aboutsummaryrefslogtreecommitdiffstats
path: root/src/translation/Veriloggen.v
blob: c2614ec9cc944ce87f28a1d7225acbdc2f00b266 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
(*
 * CoqUp: Verified high-level synthesis.
 * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

From Coq Require Import FSets.FMapPositive.

From coqup Require Import Verilog Coquplib.

From compcert Require Errors Op AST Integers Maps.
From compcert Require Import RTL.

Definition node : Type := positive.
Definition reg : Type := positive.
Definition ident : Type := positive.

Inductive statetrans : Type :=
| StateGoto (p : node)
| StateCond (c : expr) (t f : node).

Record state: Type := mkstate {
  st_freshreg : reg;
  st_freshstate : node;
  st_stm : PositiveMap.t stmnt;
  st_statetrans : PositiveMap.t statetrans;
  st_decl : list (reg * nat);
  st_fin : option reg;
  st_ret : option reg;
}.

(** Map from initial register allocations to new allocations. *)
Definition mapping: Type := PositiveMap.t reg.

Definition init_state : state :=
  mkstate 1%positive
          1%positive
          (PositiveMap.empty stmnt)
          (PositiveMap.empty statetrans)
          nil
          None
          None.

Inductive res (A: Type) (s: state): Type :=
| Error : Errors.errmsg -> res A s
| OK : A -> forall (_ : state), res A s.

Arguments OK [A s].
Arguments Error [A s].

Definition mon (A: Type) : Type := forall (s: state), res A s.

Definition ret {A: Type} (x: A) : mon A :=
  fun (s : state) => OK x s.

Definition bind {A B: Type} (f: mon A) (g: A -> mon B) : mon B :=
  fun (s : state) =>
    match f s with
    | Error msg => Error msg
    | OK a s' =>
      match g a s' with
      | Error msg => Error msg
      | OK b s'' => OK b s''
      end
    end.

Definition bind2 {A B C: Type} (f: mon (A * B)) (g: A -> B -> mon C) : mon C :=
  bind f (fun xy => g (fst xy) (snd xy)).

Notation "'do' X <- A ; B" := (bind A (fun X => B))
(at level 200, X ident, A at level 100, B at level 200).
Notation "'do' ( X , Y ) <- A ; B" := (bind2 A (fun X Y => B))
(at level 200, X ident, Y ident, A at level 100, B at level 200).

Definition handle_error {A: Type} (f g: mon A) : mon A :=
  fun (s : state) =>
    match f s with
    | OK a s' => OK a s'
    | Error _ => g s
    end.

Definition error {A: Type} (err: Errors.errmsg) : mon A := fun (s: state) => Error err.

Definition get : mon state := fun s => OK s s.

Definition set (s: state) : mon unit := fun _ => OK tt s.

Definition run_mon {A: Type} (s: state) (m: mon A): Errors.res A :=
    match m s with
    | OK a s' => Errors.OK a
    | Error err => Errors.Error err
    end.

Definition map_state (f: state -> state): mon state :=
  fun s => let s' := f s in OK s' s'.

Fixpoint traverselist {A B: Type} (f: A -> mon B) (l: list A) {struct l}: mon (list B) :=
  match l with
  | nil => ret nil
  | x::xs =>
    do r <- f x;
    do rs <- traverselist f xs;
    ret (r::rs)
  end.

Definition nonblock (dst : reg) (e : expr) := Vnonblock (Vvar dst) e.
Definition block (dst : reg) (e : expr) := Vblock (Vvar dst) e.

Definition bop (op : binop) (r1 r2 : reg) : option expr :=
  Some (Vbinop op (Vvar r1) (Vvar r2)).

Definition boplit (op : binop) (r : reg) (l : Integers.int) : option expr :=
  Some (Vbinop op (Vvar r) (Vlit (intToValue l))).

Definition translate_comparison (c : Integers.comparison) (args : list reg) : option expr :=
  match c, args with
  | Integers.Ceq, r1::r2::nil => bop Veq r1 r2
  | Integers.Cne, r1::r2::nil => bop Vne r1 r2
  | Integers.Clt, r1::r2::nil => bop Vlt r1 r2
  | Integers.Cgt, r1::r2::nil => bop Vgt r1 r2
  | Integers.Cle, r1::r2::nil => bop Vle r1 r2
  | Integers.Cge, r1::r2::nil => bop Vge r1 r2
  | _, _ => None
  end.

Definition translate_condition (c : Op.condition) (args : list reg) : option expr :=
  match c, args with
  | Op.Ccomp c, _ => translate_comparison c args
  | Op.Ccompu c, _ => None
  | Op.Ccompimm c i, _ => None
  | Op.Ccompuimm c i, _ => None
  | Op.Cmaskzero n, _ => None
  | Op.Cmasknotzero n, _ => None
  | _, _ => None
  end.

(** Translate an instruction to a statement. *)
Definition translate_instr (op : Op.operation) (args : list reg) : option expr :=
  match op, args with
  | Op.Omove, r::nil => Some (Vvar r)
  | Op.Ointconst n, _ => Some (Vlit (intToValue n))
  | Op.Oneg, r::nil => Some (Vunop Vneg (Vvar r))
  | Op.Osub, r1::r2::nil => bop Vsub r1 r2
  | Op.Omul, r1::r2::nil => bop Vmul r1 r2
  | Op.Omulimm n, r::nil => boplit Vmul r n
  | Op.Omulhs, _ => None
  | Op.Omulhu, _ => None
  | Op.Odiv, r1::r2::nil => bop Vdiv r1 r2
  | Op.Odivu, r1::r2::nil => bop Vdivu r1 r2
  | Op.Omod, r1::r2::nil => bop Vmod r1 r2
  | Op.Omodu, r1::r2::nil => bop Vmodu r1 r2
  | Op.Oand, r1::r2::nil => bop Vand r1 r2
  | Op.Oandimm n, r::nil => boplit Vand r n
  | Op.Oor, r1::r2::nil => bop Vor r1 r2
  | Op.Oorimm n, r::nil => boplit Vor r n
  | Op.Oxor, r1::r2::nil => bop Vxor r1 r2
  | Op.Oxorimm n, r::nil => boplit Vxor r n
  | Op.Onot, r::nil => Some (Vunop Vnot (Vvar r))
  | Op.Oshl, r1::r2::nil => bop Vshl r1 r2
  | Op.Oshlimm n, r::nil => boplit Vshl r n
  | Op.Oshr, r1::r2::nil => bop Vshr r1 r2
  | Op.Oshrimm n, r::nil => boplit Vshr r n
  | Op.Oshrximm n, r::nil => None
  | Op.Oshru, r1::r2::nil => None
  | Op.Oshruimm n, r::nil => None
  | Op.Ororimm n, r::nil => None
  | Op.Oshldimm n, r::nil => None
  | Op.Ocmp c, _ => translate_condition c args
  | _, _ => None
  end.

Definition add_instr (n : node) (n' : node) (st : stmnt) : mon node :=
  fun s =>
    OK n' (mkstate s.(st_freshreg)
                   (Pos.max (Pos.succ n) s.(st_freshstate))
                   (PositiveMap.add n st s.(st_stm))
                   (PositiveMap.add n (StateGoto n') s.(st_statetrans))
                   s.(st_decl)
                   s.(st_fin)
                   s.(st_ret)).

Definition add_reg (r: reg) (s: state) : state :=
  mkstate (Pos.max (Pos.succ r) s.(st_freshreg))
          s.(st_freshstate)
          s.(st_stm)
          s.(st_statetrans)
          ((r, 32%nat) :: s.(st_decl))
          s.(st_fin)
          s.(st_ret).

Definition add_instr_reg (r: reg) (n: node) (n': node) (st: stmnt) : mon node :=
  do _ <- map_state (add_reg r);
  add_instr n n' st.

Definition decl_fresh_reg (sz : nat) : mon reg :=
  fun s =>
    let r := s.(st_freshreg) in
    OK r (mkstate
         (Pos.succ r)
         s.(st_freshstate)
         s.(st_stm)
         s.(st_statetrans)
         ((r, sz) :: s.(st_decl))
         s.(st_fin)
         s.(st_ret)).

Definition add_fin_ret (f r: reg) : mon unit :=
  fun s => OK tt (mkstate
    s.(st_freshreg)
    s.(st_freshstate)
    s.(st_stm)
    s.(st_statetrans)
    s.(st_decl)
    (Some f) (Some r)).

Definition transf_instr (ni: node * instruction) : mon node :=
  match ni with
    (n, i) =>
    match i with
    | Inop n' => add_instr n n' Vskip
    | Iop op args dst n' =>
      match translate_instr op args with
      | Some instr => add_instr_reg dst n n' (block dst instr)
      | _ => error (Errors.msg "Instruction is not implemented.")
      end
    | Iload _ _ _ _ _ => error (Errors.msg "Loads are not implemented.")
    | Istore _ _ _ _ _ => error (Errors.msg "Stores are not implemented.")
    | Icall _ _ _ _ _ => error (Errors.msg "Calls are not implemented.")
    | Itailcall _ _ _ => error (Errors.msg "Tailcalls are not implemented.")
    | Ibuiltin _ _ _ _ => error (Errors.msg "Builtin functions not implemented.")
    | Icond cond args n1 n2 => error (Errors.msg "Condition not implemented.")
    | Ijumptable _ _ => error (Errors.msg "Jumptable not implemented.")
    | Ireturn r =>
      do fin <- decl_fresh_reg 1%nat;
      do rtrn <- decl_fresh_reg 32%nat;
      do _ <- add_fin_ret fin rtrn;
      match r with
      | Some r' =>
        add_instr n n (Vseq (block fin (Vlit (ZToValue 1%nat 1%Z)) :: block rtrn (Vvar r') :: nil))
      | None =>
        add_instr n n (Vseq (block fin (Vlit (ZToValue 1%nat 1%Z)) :: nil))
      end
    end
  end.

Definition make_stm_cases (s : positive * stmnt) : expr * stmnt :=
  match s with (a, b) => (posToExpr a, b) end.

Definition make_stm (r : reg) (s : PositiveMap.t stmnt) : stmnt :=
  Vcase (Vvar r) (map make_stm_cases (PositiveMap.elements s)).

Definition make_statetrans_cases (r : reg) (st : positive * statetrans) : expr * stmnt :=
  match st with
  | (n, StateGoto n') => (posToExpr n, nonblock r (posToExpr n'))
  | (n, StateCond c n1 n2) => (posToExpr n, nonblock r (Vternary c (posToExpr n1) (posToExpr n2)))
  end.

Definition make_statetrans (r : reg) (s : PositiveMap.t statetrans) : stmnt :=
  Vcase (Vvar r) (map (make_statetrans_cases r) (PositiveMap.elements s)).

Fixpoint allocate_regs (e : list (reg * nat)) {struct e} : list module_item :=
  match e with
  | (r, n)::es => Vdecl r n (Vlit (ZToValue n 0%Z)) :: allocate_regs es
  | nil => nil
  end.

Definition make_module_items (entry: node) (clk st rst: reg) (s: state) : list module_item :=
  (Valways (Voredge (Vposedge clk) (Vposedge rst))
    (Vcond (Vbinop Veq (Vvar rst) (Vlit (ZToValue 1%nat 1%Z)))
      (nonblock st (posToExpr entry))
      (make_statetrans st s.(st_statetrans))))
  :: (Valways Valledge (make_stm st s.(st_stm)))
  :: (allocate_regs s.(st_decl)).

(** To start out with, the assumption is made that there is only one
    function/module in the original code. *)

Definition transf_module (f: function) : mon module :=
  do _ <- traverselist transf_instr (Maps.PTree.elements f.(fn_code));
  do start <- decl_fresh_reg 1%nat;
  do rst <- decl_fresh_reg 1%nat;
  do clk <- decl_fresh_reg 1%nat;
  do st <- decl_fresh_reg 32%nat;
  do current_state <- get;
  let mi := make_module_items f.(fn_entrypoint) clk st rst current_state in
  match current_state.(st_fin), current_state.(st_ret) with
  | Some fin, Some rtrn =>
    ret (mkmodule start rst clk fin rtrn f.(fn_params) mi)
  | _, _ => error (Errors.msg "Veriloggen: finish and return signals not generated")
  end.

Fixpoint main_function (main : ident) (flist : list (ident * AST.globdef fundef unit))
{struct flist} : option function :=
  match flist with
  | (i, AST.Gfun (AST.Internal f)) :: xs =>
    if Pos.eqb i main
    then Some f
    else main_function main xs
  | _ :: xs => main_function main xs
  | nil => None
  end.

Definition transf_program (d : program) : Errors.res module :=
  match main_function d.(AST.prog_main) d.(AST.prog_defs) with
  | Some f => run_mon init_state (transf_module f)
  | _ => Errors.Error (Errors.msg "Veriloggen: could not find main module")
  end.