aboutsummaryrefslogtreecommitdiffstats
path: root/src/translation/Veriloggen.v
blob: f0620bf4f68ebfea67f4ede16b56aa98b5489d96 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
(*
 * CoqUp: Verified high-level synthesis.
 * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

From Coq Require Import FSets.FMapPositive.

From coqup Require Import Verilog Coquplib.

From compcert Require Errors Op AST Integers Maps.
From compcert Require Import RTL.

Notation "a ! b" := (PositiveMap.find b a) (at level 1).

Definition node : Type := positive.
Definition reg : Type := positive.
Definition ident : Type := positive.

Inductive statetrans : Type :=
| StateGoto (p : node)
| StateCond (c : expr) (t f : node).

Definition valid_freshstate (stm: PositiveMap.t stmnt) (fs: node) :=
  forall (n: node),
    Plt n fs \/ stm!n = None.

Definition states_have_transitions (stm: PositiveMap.t stmnt) (st: PositiveMap.t statetrans) :=
  forall (n: node),
      (forall x, stm!n = Some x -> exists y, st!n = Some y)
      /\ (forall x, st!n = Some x -> exists y, stm!n = Some y).

Record state: Type := mkstate {
  st_freshreg: reg;
  st_freshstate: node;
  st_stm: PositiveMap.t stmnt;
  st_statetrans: PositiveMap.t statetrans;
  st_decl: PositiveMap.t nat;
  st_wf: valid_freshstate st_stm st_freshstate
         /\ states_have_transitions st_stm st_statetrans;
}.

Remark init_state_valid_freshstate:
  valid_freshstate (PositiveMap.empty stmnt) 1%positive.
Proof. intros. right. apply PositiveMap.gempty. Qed.

Remark init_state_states_have_transitions:
  states_have_transitions (PositiveMap.empty stmnt) (PositiveMap.empty statetrans).
Proof.
  unfold states_have_transitions.
  split; intros; rewrite PositiveMap.gempty in H; discriminate.
Qed.

Remark init_state_wf:
    valid_freshstate (PositiveMap.empty stmnt) 1%positive
    /\ states_have_transitions (PositiveMap.empty stmnt) (PositiveMap.empty statetrans).
Proof. split; intros. apply init_state_valid_freshstate. apply init_state_states_have_transitions. Qed.

Definition init_state : state :=
  mkstate 1%positive
          1%positive
          (PositiveMap.empty stmnt)
          (PositiveMap.empty statetrans)
          (PositiveMap.empty nat)
          init_state_wf.

Inductive state_incr: state -> state -> Prop :=
  state_incr_intro:
    forall (s1 s2: state),
      Ple s1.(st_freshreg) s2.(st_freshreg) ->
      Ple s1.(st_freshstate) s2.(st_freshstate) ->
      (forall n,
          s1.(st_stm)!n = None \/ s2.(st_stm)!n = s1.(st_stm)!n) ->
      (forall n,
          s1.(st_statetrans)!n = None
          \/ s2.(st_statetrans)!n = s1.(st_statetrans)!n) ->
      state_incr s1 s2.

Lemma state_incr_refl:
  forall s, state_incr s s.
Proof. intros. apply state_incr_intro;
                 try (apply Ple_refl);
                 try (intros; right; reflexivity).
Qed.

Lemma state_incr_trans:
  forall s1 s2 s3, state_incr s1 s2 -> state_incr s2 s3 -> state_incr s1 s3.
Proof.
  intros. inv H. inv H0. apply state_incr_intro.
  - apply Ple_trans with (st_freshreg s2); assumption.
  - apply Ple_trans with (st_freshstate s2); assumption.
  - intros. destruct H3 with n.
    + left. assumption.
    + destruct H6 with n.
      * rewrite <- H0. left. assumption.
      * right. rewrite <- H0. apply H8.
  - intros. destruct H4 with n.
    + left. assumption.
    + destruct H7 with n.
      * rewrite <- H0. left. assumption.
      * right. rewrite <- H0. apply H8.
Qed.

Inductive res (A: Type) (s: state): Type :=
| Error : Errors.errmsg -> res A s
| OK : A -> forall (s' : state), state_incr s s' -> res A s.

Arguments OK [A s].
Arguments Error [A s].

Definition mon (A: Type) : Type := forall (s: state), res A s.

Definition ret {A: Type} (x: A) : mon A :=
  fun (s : state) => OK x s (state_incr_refl s).

Definition bind {A B: Type} (f: mon A) (g: A -> mon B) : mon B :=
  fun (s : state) =>
    match f s with
    | Error msg => Error msg
    | OK a s' i =>
      match g a s' with
      | Error msg => Error msg
      | OK b s'' i' => OK b s'' (state_incr_trans s s' s'' i i')
      end
    end.

Definition bind2 {A B C: Type} (f: mon (A * B)) (g: A -> B -> mon C) : mon C :=
  bind f (fun xy => g (fst xy) (snd xy)).

Notation "'do' X <- A ; B" := (bind A (fun X => B))
(at level 200, X ident, A at level 100, B at level 200).
Notation "'do' ( X , Y ) <- A ; B" := (bind2 A (fun X Y => B))
(at level 200, X ident, Y ident, A at level 100, B at level 200).

Definition handle_error {A: Type} (f g: mon A) : mon A :=
  fun (s : state) =>
    match f s with
    | OK a s' i => OK a s' i
    | Error _ => g s
    end.

Definition error {A: Type} (err: Errors.errmsg) : mon A := fun (s: state) => Error err.

Definition get : mon state := fun s => OK s s (state_incr_refl s).

Definition set (s: state) (i: forall s', state_incr s' s) : mon unit :=
  fun s' => OK tt s (i s').

Definition run_mon {A: Type} (s: state) (m: mon A): Errors.res A :=
    match m s with
    | OK a s' i => Errors.OK a
    | Error err => Errors.Error err
    end.

Definition map_state (f: state -> state) (i: forall s, state_incr s (f s)): mon state :=
  fun s => let s' := f s in OK s' s' (i s).

Fixpoint traverselist {A B: Type} (f: A -> mon B) (l: list A) {struct l}: mon (list B) :=
  match l with
  | nil => ret nil
  | x::xs =>
    do r <- f x;
    do rs <- traverselist f xs;
    ret (r::rs)
  end.

Definition nonblock (dst : reg) (e : expr) := Vnonblock (Vvar dst) e.
Definition block (dst : reg) (e : expr) := Vblock (Vvar dst) e.

Definition bop (op : binop) (r1 r2 : reg) : expr :=
  Vbinop op (Vvar r1) (Vvar r2).

Definition boplit (op : binop) (r : reg) (l : Integers.int) : expr :=
  Vbinop op (Vvar r) (Vlit (intToValue l)).

Definition boplitz (op: binop) (r: reg) (l: Z) : expr :=
  Vbinop op (Vvar r) (Vlit (ZToValue 32%nat l)).

Definition translate_comparison (c : Integers.comparison) (args : list reg) : mon expr :=
  match c, args with
  | Integers.Ceq, r1::r2::nil => ret (bop Veq r1 r2)
  | Integers.Cne, r1::r2::nil => ret (bop Vne r1 r2)
  | Integers.Clt, r1::r2::nil => ret (bop Vlt r1 r2)
  | Integers.Cgt, r1::r2::nil => ret (bop Vgt r1 r2)
  | Integers.Cle, r1::r2::nil => ret (bop Vle r1 r2)
  | Integers.Cge, r1::r2::nil => ret (bop Vge r1 r2)
  | _, _ => error (Errors.msg "Veriloggen: comparison instruction not implemented: other")
  end.

Definition translate_comparison_imm (c : Integers.comparison) (args : list reg) (i: Integers.int)
  : mon expr :=
  match c, args with
  | Integers.Ceq, r1::nil => ret (boplit Veq r1 i)
  | Integers.Cne, r1::nil => ret (boplit Vne r1 i)
  | Integers.Clt, r1::nil => ret (boplit Vlt r1 i)
  | Integers.Cgt, r1::nil => ret (boplit Vgt r1 i)
  | Integers.Cle, r1::nil => ret (boplit Vle r1 i)
  | Integers.Cge, r1::nil => ret (boplit Vge r1 i)
  | _, _ => error (Errors.msg "Veriloggen: comparison_imm instruction not implemented: other")
  end.

Definition translate_condition (c : Op.condition) (args : list reg) : mon expr :=
  match c, args with
  | Op.Ccomp c, _ => translate_comparison c args
  | Op.Ccompu c, _ => translate_comparison c args
  | Op.Ccompimm c i, _ => translate_comparison_imm c args i
  | Op.Ccompuimm c i, _ => translate_comparison_imm c args i
  | Op.Cmaskzero n, _ => error (Errors.msg "Veriloggen: condition instruction not implemented: Cmaskzero")
  | Op.Cmasknotzero n, _ => error (Errors.msg "Veriloggen: condition instruction not implemented: Cmasknotzero")
  | _, _ => error (Errors.msg "Veriloggen: condition instruction not implemented: other")
  end.

Definition translate_eff_addressing (a: Op.addressing) (args: list reg) : mon expr :=
  match a, args with
  | Op.Aindexed off, r1::nil => ret (boplitz Vadd r1 off)
  | Op.Aindexed2 off, r1::r2::nil => ret (Vbinop Vadd (Vvar r1) (boplitz Vadd r2 off))
  | Op.Ascaled scale offset, r1::nil =>
    ret (Vbinop Vadd (boplitz Vadd r1 scale) (Vlit (ZToValue 32%nat offset)))
  | Op.Aindexed2scaled scale offset, r1::r2::nil =>
    ret (Vbinop Vadd (boplitz Vadd r1 offset) (boplitz Vmul r2 scale))
  | _, _ => error (Errors.msg "Veriloggen: eff_addressing instruction not implemented: other")
  end.

(** Translate an instruction to a statement. *)
Definition translate_instr (op : Op.operation) (args : list reg) : mon expr :=
  match op, args with
  | Op.Omove, r::nil => ret (Vvar r)
  | Op.Ointconst n, _ => ret (Vlit (intToValue n))
  | Op.Oneg, r::nil => ret (Vunop Vneg (Vvar r))
  | Op.Osub, r1::r2::nil => ret (bop Vsub r1 r2)
  | Op.Omul, r1::r2::nil => ret (bop Vmul r1 r2)
  | Op.Omulimm n, r::nil => ret (boplit Vmul r n)
  | Op.Omulhs, _ => error (Errors.msg "Veriloggen: Instruction not implemented: Omulhs")
  | Op.Omulhu, _ => error (Errors.msg "Veriloggen: Instruction not implemented: Omulhu")
  | Op.Odiv, r1::r2::nil => ret (bop Vdiv r1 r2)
  | Op.Odivu, r1::r2::nil => ret (bop Vdivu r1 r2)
  | Op.Omod, r1::r2::nil => ret (bop Vmod r1 r2)
  | Op.Omodu, r1::r2::nil => ret (bop Vmodu r1 r2)
  | Op.Oand, r1::r2::nil => ret (bop Vand r1 r2)
  | Op.Oandimm n, r::nil => ret (boplit Vand r n)
  | Op.Oor, r1::r2::nil => ret (bop Vor r1 r2)
  | Op.Oorimm n, r::nil => ret (boplit Vor r n)
  | Op.Oxor, r1::r2::nil => ret (bop Vxor r1 r2)
  | Op.Oxorimm n, r::nil => ret (boplit Vxor r n)
  | Op.Onot, r::nil => ret (Vunop Vnot (Vvar r))
  | Op.Oshl, r1::r2::nil => ret (bop Vshl r1 r2)
  | Op.Oshlimm n, r::nil => ret (boplit Vshl r n)
  | Op.Oshr, r1::r2::nil => ret (bop Vshr r1 r2)
  | Op.Oshrimm n, r::nil => ret (boplit Vshr r n)
  | Op.Oshrximm n, r::nil => error (Errors.msg "Veriloggen: Instruction not implemented: Oshrximm")
  | Op.Oshru, r1::r2::nil => error (Errors.msg "Veriloggen: Instruction not implemented: Oshru")
  | Op.Oshruimm n, r::nil => error (Errors.msg "Veriloggen: Instruction not implemented: Oshruimm")
  | Op.Ororimm n, r::nil => error (Errors.msg "Veriloggen: Instruction not implemented: Ororimm")
  | Op.Oshldimm n, r::nil => error (Errors.msg "Veriloggen: Instruction not implemented: Oshldimm")
  | Op.Ocmp c, _ => translate_condition c args
  | Op.Olea a, _ => translate_eff_addressing a args
  | _, _ => error (Errors.msg "Veriloggen: Instruction not implemented: other")
  end.

Remark add_instr_valid_freshstate:
  forall (s: state) (n: node) (st: stmnt),
    Plt n (st_freshstate s) ->
    valid_freshstate (PositiveMap.add n st s.(st_stm)) (st_freshstate s).
Proof.
  unfold valid_freshstate. intros.
  case (peq n0 n); intro.
  subst n0. left. assumption.
  rewrite PositiveMap.gso.
  apply (st_wf s). assumption.
Qed.

Remark add_instr_states_have_transitions:
  forall (s: state) (n n': node) (st: stmnt),
  states_have_transitions
    (PositiveMap.add n st s.(st_stm))
    (PositiveMap.add n (StateGoto n') s.(st_statetrans)).
Proof.
  unfold states_have_transitions. split; intros.
  - case (peq n0 n); intro.
    subst. exists (StateGoto n'). apply PositiveMap.gss.
    rewrite PositiveMap.gso. rewrite PositiveMap.gso in H.
    assert (H2 := st_wf s). inv H2. unfold states_have_transitions in H1.
    destruct H1 with n0. apply H2 with x. assumption. assumption. assumption.
  - case (peq n0 n); intro.
    subst. exists st. apply PositiveMap.gss.
    rewrite PositiveMap.gso. rewrite PositiveMap.gso in H.
    assert (H2 := st_wf s). inv H2. unfold states_have_transitions in H1.
    destruct H1 with n0. apply H3 with x. assumption. assumption. assumption.
Qed.

Remark add_instr_state_wf:
  forall (s: state) (n n': node) (st: stmnt) (LT: Plt n (st_freshstate s)),
    valid_freshstate (PositiveMap.add n st (st_stm s)) (st_freshstate s)
    /\ states_have_transitions
     (PositiveMap.add n st s.(st_stm))
     (PositiveMap.add n (StateGoto n') s.(st_statetrans)).
Proof.
  split; intros. apply add_instr_valid_freshstate. assumption.
  apply add_instr_states_have_transitions.
Qed.

Lemma add_instr_state_incr :
  forall s n n' st LT,
    (st_stm s)!n = None ->
    (st_statetrans s)!n = None ->
    state_incr s
    (mkstate s.(st_freshreg)
             (st_freshstate s)
             (PositiveMap.add n st s.(st_stm))
             (PositiveMap.add n (StateGoto n') s.(st_statetrans))
             s.(st_decl)
             (add_instr_state_wf s n n' st LT)).
Proof.
  intros. apply state_incr_intro; intros; simpl; try reflexivity;
            destruct (peq n n0); try (subst; left; assumption);
              right; apply PositiveMap.gso; apply not_eq_sym; assumption.
Qed.

Definition check_empty_node_stm:
  forall (s: state) (n: node), { s.(st_stm)!n = None } + { True }.
Proof.
  intros. case (s.(st_stm)!n); intros. right; auto. left; auto.
Defined.

Definition check_empty_node_statetrans:
  forall (s: state) (n: node), { s.(st_statetrans)!n = None } + { True }.
Proof.
  intros. case (s.(st_statetrans)!n); intros. right; auto. left; auto.
Defined.

Definition add_instr (n : node) (n' : node) (st : stmnt) : mon unit :=
  fun s =>
    match plt n (st_freshstate s), check_empty_node_stm s n, check_empty_node_statetrans s n with
    | left LT, left STM, left TRANS =>
      OK tt (mkstate s.(st_freshreg)
                     (st_freshstate s)
                     (PositiveMap.add n st s.(st_stm))
                     (PositiveMap.add n (StateGoto n') s.(st_statetrans))
                     s.(st_decl)
                     (add_instr_state_wf s n n' st LT))
         (add_instr_state_incr s n n' st LT STM TRANS)
    | _, _, _ => Error (Errors.msg "Veriloggen.add_instr")
    end.

Definition add_reg (r: reg) (s: state) : state :=
  mkstate (st_freshreg s)
          (st_freshstate s)
          (st_stm s)
          (st_statetrans s)
          (PositiveMap.add r 32%nat (st_decl s))
          (st_wf s).

Lemma add_reg_state_incr:
  forall r s,
  state_incr s (add_reg r s).
Proof.
  intros. apply state_incr_intro; unfold add_reg; try right; reflexivity.
Qed.

Definition add_instr_reg (r: reg) (n: node) (n': node) (st: stmnt) : mon unit :=
  do _ <- map_state (add_reg r) (add_reg_state_incr r);
  add_instr n n' st.

Lemma change_decl_state_incr:
  forall s decl',
    state_incr s (mkstate
         (st_freshreg s)
         (st_freshstate s)
         (st_stm s)
         (st_statetrans s)
         decl'
         (st_wf s)).
Proof.
  intros. apply state_incr_intro; simpl; try reflexivity; right; reflexivity.
Qed.

Lemma decl_io_state_incr:
  forall s,
    state_incr s (mkstate
         (Pos.succ (st_freshreg s))
         (st_freshstate s)
         (st_stm s)
         (st_statetrans s)
         (st_decl s)
         (st_wf s)).
Proof.
  intros. apply state_incr_intro; try right; try reflexivity.
  simpl. apply Ple_succ.
Qed.

Definition decl_io (sz: nat): mon (reg * nat) :=
  fun s => let r := s.(st_freshreg) in
           OK (r, sz) (mkstate
                     (Pos.succ r)
                     (st_freshstate s)
                     (st_stm s)
                     (st_statetrans s)
                     (st_decl s)
                     (st_wf s))
              (decl_io_state_incr s).

Definition declare_reg (r: reg) (sz: nat): mon (reg * nat) :=
  fun s => OK (r, sz) (mkstate
                      (st_freshreg s)
                      (st_freshstate s)
                      (st_stm s)
                      (st_statetrans s)
                      (PositiveMap.add r sz s.(st_decl))
                      (st_wf s))
              (change_decl_state_incr s (PositiveMap.add r sz s.(st_decl))).

Definition decl_fresh_reg (sz : nat) : mon (reg * nat) :=
  do (r, s) <- decl_io sz;
  declare_reg r s.

Lemma add_branch_instr_states_have_transitions:
  forall s e n n1 n2,
    states_have_transitions (PositiveMap.add n Vskip (st_stm s))
                            (PositiveMap.add n (StateCond e n1 n2) (st_statetrans s)).
Proof.
  split; intros.
  - destruct (peq n0 n).
    + subst. exists (StateCond e n1 n2). apply PositiveMap.gss.
    + rewrite PositiveMap.gso. rewrite PositiveMap.gso in H.
      assert (H1 := (st_wf s)). inv H1. unfold states_have_transitions in H2.
      destruct H2 with n0. apply H1 with x. assumption. assumption. assumption.
  - destruct (peq n0 n).
    + subst. exists Vskip. apply PositiveMap.gss.
    + rewrite PositiveMap.gso. rewrite PositiveMap.gso in H.
      assert (H1 := (st_wf s)). inv H1. unfold states_have_transitions in H2.
      destruct H2 with n0. apply H3 with x. assumption. assumption. assumption.
Qed.

Lemma add_branch_valid_freshstate:
  forall s n,
  Plt n (st_freshstate s) ->
  valid_freshstate (PositiveMap.add n Vskip (st_stm s)) (st_freshstate s).
Proof.
  unfold valid_freshstate. intros. destruct (peq n0 n).
    - subst. left. assumption.
    - assert (H1 := st_wf s). destruct H1.
      unfold valid_freshstate in H0. rewrite PositiveMap.gso. apply H0.
      assumption.
Qed.

Lemma add_branch_instr_st_wf:
  forall s e n n1 n2,
    Plt n (st_freshstate s) ->
    valid_freshstate (PositiveMap.add n Vskip (st_stm s)) (st_freshstate s)
    /\ states_have_transitions (PositiveMap.add n Vskip (st_stm s))
                               (PositiveMap.add n (StateCond e n1 n2) (st_statetrans s)).
Proof.
  split; intros. apply add_branch_valid_freshstate. assumption.
  apply add_branch_instr_states_have_transitions.
Qed.

Lemma add_branch_instr_state_incr:
  forall s e n n1 n2 LT,
    (st_stm s) ! n = None ->
    (st_statetrans s) ! n = None ->
    state_incr s (mkstate
                (st_freshreg s)
                (st_freshstate s)
                (PositiveMap.add n Vskip (st_stm s))
                (PositiveMap.add n (StateCond e n1 n2) (st_statetrans s))
                (st_decl s)
                (add_branch_instr_st_wf s e n n1 n2 LT)).
Proof.
  intros. apply state_incr_intro; simpl; try reflexivity; intros; destruct (peq n0 n);
            try (subst; left; assumption); right; apply PositiveMap.gso; assumption.
Qed.

Definition add_branch_instr (e: expr) (n n1 n2: node) : mon unit :=
  fun s =>
    match plt n (st_freshstate s), check_empty_node_stm s n, check_empty_node_statetrans s n with
    | left LT, left NSTM, left NTRANS =>
      OK tt (mkstate
                (st_freshreg s)
                (st_freshstate s)
                (PositiveMap.add n Vskip (st_stm s))
                (PositiveMap.add n (StateCond e n1 n2) (st_statetrans s))
                (st_decl s)
                (add_branch_instr_st_wf s e n n1 n2 LT))
         (add_branch_instr_state_incr s e n n1 n2 LT NSTM NTRANS)
    | _, _, _ => Error (Errors.msg "Veriloggen: add_branch_instr")
    end.

Definition transf_instr (fin rtrn: reg) (ni: node * instruction) : mon unit :=
  match ni with
    (n, i) =>
    match i with
    | Inop n' => add_instr n n' Vskip
    | Iop op args dst n' =>
      do instr <- translate_instr op args;
      add_instr_reg dst n n' (block dst instr)
    | Iload _ _ _ _ _ => error (Errors.msg "Loads are not implemented.")
    | Istore _ _ _ _ _ => error (Errors.msg "Stores are not implemented.")
    | Icall _ _ _ _ _ => error (Errors.msg "Calls are not implemented.")
    | Itailcall _ _ _ => error (Errors.msg "Tailcalls are not implemented.")
    | Ibuiltin _ _ _ _ => error (Errors.msg "Builtin functions not implemented.")
    | Icond cond args n1 n2 =>
      do e <- translate_condition cond args;
      add_branch_instr e n n1 n2
    | Ijumptable _ _ => error (Errors.msg "Jumptable not implemented")
    | Ireturn r =>
      match r with
      | Some r' =>
        add_instr n n (Vseq (block fin (Vlit (ZToValue 1%nat 1%Z)) :: block rtrn (Vvar r') :: nil))
      | None =>
        add_instr n n (Vseq (block fin (Vlit (ZToValue 1%nat 1%Z)) :: nil))
      end
    end
  end.

Definition make_stm_cases (s : positive * stmnt) : expr * stmnt :=
  match s with (a, b) => (posToExpr a, b) end.

Definition make_stm (r : reg) (s : PositiveMap.t stmnt) : stmnt :=
  Vcase (Vvar r) (map make_stm_cases (PositiveMap.elements s)).

Definition make_statetrans_cases (r : reg) (st : positive * statetrans) : expr * stmnt :=
  match st with
  | (n, StateGoto n') => (posToExpr n, nonblock r (posToExpr n'))
  | (n, StateCond c n1 n2) => (posToExpr n, nonblock r (Vternary c (posToExpr n1) (posToExpr n2)))
  end.

Definition make_statetrans (r : reg) (s : PositiveMap.t statetrans) : stmnt :=
  Vcase (Vvar r) (map (make_statetrans_cases r) (PositiveMap.elements s)).

Fixpoint allocate_regs (e : list (reg * nat)) {struct e} : list module_item :=
  match e with
  | (r, n)::es => Vdecl r n :: allocate_regs es
  | nil => nil
  end.

Definition make_module_items (entry: node) (clk st rst: reg) (s: state) : list module_item :=
  (Valways (Voredge (Vposedge clk) (Vposedge rst))
    (Vcond (Vbinop Veq (Vvar rst) (Vlit (ZToValue 1%nat 1%Z)))
      (nonblock st (posToExpr entry))
      (make_statetrans st s.(st_statetrans))))
  :: (Valways Valledge (make_stm st s.(st_stm)))
  :: (allocate_regs (PositiveMap.elements s.(st_decl))).

(** To start out with, the assumption is made that there is only one
    function/module in the original code. *)

Definition set_int_size (r: reg) : reg * nat := (r, 32%nat).

Definition transf_module (f: function) : mon module :=
  do fin <- decl_io 1%nat;
  do rtrn <- decl_io 32%nat;
  do _ <- traverselist (transf_instr (fst fin) (fst rtrn)) (Maps.PTree.elements f.(fn_code));
  do start <- decl_io 1%nat;
  do rst <- decl_io 1%nat;
  do clk <- decl_io 1%nat;
  do st <- decl_fresh_reg 32%nat;
  do current_state <- get;
  let mi := make_module_items f.(fn_entrypoint) (fst clk) (fst st) (fst rst) current_state in
  ret (mkmodule start rst clk fin rtrn (map set_int_size f.(fn_params)) mi).

Fixpoint main_function (main : ident) (flist : list (ident * AST.globdef fundef unit))
{struct flist} : option function :=
  match flist with
  | (i, AST.Gfun (AST.Internal f)) :: xs =>
    if Pos.eqb i main
    then Some f
    else main_function main xs
  | _ :: xs => main_function main xs
  | nil => None
  end.

Lemma max_state_valid_freshstate:
  forall f,
    valid_freshstate (st_stm init_state) (Pos.succ (max_pc_function f)).
Proof.
  unfold valid_freshstate. intros. right. simpl. apply PositiveMap.gempty.
Qed.

Lemma max_state_st_wf:
  forall f,
    valid_freshstate (st_stm init_state) (Pos.succ (max_pc_function f))
    /\ states_have_transitions (st_stm init_state) (st_statetrans init_state).
Proof.
  split. apply max_state_valid_freshstate.
  apply init_state_states_have_transitions.
Qed.

Definition max_state (f: function) : state :=
  mkstate (Pos.succ (max_reg_function f))
          (Pos.succ (max_pc_function f))
          (st_stm init_state)
          (st_statetrans init_state)
          (st_decl init_state)
          (max_state_st_wf f).

Definition transf_program (d : program) : Errors.res module :=
  match main_function d.(AST.prog_main) d.(AST.prog_defs) with
  | Some f => run_mon (max_state f) (transf_module f)
  | _ => Errors.Error (Errors.msg "Veriloggen: could not find main function")
  end.