1 v2) eqn:?.
  - destruct v1, v2. simpl in H.
Abort.

Definition value_int_eqb (v : value) (i : int) : bool :=
  Z.eqb (valueToZ v) (Int.unsigned i).

(** Arithmetic operations over [value], interpreting them as signed or unsigned
depending on the operation.

The arithmetic operations over [word] are over [N] by default, however, can also
be called over [Z] explicitly, which is where the bits are interpreted in a
signed manner. *)

Definition vplus v1 v2 := map_word2 wplus v1 v2.
Definition vplus_opt v1 v2 := map_word2_opt wplus v1 v2.
Definition vminus v1 v2 := map_word2 wminus v1 v2.
Definition vmul v1 v2 := map_word2 wmult v1 v2.
Definition vdiv v1 v2 := map_word2 wdiv v1 v2.
Definition vmod v1 v2 := map_word2 wmod v1 v2.

Definition vmuls v1 v2 := map_word2 wmultZ v1 v2.
Definition vdivs v1 v2 := map_word2 wdivZ v1 v2.
Definition vmods v1 v2 := map_word2 wremZ v1 v2.

(** ** Bitwise operations

Bitwise operations over [value], which is independent of whether the number is
signed or unsigned. *)

Definition vnot v := map_word wnot v.
Definition vneg v := map_word wneg v.
Definition vbitneg v := boolToValue (vsize v) (negb (valueToBool v)).
Definition vor v1 v2 := map_word2 wor v1 v2.
Definition vand v1 v2 := map_word2 wand v1 v2.
Definition vxor v1 v2 := map_word2 wxor v1 v2.

(** ** Comparison operators

Comparison operators that return a bool, there should probably be an equivalent
which returns another number, however I might just add that as an explicit
conversion. *)

Definition veqb v1 v2 := map_any v1 v2 (@weqb (vsize v1)).
Definition vneb v1 v2 EQ := negb (veqb v1 v2 EQ).

Definition veq v1 v2 EQ := boolToValue (vsize v1) (veqb v1 v2 EQ).
Definition vne v1 v2 EQ := boolToValue (vsize v1) (vneb v1 v2 EQ).

Definition vltb v1 v2 := map_any v1 v2 wltb.
Definition vleb v1 v2 EQ := negb (map_any v2 v1 wltb (eq_sym EQ)).
Definition vgtb v1 v2 EQ := map_any v2 v1 wltb (eq_sym EQ).
Definition vgeb v1 v2 EQ := negb (map_any v1 v2 wltb EQ).

Definition vltsb v1 v2 := map_any v1 v2 wsltb.
Definition vlesb v1 v2 EQ := negb (map_any v2 v1 wsltb (eq_sym EQ)).
Definition vgtsb v1 v2 EQ := map_any v2 v1 wsltb (eq_sym EQ).
Definition vgesb v1 v2 EQ := negb (map_any v1 v2 wsltb EQ).

Definition vlt v1 v2 EQ := boolToValue (vsize v1) (vltb v1 v2 EQ).
Definition vle v1 v2 EQ := boolToValue (vsize v1) (vleb v1 v2 EQ).
Definition vgt v1 v2 EQ := boolToValue (vsize v1) (vgtb v1 v2 EQ).
Definition vge v1 v2 EQ := boolToValue (vsize v1) (vgeb v1 v2 EQ).

Definition vlts v1 v2 EQ := boolToValue (vsize v1) (vltsb v1 v2 EQ).
Definition vles v1 v2 EQ := boolToValue (vsize v1) (vlesb v1 v2 EQ).
Definition vgts v1 v2 EQ := boolToValue (vsize v1) (vgtsb v1 v2 EQ).
Definition vges v1 v2 EQ := boolToValue (vsize v1) (vgesb v1 v2 EQ).

(** ** Shift operators

Shift operators on values. *)

Definition shift_map (sz : nat) (f : word sz -> nat -> word sz) (w1 w2 : word sz) :=
  f w1 (wordToNat w2).

Definition vshl v1 v2 := map_word2 (fun sz => shift_map sz (@wlshift sz)) v1 v2.
Definition vshr v1 v2 := map_word2 (fun sz => shift_map sz (@wrshift sz)) v1 v2.

Module HexNotationValue.
  Export HexNotation.
  Import WordScope.

  Notation "sz ''h' a" := (NToValue sz (hex a)) (at level 50).

End HexNotationValue.

Inductive val_value_lessdef: val -> value -> Prop :=
| val_value_lessdef_int:
    forall i v',
    i = valueToInt v' ->
    val_value_lessdef (Vint i) v'
| val_value_lessdef_ptr:
    forall b off v',
    off = valueToPtr v' ->
    (Z.modulo (uvalueToZ v') 4) = 0%Z ->
    val_value_lessdef (Vptr b off) v'
| lessdef_undef: forall v, val_value_lessdef Vundef v.

Inductive opt_val_value_lessdef: option val -> value -> Prop :=
| opt_lessdef_some:
    forall v v', val_value_lessdef v v' -> opt_val_value_lessdef (Some v) v'
| opt_lessdef_none: forall v, opt_val_value_lessdef None v.

Lemma valueToZ_ZToValue :
  forall n z,
  (- Z.of_nat (2 ^ n) <= z < Z.of_nat (2 ^ n))%Z ->
  valueToZ (ZToValue (S n) z) = z.
Proof.
  unfold valueToZ, ZToValue. simpl.
  auto using wordToZ_ZToWord.
Qed.

Lemma uvalueToZ_ZToValue :
  forall n z,
  (0 <= z < 2 ^ Z.of_nat n)%Z ->
  uvalueToZ (ZToValue n z) = z.
Proof.
  unfold uvalueToZ, ZToValue. simpl.
  auto using uwordToZ_ZToWord.
Qed.

Lemma uvalueToZ_ZToValue_full :
  forall sz : nat,
  (0 < sz)%nat ->
  forall z : Z, uvalueToZ (ZToValue sz z) = (z mod 2 ^ Z.of_nat sz)%Z.
Proof. unfold uvalueToZ, ZToValue. simpl. auto using uwordToZ_ZToWord_full. Qed.

Lemma ZToValue_uvalueToZ :
  forall v,
  ZToValue (vsize v) (uvalueToZ v) = v.
Proof.
  intros.
  unfold ZToValue, uvalueToZ.
  rewrite ZToWord_uwordToZ. destruct v; auto.
Qed.

Lemma valueToPos_posToValueAuto :
  forall p, valueToPos (posToValueAuto p) = p.
Proof.
  intros. unfold valueToPos, posToValueAuto.
  rewrite uvalueToZ_ZToValue. auto. rewrite positive_nat_Z.
  split. apply Zle_0_pos.

  assert (p < 2 ^ (Pos.size p))%positive by apply Pos.size_gt.
  inversion H. rewrite <- Z.compare_lt_iff. rewrite <- H1.
  simpl. rewrite <- Pos2Z.inj_pow_pos. trivial.
Qed.

Lemma valueToPos_posToValue :
  forall p, valueToPos (posToValueAuto p) = p.
Proof.
  intros. unfold valueToPos, posToValueAuto.
  rewrite uvalueToZ_ZToValue. auto. rewrite positive_nat_Z.
  split. apply Zle_0_pos.

  assert (p < 2 ^ (Pos.size p))%positive by apply Pos.size_gt.
  inversion H. rewrite <- Z.compare_lt_iff. rewrite <- H1.
  simpl. rewrite <- Pos2Z.inj_pow_pos. trivial.
Qed.

Lemma valueToInt_intToValue :
  forall v,
  valueToInt (intToValue v) = v.
Proof.
  intros.
  unfold valueToInt, intToValue. rewrite uvalueToZ_ZToValue. auto using Int.repr_unsigned.
  split. apply Int.unsigned_range_2.
  assert ((Int.unsigned v <= Int.max_unsigned)%Z) by apply Int.unsigned_range_2.
  apply Z.lt_le_pred in H. apply H.
Qed.

Lemma valueToPtr_ptrToValue :
  forall v,
  valueToPtr (ptrToValue v) = v.
Proof.
  intros.
  unfold valueToPtr, ptrToValue. rewrite uvalueToZ_ZToValue. auto using Ptrofs.repr_unsigned.
  split. apply Ptrofs.unsigned_range_2.
  assert ((Ptrofs.unsigned v <= Ptrofs.max_unsigned)%Z) by apply Ptrofs.unsigned_range_2.
  apply Z.lt_le_pred in H. apply H.
Qed.

Lemma intToValue_valueToInt :
  forall v,
  vsize v = 32%nat ->
  intToValue (valueToInt v) = v.
Proof.
  intros. unfold valueToInt, intToValue. rewrite Int.unsigned_repr_eq.
  unfold ZToValue, uvalueToZ. unfold Int.modulus. unfold Int.wordsize. unfold Wordsize_32.wordsize.
  pose proof (uwordToZ_bound (vword v)).
  rewrite Z.mod_small. rewrite <- H. rewrite ZToWord_uwordToZ. destruct v; auto.
  rewrite <- H. rewrite two_power_nat_equiv. apply H0.
Qed.

Lemma ptrToValue_valueToPtr :
  forall v,
  vsize v = 32%nat ->
  ptrToValue (valueToPtr v) = v.
Proof.
  intros. unfold valueToPtr, ptrToValue. rewrite Ptrofs.unsigned_repr_eq.
  unfold ZToValue, uvalueToZ. unfold Ptrofs.modulus. unfold Ptrofs.wordsize. unfold Wordsize_Ptrofs.wordsize.
  pose proof (uwordToZ_bound (vword v)).
  rewrite Z.mod_small. rewrite <- H. rewrite ZToWord_uwordToZ. destruct v; auto.
  rewrite <- H. rewrite two_power_nat_equiv. apply H0.
Qed.

Lemma valToValue_lessdef :
  forall v v',
    valToValue v = Some v' ->
    val_value_lessdef v v'.
Proof.
  intros.
  destruct v; try discriminate; constructor.
  unfold valToValue in H. inversion H.
  symmetry. apply valueToInt_intToValue.
  inv H. destruct (uvalueToZ (ptrToValue i) mod 4 =? 0); try discriminate.
  inv H1. symmetry. apply valueToPtr_ptrToValue.
  inv H. destruct (uvalueToZ (ptrToValue i) mod 4 =? 0) eqn:?; try discriminate.
  inv H1. apply Z.eqb_eq. apply Heqb0.
Qed.

Lemma boolToValue_ValueToBool :
  forall b,
  valueToBool (boolToValue 32 b) = b.
Proof. destruct b; auto. Qed.

Local Open Scope Z.

Ltac word_op_value H :=
  intros; unfold uvalueToZ, ZToValue; simpl; rewrite unify_word_unfold;
  rewrite <- H; rewrite uwordToZ_ZToWord_full; auto; omega.

Lemma zadd_vplus :
  forall sz z1 z2,
  (sz > 0)%nat ->
  uvalueToZ (vplus (ZToValue sz z1) (ZToValue sz z2) eq_refl) = (z1 + z2) mod 2 ^ Z.of_nat sz.
Proof. word_op_value ZToWord_plus. Qed.

Lemma zadd_vplus2 :
  forall z1 z2,
  vplus (ZToValue 32 z1) (ZToValue 32 z2) eq_refl = ZToValue 32 (z1 + z2).
Proof.
  intros. unfold vplus, ZToValue, map_word2. rewrite unify_word_unfold. simpl.
  rewrite ZToWord_plus; auto.
Qed.

Lemma ZToValue_eq :
  forall w1,
  (mkvalue 32 w1) = (ZToValue 32 (wordToZ w1)). Abort.

Lemma wordsize_32 :
  Int.wordsize = 32%nat.
Proof. auto. Qed.

Lemma intadd_vplus :
  forall i1 i2,
  valueToInt (vplus (intToValue i1) (intToValue i2) eq_refl) = Int.add i1 i2.
Proof.
  intros. unfold Int.add, valueToInt, intToValue. rewrite zadd_vplus.
  rewrite <- Int.unsigned_repr_eq.
  rewrite Int.repr_unsigned. auto. rewrite wordsize_32. omega.
Qed.

(*Lemma intadd_vplus2 :
  forall v1 v2 EQ,
  vsize v1 = 32%nat ->
  Int.add (valueToInt v1) (valueToInt v2) = valueToInt (vplus v1 v2 EQ).
Proof.
  intros. unfold Int.add, valueToInt, intToValue. repeat (rewrite Int.unsigned_repr).
  rewrite (@vadd_vplus v1 v2 EQ). trivial.
  unfold uvalueToZ. pose proof (@uwordToZ_bound (vsize v2) (vword v2)).
  rewrite H in EQ. rewrite <- EQ in H0 at 3.*)
  (*rewrite zadd_vplus3. trivia*)

Lemma valadd_vplus :
  forall v1 v2 v1' v2' v v' EQ,
  val_value_lessdef v1 v1' ->
  val_value_lessdef v2 v2' ->
  Val.add v1 v2 = v ->
  vplus v1' v2' EQ = v' ->
  val_value_lessdef v v'.
Proof.
  intros. inv H; inv H0; constructor; simplify.
  Abort.

Lemma zsub_vminus :
  forall sz z1 z2,
  (sz > 0)%nat ->
  uvalueToZ (vminus (ZToValue sz z1) (ZToValue sz z2) eq_refl) = (z1 - z2) mod 2 ^ Z.of_nat sz.
Proof. word_op_value ZToWord_minus. Qed.

Lemma zmul_vmul :
  forall sz z1 z2,
  (sz > 0)%nat ->
  uvalueToZ (vmul (ZToValue sz z1) (ZToValue sz z2) eq_refl) = (z1 * z2) mod 2 ^ Z.of_nat sz.
Proof. word_op_value ZToWord_mult. Qed.

Local Open Scope N.
Lemma zdiv_vdiv :
  forall n1 n2,
  n1 < 2 ^ 32 ->
  n2 < 2 ^ 32 ->
  n1 / n2 < 2 ^ 32 ->
  valueToN (vdiv (NToValue 32 n1) (NToValue 32 n2) eq_refl) = n1 / n2.
Proof.
  intros; unfold valueToN, NToValue; simpl; rewrite unify_word_unfold. unfold wdiv.
  unfold wordBin. repeat (rewrite wordToN_NToWord_2); auto.
Qed.

Lemma ZToValue_valueToNat :
  forall x sz,
  (sz > 0)%nat ->
  (0 <= x < 2^(Z.of_nat sz))%Z ->
  valueToNat (ZToValue sz x) = Z.to_nat x.
Proof.
  destruct x; intros; unfold ZToValue, valueToNat; crush.
  - rewrite wzero'_def. apply wordToNat_wzero.
  - rewrite posToWord_nat. rewrite wordToNat_natToWord_2. trivial.
    clear H1.
    lazymatch goal with
    | [ H : context[(_ < ?x)%Z] |- _ ] => replace x with (Z.of_nat (Z.to_nat x)) in H
    end.
    2: { apply Z2Nat.id; apply Z.pow_nonneg; lia. }

    rewrite Z2Nat.inj_pow in H2; crush.
    replace (Pos.to_nat 2) with 2%nat in H2 by reflexivity.
    rewrite Nat2Z.id in H2.
    rewrite <- positive_nat_Z in H2.
    apply Nat2Z.inj_lt in H2.
    assumption.
Qed.
*)