aboutsummaryrefslogtreecommitdiffstats
path: root/src/translation/HTLgen.v
blob: 7bb50307373ba695a1c8867e02674e362bf93e3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
(* 
 * CoqUp: Verified high-level synthesis.
 * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

From compcert Require Import Maps.
From compcert Require Errors.
From compcert Require Import AST RTL.
From coqup Require Import Verilog HTL Coquplib AssocMap Value Statemonad.

Hint Resolve AssocMap.gempty : htlh.
Hint Resolve AssocMap.gso : htlh.
Hint Resolve AssocMap.gss : htlh.
Hint Resolve Ple_refl : htlh.
Hint Resolve Ple_succ : htlh.

Record state: Type := mkstate {
  st_st : reg;
  st_freshreg: reg;
  st_freshstate: node;
  st_datapath: datapath;
  st_controllogic: controllogic;
}.

Definition init_state (st : reg) : state :=
  mkstate st
          1%positive
          1%positive
          (AssocMap.empty stmnt)
          (AssocMap.empty stmnt).

Module HTLState <: State.

  Definition st := state.

  Inductive st_incr: state -> state -> Prop :=
    state_incr_intro:
      forall (s1 s2: state),
        st_st s1 = st_st s2 ->
        Ple s1.(st_freshreg) s2.(st_freshreg) ->
        Ple s1.(st_freshstate) s2.(st_freshstate) ->
        (forall n,
            s1.(st_datapath)!n = None \/ s2.(st_datapath)!n = s1.(st_datapath)!n) ->
        (forall n,
            s1.(st_controllogic)!n = None
            \/ s2.(st_controllogic)!n = s1.(st_controllogic)!n) ->
        st_incr s1 s2.
  Hint Constructors st_incr : htlh.

  Definition st_prop := st_incr.
  Hint Unfold st_prop : htlh.

  Lemma st_refl : forall s, st_prop s s.
  Proof. auto with htlh. Qed.

  Lemma st_trans :
    forall s1 s2 s3, st_prop s1 s2 -> st_prop s2 s3 -> st_prop s1 s3.
  Proof.
    intros. inv H. inv H0. apply state_incr_intro; eauto using Ple_trans.
    - rewrite H1. rewrite H. reflexivity.
    - intros. destruct H4 with n.
      + left; assumption.
      + destruct H8 with n;
          [ rewrite <- H0; left; assumption
          | right; rewrite <- H0; apply H10
          ].
    - intros. destruct H5 with n.
      + left; assumption.
      + destruct H9 with n.
        * rewrite <- H0. left. assumption.
        * right. rewrite <- H0. apply H10.
  Qed.

End HTLState.
Import HTLState.

Module HTLMonad := Statemonad(HTLState).
Import HTLMonad.

Module HTLMonadExtra := Monad.MonadExtra(HTLMonad).
Import HTLMonadExtra.
Import MonadNotation.

Definition state_goto (st : reg) (n : node) : stmnt :=
  Vnonblock (Vvar st) (Vlit (posToValue 32 n)).

Definition state_cond (st : reg) (c : expr) (n1 n2 : node) : stmnt :=
  Vnonblock (Vvar st) (Vternary c (posToExpr 32 n1) (posToExpr 32 n2)).

Definition check_empty_node_datapath:
  forall (s: state) (n: node), { s.(st_datapath)!n = None } + { True }.
Proof.
  intros. case (s.(st_datapath)!n); intros. right; auto. left; auto.
Defined.

Definition check_empty_node_controllogic:
  forall (s: state) (n: node), { s.(st_controllogic)!n = None } + { True }.
Proof.
  intros. case (s.(st_controllogic)!n); intros. right; auto. left; auto.
Defined.

Lemma add_instr_state_incr :
  forall s n n' st,
    (st_datapath s)!n = None ->
    (st_controllogic s)!n = None ->
    st_incr s
    (mkstate
       s.(st_st)
       s.(st_freshreg)
       (st_freshstate s)
       (AssocMap.add n st s.(st_datapath))
       (AssocMap.add n (state_goto s.(st_st) n') s.(st_controllogic))).
Proof.
  constructor; intros;
    try (simpl; destruct (peq n n0); subst);
    auto with htlh.
Qed.

Definition add_instr (n : node) (n' : node) (st : stmnt) : mon unit :=
  fun s =>
    match check_empty_node_datapath s n, check_empty_node_controllogic s n with
    | left STM, left TRANS =>
      OK tt (mkstate
               s.(st_st)
               s.(st_freshreg)
               (st_freshstate s)
               (AssocMap.add n st s.(st_datapath))
               (AssocMap.add n (state_goto s.(st_st) n') s.(st_controllogic)))
         (add_instr_state_incr s n n' st STM TRANS)
    | _, _ => Error (Errors.msg "HTL.add_instr")
    end.

Definition nonblock (dst : reg) (e : expr) := Vnonblock (Vvar dst) e.
Definition block (dst : reg) (e : expr) := Vblock (Vvar dst) e.

Definition bop (op : binop) (r1 r2 : reg) : expr :=
  Vbinop op (Vvar r1) (Vvar r2).

Definition boplit (op : binop) (r : reg) (l : Integers.int) : expr :=
  Vbinop op (Vvar r) (Vlit (intToValue l)).

Definition boplitz (op: binop) (r: reg) (l: Z) : expr :=
  Vbinop op (Vvar r) (Vlit (ZToValue 32%nat l)).

Definition translate_comparison (c : Integers.comparison) (args : list reg) : mon expr :=
  match c, args with
  | Integers.Ceq, r1::r2::nil => ret (bop Veq r1 r2)
  | Integers.Cne, r1::r2::nil => ret (bop Vne r1 r2)
  | Integers.Clt, r1::r2::nil => ret (bop Vlt r1 r2)
  | Integers.Cgt, r1::r2::nil => ret (bop Vgt r1 r2)
  | Integers.Cle, r1::r2::nil => ret (bop Vle r1 r2)
  | Integers.Cge, r1::r2::nil => ret (bop Vge r1 r2)
  | _, _ => error (Errors.msg "Veriloggen: comparison instruction not implemented: other")
  end.

Definition translate_comparison_imm (c : Integers.comparison) (args : list reg) (i: Integers.int)
  : mon expr :=
  match c, args with
  | Integers.Ceq, r1::nil => ret (boplit Veq r1 i)
  | Integers.Cne, r1::nil => ret (boplit Vne r1 i)
  | Integers.Clt, r1::nil => ret (boplit Vlt r1 i)
  | Integers.Cgt, r1::nil => ret (boplit Vgt r1 i)
  | Integers.Cle, r1::nil => ret (boplit Vle r1 i)
  | Integers.Cge, r1::nil => ret (boplit Vge r1 i)
  | _, _ => error (Errors.msg "Veriloggen: comparison_imm instruction not implemented: other")
  end.

Definition translate_condition (c : Op.condition) (args : list reg) : mon expr :=
  match c, args with
  | Op.Ccomp c, _ => translate_comparison c args
  | Op.Ccompu c, _ => translate_comparison c args
  | Op.Ccompimm c i, _ => translate_comparison_imm c args i
  | Op.Ccompuimm c i, _ => translate_comparison_imm c args i
  | Op.Cmaskzero n, _ => error (Errors.msg "Veriloggen: condition instruction not implemented: Cmaskzero")
  | Op.Cmasknotzero n, _ => error (Errors.msg "Veriloggen: condition instruction not implemented: Cmasknotzero")
  | _, _ => error (Errors.msg "Veriloggen: condition instruction not implemented: other")
  end.

Definition translate_eff_addressing (a: Op.addressing) (args: list reg) : mon expr :=
  match a, args with
  | Op.Aindexed off, r1::nil => ret (boplitz Vadd r1 off)
  | Op.Aindexed2 off, r1::r2::nil => ret (Vbinop Vadd (Vvar r1) (boplitz Vadd r2 off))
  | Op.Ascaled scale offset, r1::nil =>
    ret (Vbinop Vadd (boplitz Vadd r1 scale) (Vlit (ZToValue 32%nat offset)))
  | Op.Aindexed2scaled scale offset, r1::r2::nil =>
    ret (Vbinop Vadd (boplitz Vadd r1 offset) (boplitz Vmul r2 scale))
  | _, _ => error (Errors.msg "Veriloggen: eff_addressing instruction not implemented: other")
  end.

(** Translate an instruction to a statement. *)
Definition translate_instr (op : Op.operation) (args : list reg) : mon expr :=
  match op, args with
  | Op.Omove, r::nil => ret (Vvar r)
  | Op.Ointconst n, _ => ret (Vlit (intToValue n))
  | Op.Oneg, r::nil => ret (Vunop Vneg (Vvar r))
  | Op.Osub, r1::r2::nil => ret (bop Vsub r1 r2)
  | Op.Omul, r1::r2::nil => ret (bop Vmul r1 r2)
  | Op.Omulimm n, r::nil => ret (boplit Vmul r n)
  | Op.Omulhs, _ => error (Errors.msg "Veriloggen: Instruction not implemented: Omulhs")
  | Op.Omulhu, _ => error (Errors.msg "Veriloggen: Instruction not implemented: Omulhu")
  | Op.Odiv, r1::r2::nil => ret (bop Vdiv r1 r2)
  | Op.Odivu, r1::r2::nil => ret (bop Vdivu r1 r2)
  | Op.Omod, r1::r2::nil => ret (bop Vmod r1 r2)
  | Op.Omodu, r1::r2::nil => ret (bop Vmodu r1 r2)
  | Op.Oand, r1::r2::nil => ret (bop Vand r1 r2)
  | Op.Oandimm n, r::nil => ret (boplit Vand r n)
  | Op.Oor, r1::r2::nil => ret (bop Vor r1 r2)
  | Op.Oorimm n, r::nil => ret (boplit Vor r n)
  | Op.Oxor, r1::r2::nil => ret (bop Vxor r1 r2)
  | Op.Oxorimm n, r::nil => ret (boplit Vxor r n)
  | Op.Onot, r::nil => ret (Vunop Vnot (Vvar r))
  | Op.Oshl, r1::r2::nil => ret (bop Vshl r1 r2)
  | Op.Oshlimm n, r::nil => ret (boplit Vshl r n)
  | Op.Oshr, r1::r2::nil => ret (bop Vshr r1 r2)
  | Op.Oshrimm n, r::nil => ret (boplit Vshr r n)
  | Op.Oshrximm n, r::nil => error (Errors.msg "Veriloggen: Instruction not implemented: Oshrximm")
  | Op.Oshru, r1::r2::nil => error (Errors.msg "Veriloggen: Instruction not implemented: Oshru")
  | Op.Oshruimm n, r::nil => error (Errors.msg "Veriloggen: Instruction not implemented: Oshruimm")
  | Op.Ororimm n, r::nil => error (Errors.msg "Veriloggen: Instruction not implemented: Ororimm")
  | Op.Oshldimm n, r::nil => error (Errors.msg "Veriloggen: Instruction not implemented: Oshldimm")
  | Op.Ocmp c, _ => translate_condition c args
  | Op.Olea a, _ => translate_eff_addressing a args
  | _, _ => error (Errors.msg "Veriloggen: Instruction not implemented: other")
  end.

Lemma add_branch_instr_state_incr:
  forall s e n n1 n2,
    (st_datapath s) ! n = None ->
    (st_controllogic s) ! n = None ->
    st_incr s (mkstate
                 s.(st_st)
                (st_freshreg s)
                (st_freshstate s)
                (AssocMap.add n Vskip (st_datapath s))
                (AssocMap.add n (state_cond s.(st_st) e n1 n2) (st_controllogic s))).
Proof.
  intros. apply state_incr_intro; simpl;
            try (intros; destruct (peq n0 n); subst);
            auto with htlh.
Qed.

Definition add_branch_instr (e: expr) (n n1 n2: node) : mon unit :=
  fun s =>
    match check_empty_node_datapath s n, check_empty_node_controllogic s n with
    | left NSTM, left NTRANS =>
      OK tt (mkstate
               s.(st_st)
                (st_freshreg s)
                (st_freshstate s)
                (AssocMap.add n Vskip (st_datapath s))
                (AssocMap.add n (state_cond s.(st_st) e n1 n2) (st_controllogic s)))
         (add_branch_instr_state_incr s e n n1 n2 NSTM NTRANS)
    | _, _ => Error (Errors.msg "Veriloggen: add_branch_instr")
    end.

Definition transf_instr (fin rtrn: reg) (ni: node * instruction) : mon unit :=
  match ni with
    (n, i) =>
    match i with
    | Inop n' => add_instr n n' Vskip
    | Iop op args dst n' =>
      do instr <- translate_instr op args;
      add_instr n n' (block dst instr)
    | Iload _ _ _ _ _ => error (Errors.msg "Loads are not implemented.")
    | Istore _ _ _ _ _ => error (Errors.msg "Stores are not implemented.")
    | Icall _ _ _ _ _ => error (Errors.msg "Calls are not implemented.")
    | Itailcall _ _ _ => error (Errors.msg "Tailcalls are not implemented.")
    | Ibuiltin _ _ _ _ => error (Errors.msg "Builtin functions not implemented.")
    | Icond cond args n1 n2 =>
      do e <- translate_condition cond args;
      add_branch_instr e n n1 n2
    | Ijumptable _ _ => error (Errors.msg "Jumptable not implemented")
    | Ireturn r =>
      match r with
      | Some r' =>
        add_instr n n (Vseq (block fin (Vlit (ZToValue 1%nat 1%Z))) (block rtrn (Vvar r')))
      | None =>
        add_instr n n (block fin (Vlit (ZToValue 1%nat 1%Z)))
      end
    end
  end.

Lemma create_reg_state_incr:
  forall s,
    st_incr s (mkstate
         s.(st_st)
         (Pos.succ (st_freshreg s))
         (st_freshstate s)
         (st_datapath s)
         (st_controllogic s)).
Proof. constructor; simpl; auto with htlh. Qed.

Definition create_reg: mon reg :=
  fun s => let r := s.(st_freshreg) in
           OK r (mkstate
                   s.(st_st)
                   (Pos.succ r)
                   (st_freshstate s)
                   (st_datapath s)
                   (st_controllogic s))
              (create_reg_state_incr s).

Definition transf_module (f: function) : mon module :=
  do fin <- create_reg;
  do rtrn <- create_reg;
  do _ <- traverselist (transf_instr fin rtrn) (Maps.PTree.elements f.(RTL.fn_code));
  do start <- create_reg;
  do rst <- create_reg;
  do clk <- create_reg;
  do current_state <- get;
  ret (mkmodule
         f.(RTL.fn_params)
         current_state.(st_datapath)
         current_state.(st_controllogic)
         f.(fn_entrypoint)
         current_state.(st_st)
         fin
         rtrn).

Definition max_state (f: function) : state :=
  let st := Pos.succ (max_reg_function f) in
  mkstate st
          (Pos.succ st)
          (Pos.succ (max_pc_function f))
          (st_datapath (init_state st))
          (st_controllogic (init_state st)).

Definition transl_module (f : function) : Errors.res module :=
  run_mon (max_state f) (transf_module f).

Fixpoint main_function (main : ident) (flist : list (ident * AST.globdef fundef unit))
{struct flist} : option function :=
  match flist with
  | (i, AST.Gfun (AST.Internal f)) :: xs =>
    if Pos.eqb i main
    then Some f
    else main_function main xs
  | _ :: xs => main_function main xs
  | nil => None
  end.

Definition transf_program (d : program) : Errors.res module :=
  match main_function d.(AST.prog_main) d.(AST.prog_defs) with
  | Some f => run_mon (max_state f) (transf_module f)
  | _ => Errors.Error (Errors.msg "HTL: could not find main function")
  end.