aboutsummaryrefslogtreecommitdiffstats
path: root/src/VeriFuzz/Verilog/Gen.hs
blob: 6ec422db6d0fc15e0931caefdc6a468f27e233b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
{-|
Module      : VeriFuzz.Verilog.Gen
Description : Various useful generators.
Copyright   : (c) 2019, Yann Herklotz
License     : GPL-3
Maintainer  : ymherklotz [at] gmail [dot] com
Stability   : experimental
Portability : POSIX

Various useful generators.
-}

{-# LANGUAGE TemplateHaskell #-}

module VeriFuzz.Verilog.Gen
    ( -- * Generation methods
      procedural
    , randomMod
    )
where

import           Control.Lens                   hiding (Context)
import           Control.Monad                  (replicateM)
import           Control.Monad.Trans.Class      (lift)
import           Control.Monad.Trans.Reader     hiding (local)
import           Control.Monad.Trans.State.Lazy
import           Data.Foldable                  (fold)
import qualified Data.Text                      as T
import           Hedgehog                       (Gen)
import qualified Hedgehog.Gen                   as Hog
import qualified Hedgehog.Range                 as Hog
import           VeriFuzz.Config
import           VeriFuzz.Internal
import           VeriFuzz.Verilog.Arbitrary
import           VeriFuzz.Verilog.AST
import           VeriFuzz.Verilog.Internal
import           VeriFuzz.Verilog.Mutate

data Context = Context { _variables   :: [Port]
                       , _parameters  :: [Parameter]
                       , _nameCounter :: Int
                       , _stmntDepth  :: Int
                       }

makeLenses ''Context

type StateGen =  StateT Context (ReaderT Config Gen)

toId :: Int -> Identifier
toId = Identifier . ("w" <>) . T.pack . show

toPort :: Identifier -> Gen Port
toPort ident = do
    i <- genPositive
    return $ wire i ident

sumSize :: [Port] -> Int
sumSize ps = sum $ ps ^.. traverse . portSize

random :: [Identifier] -> (Expr -> ContAssign) -> Gen ModItem
random ctx fun = do
    expr <- Hog.sized (exprWithContext (ProbExpr 1 1 1 1 1 1 0 1 1) ctx)
    return . ModCA $ fun expr

--randomAssigns :: [Identifier] -> [Gen ModItem]
--randomAssigns ids = random ids . ContAssign <$> ids

randomOrdAssigns :: [Identifier] -> [Identifier] -> [Gen ModItem]
randomOrdAssigns inp ids = snd $ foldr generate (inp, []) ids
    where generate cid (i, o) = (cid : i, random i (ContAssign cid) : o)

randomMod :: Int -> Int -> Gen ModDecl
randomMod inps total = do
    x     <- sequence $ randomOrdAssigns start end
    ident <- sequence $ toPort <$> ids
    let inputs_ = take inps ident
    let other   = drop inps ident
    let y = ModCA . ContAssign "y" . fold $ Id <$> drop inps ids
    let yport   = [wire (sumSize other) "y"]
    return . declareMod other $ ModDecl "test_module" yport inputs_ (x ++ [y]) []
  where
    ids   = toId <$> [1 .. total]
    end   = drop inps ids
    start = take inps ids

gen :: Gen a -> StateGen a
gen = lift . lift

constExprWithContext :: [Parameter] -> ProbExpr -> Hog.Size -> Gen ConstExpr
constExprWithContext ps prob size
    | size == 0 = Hog.frequency
                  [ (prob ^. probExprNum, ConstNum <$> genPositive <*> arb)
                  , (if null ps then 0 else prob ^. probExprId, ParamId . view paramIdent <$> Hog.element ps)
                  ]
    | size > 0 = Hog.frequency
                 [ (prob ^. probExprNum, ConstNum <$> genPositive <*> arb)
                 , (if null ps then 0 else prob ^. probExprId, ParamId . view paramIdent <$> Hog.element ps)
                 , (prob ^. probExprUnOp, ConstUnOp <$> arb <*> subexpr 2)
                 , (prob ^. probExprBinOp, ConstBinOp <$> subexpr 2 <*> arb <*> subexpr 2)
                 , (prob ^. probExprCond, ConstCond <$> subexpr 3 <*> subexpr 3 <*> subexpr 3)
                 , (prob ^. probExprConcat, ConstConcat <$> listOf1 (subexpr 8))
                 ]
    | otherwise = constExprWithContext ps prob 0
    where subexpr y = constExprWithContext ps prob $ size `div` y

exprSafeList :: ProbExpr -> [(Int, Gen Expr)]
exprSafeList prob = [(prob ^. probExprNum, Number <$> genPositive <*> Hog.integral (Hog.linearFrom 0 (-100) 100))]

exprRecList :: ProbExpr -> (Hog.Size -> Gen Expr) -> [(Int, Gen Expr)]
exprRecList prob subexpr =
    [ (prob ^. probExprNum, Number <$> genPositive <*> Hog.integral (Hog.linearFrom 0 (-100) 100))
    , (prob ^. probExprConcat, Concat <$> listOf1 (subexpr 8))
    , (prob ^. probExprUnOp, UnOp <$> arb <*> subexpr 2)
    , (prob ^. probExprStr, Str <$> Hog.text (Hog.linear 0 100) Hog.alphaNum)
    , (prob ^. probExprBinOp, BinOp <$> subexpr 2 <*> arb <*> subexpr 2)
    , (prob ^. probExprCond, Cond <$> subexpr 3 <*> subexpr 3 <*> subexpr 3)
    , (prob ^. probExprSigned, Func <$> pure SignedFunc <*> subexpr 2)
    , (prob ^. probExprUnsigned, Func <$> pure UnsignedFunc <*> subexpr 2)
    ]

exprWithContext :: ProbExpr -> [Identifier] -> Hog.Size -> Gen Expr
exprWithContext prob [] n | n == 0    = Hog.frequency $ exprSafeList prob
                          | n > 0     = Hog.frequency $ exprRecList prob subexpr
                          | otherwise = exprWithContext prob [] 0
    where subexpr y = exprWithContext prob [] $ n `div` y
exprWithContext prob l n
    | n == 0    = Hog.frequency $ (prob ^. probExprId, Id <$> Hog.element l) : exprSafeList prob
    | n > 0     = Hog.frequency $ (prob ^. probExprId, Id <$> Hog.element l) : exprRecList prob subexpr
    | otherwise = exprWithContext prob l 0
    where subexpr y = exprWithContext prob l $ n `div` y

some :: StateGen a -> StateGen [a]
some f = do
    amount <- gen genPositive
    replicateM amount f

many :: StateGen a -> StateGen [a]
many f = do
    amount <- gen $ Hog.int (Hog.linear 0 10)
    replicateM amount f

makeIdentifier :: T.Text -> StateGen Identifier
makeIdentifier prefix = do
    context <- get
    let ident = Identifier $ prefix <> showT (context ^. nameCounter)
    nameCounter += 1
    return ident

newPort :: PortType -> StateGen Port
newPort pt = do
    ident <- makeIdentifier . T.toLower $ showT pt
    p     <- gen $ Port pt <$> arb <*> genPositive <*> pure ident
    variables %= (p :)
    return p

choose :: PortType -> Port -> Bool
choose ptype (Port a _ _ _) = ptype == a

scopedExpr :: StateGen Expr
scopedExpr = do
    context <- get
    prob <- askProbability
    gen
        .   Hog.sized
        .   exprWithContext (prob ^. probExpr)
        $   context
        ^.. variables
        .   traverse
        .   portName

contAssign :: StateGen ContAssign
contAssign = do
    expr <- scopedExpr
    p <- newPort Wire
    return $ ContAssign (p ^. portName) expr

lvalFromPort :: Port -> LVal
lvalFromPort (Port _ _ _ i) = RegId i

probability :: Config -> Probability
probability c = c ^. configProbability

askProbability :: StateGen Probability
askProbability = lift $ asks probability

assignment :: StateGen Assign
assignment = do
    expr <- scopedExpr
    lval <- lvalFromPort <$> newPort Reg
    return $ Assign lval Nothing expr

conditional :: StateGen Statement
conditional = do
    expr <- scopedExpr
    stmntDepth -= 1
    tstat <- SeqBlock <$> some statement
    fstat <- Hog.maybe $ SeqBlock <$> some statement
    stmntDepth += 1
    return $ CondStmnt (BinOp expr BinEq 0) (Just tstat) fstat

statement :: StateGen Statement
statement = do
    prob <- askProbability
    cont <- get
    let defProb i = prob ^. probStmnt . i
    Hog.frequency
        [ (defProb probStmntBlock              , BlockAssign <$> assignment)
        , (defProb probStmntNonBlock           , NonBlockAssign <$> assignment)
        , (onDepth cont (defProb probStmntCond), conditional)
        ]
    where onDepth c n = if c ^. stmntDepth > 0 then n else 0

always :: StateGen ModItem
always = do
    stat <- SeqBlock <$> some statement
    return $ Always (EventCtrl (EPosEdge "clk") (Just stat))

-- | Generate a random module item.
modItem :: StateGen ModItem
modItem = do
    prob <- askProbability
    let defProb i = prob ^. probModItem . i
    Hog.frequency
        [ (defProb probModItemAssign, ModCA <$> contAssign)
        , (defProb probModItemAlways, always)
        ]

moduleName :: Maybe Identifier -> StateGen Identifier
moduleName (Just t) = return t
moduleName Nothing  = gen arb

initialBlock :: StateGen ModItem
initialBlock = do
    context <- get
    let l = filter (choose Reg) $ context ^.. variables . traverse
    return . Initial . SeqBlock $ makeAssign <$> l
    where
        makeAssign p = NonBlockAssign $ Assign (lvalFromPort p) Nothing 0

constExpr :: StateGen ConstExpr
constExpr = do
    prob <- askProbability
    context <- get
    gen . Hog.sized $ constExprWithContext (context ^. parameters) (prob ^. probExpr)

parameter :: StateGen Parameter
parameter = do
    ident <- makeIdentifier "param"
    cexpr <- constExpr
    let param = Parameter ident cexpr
    parameters %= (param :)
    return $ param

-- | Generates a module definition randomly. It always has one output port which
-- is set to @y@. The size of @y@ is the total combination of all the locally
-- defined wires, so that it correctly reflects the internal state of the
-- module.
moduleDef :: Maybe Identifier -> StateGen ModDecl
moduleDef top = do
    name     <- moduleName top
    portList <- some $ newPort Wire
    mi       <- some modItem
    context  <- get
    initBlock <- initialBlock
    let local = filter (`notElem` portList) $ context ^. variables
    let size  = sum $ local ^.. traverse . portSize
    let clock = Port Wire False 1 "clk"
    let yport = Port Wire False size "y"
    let comb = combineAssigns_ yport local
    declareMod local . ModDecl name [yport] (clock:portList) (initBlock : mi <> [comb]) <$> many parameter

-- | Procedural generation method for random Verilog. Uses internal 'Reader' and
-- 'State' to keep track of the current Verilog code structure.
procedural :: Config -> Gen Verilog
procedural config = Verilog . (: []) <$> Hog.resize
    num
    (runReaderT (evalStateT (moduleDef (Just "top")) context) config)
  where
    context = Context [] [] 0 $ config ^. configProperty . propDepth
    num     = fromIntegral $ config ^. configProperty . propSize