aboutsummaryrefslogtreecommitdiffstats
path: root/src/verilog/Array.v
blob: 0b6e2a994f9be19dd959489e00fc77f2fe165b5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
Set Implicit Arguments.

Require Import Lia.
Require Import Coquplib.
From Coq Require Import Lists.List Datatypes.

Import ListNotations.

Local Open Scope nat_scope.

Record Array (A : Type) : Type :=
  mk_array
    { arr_contents : list A
    ; arr_length : nat
    ; arr_wf : length arr_contents = arr_length
    }.

Definition make_array {A : Type} (l : list A) : Array A :=
  @mk_array A l (length l) eq_refl.

Fixpoint list_set {A : Type} (i : nat) (x : A) (l : list A) {struct l} : list A :=
  match i, l with
  | _, nil => nil
  | S n, h :: t => h :: list_set n x t
  | O, h :: t => x :: t
  end.

Lemma list_set_spec1 {A : Type} :
  forall l i (x : A),
    i < length l -> nth_error (list_set i x l) i = Some x.
Proof.
  induction l; intros; destruct i; simplify; try lia; try reflexivity; firstorder.
Qed.
Hint Resolve list_set_spec1 : array.

Lemma list_set_spec2 {A : Type} :
  forall l i (x : A) d,
    i < length l -> nth i (list_set i x l) d = x.
Proof.
  induction l; intros; destruct i; simplify; try lia; try reflexivity; firstorder.
Qed.
Hint Resolve list_set_spec2 : array.

Lemma array_set_wf {A : Type} :
  forall l ln i (x : A),
    length l = ln -> length (list_set i x l) = ln.
Proof.
  induction l; intros; destruct i; auto.

  invert H; simplify; auto.
Qed.

Definition array_set {A : Type} (i : nat) (x : A) (a : Array A) :=
  let l := a.(arr_contents) in
  let ln := a.(arr_length) in
  let WF := a.(arr_wf) in
  @mk_array A (list_set i x l) ln (@array_set_wf A l ln i x WF).

Lemma array_set_spec1 {A : Type} :
  forall a i (x : A),
    i < a.(arr_length) -> nth_error ((array_set i x a).(arr_contents)) i = Some x.
Proof.
  intros.

  rewrite <- a.(arr_wf) in H.
  unfold array_set. simplify.
  eauto with array.
Qed.
Hint Resolve array_set_spec1 : array.

Lemma array_set_spec2 {A : Type} :
  forall a i (x : A) d,
    i < a.(arr_length) -> nth i ((array_set i x a).(arr_contents)) d = x.
Proof.
  intros.

  rewrite <- a.(arr_wf) in H.
  unfold array_set. simplify.
  eauto with array.
Qed.
Hint Resolve array_set_spec2 : array.

Definition array_get_error {A : Type} (i : nat) (a : Array A) : option A :=
  nth_error a.(arr_contents) i.

Lemma array_get_error_bound {A : Type} :
  forall (a : Array A) i,
    i < a.(arr_length) -> exists x, array_get_error i a = Some x.
Proof.
  intros.

  rewrite <- a.(arr_wf) in H.
  assert (~ length (arr_contents a) <= i) by lia.

  pose proof (nth_error_None a.(arr_contents) i).
  apply not_iff_compat in H1.
  apply <- H1 in H0.

  destruct (nth_error (arr_contents a) i ) eqn:EQ; try contradiction; eauto.
Qed.

Lemma array_get_error_set_bound {A : Type} :
  forall (a : Array A) i x,
    i < a.(arr_length) -> array_get_error i (array_set i x a) = Some x.
Proof.
  intros.

  unfold array_get_error.
  eauto with array.
Qed.

Definition array_get {A : Type} (i : nat) (x : A) (a : Array A) : A :=
  nth i a.(arr_contents) x.

Lemma array_get_set_bound {A : Type} :
  forall (a : Array A) i x d,
    i < a.(arr_length) -> array_get i d (array_set i x a) = x.
Proof.
  intros.

  unfold array_get.
  info_eauto with array.
Qed.

(** Tail recursive version of standard library function. *)
Fixpoint list_repeat' {A : Type} (acc : list A) (a : A) (n : nat) : list A :=
  match n with
  | O => acc
  | S n => list_repeat' (a::acc) a n
  end.

Lemma list_repeat'_len {A : Type} : forall (a : A) n l,
    length (list_repeat' l a n) = (n + Datatypes.length l)%nat.
Proof.
  induction n; intros; simplify; try reflexivity.

  specialize (IHn (a :: l)).
  rewrite IHn.
  simplify.
  lia.
Qed.

Lemma list_repeat'_app {A : Type} : forall (a : A) n l,
    list_repeat' l a n = list_repeat' [] a n ++ l.
Proof.
  induction n; intros; simplify; try reflexivity.

  pose proof IHn.
  specialize (H (a :: l)).
  rewrite H. clear H.
  specialize (IHn (a :: nil)).
  rewrite IHn. clear IHn.
  remember (list_repeat' [] a n) as l0.

  rewrite <- app_assoc.
  f_equal.
Qed.

Lemma list_repeat'_head_tail {A : Type} : forall n (a : A),
  a :: list_repeat' [] a n = list_repeat' [] a n ++ [a].
Proof.
  induction n; intros; simplify; try reflexivity.
  rewrite list_repeat'_app.

  replace (a :: list_repeat' [] a n ++ [a]) with (list_repeat' [] a n ++ [a] ++ [a]).
  2: { rewrite app_comm_cons. rewrite IHn; auto.
       rewrite app_assoc. reflexivity. }
  rewrite app_assoc. reflexivity.
Qed.

Lemma list_repeat'_cons {A : Type} : forall (a : A) n,
    list_repeat' [a] a n = a :: list_repeat' [] a n.
Proof.
  intros.

  rewrite list_repeat'_head_tail; auto.
  apply list_repeat'_app.
Qed.

Definition list_repeat {A : Type} : A -> nat -> list A := list_repeat' nil.

Lemma list_repeat_len {A : Type} : forall n (a : A), length (list_repeat a n) = n.
Proof.
  intros.
  unfold list_repeat.
  rewrite list_repeat'_len.
  simplify. lia.
Qed.

Lemma dec_list_repeat_spec {A : Type} : forall n (a : A) a',
    (forall x x' : A, {x' = x} + {~ x' = x}) ->
    In a' (list_repeat a n) -> a' = a.
Proof.
  induction n; intros; simplify; try contradiction.

  unfold list_repeat in *.
  simplify.

  rewrite list_repeat'_app in H.
  pose proof (X a a').
  destruct H0; auto.

  (* This is actually a degenerate case, not an unprovable goal. *)
  pose proof (in_app_or (list_repeat' [] a n) ([a])).
  apply H0 in H. invert H.

  - eapply IHn in X; eassumption.
  - invert H1; contradiction.
Qed.

Lemma list_repeat_head_tail {A : Type} : forall n (a : A),
    a :: list_repeat a n = list_repeat a n ++ [a].
Proof.
  unfold list_repeat. apply list_repeat'_head_tail.
Qed.

Lemma list_repeat_cons {A : Type} : forall n (a : A),
    list_repeat a (S n) = a :: list_repeat a n.
Proof.
  intros.

  unfold list_repeat.
  apply list_repeat'_cons.
Qed.

Definition arr_repeat {A : Type} (a : A) (n : nat) : Array A := make_array (list_repeat a n).

Fixpoint list_combine {A B C : Type} (f : A -> B -> C) (x : list A) (y : list B) : list C :=
  match x, y with
  | a :: t, b :: t' => f a b :: list_combine f t t'
  | _, _ => nil
  end.

Lemma list_combine_length {A B C : Type} (f : A -> B -> C) : forall (x : list A) (y : list B),
    length (list_combine f x y) = min (length x) (length y).
Proof.
  induction x; intros; simplify; try reflexivity.

  destruct y; simplify; auto.
Qed.

Definition combine {A B C : Type} (f : A -> B -> C) (x : Array A) (y : Array B) : Array C :=
  make_array (list_combine f x.(arr_contents) y.(arr_contents)).

Lemma combine_length {A B C: Type} : forall x y (f : A -> B -> C),
    x.(arr_length) = y.(arr_length) -> arr_length (combine f x y) = x.(arr_length).
Proof.
  intros.

  unfold combine.
  unfold make_array.
  simplify.

  rewrite <- (arr_wf x) in *.
  rewrite <- (arr_wf y) in *.

  destruct (arr_contents x); simplify.
  - reflexivity.
  - destruct (arr_contents y); simplify.
    f_equal.
    rewrite list_combine_length.
    destruct (Min.min_dec (length l) (length l0)); congruence.
Qed.