aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDavid Monniaux <david.monniaux@univ-grenoble-alpes.fr>2020-12-08 13:57:08 +0100
committerDavid Monniaux <david.monniaux@univ-grenoble-alpes.fr>2020-12-08 13:57:08 +0100
commit05853d6e87d2f4da7132e6c354037effb8f7a7d3 (patch)
tree91a2f75903f8cb3a40c00ce1530e5e0d58d0a016
parent766968b709e5248a6aac6fdb92f6228be05fc70c (diff)
parentdc1e8157540655cd303df5c36e41c50a3dcc678e (diff)
downloadcompcert-kvx-05853d6e87d2f4da7132e6c354037effb8f7a7d3.tar.gz
compcert-kvx-05853d6e87d2f4da7132e6c354037effb8f7a7d3.zip
Merge remote-tracking branch 'origin/kvx-work' into kvx-better2-cse3
-rw-r--r--aarch64/Asmgen.v13
-rw-r--r--aarch64/Asmgenproof.v144
-rw-r--r--aarch64/Asmgenproof1.v637
-rw-r--r--powerpc/Op.v3
4 files changed, 242 insertions, 555 deletions
diff --git a/aarch64/Asmgen.v b/aarch64/Asmgen.v
index 024c9a17..683530d4 100644
--- a/aarch64/Asmgen.v
+++ b/aarch64/Asmgen.v
@@ -969,8 +969,8 @@ Definition transl_addressing (sz: Z) (addr: Op.addressing) (args: list mreg)
(** Translation of loads and stores *)
Definition transl_load (trap: trapping_mode)
- (chunk: memory_chunk) (addr: Op.addressing)
- (args: list mreg) (dst: mreg) (k: code) : res code :=
+ (chunk: memory_chunk) (addr: Op.addressing)
+ (args: list mreg) (dst: mreg) (k: code) : res code :=
match trap with
| NOTRAP => Error (msg "Asmgen.transl_load non-trapping loads unsupported on aarch64")
| TRAP =>
@@ -1061,13 +1061,8 @@ Definition storeptr (src: ireg) (base: iregsp) (ofs: ptrofs) (k: code) :=
(** Function epilogue *)
Definition make_epilogue (f: Mach.function) (k: code) :=
- (* FIXME
- Cannot be used because memcpy destroys X30;
- issue being discussed with X. Leroy *)
- (* if is_leaf_function f
- then Pfreeframe f.(fn_stacksize) f.(fn_link_ofs) :: k
- else*) loadptr XSP f.(fn_retaddr_ofs) RA
- (Pfreeframe f.(fn_stacksize) f.(fn_link_ofs) :: k).
+ loadptr XSP f.(fn_retaddr_ofs) RA
+ (Pfreeframe f.(fn_stacksize) f.(fn_link_ofs) :: k).
(** Translation of a Mach instruction. *)
diff --git a/aarch64/Asmgenproof.v b/aarch64/Asmgenproof.v
index df88043f..7dfe6153 100644
--- a/aarch64/Asmgenproof.v
+++ b/aarch64/Asmgenproof.v
@@ -337,12 +337,7 @@ Qed.
Remark make_epilogue_label:
forall f k, tail_nolabel k (make_epilogue f k).
Proof.
- unfold make_epilogue; intros.
- (* FIXME destruct is_leaf_function.
- { TailNoLabel. } *)
- eapply tail_nolabel_trans.
- apply loadptr_label.
- TailNoLabel.
+ unfold make_epilogue; intros. eapply tail_nolabel_trans. apply loadptr_label. TailNoLabel.
Qed.
Lemma transl_instr_label:
@@ -477,8 +472,7 @@ Inductive match_states: Mach.state -> Asm.state -> Prop :=
(MEXT: Mem.extends m m')
(AT: transl_code_at_pc ge (rs PC) fb f c ep tf tc)
(AG: agree ms sp rs)
- (DXP: ep = true -> rs#X29 = parent_sp s)
- (LEAF: is_leaf_function f = true -> rs#RA = parent_ra s),
+ (DXP: ep = true -> rs#X29 = parent_sp s),
match_states (Mach.State s fb sp c ms m)
(Asm.State rs m')
| match_states_call:
@@ -509,17 +503,16 @@ Lemma exec_straight_steps:
exists rs2,
exec_straight tge tf c rs1 m1' k rs2 m2'
/\ agree ms2 sp rs2
- /\ (it1_is_parent ep i = true -> rs2#X29 = parent_sp s)
- /\ (is_leaf_function f = true -> rs2#RA = parent_ra s)) ->
+ /\ (it1_is_parent ep i = true -> rs2#X29 = parent_sp s)) ->
exists st',
plus step tge (State rs1 m1') E0 st' /\
match_states (Mach.State s fb sp c ms2 m2) st'.
Proof.
intros. inversion H2. subst. monadInv H7.
- exploit H3; eauto. intros [rs2 [A [B [C D]]]].
+ exploit H3; eauto. intros [rs2 [A [B C]]].
exists (State rs2 m2'); split.
- - eapply exec_straight_exec; eauto.
- - econstructor; eauto. eapply exec_straight_at; eauto.
+ eapply exec_straight_exec; eauto.
+ econstructor; eauto. eapply exec_straight_at; eauto.
Qed.
Lemma exec_straight_steps_goto:
@@ -534,14 +527,13 @@ Lemma exec_straight_steps_goto:
exists jmp, exists k', exists rs2,
exec_straight tge tf c rs1 m1' (jmp :: k') rs2 m2'
/\ agree ms2 sp rs2
- /\ exec_instr tge tf jmp rs2 m2' = goto_label tf lbl rs2 m2'
- /\ (is_leaf_function f = true -> rs2#RA = parent_ra s)) ->
+ /\ exec_instr tge tf jmp rs2 m2' = goto_label tf lbl rs2 m2') ->
exists st',
plus step tge (State rs1 m1') E0 st' /\
match_states (Mach.State s fb sp c' ms2 m2) st'.
Proof.
intros. inversion H3. subst. monadInv H9.
- exploit H5; eauto. intros [jmp [k' [rs2 [A [B [C D]]]]]].
+ exploit H5; eauto. intros [jmp [k' [rs2 [A [B C]]]]].
generalize (functions_transl _ _ _ H7 H8); intro FN.
generalize (transf_function_no_overflow _ _ H8); intro NOOV.
exploit exec_straight_steps_2; eauto.
@@ -558,7 +550,6 @@ Proof.
econstructor; eauto.
apply agree_exten with rs2; auto with asmgen.
congruence.
- rewrite OTH by congruence; auto.
Qed.
Lemma exec_straight_opt_steps_goto:
@@ -573,14 +564,13 @@ Lemma exec_straight_opt_steps_goto:
exists jmp, exists k', exists rs2,
exec_straight_opt tge tf c rs1 m1' (jmp :: k') rs2 m2'
/\ agree ms2 sp rs2
- /\ exec_instr tge tf jmp rs2 m2' = goto_label tf lbl rs2 m2'
- /\ (is_leaf_function f = true -> rs2#RA = parent_ra s)) ->
+ /\ exec_instr tge tf jmp rs2 m2' = goto_label tf lbl rs2 m2') ->
exists st',
plus step tge (State rs1 m1') E0 st' /\
match_states (Mach.State s fb sp c' ms2 m2) st'.
Proof.
intros. inversion H3. subst. monadInv H9.
- exploit H5; eauto. intros [jmp [k' [rs2 [A [B [C D]]]]]].
+ exploit H5; eauto. intros [jmp [k' [rs2 [A [B C]]]]].
generalize (functions_transl _ _ _ H7 H8); intro FN.
generalize (transf_function_no_overflow _ _ H8); intro NOOV.
inv A.
@@ -593,7 +583,6 @@ Proof.
econstructor; eauto.
apply agree_exten with rs2; auto with asmgen.
congruence.
- rewrite OTH by congruence; auto.
- exploit exec_straight_steps_2; eauto.
intros [ofs' [PC2 CT2]].
exploit find_label_goto_label; eauto.
@@ -608,7 +597,6 @@ Proof.
econstructor; eauto.
apply agree_exten with rs2; auto with asmgen.
congruence.
- rewrite OTH by congruence; auto.
Qed.
(** We need to show that, in the simulation diagram, we cannot
@@ -641,7 +629,7 @@ Qed.
Theorem step_simulation:
forall S1 t S2, Mach.step return_address_offset ge S1 t S2 ->
- forall S1' (MS: match_states S1 S1') (WF: wf_state ge S1),
+ forall S1' (MS: match_states S1 S1'),
(exists S2', plus step tge S1' t S2' /\ match_states S2 S2')
\/ (measure S2 < measure S1 /\ t = E0 /\ match_states S2 S1')%nat.
Proof.
@@ -650,20 +638,17 @@ Proof.
- (* Mlabel *)
left; eapply exec_straight_steps; eauto; intros.
monadInv TR. econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- split. { apply agree_nextinstr; auto. }
- split. { simpl; congruence. }
- rewrite nextinstr_inv by congruence; assumption.
+ split. apply agree_nextinstr; auto. simpl; congruence.
- (* Mgetstack *)
unfold load_stack in H.
exploit Mem.loadv_extends; eauto. intros [v' [A B]].
rewrite (sp_val _ _ _ AG) in A.
left; eapply exec_straight_steps; eauto. intros. simpl in TR.
- exploit loadind_correct; eauto with asmgen. intros [rs' [P [Q [R S]]]].
+ exploit loadind_correct; eauto with asmgen. intros [rs' [P [Q R]]].
exists rs'; split. eauto.
- split. { eapply agree_set_mreg; eauto with asmgen. congruence. }
- split. { simpl; congruence. }
- rewrite S. assumption.
+ split. eapply agree_set_mreg; eauto with asmgen. congruence.
+ simpl; congruence.
- (* Msetstack *)
unfold store_stack in H.
@@ -671,12 +656,10 @@ Proof.
exploit Mem.storev_extends; eauto. intros [m2' [A B]].
left; eapply exec_straight_steps; eauto.
rewrite (sp_val _ _ _ AG) in A. intros. simpl in TR.
- exploit storeind_correct; eauto with asmgen. intros [rs' [P [Q R]]].
+ exploit storeind_correct; eauto with asmgen. intros [rs' [P Q]].
exists rs'; split. eauto.
split. eapply agree_undef_regs; eauto with asmgen.
- simpl; intros.
- split. rewrite Q; auto with asmgen.
- rewrite R. assumption.
+ simpl; intros. rewrite Q; auto with asmgen.
- (* Mgetparam *)
assert (f0 = f) by congruence; subst f0.
@@ -692,45 +675,39 @@ Opaque loadind.
(* X30 contains parent *)
exploit loadind_correct. eexact EQ.
instantiate (2 := rs0). simpl; rewrite DXP; eauto. simpl; congruence.
- intros [rs1 [P [Q [R S]]]].
+ intros [rs1 [P [Q R]]].
exists rs1; split. eauto.
split. eapply agree_set_mreg. eapply agree_set_mreg; eauto. congruence. auto with asmgen.
- simpl; split; intros.
- { rewrite R; auto with asmgen.
- apply preg_of_not_X29; auto.
- }
- { rewrite S; auto. }
-
+ simpl; intros. rewrite R; auto with asmgen.
+ apply preg_of_not_X29; auto.
(* X30 does not contain parent *)
exploit loadptr_correct. eexact A. simpl; congruence. intros [rs1 [P [Q R]]].
exploit loadind_correct. eexact EQ. instantiate (2 := rs1). simpl; rewrite Q. eauto. simpl; congruence.
- intros [rs2 [S [T [U V]]]].
+ intros [rs2 [S [T U]]].
exists rs2; split. eapply exec_straight_trans; eauto.
split. eapply agree_set_mreg. eapply agree_set_mreg. eauto. eauto.
instantiate (1 := rs1#X29 <- (rs2#X29)). intros.
rewrite Pregmap.gso; auto with asmgen.
congruence.
intros. unfold Pregmap.set. destruct (PregEq.eq r' X29). congruence. auto with asmgen.
- split; simpl; intros. rewrite U; auto with asmgen.
+ simpl; intros. rewrite U; auto with asmgen.
apply preg_of_not_X29; auto.
- rewrite V. rewrite R by congruence. auto.
-
+
- (* Mop *)
assert (eval_operation tge sp op (map rs args) m = Some v).
{ rewrite <- H. apply eval_operation_preserved. exact symbols_preserved. }
exploit eval_operation_lessdef. eapply preg_vals; eauto. eauto. eexact H0.
intros [v' [A B]]. rewrite (sp_val _ _ _ AG) in A.
left; eapply exec_straight_steps; eauto; intros. simpl in TR.
- exploit transl_op_correct; eauto. intros [rs2 [P [Q [R S]]]].
+ exploit transl_op_correct; eauto. intros [rs2 [P [Q R]]].
exists rs2; split. eauto. split.
apply agree_set_undef_mreg with rs0; auto.
apply Val.lessdef_trans with v'; auto.
- split; simpl; intros. InvBooleans.
+ simpl; intros. InvBooleans.
rewrite R; auto. apply preg_of_not_X29; auto.
Local Transparent destroyed_by_op.
destruct op; try exact I; simpl; congruence.
- rewrite S.
- auto.
+
- (* Mload *)
destruct trap.
{
@@ -740,16 +717,14 @@ Local Transparent destroyed_by_op.
intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A.
exploit Mem.loadv_extends; eauto. intros [v' [C D]].
left; eapply exec_straight_steps; eauto; intros. simpl in TR.
- exploit transl_load_correct; eauto. intros [rs2 [P [Q [R S]]]].
+ exploit transl_load_correct; eauto. intros [rs2 [P [Q R]]].
exists rs2; split. eauto.
split. eapply agree_set_undef_mreg; eauto. congruence.
- split. simpl; congruence.
- rewrite S. assumption.
+ simpl; congruence.
}
-
(* Mload notrap1 *)
inv AT. simpl in *. unfold bind in *. destruct (transl_code _ _ _) in *; discriminate.
-
+
- (* Mload notrap *)
inv AT. simpl in *. unfold bind in *. destruct (transl_code _ _ _) in *; discriminate.
@@ -764,11 +739,10 @@ Local Transparent destroyed_by_op.
assert (Val.lessdef (rs src) (rs0 (preg_of src))) by (eapply preg_val; eauto).
exploit Mem.storev_extends; eauto. intros [m2' [C D]].
left; eapply exec_straight_steps; eauto.
- intros. simpl in TR. exploit transl_store_correct; eauto. intros [rs2 [P [Q R]]].
+ intros. simpl in TR. exploit transl_store_correct; eauto. intros [rs2 [P Q]].
exists rs2; split. eauto.
split. eapply agree_undef_regs; eauto with asmgen.
- split. simpl; congruence.
- rewrite R. assumption.
+ simpl; congruence.
- (* Mcall *)
assert (f0 = f) by congruence. subst f0.
@@ -880,18 +854,6 @@ Local Transparent destroyed_by_op.
simpl. rewrite undef_regs_other_2; auto. Simpl.
congruence.
- Simpl.
- rewrite set_res_other by trivial.
- rewrite undef_regs_other.
- assumption.
- intro.
- rewrite in_map_iff.
- intros (x0 & PREG & IN).
- subst r'.
- intro.
- apply (preg_of_not_RA x0).
- congruence.
-
- (* Mgoto *)
assert (f0 = f) by congruence. subst f0.
inv AT. monadInv H4.
@@ -905,33 +867,25 @@ Local Transparent destroyed_by_op.
eapply agree_exten; eauto with asmgen.
congruence.
- rewrite INV by congruence.
- assumption.
-
- (* Mcond true *)
assert (f0 = f) by congruence. subst f0.
exploit eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto. intros EC.
left; eapply exec_straight_opt_steps_goto; eauto.
intros. simpl in TR.
- exploit transl_cond_branch_correct; eauto. intros (rs' & jmp & A & B & C & D).
+ exploit transl_cond_branch_correct; eauto. intros (rs' & jmp & A & B & C).
exists jmp; exists k; exists rs'.
split. eexact A.
split. apply agree_exten with rs0; auto with asmgen.
- split.
- exact B.
- rewrite D. exact LEAF.
+ exact B.
- (* Mcond false *)
exploit eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto. intros EC.
left; eapply exec_straight_steps; eauto. intros. simpl in TR.
- exploit transl_cond_branch_correct; eauto. intros (rs' & jmp & A & B & C & D).
+ exploit transl_cond_branch_correct; eauto. intros (rs' & jmp & A & B & C).
econstructor; split.
eapply exec_straight_opt_right. eexact A. apply exec_straight_one. eexact B. auto.
split. apply agree_exten with rs0; auto. intros. Simpl.
- split.
simpl; congruence.
- Simpl. rewrite D.
- exact LEAF.
- (* Mjumptable *)
assert (f0 = f) by congruence. subst f0.
@@ -953,10 +907,6 @@ Local Transparent destroyed_by_op.
simpl. intros. rewrite C; auto with asmgen. Simpl.
congruence.
- rewrite C by congruence.
- repeat rewrite Pregmap.gso by congruence.
- assumption.
-
- (* Mreturn *)
assert (f0 = f) by congruence. subst f0.
inversion AT; subst. simpl in H6; monadInv H6.
@@ -999,7 +949,7 @@ Local Transparent destroyed_by_op.
simpl preg_of_iregsp. change (rs2 X30) with (rs0 X30). rewrite ATLR.
change (rs2 X2) with sp. eexact P.
simpl; congruence. congruence.
- intros (rs3 & U & V & W).
+ intros (rs3 & U & V).
assert (EXEC_PROLOGUE:
exec_straight tge tf
tf.(fn_code) rs0 m'
@@ -1026,10 +976,6 @@ Local Transparent destroyed_at_function_entry. simpl.
unfold sp; congruence.
intros. rewrite V by auto with asmgen. reflexivity.
- rewrite W.
- unfold rs2.
- Simpl.
-
- (* external function *)
exploit functions_translated; eauto.
intros [tf [A B]]. simpl in B. inv B.
@@ -1049,10 +995,6 @@ Local Transparent destroyed_at_function_entry. simpl.
right. split. omega. split. auto.
rewrite <- ATPC in H5.
econstructor; eauto. congruence.
- inv WF.
- inv STACK.
- inv H1.
- congruence.
Qed.
Lemma transf_initial_states:
@@ -1088,17 +1030,11 @@ Qed.
Theorem transf_program_correct:
forward_simulation (Mach.semantics return_address_offset prog) (Asm.semantics tprog).
Proof.
- eapply forward_simulation_star with (measure := measure)
- (match_states := fun S1 S2 => match_states S1 S2 /\ wf_state ge S1).
- - apply senv_preserved.
- - simpl; intros. exploit transf_initial_states; eauto.
- intros (s2 & A & B).
- exists s2; intuition auto. apply wf_initial; auto.
- - simpl; intros. destruct H as [MS WF]. eapply transf_final_states; eauto.
- - simpl; intros. destruct H0 as [MS WF].
- exploit step_simulation; eauto. intros [ (s2' & A & B) | (A & B & C) ].
- + left; exists s2'; intuition auto. eapply wf_step; eauto.
- + right; intuition auto. eapply wf_step; eauto.
+ eapply forward_simulation_star with (measure := measure).
+ apply senv_preserved.
+ eexact transf_initial_states.
+ eexact transf_final_states.
+ exact step_simulation.
Qed.
End PRESERVATION.
diff --git a/aarch64/Asmgenproof1.v b/aarch64/Asmgenproof1.v
index 35f1f2d7..869d1a31 100644
--- a/aarch64/Asmgenproof1.v
+++ b/aarch64/Asmgenproof1.v
@@ -22,51 +22,6 @@ Local Transparent Archi.ptr64.
(** Properties of registers *)
-Lemma preg_of_not_RA:
- forall r, (preg_of r) <> RA.
-Proof.
- destruct r; discriminate.
-Qed.
-
-Lemma RA_not_written:
- forall (rs : regset) dst v,
- rs # (preg_of dst) <- v RA = rs RA.
-Proof.
- intros.
- apply Pregmap.gso.
- intro.
- symmetry in H.
- exact (preg_of_not_RA dst H).
-Qed.
-
-Hint Resolve RA_not_written : asmgen.
-
-Lemma RA_not_written2:
- forall (rs : regset) dst v i,
- preg_of dst = i ->
- rs # i <- v RA = rs RA.
-Proof.
- intros.
- subst i.
- apply RA_not_written.
-Qed.
-
-Hint Resolve RA_not_written2 : asmgen.
-
-Lemma RA_not_written3:
- forall (rs : regset) dst v i,
- ireg_of dst = OK i ->
- rs # i <- v RA = rs RA.
-Proof.
- intros.
- unfold ireg_of in H.
- destruct preg_of eqn:PREG; try discriminate.
- replace i0 with i in * by congruence.
- eapply RA_not_written2; eassumption.
-Qed.
-
-Hint Resolve RA_not_written3 : asmgen.
-
Lemma preg_of_iregsp_not_PC: forall r, preg_of_iregsp r <> PC.
Proof.
destruct r; simpl; congruence.
@@ -84,6 +39,19 @@ Proof.
red; intros; subst x. elim (preg_of_not_X16 r); auto.
Qed.
+Lemma ireg_of_not_X16': forall r x, ireg_of r = OK x -> IR x <> IR X16.
+Proof.
+ intros. apply ireg_of_not_X16 in H. congruence.
+Qed.
+
+Hint Resolve preg_of_not_X16 ireg_of_not_X16 ireg_of_not_X16': asmgen.
+
+Lemma preg_of_not_RA:
+ forall r, (preg_of r) <> RA.
+Proof.
+ destruct r; discriminate.
+Qed.
+
Lemma ireg_of_not_RA: forall r x, ireg_of r = OK x -> x <> RA.
Proof.
unfold ireg_of; intros. destruct (preg_of r) eqn:E; inv H.
@@ -104,13 +72,6 @@ Qed.
Hint Resolve ireg_of_not_RA ireg_of_not_RA' ireg_of_not_RA'' : asmgen.
-Lemma ireg_of_not_X16': forall r x, ireg_of r = OK x -> IR x <> IR X16.
-Proof.
- intros. apply ireg_of_not_X16 in H. congruence.
-Qed.
-
-Hint Resolve preg_of_not_X16 ireg_of_not_X16 ireg_of_not_X16': asmgen.
-
(** Useful simplification tactic *)
@@ -270,49 +231,42 @@ Qed.
Lemma exec_loadimm_k_w:
forall (rd: ireg) k m l,
wf_decomposition l ->
- rd <> RA ->
forall (rs: regset) accu,
rs#rd = Vint (Int.repr accu) ->
exists rs',
exec_straight_opt ge fn (loadimm_k W rd l k) rs m k rs' m
/\ rs'#rd = Vint (Int.repr (recompose_int accu l))
- /\ (forall r, r <> PC -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
+ /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
Proof.
- induction 1; intros RD_NOT_RA rs accu ACCU; simpl.
+ induction 1; intros rs accu ACCU; simpl.
- exists rs; split. apply exec_straight_opt_refl. auto.
-- destruct (IHwf_decomposition RD_NOT_RA
+- destruct (IHwf_decomposition
(nextinstr (rs#rd <- (insert_in_int rs#rd n p 16)))
(Zinsert accu n p 16))
- as (rs' & P & Q & R & S).
+ as (rs' & P & Q & R).
Simpl. rewrite ACCU. simpl. f_equal. apply Int.eqm_samerepr.
apply Zinsert_eqmod. auto. omega. apply Int.eqm_sym; apply Int.eqm_unsigned_repr.
exists rs'; split.
eapply exec_straight_opt_step_opt. simpl; eauto. auto. exact P.
- split. exact Q.
- split.
- { intros; Simpl.
- rewrite R by auto. Simpl. }
- { rewrite S. Simpl. }
+ split. exact Q. intros; Simpl. rewrite R by auto. Simpl.
Qed.
Lemma exec_loadimm_z_w:
forall rd l k rs m,
wf_decomposition l ->
- rd <> RA ->
exists rs',
exec_straight ge fn (loadimm_z W rd l k) rs m k rs' m
/\ rs'#rd = Vint (Int.repr (recompose_int 0 l))
/\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
Proof.
- unfold loadimm_z; destruct 1; intro RD_NOT_RA.
+ unfold loadimm_z; destruct 1.
- econstructor; split.
apply exec_straight_one. simpl; eauto. auto.
split. Simpl.
intros; Simpl.
- set (accu0 := Zinsert 0 n p 16).
set (rs1 := nextinstr (rs#rd <- (Vint (Int.repr accu0)))).
- destruct (exec_loadimm_k_w rd k m l H1 RD_NOT_RA rs1 accu0) as (rs2 & P & Q & R & S); auto.
+ destruct (exec_loadimm_k_w rd k m l H1 rs1 accu0) as (rs2 & P & Q & R); auto.
unfold rs1; Simpl.
exists rs2; split.
eapply exec_straight_opt_step; eauto.
@@ -325,13 +279,12 @@ Qed.
Lemma exec_loadimm_n_w:
forall rd l k rs m,
wf_decomposition l ->
- rd <> RA ->
exists rs',
exec_straight ge fn (loadimm_n W rd l k) rs m k rs' m
/\ rs'#rd = Vint (Int.repr (Z.lnot (recompose_int 0 l)))
/\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
Proof.
- unfold loadimm_n; destruct 1; intro RD_NOT_RA.
+ unfold loadimm_n; destruct 1.
- econstructor; split.
apply exec_straight_one. simpl; eauto. auto.
split. Simpl.
@@ -340,8 +293,7 @@ Proof.
set (rs1 := nextinstr (rs#rd <- (Vint (Int.repr accu0)))).
destruct (exec_loadimm_k_w rd k m (negate_decomposition l)
(negate_decomposition_wf l H1)
- RD_NOT_RA rs1 accu0)
- as (rs2 & P & Q & R & S).
+ rs1 accu0) as (rs2 & P & Q & R).
unfold rs1; Simpl.
exists rs2; split.
eapply exec_straight_opt_step; eauto.
@@ -353,8 +305,7 @@ Proof.
Qed.
Lemma exec_loadimm32:
- forall rd n k rs m
- (RD_NOT_RA : rd <> RA),
+ forall rd n k rs m,
exists rs',
exec_straight ge fn (loadimm32 rd n k) rs m k rs' m
/\ rs'#rd = Vint n
@@ -377,14 +328,13 @@ Proof.
apply Int.eqm_samerepr. apply decompose_notint_eqmod.
apply Int.repr_unsigned. }
destruct Nat.leb.
-+ rewrite <- A. apply exec_loadimm_z_w. apply decompose_int_wf; omega. trivial.
-+ rewrite <- B. apply exec_loadimm_n_w. apply decompose_int_wf; omega. trivial.
++ rewrite <- A. apply exec_loadimm_z_w. apply decompose_int_wf; omega.
++ rewrite <- B. apply exec_loadimm_n_w. apply decompose_int_wf; omega.
Qed.
Lemma exec_loadimm_k_x:
forall (rd: ireg) k m l,
- wf_decomposition l ->
- rd <> RA ->
+ wf_decomposition l ->
forall (rs: regset) accu,
rs#rd = Vlong (Int64.repr accu) ->
exists rs',
@@ -392,9 +342,9 @@ Lemma exec_loadimm_k_x:
/\ rs'#rd = Vlong (Int64.repr (recompose_int accu l))
/\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
Proof.
- induction 1; intros RD_NOT_RA rs accu ACCU; simpl.
+ induction 1; intros rs accu ACCU; simpl.
- exists rs; split. apply exec_straight_opt_refl. auto.
-- destruct (IHwf_decomposition RD_NOT_RA
+- destruct (IHwf_decomposition
(nextinstr (rs#rd <- (insert_in_long rs#rd n p 16)))
(Zinsert accu n p 16))
as (rs' & P & Q & R).
@@ -408,20 +358,19 @@ Qed.
Lemma exec_loadimm_z_x:
forall rd l k rs m,
wf_decomposition l ->
- rd <> RA ->
exists rs',
exec_straight ge fn (loadimm_z X rd l k) rs m k rs' m
/\ rs'#rd = Vlong (Int64.repr (recompose_int 0 l))
/\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
Proof.
- unfold loadimm_z; destruct 1; intro RD_NOT_RA.
+ unfold loadimm_z; destruct 1.
- econstructor; split.
apply exec_straight_one. simpl; eauto. auto.
split. Simpl.
intros; Simpl.
- set (accu0 := Zinsert 0 n p 16).
set (rs1 := nextinstr (rs#rd <- (Vlong (Int64.repr accu0)))).
- destruct (exec_loadimm_k_x rd k m l H1 RD_NOT_RA rs1 accu0) as (rs2 & P & Q & R); auto.
+ destruct (exec_loadimm_k_x rd k m l H1 rs1 accu0) as (rs2 & P & Q & R); auto.
unfold rs1; Simpl.
exists rs2; split.
eapply exec_straight_opt_step; eauto.
@@ -434,13 +383,12 @@ Qed.
Lemma exec_loadimm_n_x:
forall rd l k rs m,
wf_decomposition l ->
- rd <> RA ->
exists rs',
exec_straight ge fn (loadimm_n X rd l k) rs m k rs' m
/\ rs'#rd = Vlong (Int64.repr (Z.lnot (recompose_int 0 l)))
/\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
Proof.
- unfold loadimm_n; destruct 1; intro RD_NOT_RA.
+ unfold loadimm_n; destruct 1.
- econstructor; split.
apply exec_straight_one. simpl; eauto. auto.
split. Simpl.
@@ -449,7 +397,7 @@ Proof.
set (rs1 := nextinstr (rs#rd <- (Vlong (Int64.repr accu0)))).
destruct (exec_loadimm_k_x rd k m (negate_decomposition l)
(negate_decomposition_wf l H1)
- RD_NOT_RA rs1 accu0) as (rs2 & P & Q & R).
+ rs1 accu0) as (rs2 & P & Q & R).
unfold rs1; Simpl.
exists rs2; split.
eapply exec_straight_opt_step; eauto.
@@ -462,13 +410,12 @@ Qed.
Lemma exec_loadimm64:
forall rd n k rs m,
- rd <> RA ->
exists rs',
exec_straight ge fn (loadimm64 rd n k) rs m k rs' m
/\ rs'#rd = Vlong n
/\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
Proof.
- unfold loadimm64, loadimm; intros until m; intro RD_NOT_RA.
+ unfold loadimm64, loadimm; intros.
destruct (is_logical_imm64 n).
- econstructor; split.
apply exec_straight_one. simpl; eauto. auto.
@@ -485,8 +432,8 @@ Proof.
apply Int64.eqm_samerepr. apply decompose_notint_eqmod.
apply Int64.repr_unsigned. }
destruct Nat.leb.
-+ rewrite <- A. apply exec_loadimm_z_x. apply decompose_int_wf; omega. trivial.
-+ rewrite <- B. apply exec_loadimm_n_x. apply decompose_int_wf; omega. trivial.
++ rewrite <- A. apply exec_loadimm_z_x. apply decompose_int_wf; omega.
++ rewrite <- B. apply exec_loadimm_n_x. apply decompose_int_wf; omega.
Qed.
(** Add immediate *)
@@ -498,59 +445,55 @@ Lemma exec_addimm_aux_32:
Next (nextinstr (rs#rd <- (sem rs#r1 (Vint (Int.repr n))))) m) ->
(forall v n1 n2, sem (sem v (Vint n1)) (Vint n2) = sem v (Vint (Int.add n1 n2))) ->
forall rd r1 n k rs m,
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
exists rs',
exec_straight ge fn (addimm_aux insn rd r1 (Int.unsigned n) k) rs m k rs' m
/\ rs'#rd = sem rs#r1 (Vint n)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
+ /\ forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r.
Proof.
- intros insn sem SEM ASSOC; intros until m; intro RD_NOT_RA. unfold addimm_aux.
+ intros insn sem SEM ASSOC; intros. unfold addimm_aux.
set (nlo := Zzero_ext 12 (Int.unsigned n)). set (nhi := Int.unsigned n - nlo).
assert (E: Int.unsigned n = nhi + nlo) by (unfold nhi; omega).
rewrite <- (Int.repr_unsigned n).
destruct (Z.eqb_spec nhi 0); [|destruct (Z.eqb_spec nlo 0)].
- econstructor; split. apply exec_straight_one. apply SEM. Simpl.
split. Simpl. do 3 f_equal; omega.
- split; intros; Simpl.
+ intros; Simpl.
- econstructor; split. apply exec_straight_one. apply SEM. Simpl.
split. Simpl. do 3 f_equal; omega.
- split; intros; Simpl.
+ intros; Simpl.
- econstructor; split. eapply exec_straight_two.
apply SEM. apply SEM. Simpl. Simpl.
split. Simpl. rewrite ASSOC. do 2 f_equal. apply Int.eqm_samerepr.
rewrite E. auto with ints.
- split; intros; Simpl.
+ intros; Simpl.
Qed.
Lemma exec_addimm32:
forall rd r1 n k rs m,
r1 <> X16 ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
exists rs',
exec_straight ge fn (addimm32 rd r1 n k) rs m k rs' m
/\ rs'#rd = Val.add rs#r1 (Vint n)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
+ /\ forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r.
Proof.
intros. unfold addimm32. set (nn := Int.neg n).
destruct (Int.eq n (Int.zero_ext 24 n)); [| destruct (Int.eq nn (Int.zero_ext 24 nn))].
-- apply exec_addimm_aux_32 with (sem := Val.add); auto. intros; apply Val.add_assoc.
+- apply exec_addimm_aux_32 with (sem := Val.add). auto. intros; apply Val.add_assoc.
- rewrite <- Val.sub_opp_add.
- apply exec_addimm_aux_32 with (sem := Val.sub); auto.
+ apply exec_addimm_aux_32 with (sem := Val.sub). auto.
intros. rewrite ! Val.sub_add_opp, Val.add_assoc. rewrite Int.neg_add_distr. auto.
- destruct (Int.lt n Int.zero).
+ rewrite <- Val.sub_opp_add; fold nn.
- edestruct (exec_loadimm32 X16 nn) as (rs1 & A & B & C). congruence.
+ edestruct (exec_loadimm32 X16 nn) as (rs1 & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A. eapply exec_straight_one. simpl; eauto. auto.
split. Simpl. rewrite B, C; eauto with asmgen.
- split; intros; Simpl.
-+ edestruct (exec_loadimm32 X16 n) as (rs1 & A & B & C). congruence.
+ intros; Simpl.
++ edestruct (exec_loadimm32 X16 n) as (rs1 & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A. eapply exec_straight_one. simpl; eauto. auto.
split. Simpl. rewrite B, C; eauto with asmgen.
- split; intros; Simpl.
+ intros; Simpl.
Qed.
Lemma exec_addimm_aux_64:
@@ -560,12 +503,10 @@ Lemma exec_addimm_aux_64:
Next (nextinstr (rs#rd <- (sem rs#r1 (Vlong (Int64.repr n))))) m) ->
(forall v n1 n2, sem (sem v (Vlong n1)) (Vlong n2) = sem v (Vlong (Int64.add n1 n2))) ->
forall rd r1 n k rs m,
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
exists rs',
exec_straight ge fn (addimm_aux insn rd r1 (Int64.unsigned n) k) rs m k rs' m
/\ rs'#rd = sem rs#r1 (Vlong n)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
+ /\ forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r.
Proof.
intros insn sem SEM ASSOC; intros. unfold addimm_aux.
set (nlo := Zzero_ext 12 (Int64.unsigned n)). set (nhi := Int64.unsigned n - nlo).
@@ -574,46 +515,44 @@ Proof.
destruct (Z.eqb_spec nhi 0); [|destruct (Z.eqb_spec nlo 0)].
- econstructor; split. apply exec_straight_one. apply SEM. Simpl.
split. Simpl. do 3 f_equal; omega.
- split; intros; Simpl.
+ intros; Simpl.
- econstructor; split. apply exec_straight_one. apply SEM. Simpl.
split. Simpl. do 3 f_equal; omega.
- split; intros; Simpl.
+ intros; Simpl.
- econstructor; split. eapply exec_straight_two.
apply SEM. apply SEM. Simpl. Simpl.
split. Simpl. rewrite ASSOC. do 2 f_equal. apply Int64.eqm_samerepr.
rewrite E. auto with ints.
- split; intros; Simpl.
+ intros; Simpl.
Qed.
Lemma exec_addimm64:
forall rd r1 n k rs m,
preg_of_iregsp r1 <> X16 ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
exists rs',
exec_straight ge fn (addimm64 rd r1 n k) rs m k rs' m
/\ rs'#rd = Val.addl rs#r1 (Vlong n)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
+ /\ forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r.
Proof.
intros.
unfold addimm64. set (nn := Int64.neg n).
destruct (Int64.eq n (Int64.zero_ext 24 n)); [| destruct (Int64.eq nn (Int64.zero_ext 24 nn))].
-- apply exec_addimm_aux_64 with (sem := Val.addl); auto. intros; apply Val.addl_assoc.
+- apply exec_addimm_aux_64 with (sem := Val.addl). auto. intros; apply Val.addl_assoc.
- rewrite <- Val.subl_opp_addl.
- apply exec_addimm_aux_64 with (sem := Val.subl); auto.
+ apply exec_addimm_aux_64 with (sem := Val.subl). auto.
intros. rewrite ! Val.subl_addl_opp, Val.addl_assoc. rewrite Int64.neg_add_distr. auto.
- destruct (Int64.lt n Int64.zero).
+ rewrite <- Val.subl_opp_addl; fold nn.
- edestruct (exec_loadimm64 X16 nn) as (rs1 & A & B & C). congruence.
+ edestruct (exec_loadimm64 X16 nn) as (rs1 & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A. eapply exec_straight_one. simpl; eauto. Simpl.
split. Simpl. rewrite B, C; eauto with asmgen. simpl. rewrite Int64.shl'_zero. auto.
- split; intros; Simpl.
-+ edestruct (exec_loadimm64 X16 n) as (rs1 & A & B & C). congruence.
+ intros; Simpl.
++ edestruct (exec_loadimm64 X16 n) as (rs1 & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A. eapply exec_straight_one. simpl; eauto. Simpl.
split. Simpl. rewrite B, C; eauto with asmgen. simpl. rewrite Int64.shl'_zero. auto.
- split; intros; Simpl.
+ intros; Simpl.
Qed.
(** Logical immediate *)
@@ -630,25 +569,22 @@ Lemma exec_logicalimm32:
Next (nextinstr (rs#rd <- (sem rs##r1 (eval_shift_op_int rs#r2 s)))) m) ->
forall rd r1 n k rs m,
r1 <> X16 ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
exists rs',
exec_straight ge fn (logicalimm32 insn1 insn2 rd r1 n k) rs m k rs' m
/\ rs'#rd = sem rs#r1 (Vint n)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
+ /\ forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r.
Proof.
intros until sem; intros SEM1 SEM2; intros. unfold logicalimm32.
destruct (is_logical_imm32 n).
- econstructor; split.
apply exec_straight_one. apply SEM1. reflexivity.
- split. Simpl. rewrite Int.repr_unsigned; auto.
- split; intros; Simpl.
-- edestruct (exec_loadimm32 X16 n) as (rs1 & A & B & C). congruence.
+ split. Simpl. rewrite Int.repr_unsigned; auto. intros; Simpl.
+- edestruct (exec_loadimm32 X16 n) as (rs1 & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A.
apply exec_straight_one. apply SEM2. reflexivity.
split. Simpl. f_equal; auto. apply C; auto with asmgen.
- split; intros; Simpl.
+ intros; Simpl.
Qed.
Lemma exec_logicalimm64:
@@ -663,58 +599,50 @@ Lemma exec_logicalimm64:
Next (nextinstr (rs#rd <- (sem rs###r1 (eval_shift_op_long rs#r2 s)))) m) ->
forall rd r1 n k rs m,
r1 <> X16 ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
exists rs',
exec_straight ge fn (logicalimm64 insn1 insn2 rd r1 n k) rs m k rs' m
/\ rs'#rd = sem rs#r1 (Vlong n)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
+ /\ forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r.
Proof.
intros until sem; intros SEM1 SEM2; intros. unfold logicalimm64.
destruct (is_logical_imm64 n).
- econstructor; split.
apply exec_straight_one. apply SEM1. reflexivity.
- split. Simpl. rewrite Int64.repr_unsigned. auto.
- split; intros; Simpl.
-- edestruct (exec_loadimm64 X16 n) as (rs1 & A & B & C). congruence.
+ split. Simpl. rewrite Int64.repr_unsigned. auto. intros; Simpl.
+- edestruct (exec_loadimm64 X16 n) as (rs1 & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A.
apply exec_straight_one. apply SEM2. reflexivity.
split. Simpl. f_equal; auto. apply C; auto with asmgen.
- split; intros; Simpl.
+ intros; Simpl.
Qed.
(** Load address of symbol *)
Lemma exec_loadsymbol: forall rd s ofs k rs m,
- rd <> X16 \/ Archi.pic_code tt = false ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
+ rd <> X16 \/ Archi.pic_code tt = false ->
exists rs',
exec_straight ge fn (loadsymbol rd s ofs k) rs m k rs' m
/\ rs'#rd = Genv.symbol_address ge s ofs
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs'#RA = rs#RA.
+ /\ forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r.
Proof.
unfold loadsymbol; intros. destruct (Archi.pic_code tt).
- predSpec Ptrofs.eq Ptrofs.eq_spec ofs Ptrofs.zero.
+ subst ofs. econstructor; split.
apply exec_straight_one; [simpl; eauto | reflexivity].
- split. Simpl. split; intros; Simpl.
-
+ split. Simpl. intros; Simpl.
+ exploit exec_addimm64. instantiate (1 := rd). simpl. destruct H; congruence.
- instantiate (1 := rd). assumption.
- intros (rs1 & A & B & C & D).
+ intros (rs1 & A & B & C).
econstructor; split.
econstructor. simpl; eauto. auto. eexact A.
split. simpl in B; rewrite B. Simpl.
rewrite <- Genv.shift_symbol_address_64 by auto.
rewrite Ptrofs.add_zero_l, Ptrofs.of_int64_to_int64 by auto. auto.
- split; intros. rewrite C by auto; Simpl.
- rewrite D. Simpl.
+ intros. rewrite C by auto. Simpl.
- econstructor; split.
eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto.
split. Simpl. rewrite symbol_high_low; auto.
- split; intros; Simpl.
+ intros; Simpl.
Qed.
(** Shifted operands *)
@@ -823,25 +751,23 @@ Lemma exec_arith_extended:
Next (nextinstr (rs#rd <- (sem rs###r1 (eval_shift_op_long rs#r2 s)))) m) ->
forall (rd r1 r2: ireg) (ex: extension) (a: amount64) (k: code) rs m,
r1 <> X16 ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
exists rs',
exec_straight ge fn (arith_extended insnX insnS rd r1 r2 ex a k) rs m k rs' m
/\ rs'#rd = sem rs#r1 (Op.eval_extend ex rs#r2 a)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
+ /\ forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r.
Proof.
intros sem insnX insnS EX ES; intros. unfold arith_extended. destruct (Int.ltu a (Int.repr 5)).
- econstructor; split.
apply exec_straight_one. rewrite EX; eauto. auto.
split. Simpl. f_equal. destruct ex; auto.
- split; intros; Simpl.
+ intros; Simpl.
- exploit (exec_move_extended_base X16 r2 ex). intros (rs' & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A. apply exec_straight_one.
rewrite ES. eauto. auto.
split. Simpl. unfold ir0x. rewrite C by eauto with asmgen. f_equal.
rewrite B. destruct ex; auto.
- split; intros; Simpl.
+ intros; Simpl.
Qed.
(** Extended right shift *)
@@ -1236,56 +1162,6 @@ Ltac ArgsInv :=
| [ H: freg_of _ = OK _ |- _ ] => simpl in *; rewrite (freg_of_eq _ _ H) in *
end).
-Lemma compare_int_RA:
- forall rs a b m,
- compare_int rs a b m X30 = rs X30.
-Proof.
- unfold compare_int.
- intros.
- repeat rewrite Pregmap.gso by congruence.
- trivial.
-Qed.
-
-Hint Resolve compare_int_RA : asmgen.
-
-Lemma compare_long_RA:
- forall rs a b m,
- compare_long rs a b m X30 = rs X30.
-Proof.
- unfold compare_long.
- intros.
- repeat rewrite Pregmap.gso by congruence.
- trivial.
-Qed.
-
-Hint Resolve compare_long_RA : asmgen.
-
-Lemma compare_float_RA:
- forall rs a b,
- compare_float rs a b X30 = rs X30.
-Proof.
- unfold compare_float.
- intros.
- destruct a; destruct b.
- all: repeat rewrite Pregmap.gso by congruence; trivial.
-Qed.
-
-Hint Resolve compare_float_RA : asmgen.
-
-
-Lemma compare_single_RA:
- forall rs a b,
- compare_single rs a b X30 = rs X30.
-Proof.
- unfold compare_single.
- intros.
- destruct a; destruct b.
- all: repeat rewrite Pregmap.gso by congruence; trivial.
-Qed.
-
-Hint Resolve compare_single_RA : asmgen.
-
-
Lemma transl_cond_correct:
forall cond args k c rs m,
transl_cond cond args k = OK c ->
@@ -1294,218 +1170,185 @@ Lemma transl_cond_correct:
/\ (forall b,
eval_condition cond (map rs (map preg_of args)) m = Some b ->
eval_testcond (cond_for_cond cond) rs' = Some b)
- /\ (forall r, data_preg r = true -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
+ /\ forall r, data_preg r = true -> rs'#r = rs#r.
Proof.
intros until m; intros TR. destruct cond; simpl in TR; ArgsInv.
- (* Ccomp *)
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. apply eval_testcond_compare_sint; auto.
+ split; intros. apply eval_testcond_compare_sint; auto.
destruct r; reflexivity || discriminate.
- (* Ccompu *)
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. apply eval_testcond_compare_uint; auto.
+ split; intros. apply eval_testcond_compare_uint; auto.
destruct r; reflexivity || discriminate.
- (* Ccompimm *)
destruct (is_arith_imm32 n); [|destruct (is_arith_imm32 (Int.neg n))].
+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int.repr_unsigned. apply eval_testcond_compare_sint; auto.
+ split; intros. rewrite Int.repr_unsigned. apply eval_testcond_compare_sint; auto.
destruct r; reflexivity || discriminate.
+ econstructor; split.
apply exec_straight_one. simpl. rewrite Int.repr_unsigned, Int.neg_involutive. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_sint; auto.
+ split; intros. apply eval_testcond_compare_sint; auto.
destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm32 X16 n). congruence. intros (rs' & A & B & C).
++ exploit (exec_loadimm32 X16 n). intros (rs' & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A. apply exec_straight_one.
simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_sint; auto.
- transitivity (rs' r). destruct r; reflexivity || discriminate.
- auto with asmgen.
- Simpl. rewrite compare_int_RA.
- apply C; congruence.
+ split; intros. apply eval_testcond_compare_sint; auto.
+ transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- (* Ccompuimm *)
destruct (is_arith_imm32 n); [|destruct (is_arith_imm32 (Int.neg n))].
+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int.repr_unsigned. apply eval_testcond_compare_uint; auto.
+ split; intros. rewrite Int.repr_unsigned. apply eval_testcond_compare_uint; auto.
destruct r; reflexivity || discriminate.
+ econstructor; split.
apply exec_straight_one. simpl. rewrite Int.repr_unsigned, Int.neg_involutive. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_uint; auto.
+ split; intros. apply eval_testcond_compare_uint; auto.
destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm32 X16 n). congruence. intros (rs' & A & B & C).
++ exploit (exec_loadimm32 X16 n). intros (rs' & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A. apply exec_straight_one.
simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_uint; auto.
+ split; intros. apply eval_testcond_compare_uint; auto.
transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_int_RA.
- apply C; congruence.
- (* Ccompshift *)
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite transl_eval_shift. apply eval_testcond_compare_sint; auto.
+ split; intros. rewrite transl_eval_shift. apply eval_testcond_compare_sint; auto.
destruct r; reflexivity || discriminate.
- (* Ccompushift *)
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite transl_eval_shift. apply eval_testcond_compare_uint; auto.
+ split; intros. rewrite transl_eval_shift. apply eval_testcond_compare_uint; auto.
destruct r; reflexivity || discriminate.
- (* Cmaskzero *)
destruct (is_logical_imm32 n).
+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int.repr_unsigned. apply (eval_testcond_compare_sint Ceq); auto.
+ split; intros. rewrite Int.repr_unsigned. apply (eval_testcond_compare_sint Ceq); auto.
destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm32 X16 n). congruence. intros (rs' & A & B & C).
++ exploit (exec_loadimm32 X16 n). intros (rs' & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A.
apply exec_straight_one. simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply (eval_testcond_compare_sint Ceq); auto.
+ split; intros. apply (eval_testcond_compare_sint Ceq); auto.
transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_int_RA.
- apply C; congruence.
-
- (* Cmasknotzero *)
destruct (is_logical_imm32 n).
+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int.repr_unsigned. apply (eval_testcond_compare_sint Cne); auto.
+ split; intros. rewrite Int.repr_unsigned. apply (eval_testcond_compare_sint Cne); auto.
destruct r; reflexivity || discriminate.
-
-+ exploit (exec_loadimm32 X16 n). congruence. intros (rs' & A & B & C).
++ exploit (exec_loadimm32 X16 n). intros (rs' & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A.
apply exec_straight_one. simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply (eval_testcond_compare_sint Cne); auto.
+ split; intros. apply (eval_testcond_compare_sint Cne); auto.
transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_int_RA.
- apply C; congruence.
-
- (* Ccompl *)
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. apply eval_testcond_compare_slong; auto.
+ split; intros. apply eval_testcond_compare_slong; auto.
destruct r; reflexivity || discriminate.
- (* Ccomplu *)
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. apply eval_testcond_compare_ulong; auto.
+ split; intros. apply eval_testcond_compare_ulong; auto.
destruct r; reflexivity || discriminate.
- (* Ccomplimm *)
destruct (is_arith_imm64 n); [|destruct (is_arith_imm64 (Int64.neg n))].
+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int64.repr_unsigned. apply eval_testcond_compare_slong; auto.
+ split; intros. rewrite Int64.repr_unsigned. apply eval_testcond_compare_slong; auto.
destruct r; reflexivity || discriminate.
+ econstructor; split.
apply exec_straight_one. simpl. rewrite Int64.repr_unsigned, Int64.neg_involutive. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_slong; auto.
+ split; intros. apply eval_testcond_compare_slong; auto.
destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm64 X16 n). congruence. intros (rs' & A & B & C).
++ exploit (exec_loadimm64 X16 n). intros (rs' & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A. apply exec_straight_one.
simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_slong; auto.
+ split; intros. apply eval_testcond_compare_slong; auto.
transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_long_RA.
- apply C; congruence.
-
- (* Ccompluimm *)
destruct (is_arith_imm64 n); [|destruct (is_arith_imm64 (Int64.neg n))].
+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int64.repr_unsigned. apply eval_testcond_compare_ulong; auto.
+ split; intros. rewrite Int64.repr_unsigned. apply eval_testcond_compare_ulong; auto.
destruct r; reflexivity || discriminate.
+ econstructor; split.
apply exec_straight_one. simpl. rewrite Int64.repr_unsigned, Int64.neg_involutive. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_ulong; auto.
+ split; intros. apply eval_testcond_compare_ulong; auto.
destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm64 X16 n). congruence. intros (rs' & A & B & C).
++ exploit (exec_loadimm64 X16 n). intros (rs' & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A. apply exec_straight_one.
simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_ulong; auto.
+ split; intros. apply eval_testcond_compare_ulong; auto.
transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_long_RA.
- apply C; congruence.
-
- (* Ccomplshift *)
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite transl_eval_shiftl. apply eval_testcond_compare_slong; auto.
+ split; intros. rewrite transl_eval_shiftl. apply eval_testcond_compare_slong; auto.
destruct r; reflexivity || discriminate.
- (* Ccomplushift *)
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite transl_eval_shiftl. apply eval_testcond_compare_ulong; auto.
+ split; intros. rewrite transl_eval_shiftl. apply eval_testcond_compare_ulong; auto.
destruct r; reflexivity || discriminate.
- (* Cmasklzero *)
destruct (is_logical_imm64 n).
+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int64.repr_unsigned. apply (eval_testcond_compare_slong Ceq); auto.
+ split; intros. rewrite Int64.repr_unsigned. apply (eval_testcond_compare_slong Ceq); auto.
destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm64 X16 n). congruence. intros (rs' & A & B & C).
++ exploit (exec_loadimm64 X16 n). intros (rs' & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A.
apply exec_straight_one. simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply (eval_testcond_compare_slong Ceq); auto.
+ split; intros. apply (eval_testcond_compare_slong Ceq); auto.
transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_long_RA.
- apply C; congruence.
-
- (* Cmasknotzero *)
destruct (is_logical_imm64 n).
+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int64.repr_unsigned. apply (eval_testcond_compare_slong Cne); auto.
+ split; intros. rewrite Int64.repr_unsigned. apply (eval_testcond_compare_slong Cne); auto.
destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm64 X16 n). congruence. intros (rs' & A & B & C).
++ exploit (exec_loadimm64 X16 n). intros (rs' & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A.
apply exec_straight_one. simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply (eval_testcond_compare_slong Cne); auto.
+ split; intros. apply (eval_testcond_compare_slong Cne); auto.
transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_long_RA.
- apply C; congruence.
-
- (* Ccompf *)
econstructor; split. apply exec_straight_one. simpl; eauto.
rewrite compare_float_inv; auto.
- repeat split; intros. apply eval_testcond_compare_float; auto.
+ split; intros. apply eval_testcond_compare_float; auto.
destruct r; discriminate || rewrite compare_float_inv; auto.
- Simpl.
- (* Cnotcompf *)
econstructor; split. apply exec_straight_one. simpl; eauto.
rewrite compare_float_inv; auto.
- repeat split; intros. apply eval_testcond_compare_not_float; auto.
+ split; intros. apply eval_testcond_compare_not_float; auto.
destruct r; discriminate || rewrite compare_float_inv; auto.
- Simpl.
- (* Ccompfzero *)
econstructor; split. apply exec_straight_one. simpl; eauto.
rewrite compare_float_inv; auto.
- repeat split; intros. apply eval_testcond_compare_float; auto.
+ split; intros. apply eval_testcond_compare_float; auto.
destruct r; discriminate || rewrite compare_float_inv; auto.
- Simpl.
- (* Cnotcompfzero *)
econstructor; split. apply exec_straight_one. simpl; eauto.
rewrite compare_float_inv; auto.
- repeat split; intros. apply eval_testcond_compare_not_float; auto.
+ split; intros. apply eval_testcond_compare_not_float; auto.
destruct r; discriminate || rewrite compare_float_inv; auto.
- Simpl.
- (* Ccompfs *)
econstructor; split. apply exec_straight_one. simpl; eauto.
rewrite compare_single_inv; auto.
- repeat split; intros. apply eval_testcond_compare_single; auto.
+ split; intros. apply eval_testcond_compare_single; auto.
destruct r; discriminate || rewrite compare_single_inv; auto.
- Simpl.
- (* Cnotcompfs *)
econstructor; split. apply exec_straight_one. simpl; eauto.
rewrite compare_single_inv; auto.
- repeat split; intros. apply eval_testcond_compare_not_single; auto.
+ split; intros. apply eval_testcond_compare_not_single; auto.
destruct r; discriminate || rewrite compare_single_inv; auto.
- Simpl.
- (* Ccompfszero *)
econstructor; split. apply exec_straight_one. simpl; eauto.
rewrite compare_single_inv; auto.
- repeat split; intros. apply eval_testcond_compare_single; auto.
+ split; intros. apply eval_testcond_compare_single; auto.
destruct r; discriminate || rewrite compare_single_inv; auto.
- Simpl.
- (* Cnotcompfszero *)
econstructor; split. apply exec_straight_one. simpl; eauto.
rewrite compare_single_inv; auto.
- repeat split; intros. apply eval_testcond_compare_not_single; auto.
+ split; intros. apply eval_testcond_compare_not_single; auto.
destruct r; discriminate || rewrite compare_single_inv; auto.
- Simpl.
Qed.
(** Translation of conditional branches *)
@@ -1518,8 +1361,7 @@ Lemma transl_cond_branch_correct:
exec_straight_opt ge fn c rs m (insn :: k) rs' m
/\ exec_instr ge fn insn rs' m =
(if b then goto_label fn lbl rs' m else Next (nextinstr rs') m)
- /\ (forall r, data_preg r = true -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
+ /\ forall r, data_preg r = true -> rs'#r = rs#r.
Proof.
intros until b; intros TR EV.
assert (DFL:
@@ -1528,14 +1370,13 @@ Proof.
exec_straight_opt ge fn c rs m (insn :: k) rs' m
/\ exec_instr ge fn insn rs' m =
(if b then goto_label fn lbl rs' m else Next (nextinstr rs') m)
- /\ (forall r, data_preg r = true -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA ).
+ /\ forall r, data_preg r = true -> rs'#r = rs#r).
{
unfold transl_cond_branch_default; intros.
- exploit transl_cond_correct; eauto. intros (rs' & A & B & C & D).
+ exploit transl_cond_correct; eauto. intros (rs' & A & B & C).
exists rs', (Pbc (cond_for_cond cond) lbl); split.
apply exec_straight_opt_intro. eexact A.
- repeat split; auto. simpl. rewrite (B b) by auto. auto.
+ split; auto. simpl. rewrite (B b) by auto. auto.
}
Local Opaque transl_cond transl_cond_branch_default.
destruct args as [ | a1 args]; simpl in TR; auto.
@@ -1629,15 +1470,13 @@ Ltac TranslOpSimpl :=
[ apply exec_straight_one; [simpl; eauto | reflexivity]
| split; [ rewrite ? transl_eval_shift, ? transl_eval_shiftl;
apply Val.lessdef_same; Simpl; fail
- | split; [ intros; Simpl; fail
- | intros; Simpl; eauto with asmgen; fail] ]].
+ | intros; Simpl; fail ] ].
Ltac TranslOpBase :=
econstructor; split;
[ apply exec_straight_one; [simpl; eauto | reflexivity]
| split; [ rewrite ? transl_eval_shift, ? transl_eval_shiftl; Simpl
- | split; [ intros; Simpl; fail
- | intros; Simpl; eapply RA_not_written2; eauto] ]].
+ | intros; Simpl; fail ] ].
Lemma transl_op_correct:
forall op args res k (rs: regset) m v c,
@@ -1646,29 +1485,21 @@ Lemma transl_op_correct:
exists rs',
exec_straight ge fn c rs m k rs' m
/\ Val.lessdef v rs'#(preg_of res)
- /\ (forall r, data_preg r = true -> r <> preg_of res -> preg_notin r (destroyed_by_op op) -> rs' r = rs r)
- /\ rs' RA = rs RA.
+ /\ forall r, data_preg r = true -> r <> preg_of res -> preg_notin r (destroyed_by_op op) -> rs' r = rs r.
Proof.
Local Opaque Int.eq Int64.eq Val.add Val.addl Int.zwordsize Int64.zwordsize.
intros until c; intros TR EV.
unfold transl_op in TR; destruct op; ArgsInv; simpl in EV; SimplEval EV; try TranslOpSimpl.
- (* move *)
destruct (preg_of res) eqn:RR; try discriminate; destruct (preg_of m0) eqn:R1; inv TR.
- all: TranslOpSimpl.
++ TranslOpSimpl.
++ TranslOpSimpl.
- (* intconst *)
- exploit exec_loadimm32. apply (ireg_of_not_RA res); eassumption.
- intros (rs' & A & B & C).
- exists rs'; split. eexact A. split. rewrite B; auto.
- split. intros; auto with asmgen.
- apply C. congruence.
- eapply ireg_of_not_RA''; eauto.
+ exploit exec_loadimm32. intros (rs' & A & B & C).
+ exists rs'; split. eexact A. split. rewrite B; auto. intros; auto with asmgen.
- (* longconst *)
- exploit exec_loadimm64. apply (ireg_of_not_RA res); eassumption.
- intros (rs' & A & B & C).
- exists rs'; split. eexact A. split. rewrite B; auto.
- split. intros; auto with asmgen.
- apply C. congruence.
- eapply ireg_of_not_RA''; eauto.
+ exploit exec_loadimm64. intros (rs' & A & B & C).
+ exists rs'; split. eexact A. split. rewrite B; auto. intros; auto with asmgen.
- (* floatconst *)
destruct (Float.eq_dec n Float.zero).
+ subst n. TranslOpSimpl.
@@ -1678,15 +1509,11 @@ Local Opaque Int.eq Int64.eq Val.add Val.addl Int.zwordsize Int64.zwordsize.
+ subst n. TranslOpSimpl.
+ TranslOpSimpl.
- (* loadsymbol *)
- exploit (exec_loadsymbol x id ofs). eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- exists rs'; split. eexact A. split. rewrite B; auto.
- split; auto.
+ exploit (exec_loadsymbol x id ofs). eauto with asmgen. intros (rs' & A & B & C).
+ exists rs'; split. eexact A. split. rewrite B; auto. auto.
- (* addrstack *)
exploit (exec_addimm64 x XSP (Ptrofs.to_int64 ofs)). simpl; eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
+ intros (rs' & A & B & C).
exists rs'; split. eexact A. split. simpl in B; rewrite B.
Local Transparent Val.addl.
destruct (rs SP); simpl; auto. rewrite Ptrofs.of_int64_to_int64 by auto. auto.
@@ -1694,8 +1521,7 @@ Local Transparent Val.addl.
- (* shift *)
rewrite <- transl_eval_shift'. TranslOpSimpl.
- (* addimm *)
- exploit (exec_addimm32 x x0 n). eauto with asmgen. eapply ireg_of_not_RA''; eassumption.
- intros (rs' & A & B & C & D).
+ exploit (exec_addimm32 x x0 n). eauto with asmgen. intros (rs' & A & B & C).
exists rs'; split. eexact A. split. rewrite B; auto. auto.
- (* mul *)
TranslOpBase.
@@ -1703,20 +1529,18 @@ Local Transparent Val.add.
destruct (rs x0); auto; destruct (rs x1); auto. simpl. rewrite Int.add_zero_l; auto.
- (* andimm *)
exploit (exec_logicalimm32 (Pandimm W) (Pand W)).
- intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen. apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- exists rs'; split. eexact A. split. rewrite B; auto.
- split; auto.
+ intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split. eexact A. split. rewrite B; auto. auto.
- (* orimm *)
exploit (exec_logicalimm32 (Porrimm W) (Porr W)).
- intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen. apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- exists rs'; split. eexact A. split. rewrite B; auto.
- split; auto.
+ intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split. eexact A. split. rewrite B; auto. auto.
- (* xorimm *)
exploit (exec_logicalimm32 (Peorimm W) (Peor W)).
- intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen. apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
+ intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen.
+ intros (rs' & A & B & C).
exists rs'; split. eexact A. split. rewrite B; auto. auto.
- (* not *)
TranslOpBase.
@@ -1728,16 +1552,15 @@ Local Transparent Val.add.
destruct (Val.shrx (rs x0) (Vint n)) eqn:TOTAL.
{
exploit (exec_shrx32 x x0 n); eauto with asmgen. apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- econstructor; split. eexact A. split. rewrite B; auto.
- split; auto.
+ intros (rs' & A & B & C & D).
+ econstructor; split. eexact A. split. rewrite B; auto.
+ auto.
}
exploit (exec_shrx32_none x x0 n); eauto with asmgen. apply (ireg_of_not_RA'' res); eassumption.
intros (rs' & A & B & C).
econstructor; split. { eexact A. }
split. { cbn. constructor. }
- split; auto.
-
+ auto.
- (* zero-ext *)
TranslOpBase.
destruct (rs x0); auto; simpl. rewrite Int.shl_zero. auto.
@@ -1761,47 +1584,36 @@ Local Transparent Val.add.
- (* extend *)
exploit (exec_move_extended x0 x1 x a k). intros (rs' & A & B & C).
econstructor; split. eexact A.
- split. rewrite B; auto.
- split; eauto with asmgen.
+ split. rewrite B; auto. eauto with asmgen.
- (* addext *)
exploit (exec_arith_extended Val.addl Paddext (Padd X)).
- auto. auto. instantiate (1 := x1). eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- econstructor; split. eexact A. split. rewrite B; auto.
- split; auto.
+ auto. auto. instantiate (1 := x1). eauto with asmgen. intros (rs' & A & B & C).
+ econstructor; split. eexact A. split. rewrite B; auto. auto.
- (* addlimm *)
exploit (exec_addimm64 x x0 n). simpl. generalize (ireg_of_not_X16 _ _ EQ1). congruence.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
+ intros (rs' & A & B & C).
exists rs'; split. eexact A. split. simpl in B; rewrite B; auto. auto.
- (* subext *)
exploit (exec_arith_extended Val.subl Psubext (Psub X)).
- auto. auto. instantiate (1 := x1). eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- econstructor; split. eexact A. split. rewrite B; auto.
- split; auto.
+ auto. auto. instantiate (1 := x1). eauto with asmgen. intros (rs' & A & B & C).
+ econstructor; split. eexact A. split. rewrite B; auto. auto.
- (* mull *)
TranslOpBase.
destruct (rs x0); auto; destruct (rs x1); auto. simpl. rewrite Int64.add_zero_l; auto.
- (* andlimm *)
exploit (exec_logicalimm64 (Pandimm X) (Pand X)).
intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
+ intros (rs' & A & B & C).
exists rs'; split. eexact A. split. rewrite B; auto. auto.
- (* orlimm *)
exploit (exec_logicalimm64 (Porrimm X) (Porr X)).
intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
+ intros (rs' & A & B & C).
exists rs'; split. eexact A. split. rewrite B; auto. auto.
- (* xorlimm *)
exploit (exec_logicalimm64 (Peorimm X) (Peor X)).
intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
+ intros (rs' & A & B & C).
exists rs'; split. eexact A. split. rewrite B; auto. auto.
- (* notl *)
TranslOpBase.
@@ -1809,7 +1621,7 @@ Local Transparent Val.add.
- (* notlshift *)
TranslOpBase.
destruct (eval_shiftl s (rs x0) a); auto. simpl. rewrite Int64.or_zero_l; auto.
-- (* shrx *)
+- (* shrxl *)
destruct (Val.shrxl (rs x0) (Vint n)) eqn:TOTAL.
{
exploit (exec_shrx64 x x0 n); eauto with asmgen.
@@ -1820,8 +1632,7 @@ Local Transparent Val.add.
intros (rs' & A & B & C).
econstructor; split. { eexact A. }
split. { cbn. constructor. }
- split; auto.
-
+ auto.
- (* zero-ext-l *)
TranslOpBase.
destruct (rs x0); auto; simpl. rewrite Int64.shl'_zero. auto.
@@ -1841,37 +1652,35 @@ Local Transparent Val.add.
TranslOpBase.
destruct (rs x0); simpl; auto. rewrite ! a64_range; simpl. rewrite <- Int64.sign_ext_shr'_min; auto using a64_range.
- (* condition *)
- exploit (transl_cond_correct cond args); eauto. intros (rs' & A & B & C & D).
+ exploit (transl_cond_correct cond args); eauto. intros (rs' & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A. apply exec_straight_one. simpl; eauto. auto.
split. Simpl. destruct (eval_condition cond (map rs (map preg_of args)) m) as [b|]; simpl in *.
rewrite (B b) by auto. auto.
auto.
- split; intros; Simpl.
+ intros; Simpl.
- (* select *)
destruct (preg_of res) eqn:RES; monadInv TR.
+ (* integer *)
generalize (ireg_of_eq _ _ EQ) (ireg_of_eq _ _ EQ1); intros E1 E2; rewrite E1, E2.
- exploit (transl_cond_correct cond args); eauto. intros (rs' & A & B & C & D).
+ exploit (transl_cond_correct cond args); eauto. intros (rs' & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A. apply exec_straight_one. simpl; eauto. auto.
split. Simpl. destruct (eval_condition cond (map rs (map preg_of args)) m) as [b|]; simpl in *.
rewrite (B b) by auto. rewrite !C. apply Val.lessdef_normalize.
rewrite <- E2; auto with asmgen. rewrite <- E1; auto with asmgen.
auto.
- split; intros; Simpl.
- rewrite <- D.
- eapply RA_not_written2; eassumption.
+ intros; Simpl.
+ (* FP *)
generalize (freg_of_eq _ _ EQ) (freg_of_eq _ _ EQ1); intros E1 E2; rewrite E1, E2.
- exploit (transl_cond_correct cond args); eauto. intros (rs' & A & B & C & D).
+ exploit (transl_cond_correct cond args); eauto. intros (rs' & A & B & C).
econstructor; split.
eapply exec_straight_trans. eexact A. apply exec_straight_one. simpl; eauto. auto.
split. Simpl. destruct (eval_condition cond (map rs (map preg_of args)) m) as [b|]; simpl in *.
rewrite (B b) by auto. rewrite !C. apply Val.lessdef_normalize.
rewrite <- E2; auto with asmgen. rewrite <- E1; auto with asmgen.
auto.
- split; intros; Simpl.
+ intros; Simpl.
Qed.
(** Translation of addressing modes, loads, stores *)
@@ -1883,8 +1692,7 @@ Lemma transl_addressing_correct:
exists ad rs',
exec_straight_opt ge fn c rs m (insn ad :: k) rs' m
/\ Asm.eval_addressing ge ad rs' = Vptr b o
- /\ (forall r, data_preg r = true -> rs' r = rs r)
- /\ rs' # RA = rs # RA.
+ /\ forall r, data_preg r = true -> rs' r = rs r.
Proof.
intros until o; intros TR EV.
unfold transl_addressing in TR; destruct addr; ArgsInv; SimplEval EV.
@@ -1892,10 +1700,10 @@ Proof.
destruct (offset_representable sz ofs); inv EQ0.
+ econstructor; econstructor; split. apply exec_straight_opt_refl.
auto.
-+ exploit (exec_loadimm64 X16 ofs). congruence. intros (rs' & A & B & C).
++ exploit (exec_loadimm64 X16 ofs). intros (rs' & A & B & C).
econstructor; exists rs'; split. apply exec_straight_opt_intro; eexact A.
split. simpl. rewrite B, C by eauto with asmgen. auto.
- split; eauto with asmgen.
+ eauto with asmgen.
- (* Aindexed2 *)
econstructor; econstructor; split. apply exec_straight_opt_refl.
auto.
@@ -1911,38 +1719,33 @@ Proof.
+ econstructor; econstructor; split.
apply exec_straight_opt_intro. apply exec_straight_one. simpl; eauto. auto.
split. simpl. Simpl. rewrite H0. simpl. rewrite Ptrofs.add_zero. auto.
- split; intros; Simpl.
+ intros; Simpl.
- (* Aindexed2ext *)
destruct (Int.eq a Int.zero || Int.eq (Int.shl Int.one a) (Int.repr sz)); inv EQ2.
+ econstructor; econstructor; split. apply exec_straight_opt_refl.
split; auto. destruct x; auto.
+ exploit (exec_arith_extended Val.addl Paddext (Padd X)); auto.
instantiate (1 := x0). eauto with asmgen.
- instantiate (1 := X16). simpl. congruence.
- intros (rs' & A & B & C & D).
+ intros (rs' & A & B & C).
econstructor; exists rs'; split.
apply exec_straight_opt_intro. eexact A.
split. simpl. rewrite B. rewrite Val.addl_assoc. f_equal.
unfold Op.eval_extend; destruct x, (rs x1); simpl; auto; rewrite ! a64_range;
simpl; rewrite Int64.add_zero; auto.
- split; intros.
- apply C; eauto with asmgen.
- trivial.
+ intros. apply C; eauto with asmgen.
- (* Aglobal *)
destruct (Ptrofs.eq (Ptrofs.modu ofs (Ptrofs.repr sz)) Ptrofs.zero && symbol_is_aligned id sz); inv TR.
+ econstructor; econstructor; split.
apply exec_straight_opt_intro. apply exec_straight_one. simpl; eauto. auto.
split. simpl. Simpl. rewrite symbol_high_low. simpl in EV. congruence.
- split; intros; Simpl.
-+ exploit (exec_loadsymbol X16 id ofs). auto.
- simpl. congruence.
- intros (rs' & A & B & C & D).
+ intros; Simpl.
++ exploit (exec_loadsymbol X16 id ofs). auto. intros (rs' & A & B & C).
econstructor; exists rs'; split.
apply exec_straight_opt_intro. eexact A.
split. simpl.
rewrite B. rewrite <- Genv.shift_symbol_address_64, Ptrofs.add_zero by auto.
simpl in EV. congruence.
- split; auto with asmgen.
+ auto with asmgen.
- (* Ainstrack *)
assert (E: Val.addl (rs SP) (Vlong (Ptrofs.to_int64 ofs)) = Vptr b o).
{ simpl in EV. inv EV. destruct (rs SP); simpl in H1; inv H1. simpl.
@@ -1950,9 +1753,7 @@ Proof.
destruct (offset_representable sz (Ptrofs.to_int64 ofs)); inv TR.
+ econstructor; econstructor; split. apply exec_straight_opt_refl.
auto.
-+ exploit (exec_loadimm64 X16 (Ptrofs.to_int64 ofs)).
- simpl. congruence.
- intros (rs' & A & B & C).
++ exploit (exec_loadimm64 X16 (Ptrofs.to_int64 ofs)). intros (rs' & A & B & C).
econstructor; exists rs'; split.
apply exec_straight_opt_intro. eexact A.
split. simpl. rewrite B, C by eauto with asmgen. auto.
@@ -1967,10 +1768,9 @@ Lemma transl_load_correct:
exists rs',
exec_straight ge fn c rs m k rs' m
/\ rs'#(preg_of dst) = v
- /\ (forall r, data_preg r = true -> r <> preg_of dst -> rs' r = rs r)
- /\ rs' # RA = rs # RA.
+ /\ forall r, data_preg r = true -> r <> preg_of dst -> rs' r = rs r.
Proof.
- intros. destruct vaddr; try discriminate.
+ intros. destruct vaddr; try discriminate.
assert (A: exists sz insn,
transl_addressing sz addr args insn k = OK c
/\ (forall ad rs', exec_instr ge fn (insn ad) rs' m =
@@ -1981,17 +1781,14 @@ Proof.
do 2 econstructor; (split; [eassumption|auto]).
}
destruct A as (sz & insn & B & C).
- exploit transl_addressing_correct. eexact B. eexact H0. intros (ad & rs' & P & Q & R & S).
+ exploit transl_addressing_correct. eexact B. eexact H0. intros (ad & rs' & P & Q & R).
assert (X: exec_load ge chunk (fun v => v) ad (preg_of dst) rs' m =
Next (nextinstr (rs'#(preg_of dst) <- v)) m).
{ unfold exec_load. rewrite Q, H1. auto. }
econstructor; split.
eapply exec_straight_opt_right. eexact P.
apply exec_straight_one. rewrite C, X; eauto. Simpl.
- split. Simpl.
- split; intros; Simpl.
- rewrite <- S.
- apply RA_not_written.
+ split. Simpl. intros; Simpl.
Qed.
Lemma transl_store_correct:
@@ -2001,8 +1798,7 @@ Lemma transl_store_correct:
Mem.storev chunk m vaddr rs#(preg_of src) = Some m' ->
exists rs',
exec_straight ge fn c rs m k rs' m'
- /\ (forall r, data_preg r = true -> rs' r = rs r)
- /\ rs' # RA = rs # RA.
+ /\ forall r, data_preg r = true -> rs' r = rs r.
Proof.
intros. destruct vaddr; try discriminate.
set (chunk' := match chunk with Mint8signed => Mint8unsigned
@@ -2018,7 +1814,7 @@ Proof.
do 2 econstructor; (split; [eassumption|auto]).
}
destruct A as (sz & insn & B & C).
- exploit transl_addressing_correct. eexact B. eexact H0. intros (ad & rs' & P & Q & R & S).
+ exploit transl_addressing_correct. eexact B. eexact H0. intros (ad & rs' & P & Q & R).
assert (X: Mem.storev chunk' m (Vptr b i) rs#(preg_of src) = Some m').
{ rewrite <- H1. unfold chunk'. destruct chunk; auto; simpl; symmetry.
apply Mem.store_signed_unsigned_8.
@@ -2029,7 +1825,7 @@ Proof.
econstructor; split.
eapply exec_straight_opt_right. eexact P.
apply exec_straight_one. rewrite C, Y; eauto. Simpl.
- split; intros; Simpl.
+ intros; Simpl.
Qed.
(** Translation of indexed memory accesses *)
@@ -2047,9 +1843,7 @@ Proof.
{ destruct (rs base); try discriminate. simpl in *. rewrite Ptrofs.of_int64_to_int64 by auto. auto. }
destruct offset_representable.
- econstructor; econstructor; split. apply exec_straight_opt_refl. auto.
-- exploit (exec_loadimm64 X16); eauto.
- simpl. congruence.
- intros (rs' & A & B & C).
+- exploit (exec_loadimm64 X16); eauto. intros (rs' & A & B & C).
econstructor; econstructor; split. apply exec_straight_opt_intro; eexact A.
split. simpl. rewrite B, C by eauto with asmgen. auto. auto.
Qed.
@@ -2060,7 +1854,7 @@ Lemma loadptr_correct: forall (base: iregsp) ofs dst k m v (rs: regset),
exists rs',
exec_straight ge fn (loadptr base ofs dst k) rs m k rs' m
/\ rs'#dst = v
- /\ (forall r, r <> PC -> r <> X16 -> r <> dst -> rs' r = rs r).
+ /\ forall r, r <> PC -> r <> X16 -> r <> dst -> rs' r = rs r.
Proof.
intros.
destruct (Val.offset_ptr rs#base ofs) eqn:V; try discriminate.
@@ -2068,8 +1862,7 @@ Proof.
econstructor; split.
eapply exec_straight_opt_right. eexact A.
apply exec_straight_one. simpl. unfold exec_load. rewrite B, H. eauto. auto.
- split. Simpl.
- intros; Simpl.
+ split. Simpl. intros; Simpl.
Qed.
Lemma storeptr_correct: forall (base: iregsp) ofs (src: ireg) k m m' (rs: regset),
@@ -2078,8 +1871,7 @@ Lemma storeptr_correct: forall (base: iregsp) ofs (src: ireg) k m m' (rs: regset
src <> X16 ->
exists rs',
exec_straight ge fn (storeptr src base ofs k) rs m k rs' m'
- /\ (forall r, r <> PC -> r <> X16 -> rs' r = rs r)
- /\ rs' RA = rs RA.
+ /\ forall r, r <> PC -> r <> X16 -> rs' r = rs r.
Proof.
intros.
destruct (Val.offset_ptr rs#base ofs) eqn:V; try discriminate.
@@ -2087,7 +1879,7 @@ Proof.
econstructor; split.
eapply exec_straight_opt_right. eexact A.
apply exec_straight_one. simpl. unfold exec_store. rewrite B, C, H by eauto with asmgen. eauto. auto.
- split; intros; Simpl.
+ intros; Simpl.
Qed.
Lemma loadind_correct: forall (base: iregsp) ofs ty dst k c (rs: regset) m v,
@@ -2097,8 +1889,7 @@ Lemma loadind_correct: forall (base: iregsp) ofs ty dst k c (rs: regset) m v,
exists rs',
exec_straight ge fn c rs m k rs' m
/\ rs'#(preg_of dst) = v
- /\ (forall r, data_preg r = true -> r <> preg_of dst -> rs' r = rs r)
- /\ rs' RA = rs RA.
+ /\ forall r, data_preg r = true -> r <> preg_of dst -> rs' r = rs r.
Proof.
intros.
destruct (Val.offset_ptr rs#base ofs) eqn:V; try discriminate.
@@ -2114,10 +1905,7 @@ Proof.
econstructor; split.
eapply exec_straight_opt_right. eexact A.
apply exec_straight_one. rewrite SEM. unfold exec_load. rewrite B, H0. eauto. Simpl.
- split. Simpl.
- split. intros; Simpl.
- Simpl. rewrite RA_not_written.
- apply C; congruence.
+ split. Simpl. intros; Simpl.
Qed.
Lemma storeind_correct: forall (base: iregsp) ofs ty src k c (rs: regset) m m',
@@ -2126,8 +1914,7 @@ Lemma storeind_correct: forall (base: iregsp) ofs ty src k c (rs: regset) m m',
preg_of_iregsp base <> IR X16 ->
exists rs',
exec_straight ge fn c rs m k rs' m'
- /\ (forall r, data_preg r = true -> rs' r = rs r)
- /\ rs' RA = rs RA.
+ /\ forall r, data_preg r = true -> rs' r = rs r.
Proof.
intros.
destruct (Val.offset_ptr rs#base ofs) eqn:V; try discriminate.
@@ -2145,15 +1932,13 @@ Proof.
apply exec_straight_one. rewrite SEM.
unfold exec_store. rewrite B, C, H0 by eauto with asmgen. eauto.
Simpl.
- split. intros; Simpl.
- Simpl.
+ intros; Simpl.
Qed.
Lemma make_epilogue_correct:
forall ge0 f m stk soff cs m' ms rs k tm,
- (is_leaf_function f = true -> rs # (IR RA) = parent_ra cs) ->
load_stack m (Vptr stk soff) Tptr f.(fn_link_ofs) = Some (parent_sp cs) ->
- ((* FIXME is_leaf_function f = false -> *) load_stack m (Vptr stk soff) Tptr f.(fn_retaddr_ofs) = Some (parent_ra cs)) ->
+ load_stack m (Vptr stk soff) Tptr f.(fn_retaddr_ofs) = Some (parent_ra cs) ->
Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
agree ms (Vptr stk soff) rs ->
Mem.extends m tm ->
@@ -2164,46 +1949,18 @@ Lemma make_epilogue_correct:
/\ Mem.extends m' tm'
/\ rs'#RA = parent_ra cs
/\ rs'#SP = parent_sp cs
- /\ (forall r, r <> PC -> r <> SP -> r <> RA -> r <> X16 -> rs'#r = rs#r).
+ /\ (forall r, r <> PC -> r <> SP -> r <> X30 -> r <> X16 -> rs'#r = rs#r).
Proof.
- intros until tm; intros LEAF_RA LP LRA FREE AG MEXT MCS.
-
- (* FIXME
- Cannot be used at this point
- destruct (is_leaf_function f) eqn:IS_LEAF.
- {
- exploit Mem.loadv_extends. eauto. eexact LP. auto. simpl. intros (parent' & LP' & LDP').
- exploit lessdef_parent_sp; eauto. intros EQ; subst parent'; clear LDP'.
- exploit Mem.free_parallel_extends; eauto. intros (tm' & FREE' & MEXT').
- unfold make_epilogue.
- rewrite IS_LEAF.
-
- econstructor; econstructor; split.
- apply exec_straight_one. simpl.
- rewrite <- (sp_val _ _ _ AG). simpl; rewrite LP'.
- rewrite FREE'. eauto. auto.
- split. apply agree_nextinstr. apply agree_set_other; auto.
- apply agree_change_sp with (Vptr stk soff).
- apply agree_exten with rs; auto.
- eapply parent_sp_def; eauto.
- split. auto.
- split. Simpl.
- split. Simpl.
- intros. Simpl.
- }
- lapply LRA. 2: reflexivity.
- clear LRA. intro LRA. *)
+ intros until tm; intros LP LRA FREE AG MEXT MCS.
exploit Mem.loadv_extends. eauto. eexact LP. auto. simpl. intros (parent' & LP' & LDP').
exploit Mem.loadv_extends. eauto. eexact LRA. auto. simpl. intros (ra' & LRA' & LDRA').
exploit lessdef_parent_sp; eauto. intros EQ; subst parent'; clear LDP'.
exploit lessdef_parent_ra; eauto. intros EQ; subst ra'; clear LDRA'.
exploit Mem.free_parallel_extends; eauto. intros (tm' & FREE' & MEXT').
- unfold make_epilogue.
- (* FIXME rewrite IS_LEAF. *)
+ unfold make_epilogue.
exploit (loadptr_correct XSP (fn_retaddr_ofs f)).
instantiate (2 := rs). simpl. rewrite <- (sp_val _ _ _ AG). simpl. eexact LRA'. simpl; congruence.
intros (rs1 & A1 & B1 & C1).
-
econstructor; econstructor; split.
eapply exec_straight_trans. eexact A1. apply exec_straight_one. simpl.
simpl; rewrite (C1 SP) by auto with asmgen. rewrite <- (sp_val _ _ _ AG). simpl; rewrite LP'.
diff --git a/powerpc/Op.v b/powerpc/Op.v
index 7ddbcc34..505b7545 100644
--- a/powerpc/Op.v
+++ b/powerpc/Op.v
@@ -573,8 +573,7 @@ Definition is_trapping_op (op : operation) :=
match op with
| Odiv | Odivl | Odivu | Odivlu
| Oshrximm _ | Oshrxlimm _
- | Ointoffloat | Ointuoffloat
- | Ofloatofint | Ofloatofintu
+ | Ointoffloat
| Olongoffloat
| Ofloatoflong => true
| _ => false