aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/Verilog.v
blob: 82850bf13f540e73acd3825952c2526b97794265 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2019-2020 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

From Coq Require Import
  Structures.OrderedTypeEx
  FSets.FMapPositive
  Program.Basics
  PeanoNat
  ZArith
  Lists.List
  Program.

Require Import Lia.

Import ListNotations.

From vericert Require Import Vericertlib Show AssocMap Array.
From compcert Require Events.
From compcert Require Import Integers Errors Smallstep Globalenvs Values.

Local Open Scope assocmap.

Set Implicit Arguments.

Definition reg : Type := positive.
Definition node : Type := positive.
Definition szreg : Type := reg * nat.

Record associations (A : Type) : Type :=
  mkassociations {
    assoc_blocking : AssocMap.t A;
    assoc_nonblocking : AssocMap.t A
  }.

Definition arr := (Array (option val)).

Definition reg_associations := associations val.
Definition arr_associations := associations arr.

Definition assocmap_reg := AssocMap.t val.
Definition assocmap_arr := AssocMap.t arr.

Definition merge_regs (new : assocmap_reg) (old : assocmap_reg) : assocmap_reg :=
  AssocMapExt.merge val new old.

Definition merge_cell (new : option val) (old : option val) : option val :=
  match new, old with
  | Some _, _ => new
  | _, _ => old
  end.

Definition merge_arr (new : option arr) (old : option arr) : option arr :=
  match new, old with
  | Some new', Some old' => Some (combine merge_cell new' old')
  | Some new', None => Some new'
  | None, Some old' => Some old'
  | None, None => None
  end.

Definition merge_arrs (new : assocmap_arr) (old : assocmap_arr) : assocmap_arr :=
  AssocMap.combine merge_arr new old.

Definition arr_assocmap_lookup (a : assocmap_arr) (r : reg) (i : nat) : option val :=
  match a ! r with
  | None => None
  | Some arr => Some (Option.default Vzero (Option.join (array_get_error i arr)))
  end.

Definition arr_assocmap_set (r : reg) (i : nat) (v : val) (a : assocmap_arr) : assocmap_arr :=
  match a ! r with
  | None => a
  | Some arr => a # r <- (array_set i (Some v) arr)
  end.

Definition block_arr (r : reg) (i : nat) (asa : arr_associations) (v : val) : arr_associations :=
  mkassociations (arr_assocmap_set r i v asa.(assoc_blocking)) asa.(assoc_nonblocking).

Definition nonblock_arr (r : reg) (i : nat) (asa : arr_associations) (v : val) : arr_associations :=
  mkassociations asa.(assoc_blocking) (arr_assocmap_set r i v asa.(assoc_nonblocking)).

Definition block_reg (r : reg) (asr : reg_associations) (v : val) :=
  mkassociations (AssocMap.set r v asr.(assoc_blocking)) asr.(assoc_nonblocking).

Definition nonblock_reg (r : reg) (asr : reg_associations) (v : val) :=
  mkassociations asr.(assoc_blocking) (AssocMap.set r v asr.(assoc_nonblocking)).

Inductive scl_decl : Type := VScalar (sz : nat).
Inductive arr_decl : Type := VArray (sz : nat) (ln : nat).

(** * Verilog AST

The Verilog AST is defined here, which is the target language of the
compilation.

** Val

The Verilog [val] is a bitvector containg a size and the actual bitvector. In
this case, the [Word.word] type is used as many theorems about that bitvector
have already been proven. *)

(** ** Binary Operators

These are the binary operations that can be represented in Verilog. Ideally,
multiplication and division would be done by custom modules which could al so be
scheduled properly. However, for now every Verilog operator is assumed to take
one clock cycle. *)

Inductive binop : Type :=
| Vadd : binop  (** addition (binary [+]) *)
| Vsub : binop  (** subtraction (binary [-]) *)
| Vmul : binop  (** multiplication (binary [*]) *)
| Vdiv : binop  (** division (binary [/]) *)
| Vdivu : binop  (** division unsigned (binary [/]) *)
| Vmod : binop  (** remainder ([%]) *)
| Vmodu : binop  (** remainder unsigned ([%]) *)
| Vlt : binop   (** less than ([<]) *)
| Vltu : binop   (** less than unsigned ([<]) *)
| Vgt : binop   (** greater than ([>]) *)
| Vgtu : binop   (** greater than unsigned ([>]) *)
| Vle : binop   (** less than or equal ([<=]) *)
| Vleu : binop   (** less than or equal unsigned ([<=]) *)
| Vge : binop   (** greater than or equal ([>=]) *)
| Vgeu : binop   (** greater than or equal unsigned ([>=]) *)
| Veq : binop   (** equal to ([==]) *)
| Vne : binop   (** not equal to ([!=]) *)
| Vand : binop  (** and (binary [&]) *)
| Vor : binop   (** or (binary [|]) *)
| Vxor : binop  (** xor (binary [^|]) *)
| Vshl : binop  (** shift left ([<<]) *)
| Vshr : binop (** shift right ([>>>]) *)
| Vshru : binop. (** shift right unsigned ([>>]) *)
(*| Vror : binop (** shift right unsigned ([>>]) *)*)

(** ** Unary Operators *)

Inductive unop : Type :=
| Vneg  (** negation ([~]) *)
| Vnot. (** not operation [!] *)

(** ** Expressions *)

Inductive expr : Type :=
| Vlit : val -> expr
| Vvar : reg -> expr
| Vvari : reg -> expr -> expr
| Vinputvar : reg -> expr
| Vbinop : binop -> expr -> expr -> expr
| Vunop : unop -> expr -> expr
| Vternary : expr -> expr -> expr -> expr.

Definition posToExpr (p : positive) : expr :=
  Vlit (Vint (Int.repr (Z.pos p))).

(** ** Statements *)

Inductive stmnt : Type :=
| Vskip : stmnt
| Vseq : stmnt -> stmnt -> stmnt
| Vcond : expr -> stmnt -> stmnt -> stmnt
| Vcase : expr -> list (expr * stmnt) -> option stmnt -> stmnt
| Vblock : expr -> expr -> stmnt
| Vnonblock : expr -> expr -> stmnt.

(** ** Edges

These define when an always block should be triggered, for example if the always
block should be triggered synchronously at the clock edge, or asynchronously for
combinational logic.

[edge] is not part of [stmnt] in this formalisation because is closer to the
semantics that are used. *)

Inductive edge : Type :=
| Vposedge : reg -> edge
| Vnegedge : reg -> edge
| Valledge : edge
| Voredge : edge -> edge -> edge.

(** ** Module Items

Module items can either be declarations ([Vdecl]) or always blocks ([Valways]).
The declarations are always register declarations as combinational logic can be
done using combinational always block instead of continuous assignments. *)

Inductive io : Type :=
| Vinput : io
| Voutput : io
| Vinout : io.

Inductive declaration : Type :=
| Vdecl : option io -> reg -> nat -> declaration
| Vdeclarr : option io -> reg -> nat -> nat -> declaration.

Inductive module_item : Type :=
| Vdeclaration : declaration -> module_item
| Valways : edge -> stmnt -> module_item
| Valways_ff : edge -> stmnt -> module_item
| Valways_comb : edge -> stmnt -> module_item.

(** The main module type containing all the important control signals

- [mod_start] If set, starts the computations in the module.
- [mod_reset] If set, reset the state in the module.
- [mod_clk] The clock that controls the computation in the module.
- [mod_args] The arguments to the module.
- [mod_finish] Bit that is set if the result is ready.
- [mod_return] The return val that was computed.
- [mod_body] The body of the module, including the state machine.
*)

Record module : Type := mkmodule {
  mod_start : reg;
  mod_reset : reg;
  mod_clk : reg;
  mod_finish : reg;
  mod_return : reg;
  mod_st : reg; (**r Variable that defines the current state, it should be internal. *)
  mod_stk : reg;
  mod_stk_len : nat;
  mod_args : list reg;
  mod_body : list module_item;
  mod_entrypoint : node;
}.

Definition fundef := AST.fundef module.

Definition program := AST.program fundef unit.

Definition fext := unit.
Definition fextclk := nat -> fext.

(** ** State

The [state] contains the following items:
n
- Current [module] that is being worked on, so that the state variable can be
retrieved and set appropriately.
- Current [module_item] which is being worked on.
- A contiunation ([cont]) which defines what to do next.  The option is to
  either evaluate another module item or go to the next clock cycle.  Finally
  it could also end if the finish flag of the module goes high.
- Association list containing the blocking assignments made, or assignments made
  in previous clock cycles.
- Nonblocking association list containing all the nonblocking assignments made
  in the current module.
- The environment containing vals for the input.
- The program counter which determines the val for the state in this version of
  Verilog, as the Verilog was generated by the RTL, which means that we have to
  make an assumption about how it looks.  In this case, that it contains state
  which determines which part of the Verilog is executed.  This is then the part
  of the Verilog that should match with the RTL. *)

Inductive stackframe : Type :=
  Stackframe :
    forall  (res : reg)
            (m : module)
            (pc : node)
            (reg_assoc : assocmap_reg)
            (arr_assoc : assocmap_arr),
      stackframe.

Inductive state : Type :=
| State :
    forall (stack : list stackframe)
           (m : module)
           (st : node)
           (reg_assoc : assocmap_reg)
           (arr_assoc : assocmap_arr), state
| Returnstate :
    forall (res : list stackframe)
           (v : val), state
| Callstate :
    forall (stack : list stackframe)
           (m : module)
           (args : list val), state.

Definition boolToVal (b : bool) := if b then Vtrue else Vfalse.

Definition binop_run (op : binop) (v1 v2 : val) : option val :=
  match op with
  | Vadd => Some (Val.add v1 v2)
  | Vsub => Some (Val.sub v1 v2)
  | Vmul => Some (Val.mul v1 v2)
  | Vdiv => Val.divs v1 v2
  | Vdivu => Val.divu v1 v2
  | Vmod => Val.mods v1 v2
  | Vmodu => Val.modu v1 v2
  | Vlt => Some (Val.cmp Clt v1 v2)
  | Vltu => Some (Val.cmpu Clt v1 v2)
  | Vgt => Some (Val.cmp Clt v1 v2)
  | Vgtu => Some (boolToVal (Int.ltu v2 v1))
  | Vle => Some (boolToVal (negb (Int.lt v2 v1)))
  | Vleu => Some (boolToVal (negb (Int.ltu v2 v1)))
  | Vge => Some (boolToVal (negb (Int.lt v1 v2)))
  | Vgeu => Some (boolToVal (negb (Int.ltu v1 v2)))
  | Veq => Some (boolToVal (Int.eq v1 v2))
  | Vne => Some (boolToVal (negb (Int.eq v1 v2)))
  | Vand => Some (Int.and v1 v2)
  | Vor => Some (Int.or v1 v2)
  | Vxor => Some (Int.xor v1 v2)
  | Vshl => Some (Int.shl v1 v2)
  | Vshr => Some (Int.shr v1 v2)
  | Vshru => Some (Int.shru v1 v2)
  end.

Definition unop_run (op : unop) (v1 : val) : val :=
  match op with
  | Vneg => Int.neg v1
  | Vnot => Int.not v1
  end.

Inductive expr_runp : fext -> assocmap -> assocmap_arr -> expr -> val -> Prop :=
  | erun_Vlit :
      forall fext reg stack v,
      expr_runp fext reg stack (Vlit v) v
  | erun_Vvar :
      forall fext reg stack v r,
      reg#r = v ->
      expr_runp fext reg stack (Vvar r) v
  | erun_Vvari :
      forall fext reg stack v iexp i r,
      expr_runp fext reg stack iexp i ->
      arr_assocmap_lookup stack r (valToNat i) = Some v ->
      expr_runp fext reg stack (Vvari r iexp) v
  | erun_Vbinop :
      forall fext reg stack op l r lv rv resv,
      expr_runp fext reg stack l lv ->
      expr_runp fext reg stack r rv ->
      Some resv = binop_run op lv rv ->
      expr_runp fext reg stack (Vbinop op l r) resv
  | erun_Vunop :
      forall fext reg stack u vu op oper resv,
      expr_runp fext reg stack u vu ->
      oper = unop_run op ->
      resv = oper vu ->
      expr_runp fext reg stack (Vunop op u) resv
  | erun_Vternary_true :
      forall fext reg stack c ts fs vc vt,
      expr_runp fext reg stack c vc ->
      expr_runp fext reg stack ts vt ->
      valToBool vc = true ->
      expr_runp fext reg stack (Vternary c ts fs) vt
  | erun_Vternary_false :
      forall fext reg stack c ts fs vc vf,
      expr_runp fext reg stack c vc ->
      expr_runp fext reg stack fs vf ->
      valToBool vc = false ->
      expr_runp fext reg stack (Vternary c ts fs) vf.
Hint Constructors expr_runp : verilog.

Definition handle_opt {A : Type} (err : errmsg) (val : option A)
  : res A :=
  match val with
  | Some a => OK a
  | None => Error err
  end.

Definition handle_def {A : Type} (a : A) (val : option A)
  : res A :=
  match val with
  | Some a' => OK a'
  | None => OK a
  end.

Local Open Scope error_monad_scope.

(*Definition access_fext (f : fext) (r : reg) : res val :=
  match AssocMap.get r f with
  | Some v => OK v
  | _ => OK (ZToVal 0)
  end.*)

(* TODO FIX Vvar case without default *)
(*Fixpoint expr_run (assoc : assocmap) (e : expr)
         {struct e} : res val :=
  match e with
  | Vlit v => OK v
  | Vvar r => match s with
              | State _ assoc _ _ _ => handle_def (ZToVal 32 0) assoc!r
              | _ => Error (msg "Verilog: Wrong state")
              end
  | Vvari _ _ => Error (msg "Verilog: variable indexing not modelled")
  | Vinputvar r => access_fext s r
  | Vbinop op l r =>
    let lv := expr_run s l in
    let rv := expr_run s r in
    let oper := binop_run op in
    do lv' <- lv;
    do rv' <- rv;
    handle_opt (msg "Verilog: sizes are not equal")
               (eq_to_opt lv' rv' (oper lv' rv'))
  | Vunop op e =>
    let oper := unop_run op in
    do ev <- expr_run s e;
    OK (oper ev)
  | Vternary c te fe =>
    do cv <- expr_run s c;
    if valToBool cv then expr_run s te else expr_run s fe
  end.*)

(** Return the location of the lhs of an assignment. *)

Inductive location : Type :=
| LocReg (_ : reg)
| LocArray (_ : reg) (_ : nat).

Inductive location_is : fext -> assocmap -> assocmap_arr -> expr -> location -> Prop :=
| Base : forall f asr asa r, location_is f asr asa (Vvar r) (LocReg r)
| Indexed : forall f asr asa r iexp iv,
  expr_runp f asr asa iexp iv ->
  location_is f asr asa (Vvari r iexp) (LocArray r (valToNat iv)).

(* Definition assign_name (f : fext) (asr: assocmap) (asa : assocmap_l)  (e : expr) : res reg := *)
(*   match e with *)
(*   | Vvar r => OK r *)
(*   | _ => Error (msg "Verilog: expression not supported on lhs of assignment") *)
(*   end. *)

(*Fixpoint stmnt_height (st : stmnt) {struct st} : nat :=
  match st with
  | Vseq s1 s2 => S (stmnt_height s1 + stmnt_height s2)
  | Vcond _ s1 s2 => S (Nat.max (stmnt_height s1) (stmnt_height s2))
  | Vcase _ ls (Some st) =>
    S (fold_right (fun t acc => Nat.max acc (stmnt_height (snd t))) 0%nat ls)
  | _ => 1
  end.

Fixpoint find_case_stmnt (s : state) (v : val) (cl : list (expr * stmnt))
         {struct cl} : option (res stmnt) :=
  match cl with
  | (e, st)::xs =>
    match expr_run s e with
    | OK v' =>
      match eq_to_opt v v' (veq v v') with
      | Some eq => if valToBool eq then Some (OK st) else find_case_stmnt s v xs
      | None => Some (Error (msg "Verilog: equality check sizes not equal"))
      end
    | Error msg => Some (Error msg)
    end
  | _ => None
  end.

Fixpoint stmnt_run' (n : nat) (s : state) (st : stmnt) {struct n} : res state :=
  match n with
  | S n' =>
    match st with
    | Vskip => OK s
    | Vseq s1 s2 =>
      do s' <- stmnt_run' n' s s1;
      stmnt_run' n' s' s2
    | Vcond c st sf =>
      do cv <- expr_run s c;
      if valToBool cv
      then stmnt_run' n' s st
      else stmnt_run' n' s sf
    | Vcase e cl defst =>
      do v <- expr_run s e;
      match find_case_stmnt s v cl with
      | Some (OK st') => stmnt_run' n' s st'
      | Some (Error msg) => Error msg
      | None => do s' <- handle_opt (msg "Verilog: no case was matched")
                                    (option_map (stmnt_run' n' s) defst); s'
      end
    | Vblock lhs rhs =>
      match s with
      | State m assoc nbassoc f c =>
        do name <- assign_name lhs;
        do rhse <- expr_run s rhs;
        OK (State m (PositiveMap.add name rhse assoc) nbassoc f c)
      | _ => Error (msg "Verilog: Wrong state")
      end
    | Vnonblock lhs rhs =>
      match s with
      | State m assoc nbassoc f c =>
        do name <- assign_name lhs;
        do rhse <- expr_run s rhs;
        OK (State m assoc (PositiveMap.add name rhse nbassoc) f c)
      | _ => Error (msg "Verilog: Wrong state")
      end
    end
  | _ => OK s
  end.

Definition stmnt_run (s : state) (st : stmnt) : res state :=
  stmnt_run' (stmnt_height st) s st. *)

Inductive stmnt_runp: fext -> reg_associations -> arr_associations ->
                      stmnt -> reg_associations -> arr_associations -> Prop :=
| stmnt_runp_Vskip:
    forall f ar al, stmnt_runp f ar al Vskip ar al
| stmnt_runp_Vseq:
    forall f st1 st2 asr0 asa0 asr1 asa1 asr2 asa2,
    stmnt_runp f asr0 asa0 st1 asr1 asa1 ->
    stmnt_runp f asr1 asa1 st2 asr2 asa2 ->
    stmnt_runp f asr0 asa0 (Vseq st1 st2) asr2 asa2
| stmnt_runp_Vcond_true:
    forall asr0 asa0 asr1 asa1 f c vc stt stf,
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) c vc ->
    valToBool vc = true ->
    stmnt_runp f asr0 asa0 stt asr1 asa1 ->
    stmnt_runp f asr0 asa0 (Vcond c stt stf) asr1 asa1
| stmnt_runp_Vcond_false:
    forall asr0 asa0 asr1 asa1 f c vc stt stf,
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) c vc ->
    valToBool vc = false ->
    stmnt_runp f asr0 asa0 stf asr1 asa1 ->
    stmnt_runp f asr0 asa0 (Vcond c stt stf) asr1 asa1
| stmnt_runp_Vcase_nomatch:
    forall e ve asr0 asa0 f asr1 asa1 me mve sc cs def,
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) e ve ->
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) me mve ->
    mve <> ve ->
    stmnt_runp f asr0 asa0 (Vcase e cs def) asr1 asa1 ->
    stmnt_runp f asr0 asa0 (Vcase e ((me, sc)::cs) def) asr1 asa1
| stmnt_runp_Vcase_match:
    forall e ve asr0 asa0 f asr1 asa1 me mve sc cs def,
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) e ve ->
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) me mve ->
    mve = ve ->
    stmnt_runp f asr0 asa0 sc asr1 asa1 ->
    stmnt_runp f asr0 asa0 (Vcase e ((me, sc)::cs) def) asr1 asa1
| stmnt_runp_Vcase_default:
    forall asr0 asa0 asr1 asa1 f st e ve,
    expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) e ve ->
    stmnt_runp f asr0 asa0 st asr1 asa1 ->
    stmnt_runp f asr0 asa0 (Vcase e nil (Some st)) asr1 asa1
| stmnt_runp_Vblock_reg:
    forall lhs r rhs rhsval asr asa f,
    location_is f asr.(assoc_blocking) asa.(assoc_blocking) lhs (LocReg r) ->
    expr_runp f asr.(assoc_blocking) asa.(assoc_blocking) rhs rhsval ->
    stmnt_runp f asr asa
                 (Vblock lhs rhs)
                 (block_reg r asr rhsval) asa
| stmnt_runp_Vnonblock_reg:
    forall lhs r rhs rhsval asr asa f,
    location_is f asr.(assoc_blocking) asa.(assoc_blocking) lhs (LocReg r) ->
    expr_runp f asr.(assoc_blocking) asa.(assoc_blocking) rhs rhsval ->
    stmnt_runp f asr asa
                 (Vnonblock lhs rhs)
                 (nonblock_reg r asr rhsval) asa
| stmnt_runp_Vblock_arr:
    forall lhs r i rhs rhsval asr asa f,
    location_is f asr.(assoc_blocking) asa.(assoc_blocking) lhs (LocArray r i) ->
    expr_runp f asr.(assoc_blocking) asa.(assoc_blocking) rhs rhsval ->
    stmnt_runp f asr asa
                 (Vblock lhs rhs)
                 asr (block_arr r i asa rhsval)
| stmnt_runp_Vnonblock_arr:
    forall lhs r i rhs rhsval asr asa f,
    location_is f asr.(assoc_blocking) asa.(assoc_blocking) lhs (LocArray r i) ->
    expr_runp f asr.(assoc_blocking) asa.(assoc_blocking) rhs rhsval ->
    stmnt_runp f asr asa
                 (Vnonblock lhs rhs)
                 asr (nonblock_arr r i asa rhsval).
Hint Constructors stmnt_runp : verilog.

(*Fixpoint mi_step (s : state) (m : list module_item) {struct m} : res state :=
  let run := fun st ls =>
              do s' <- stmnt_run s st;
              mi_step s' ls
  in
  match m with
  | (Valways _ st)::ls => run st ls
  | (Valways_ff _ st)::ls => run st ls
  | (Valways_comb _ st)::ls => run st ls
  | (Vdecl _ _)::ls => mi_step s ls
  | (Vdeclarr _ _ _)::ls => mi_step s ls
  | nil => OK s
  end.*)

Inductive mi_stepp : fext -> reg_associations -> arr_associations ->
                     module_item -> reg_associations -> arr_associations -> Prop :=
| mi_stepp_Valways :
    forall f sr0 sa0 st sr1 sa1 c,
    stmnt_runp f sr0 sa0 st sr1 sa1 ->
    mi_stepp f sr0 sa0 (Valways c st) sr1 sa1
| mi_stepp_Valways_ff :
    forall f sr0 sa0 st sr1 sa1 c,
    stmnt_runp f sr0 sa0 st sr1 sa1 ->
    mi_stepp f sr0 sa0 (Valways_ff c st) sr1 sa1
| mi_stepp_Valways_comb :
    forall f sr0 sa0 st sr1 sa1 c,
    stmnt_runp f sr0 sa0 st sr1 sa1 ->
    mi_stepp f sr0 sa0 (Valways_comb c st) sr1 sa1
| mi_stepp_Vdecl :
    forall f sr sa d,
    mi_stepp f sr sa (Vdeclaration d) sr sa.
Hint Constructors mi_stepp : verilog.

Inductive mis_stepp : fext -> reg_associations -> arr_associations ->
                      list module_item -> reg_associations -> arr_associations -> Prop :=
| mis_stepp_Cons :
    forall f mi mis sr0 sa0 sr1 sa1 sr2 sa2,
    mi_stepp f sr0 sa0 mi sr1 sa1 ->
    mis_stepp f sr1 sa1 mis sr2 sa2 ->
    mis_stepp f sr0 sa0 (mi :: mis) sr2 sa2
| mis_stepp_Nil :
    forall f sr sa,
    mis_stepp f sr sa nil sr sa.
Hint Constructors mis_stepp : verilog.

(*Definition mi_step_commit (s : state) (m : list module_item) : res state :=
  match mi_step s m with
  | OK (State m assoc nbassoc f c) =>
    OK (State m (merge_assocmap nbassoc assoc) empty_assocmap f c)
  | Error msg => Error msg
  | _ => Error (msg "Verilog: Wrong state")
  end.

Fixpoint mi_run (f : fextclk) (assoc : assocmap) (m : list module_item) (n : nat)
         {struct n} : res assocmap :=
  match n with
  | S n' =>
    do assoc' <- mi_run f assoc m n';
    match mi_step_commit (State assoc' empty_assocmap f (Pos.of_nat n')) m with
    | OK (State assoc _ _ _) => OK assoc
    | Error m => Error m
    end
  | O => OK assoc
  end.*)

(** Resets the module into a known state, so that it can be executed.  This is
assumed to be the starting state of the module, and may have to be changed if
other arguments to the module are also to be supported. *)

(*Definition initial_fextclk (m : module) : fextclk :=
  fun x => match x with
           | S O => (AssocMap.set (mod_reset m) (ZToVal 1) empty_assocmap)
           | _ => (AssocMap.set (mod_reset m) (ZToVal 0) empty_assocmap)
           end.*)

(*Definition module_run (n : nat) (m : module) : res assocmap :=
  mi_run (initial_fextclk m) empty_assocmap (mod_body m) n.*)

Local Close Scope error_monad_scope.

(*Theorem val_eq_size_if_eq:
  forall lv rv EQ,
  vsize lv = vsize rv -> val_eq_size lv rv = left EQ.
Proof. intros. unfold val_eq_size.

Theorem expr_run_same:
  forall assoc e v, expr_run assoc e = OK v <-> expr_runp assoc e v.
Proof.
  split; generalize dependent v; generalize dependent assoc.
  - induction e.
    + intros. inversion H. constructor.
    + intros. inversion H. constructor. assumption.
    + intros. inversion H. destruct (expr_run assoc e1) eqn:?. destruct (expr_run assoc e2) eqn:?.
      unfold eq_to_opt in H1. destruct (val_eq_size v0 v1) eqn:?. inversion H1.
      constructor. apply IHe1. assumption. apply IHe2. assumption. reflexivity. discriminate. discriminate.
      discriminate.
    + intros. inversion H. destruct (expr_run assoc e) eqn:?. unfold option_map in H1.
      inversion H1. constructor. apply IHe. assumption. reflexivity. discriminate.
    + intros. inversion H. destruct (expr_run assoc e1) eqn:?. destruct (valToBool v0) eqn:?.
      eapply erun_Vternary_true. apply IHe1. eassumption. apply IHe2. eassumption. assumption.
      eapply erun_Vternary_false. apply IHe1. eassumption. apply IHe3. eassumption. assumption.
      discriminate.
  - induction e.
    + intros. inversion H. reflexivity.
    + intros. inversion H. subst. simpl. assumption.
    + intros. inversion H. subst. simpl. apply IHe1 in H4. rewrite H4.
      apply IHe2 in H6. rewrite H6. unfold eq_to_opt. assert (vsize lv = vsize rv).
      apply EQ. apply (val_eq_size_if_eq lv rv EQ) in H0. rewrite H0. reflexivity.
    + intros. inversion H. subst. simpl. destruct (expr_run assoc e) eqn:?. simpl.
      apply IHe in H3. rewrite Heqo in H3.
      inversion H3. subst. reflexivity. apply IHe in H3. rewrite Heqo in H3. discriminate.
    + intros. inversion H. subst. simpl. apply IHe1 in H4. rewrite H4. rewrite H7.
      apply IHe2 in H6. rewrite H6. reflexivity.
      subst. simpl. apply IHe1 in H4. rewrite H4. rewrite H7. apply IHe3.
      assumption.
Qed.

 *)

Fixpoint init_params (vl : list val) (rl : list reg) {struct rl} :=
  match rl, vl with
  | r :: rl', v :: vl' => AssocMap.set r v (init_params vl' rl')
  | _, _ => empty_assocmap
  end.

Definition genv := Globalenvs.Genv.t fundef unit.
Definition empty_stack (m : module) : assocmap_arr :=
  (AssocMap.set m.(mod_stk) (Array.arr_repeat None m.(mod_stk_len)) (AssocMap.empty arr)).

Inductive step : genv -> state -> Events.trace -> state -> Prop :=
  | step_module :
      forall asr asa asr' asa' basr1 nasr1 basa1 nasa1 f stval pstval m sf st g ist,
      asr!(m.(mod_reset)) = Some (ZToVal 0) ->
      asr!(m.(mod_finish)) = Some (ZToVal 0) ->
      asr!(m.(mod_st)) = Some ist ->
      valToPos ist = st ->
      mis_stepp f (mkassociations asr empty_assocmap)
                  (mkassociations asa (empty_stack m))
                  m.(mod_body)
                  (mkassociations basr1 nasr1)
                  (mkassociations basa1 nasa1)->
      asr' = merge_regs nasr1 basr1 ->
      asa' = merge_arrs nasa1 basa1 ->
      asr'!(m.(mod_st)) = Some stval ->
      valToPos stval = pstval ->
      step g (State sf m st asr asa) Events.E0 (State sf m pstval asr' asa')
| step_finish :
    forall asr asa sf retval m st g,
    asr!(m.(mod_finish)) = Some (ZToVal 1) ->
    asr!(m.(mod_return)) = Some retval ->
    step g (State sf m st asr asa) Events.E0 (Returnstate sf retval)
| step_call :
    forall g res m args,
    step g (Callstate res m args) Events.E0
         (State res m m.(mod_entrypoint)
          (AssocMap.set (mod_reset m) (ZToVal 0)
           (AssocMap.set (mod_finish m) (ZToVal 0)
            (AssocMap.set m.(mod_st) (posToVal m.(mod_entrypoint))
             (init_params args m.(mod_args)))))
          (empty_stack m))
| step_return :
    forall g m asr i r sf pc mst asa,
    mst = mod_st m ->
    step g (Returnstate (Stackframe r m pc asr asa :: sf) i) Events.E0
         (State sf m pc ((asr # mst <- (posToVal pc)) # r <- i) asa).
Hint Constructors step : verilog.

Inductive initial_state (p: program): state -> Prop :=
  | initial_state_intro: forall b m0 m,
      let ge := Globalenvs.Genv.globalenv p in
      Globalenvs.Genv.init_mem p = Some m0 ->
      Globalenvs.Genv.find_symbol ge p.(AST.prog_main) = Some b ->
      Globalenvs.Genv.find_funct_ptr ge b = Some (AST.Internal m) ->
      initial_state p (Callstate nil m nil).

Inductive final_state : state -> Integers.int -> Prop :=
| final_state_intro : forall retval retvali,
    retvali = valToInt retval ->
    final_state (Returnstate nil retval) retvali.

Definition semantics (m : program) :=
  Smallstep.Semantics step (initial_state m) final_state
                      (Globalenvs.Genv.globalenv m).

Lemma expr_runp_determinate :
  forall f e asr asa v,
  expr_runp f asr asa e v ->
  forall v',
  expr_runp f asr asa e v' ->
  v' = v.
Proof.
  induction e; intros;

  repeat (try match goal with
              | [ H : expr_runp _ _ _ (Vlit _) _ |- _ ] => invert H
              | [ H : expr_runp _ _ _ (Vvar _) _ |- _ ] => invert H
              | [ H : expr_runp _ _ _ (Vvari _ _) _ |- _ ] => invert H
              | [ H : expr_runp _ _ _ (Vinputvar _) _ |- _ ] => invert H
              | [ H : expr_runp _ _ _ (Vbinop _ _ _) _ |- _ ] => invert H
              | [ H : expr_runp _ _ _ (Vunop _ _) _ |- _ ] => invert H
              | [ H : expr_runp _ _ _ (Vternary _ _ _) _ |- _ ] => invert H

              | [ H1 : forall asr asa v, expr_runp _ asr asa ?e v -> _,
                  H2 : expr_runp _ _ _ ?e _ |- _ ] =>
                learn (H1 _ _ _ H2)
              | [ H1 : forall v, expr_runp _ ?asr ?asa ?e v -> _,
                  H2 : expr_runp _ ?asr ?asa ?e _ |- _ ] =>
                learn (H1 _ H2)
              end; crush).
Qed.
Hint Resolve expr_runp_determinate : verilog.

Lemma location_is_determinate :
  forall f asr asa e l,
  location_is f asr asa e l ->
  forall l',
  location_is f asr asa e l' ->
  l' = l.
Proof.
  induction 1; intros;

  repeat (try match goal with
              | [ H : location_is _ _ _ _ _ |- _ ] => invert H
              | [ H1 : expr_runp _ ?asr ?asa ?e _,
                  H2 : expr_runp _ ?asr ?asa ?e _ |- _ ] =>
                learn (expr_runp_determinate H1 H2)
              end; crush).
Qed.

Lemma stmnt_runp_determinate :
  forall f s asr0 asa0 asr1 asa1,
  stmnt_runp f asr0 asa0 s asr1 asa1 ->
  forall asr1' asa1',
  stmnt_runp f asr0 asa0 s asr1' asa1' ->
  asr1' = asr1 /\ asa1' = asa1.
  induction 1; intros;

  repeat (try match goal with
             | [ H : stmnt_runp _ _ _ (Vseq _ _) _ _ |- _ ] => invert H
             | [ H : stmnt_runp _ _ _ (Vnonblock _ _) _ _ |- _ ] => invert H
             | [ H : stmnt_runp _ _ _ (Vblock _ _) _ _ |- _ ] => invert H
             | [ H : stmnt_runp _ _ _ Vskip _ _ |- _ ] => invert H
             | [ H : stmnt_runp _ _ _ (Vcond _ _ _) _ _ |- _ ] => invert H
             | [ H : stmnt_runp _ _ _ (Vcase _ (_ :: _) _) _ _ |- _ ] => invert H
             | [ H : stmnt_runp _ _ _ (Vcase _ []  _) _ _ |- _ ] => invert H

             | [ H1 : expr_runp _ ?asr ?asa ?e _,
                 H2 : expr_runp _ ?asr ?asa ?e _ |- _ ] =>
               learn (expr_runp_determinate H1 H2)

             | [ H1 : location_is _ ?asr ?asa ?e _,
                 H2 : location_is _ ?asr ?asa ?e _ |- _ ] =>
               learn (location_is_determinate H1 H2)

             | [ H1 : forall asr1 asa1, stmnt_runp _ ?asr0 ?asa0 ?s asr1 asa1 -> _,
                 H2 : stmnt_runp _ ?asr0 ?asa0 ?s _ _ |- _ ] =>
               learn (H1 _ _ H2)
              end; crush).
Qed.
Hint Resolve stmnt_runp_determinate : verilog.

Lemma mi_stepp_determinate :
  forall f asr0 asa0 m asr1 asa1,
  mi_stepp f asr0 asa0 m asr1 asa1 ->
  forall asr1' asa1',
  mi_stepp f asr0 asa0 m asr1' asa1' ->
  asr1' = asr1 /\ asa1' = asa1.
Proof.
  intros. destruct m; invert H; invert H0;

  repeat (try match goal with
              | [ H1 : stmnt_runp _ ?asr0 ?asa0 ?s _ _,
                  H2 : stmnt_runp _ ?asr0 ?asa0 ?s _ _ |- _ ] =>
                learn (stmnt_runp_determinate H1 H2)
              end; crush).
Qed.

Lemma mis_stepp_determinate :
  forall f asr0 asa0 m asr1 asa1,
  mis_stepp f asr0 asa0 m asr1 asa1 ->
  forall asr1' asa1',
  mis_stepp f asr0 asa0 m asr1' asa1' ->
  asr1' = asr1 /\ asa1' = asa1.
Proof.
  induction 1; intros;

  repeat (try match goal with
              | [ H : mis_stepp _ _ _ [] _ _ |- _ ] => invert H
              | [ H : mis_stepp _ _ _ ( _ :: _ ) _ _ |- _ ] => invert H

              | [ H1 : mi_stepp _ ?asr0 ?asa0 ?s _ _,
                  H2 : mi_stepp _ ?asr0 ?asa0 ?s _ _ |- _ ] =>
                learn (mi_stepp_determinate H1 H2)

             | [ H1 : forall asr1 asa1, mis_stepp _ ?asr0 ?asa0 ?m asr1 asa1 -> _,
                 H2 : mis_stepp _ ?asr0 ?asa0 ?m _ _ |- _ ] =>
               learn (H1 _ _ H2)
              end; crush).
Qed.

Lemma semantics_determinate :
  forall (p: program), Smallstep.determinate (semantics p).
Proof.
  intros. constructor; set (ge := Globalenvs.Genv.globalenv p); simplify.
  - invert H; invert H0; constructor. (* Traces are always empty *)
  - invert H; invert H0; crush. assert (f = f0) by (destruct f; destruct f0; auto); subst.
    pose proof (mis_stepp_determinate H5 H15).
    crush.
  - constructor. invert H; crush.
  - invert H; invert H0; unfold ge0, ge1 in *; crush.
  - red; simplify; intro; invert H0; invert H; crush.
  - invert H; invert H0; crush.
Qed.