aboutsummaryrefslogtreecommitdiffstats
path: root/src/VeriFuzz/Verilog/Gen.hs
blob: e52a1586398b8ddc8265f8f3494c80cada1fd75a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
{-|
Module      : VeriFuzz.Verilog.Gen
Description : Various useful generators.
Copyright   : (c) 2019, Yann Herklotz
License     : GPL-3
Maintainer  : ymherklotz [at] gmail [dot] com
Stability   : experimental
Portability : POSIX

Various useful generators.
-}

{-# LANGUAGE TemplateHaskell #-}

module VeriFuzz.Verilog.Gen
    ( -- * Generation methods
      procedural
    , proceduralIO
    , proceduralSrc
    , proceduralSrcIO
    , randomMod
    )
where

import           Control.Lens                     hiding (Context)
import           Control.Monad                    (replicateM)
import           Control.Monad.Trans.Class        (lift)
import           Control.Monad.Trans.Reader       hiding (local)
import           Control.Monad.Trans.State.Strict
import           Data.Foldable                    (fold)
import           Data.Functor.Foldable            (cata)
import qualified Data.Text                        as T
import           Hedgehog                         (Gen)
import qualified Hedgehog.Gen                     as Hog
import qualified Hedgehog.Range                   as Hog
import           VeriFuzz.Config
import           VeriFuzz.Internal
import           VeriFuzz.Verilog.AST
import           VeriFuzz.Verilog.BitVec
import           VeriFuzz.Verilog.Eval
import           VeriFuzz.Verilog.Internal
import           VeriFuzz.Verilog.Mutate

data Context = Context { _variables   :: [Port]
                       , _parameters  :: [Parameter]
                       , _modules     :: [ModDecl]
                       , _nameCounter :: {-# UNPACK #-} !Int
                       , _stmntDepth  :: {-# UNPACK #-} !Int
                       , _modDepth    :: {-# UNPACK #-} !Int
                       }

makeLenses ''Context

type StateGen =  StateT Context (ReaderT Config Gen)

toId :: Int -> Identifier
toId = Identifier . ("w" <>) . T.pack . show

toPort :: Identifier -> Gen Port
toPort ident = do
    i <- range
    return $ wire i ident

sumSize :: [Port] -> Range
sumSize ps = sum $ ps ^.. traverse . portSize

random :: [Port] -> (Expr -> ContAssign) -> Gen ModItem
random ctx fun = do
    expr <- Hog.sized (exprWithContext (ProbExpr 1 1 0 1 1 1 1 0 1 1) [] ctx)
    return . ModCA $ fun expr

--randomAssigns :: [Identifier] -> [Gen ModItem]
--randomAssigns ids = random ids . ContAssign <$> ids

randomOrdAssigns :: [Port] -> [Port] -> [Gen ModItem]
randomOrdAssigns inp ids = snd $ foldr generate (inp, []) ids
  where
    generate cid (i, o) = (cid : i, random i (ContAssign (_portName cid)) : o)

randomMod :: Int -> Int -> Gen ModDecl
randomMod inps total = do
    ident <- sequence $ toPort <$> ids
    x     <- sequence $ randomOrdAssigns (start ident) (end ident)
    let inputs_ = take inps ident
    let other   = drop inps ident
    let y = ModCA . ContAssign "y" . fold $ Id <$> drop inps ids
    let yport   = [wire (sumSize other) "y"]
    return . declareMod other $ ModDecl "test_module"
                                        yport
                                        inputs_
                                        (x ++ [y])
                                        []
  where
    ids   = toId <$> [1 .. total]
    end   = drop inps
    start = take inps

gen :: Gen a -> StateGen a
gen = lift . lift

largeNum :: Gen Int
largeNum = Hog.int Hog.linearBounded

wireSize :: Gen Int
wireSize = Hog.int $ Hog.linear 2 100

range :: Gen Range
range = Range <$> fmap fromIntegral wireSize <*> pure 0

genBitVec :: Gen BitVec
genBitVec = BitVec <$> wireSize <*> fmap fromIntegral largeNum

binOp :: Gen BinaryOperator
binOp = Hog.element
    [ BinPlus
    , BinMinus
    , BinTimes
        -- , BinDiv
        -- , BinMod
    , BinEq
    , BinNEq
        -- , BinCEq
        -- , BinCNEq
    , BinLAnd
    , BinLOr
    , BinLT
    , BinLEq
    , BinGT
    , BinGEq
    , BinAnd
    , BinOr
    , BinXor
    , BinXNor
    , BinXNorInv
        -- , BinPower
    , BinLSL
    , BinLSR
    , BinASL
    , BinASR
    ]

unOp :: Gen UnaryOperator
unOp = Hog.element
    [ UnPlus
    , UnMinus
    , UnNot
    , UnLNot
    , UnAnd
    , UnNand
    , UnOr
    , UnNor
    , UnXor
    , UnNxor
    , UnNxorInv
    ]

constExprWithContext :: [Parameter] -> ProbExpr -> Hog.Size -> Gen ConstExpr
constExprWithContext ps prob size
    | size == 0 = Hog.frequency
        [ (prob ^. probExprNum, ConstNum <$> genBitVec)
        , ( if null ps then 0 else prob ^. probExprId
          , ParamId . view paramIdent <$> Hog.element ps
          )
        ]
    | size > 0 = Hog.frequency
        [ (prob ^. probExprNum, ConstNum <$> genBitVec)
        , ( if null ps then 0 else prob ^. probExprId
          , ParamId . view paramIdent <$> Hog.element ps
          )
        , (prob ^. probExprUnOp, ConstUnOp <$> unOp <*> subexpr 2)
        , ( prob ^. probExprBinOp
          , ConstBinOp <$> subexpr 2 <*> binOp <*> subexpr 2
          )
        , ( prob ^. probExprCond
          , ConstCond <$> subexpr 2 <*> subexpr 2 <*> subexpr 2
          )
        , ( prob ^. probExprConcat
          , ConstConcat <$> Hog.nonEmpty (Hog.linear 0 10) (subexpr 2)
          )
        ]
    | otherwise = constExprWithContext ps prob 0
    where subexpr y = constExprWithContext ps prob $ size `div` y

exprSafeList :: ProbExpr -> [(Int, Gen Expr)]
exprSafeList prob = [(prob ^. probExprNum, Number <$> genBitVec)]

exprRecList :: ProbExpr -> (Hog.Size -> Gen Expr) -> [(Int, Gen Expr)]
exprRecList prob subexpr =
    [ (prob ^. probExprNum, Number <$> genBitVec)
    , ( prob ^. probExprConcat
      , Concat <$> Hog.nonEmpty (Hog.linear 0 10) (subexpr 2)
      )
    , (prob ^. probExprUnOp    , UnOp <$> unOp <*> subexpr 2)
    , (prob ^. probExprStr, Str <$> Hog.text (Hog.linear 0 100) Hog.alphaNum)
    , (prob ^. probExprBinOp   , BinOp <$> subexpr 2 <*> binOp <*> subexpr 2)
    , (prob ^. probExprCond    , Cond <$> subexpr 2 <*> subexpr 2 <*> subexpr 2)
    , (prob ^. probExprSigned  , Appl <$> pure "$signed" <*> subexpr 2)
    , (prob ^. probExprUnsigned, Appl <$> pure "$unsigned" <*> subexpr 2)
    ]

rangeSelect :: [Parameter] -> [Port] -> Gen Expr
rangeSelect ps ports = do
    p <- Hog.element ports
    let s = calcRange ps (Just 32) $ _portSize p
    msb <- Hog.int (Hog.constantFrom (s `div` 2) 0 (s - 1))
    lsb <- Hog.int (Hog.constantFrom (msb `div` 2) 0 msb)
    return . RangeSelect (_portName p) $ Range (fromIntegral msb)
                                               (fromIntegral lsb)

exprWithContext :: ProbExpr -> [Parameter] -> [Port] -> Hog.Size -> Gen Expr
exprWithContext prob ps [] n | n == 0 = Hog.frequency $ exprSafeList prob
                             | n > 0 = Hog.frequency $ exprRecList prob subexpr
                             | otherwise = exprWithContext prob ps [] 0
    where subexpr y = exprWithContext prob ps [] $ n `div` y
exprWithContext prob ps l n
    | n == 0
    = Hog.frequency
        $ (prob ^. probExprId, Id . fromPort <$> Hog.element l)
        : exprSafeList prob
    | n > 0
    = Hog.frequency
        $ (prob ^. probExprId         , Id . fromPort <$> Hog.element l)
        : (prob ^. probExprRangeSelect, rangeSelect ps l)
        : exprRecList prob subexpr
    | otherwise
    = exprWithContext prob ps l 0
    where subexpr y = exprWithContext prob ps l $ n `div` y

someI :: Int -> StateGen a -> StateGen [a]
someI m f = do
    amount <- gen $ Hog.int (Hog.linear 1 m)
    replicateM amount f

makeIdentifier :: T.Text -> StateGen Identifier
makeIdentifier prefix = do
    context <- get
    let ident = Identifier $ prefix <> showT (context ^. nameCounter)
    nameCounter += 1
    return ident

getPort' :: PortType -> Identifier -> [Port] -> StateGen Port
getPort' pt i c = case filter portId c of
    x : _ -> return x
    []    -> newPort i pt
    where portId (Port pt' _ _ i') = i == i' && pt == pt'

nextPort :: PortType -> StateGen Port
nextPort pt = do
    context <- get
    ident   <- makeIdentifier . T.toLower $ showT pt
    getPort' pt ident (_variables context)

newPort :: Identifier -> PortType -> StateGen Port
newPort ident pt = do
    p <- gen $ Port pt <$> Hog.bool <*> range <*> pure ident
    variables %= (p :)
    return p

scopedExpr :: StateGen Expr
scopedExpr = do
    context <- get
    prob    <- askProbability
    gen
        . Hog.sized
        . exprWithContext (_probExpr prob) (_parameters context)
        $ _variables context

contAssign :: StateGen ContAssign
contAssign = do
    expr <- scopedExpr
    p    <- nextPort Wire
    return $ ContAssign (p ^. portName) expr

lvalFromPort :: Port -> LVal
lvalFromPort (Port _ _ _ i) = RegId i

probability :: Config -> Probability
probability c = c ^. configProbability

askProbability :: StateGen Probability
askProbability = lift $ asks probability

assignment :: StateGen Assign
assignment = do
    expr <- scopedExpr
    lval <- lvalFromPort <$> nextPort Reg
    return $ Assign lval Nothing expr

seqBlock :: StateGen Statement
seqBlock = do
    stmntDepth -= 1
    tstat <- SeqBlock <$> someI 20 statement
    stmntDepth += 1
    return tstat

conditional :: StateGen Statement
conditional = do
    expr  <- scopedExpr
    nc    <- _nameCounter <$> get
    tstat <- seqBlock
    nc'   <- _nameCounter <$> get
    nameCounter .= nc
    fstat <- seqBlock
    nc''  <- _nameCounter <$> get
    nameCounter .= max nc' nc''
    return $ CondStmnt expr (Just tstat) (Just fstat)

--constToExpr :: ConstExpr -> Expr
--constToExpr (ConstNum s n    ) = Number s n
--constToExpr (ParamId     i   ) = Id i
--constToExpr (ConstConcat c   ) = Concat $ constToExpr <$> c
--constToExpr (ConstUnOp u p   ) = UnOp u (constToExpr p)
--constToExpr (ConstBinOp a b c) = BinOp (constToExpr a) b (constToExpr c)
--constToExpr (ConstCond a b c) =
--    Cond (constToExpr a) (constToExpr b) (constToExpr c)
--constToExpr (ConstStr s) = Str s

forLoop :: StateGen Statement
forLoop = do
    num <- Hog.int (Hog.linear 0 20)
    var <- lvalFromPort <$> nextPort Reg
    ForLoop (Assign var Nothing 0)
            (BinOp (varId var) BinLT $ fromIntegral num)
            (Assign var Nothing $ BinOp (varId var) BinPlus 1)
        <$> seqBlock
    where varId v = Id (v ^. regId)

statement :: StateGen Statement
statement = do
    prob <- askProbability
    cont <- get
    let defProb i = prob ^. probStmnt . i
    Hog.frequency
        [ (defProb probStmntBlock              , BlockAssign <$> assignment)
        , (defProb probStmntNonBlock           , NonBlockAssign <$> assignment)
        , (onDepth cont (defProb probStmntCond), conditional)
        , (onDepth cont (defProb probStmntFor) , forLoop)
        ]
    where onDepth c n = if c ^. stmntDepth > 0 then n else 0

alwaysSeq :: StateGen ModItem
alwaysSeq = Always . EventCtrl (EPosEdge "clk") . Just <$> seqBlock

instantiate :: ModDecl -> StateGen ModItem
instantiate (ModDecl i outP inP _ _) = do
    context <- get
    outs    <- fmap (Id . view portName)
        <$> replicateM (length outP) (nextPort Wire)
    ins <-
        (Id "clk" :)
        .   fmap (Id . view portName)
        .   take (length inP - 1)
        <$> Hog.shuffle (context ^. variables)
    ident <- makeIdentifier "modinst"
    Hog.choice
        [ return . ModInst i ident $ ModConn <$> outs <> ins
        , ModInst i ident <$> Hog.shuffle
            (zipWith ModConnNamed (view portName <$> outP <> inP) (outs <> ins))
        ]

-- | Generates a module instance by also generating a new module if there are
-- not enough modules currently in the context. It keeps generating new modules
-- for every instance and for every level until either the deepest level is
-- achieved, or the maximum number of modules are reached.
--
-- If the maximum number of levels are reached, it will always pick an instance
-- from the current context. The problem with this approach is that at the end
-- there may be many more than the max amount of modules, as the modules are
-- always set to empty when entering a new level. This is to fix recursive
-- definitions of modules, which are not defined.
--
-- One way to fix that is to also decrement the max modules for every level,
-- depending on how many modules have already been generated. This would mean
-- there would be moments when the module cannot generate a new instance but
-- also not take a module from the current context. A fix for that may be to
-- have a default definition of a simple module that is used instead.
--
-- Another different way to handle this would be to have a probability of taking
-- a module from a context or generating a new one.
modInst :: StateGen ModItem
modInst = do
    prob    <- lift ask
    context <- get
    let maxMods = prob ^. configProperty . propMaxModules
    if length (context ^. modules) < maxMods
        then do
            let currMods = context ^. modules
            let params   = context ^. parameters
            let vars     = context ^. variables
            modules .= []
            variables .= []
            parameters .= []
            modDepth -= 1
            chosenMod <- moduleDef Nothing
            ncont     <- get
            let genMods = ncont ^. modules
            modDepth += 1
            parameters .= params
            variables .= vars
            modules .= chosenMod : currMods <> genMods
            instantiate chosenMod
        else Hog.element (context ^. modules) >>= instantiate

-- | Generate a random module item.
modItem :: StateGen ModItem
modItem = do
    prob    <- askProbability
    context <- get
    let defProb i = prob ^. probModItem . i
    Hog.frequency
        [ (defProb probModItemAssign   , ModCA <$> contAssign)
        , (defProb probModItemSeqAlways, alwaysSeq)
        , ( if context ^. modDepth > 0 then defProb probModItemInst else 0
          , modInst
          )
        ]

moduleName :: Maybe Identifier -> StateGen Identifier
moduleName (Just t) = return t
moduleName Nothing  = makeIdentifier "module"

constExpr :: StateGen ConstExpr
constExpr = do
    prob    <- askProbability
    context <- get
    gen . Hog.sized $ constExprWithContext (context ^. parameters)
                                           (prob ^. probExpr)

parameter :: StateGen Parameter
parameter = do
    ident <- makeIdentifier "param"
    cexpr <- constExpr
    let param = Parameter ident cexpr
    parameters %= (param :)
    return param

-- | Evaluate a range to an integer, and cast it back to a range.
evalRange :: [Parameter] -> Int -> Range -> Range
evalRange ps n (Range l r) = Range (eval l) (eval r)
    where eval = ConstNum . cata (evaluateConst ps) . resize n

calcRange :: [Parameter] -> Maybe Int -> Range -> Int
calcRange ps i (Range l r) = eval l - eval r + 1
  where
    eval a = fromIntegral . cata (evaluateConst ps) $ maybe a (`resize` a) i

-- | Generates a module definition randomly. It always has one output port which
-- is set to @y@. The size of @y@ is the total combination of all the locally
-- defined wires, so that it correctly reflects the internal state of the
-- module.
moduleDef :: Maybe Identifier -> StateGen ModDecl
moduleDef top = do
    name     <- moduleName top
    portList <- Hog.list (Hog.linear 4 10) $ nextPort Wire
    mi       <- Hog.list (Hog.linear 4 100) modItem
    ps       <- Hog.list (Hog.linear 0 10) parameter
    context  <- get
    config   <- lift ask
    let local = filter (`notElem` portList) $ _variables context
    let
        size =
            evalRange (_parameters context) 32
                .   sum
                $   local
                ^.. traverse
                .   portSize
    let combine = config ^. configProperty . propCombine
    let clock   = Port Wire False 1 "clk"
    let yport =
            if combine then Port Wire False 1 "y" else Port Wire False size "y"
    let comb = combineAssigns_ combine yport local
    return
        . declareMod local
        . ModDecl name [yport] (clock : portList) (comb : mi)
        $ ps

-- | Procedural generation method for random Verilog. Uses internal 'Reader' and
-- 'State' to keep track of the current Verilog code structure.
procedural :: T.Text -> Config -> Gen Verilog
procedural top config = do
    (mainMod, st) <- Hog.resize num $ runReaderT
        (runStateT (moduleDef (Just $ Identifier top)) context)
        config
    return . Verilog $ mainMod : st ^. modules
  where
    context =
        Context [] [] [] 0 (confProp propStmntDepth) $ confProp propModDepth
    num = fromIntegral $ confProp propSize
    confProp i = config ^. configProperty . i

proceduralIO :: T.Text -> Config -> IO Verilog
proceduralIO t = Hog.sample . procedural t

proceduralSrc :: T.Text -> Config -> Gen SourceInfo
proceduralSrc t c = SourceInfo t <$> procedural t c

proceduralSrcIO :: T.Text -> Config -> IO SourceInfo
proceduralSrcIO t c = SourceInfo t <$> proceduralIO t c