aboutsummaryrefslogtreecommitdiffstats
path: root/aarch64/Asmblockgenproof1.v
diff options
context:
space:
mode:
authorLéo Gourdin <leo.gourdin@univ-grenoble-alpes.fr>2020-11-24 17:04:26 +0100
committerLéo Gourdin <leo.gourdin@univ-grenoble-alpes.fr>2020-11-24 17:04:26 +0100
commit788406cac443d2d33345c0b9db86577c6b39011e (patch)
tree1790aa8c5b42c9abd89adb8af072f179897fc483 /aarch64/Asmblockgenproof1.v
parent1fc20a7262e6de3234e4411ae359b2e4e5ac36ee (diff)
downloadcompcert-kvx-788406cac443d2d33345c0b9db86577c6b39011e.tar.gz
compcert-kvx-788406cac443d2d33345c0b9db86577c6b39011e.zip
Main part of postpasssch proof now completed
Diffstat (limited to 'aarch64/Asmblockgenproof1.v')
-rw-r--r--aarch64/Asmblockgenproof1.v2141
1 files changed, 0 insertions, 2141 deletions
diff --git a/aarch64/Asmblockgenproof1.v b/aarch64/Asmblockgenproof1.v
deleted file mode 100644
index b42309bc..00000000
--- a/aarch64/Asmblockgenproof1.v
+++ /dev/null
@@ -1,2141 +0,0 @@
-(* ORIGINAL aarch64/Asmgenproof1 file that needs to be adapted
-
-(* *********************************************************************)
-(* *)
-(* The Compcert verified compiler *)
-(* *)
-(* Xavier Leroy, Collège de France and INRIA Paris *)
-(* *)
-(* Copyright Institut National de Recherche en Informatique et en *)
-(* Automatique. All rights reserved. This file is distributed *)
-(* under the terms of the INRIA Non-Commercial License Agreement. *)
-(* *)
-(* *********************************************************************)
-
-(** Correctness proof for AArch64 code generation: auxiliary results. *)
-
-Require Import Recdef Coqlib Zwf Zbits.
-Require Import Maps Errors AST Integers Floats Values Memory Globalenvs.
-Require Import Op Locations Mach Asm Conventions.
-Require Import Asmgen.
-Require Import Asmgenproof0.
-
-Local Transparent Archi.ptr64.
-
-(** Properties of registers *)
-
-Lemma preg_of_not_RA:
- forall r, (preg_of r) <> RA.
-Proof.
- destruct r; discriminate.
-Qed.
-
-Lemma RA_not_written:
- forall (rs : regset) dst v,
- rs # (preg_of dst) <- v RA = rs RA.
-Proof.
- intros.
- apply Pregmap.gso.
- intro.
- symmetry in H.
- exact (preg_of_not_RA dst H).
-Qed.
-
-Hint Resolve RA_not_written : asmgen.
-
-Lemma RA_not_written2:
- forall (rs : regset) dst v i,
- preg_of dst = i ->
- rs # i <- v RA = rs RA.
-Proof.
- intros.
- subst i.
- apply RA_not_written.
-Qed.
-
-Hint Resolve RA_not_written2 : asmgen.
-
-Lemma RA_not_written3:
- forall (rs : regset) dst v i,
- ireg_of dst = OK i ->
- rs # i <- v RA = rs RA.
-Proof.
- intros.
- unfold ireg_of in H.
- destruct preg_of eqn:PREG; try discriminate.
- replace i0 with i in * by congruence.
- eapply RA_not_written2; eassumption.
-Qed.
-
-Hint Resolve RA_not_written3 : asmgen.
-
-Lemma preg_of_iregsp_not_PC: forall r, preg_of_iregsp r <> PC.
-Proof.
- destruct r; simpl; congruence.
-Qed.
-Hint Resolve preg_of_iregsp_not_PC: asmgen.
-
-Lemma preg_of_not_X16: forall r, preg_of r <> X16.
-Proof.
- destruct r; simpl; congruence.
-Qed.
-
-Lemma ireg_of_not_X16: forall r x, ireg_of r = OK x -> x <> X16.
-Proof.
- unfold ireg_of; intros. destruct (preg_of r) eqn:E; inv H.
- red; intros; subst x. elim (preg_of_not_X16 r); auto.
-Qed.
-
-Lemma ireg_of_not_RA: forall r x, ireg_of r = OK x -> x <> RA.
-Proof.
- unfold ireg_of; intros. destruct (preg_of r) eqn:E; inv H.
- red; intros; subst x. elim (preg_of_not_RA r); auto.
-Qed.
-
-Lemma ireg_of_not_RA': forall r x, ireg_of r = OK x -> RA <> x.
-Proof.
- intros. intro.
- apply (ireg_of_not_RA r x); auto.
-Qed.
-
-Lemma ireg_of_not_RA'': forall r x, ireg_of r = OK x -> IR RA <> IR x.
-Proof.
- intros. intro.
- apply (ireg_of_not_RA' r x); auto. congruence.
-Qed.
-
-Hint Resolve ireg_of_not_RA ireg_of_not_RA' ireg_of_not_RA'' : asmgen.
-
-Lemma ireg_of_not_X16': forall r x, ireg_of r = OK x -> IR x <> IR X16.
-Proof.
- intros. apply ireg_of_not_X16 in H. congruence.
-Qed.
-
-Hint Resolve preg_of_not_X16 ireg_of_not_X16 ireg_of_not_X16': asmgen.
-
-(** Useful simplification tactic *)
-
-
-Ltac Simplif :=
- ((rewrite nextinstr_inv by eauto with asmgen)
- || (rewrite nextinstr_inv1 by eauto with asmgen)
- || (rewrite Pregmap.gss)
- || (rewrite nextinstr_pc)
- || (rewrite Pregmap.gso by eauto with asmgen)); auto with asmgen.
-
-Ltac Simpl := repeat Simplif.
-
-(** * Correctness of ARM constructor functions *)
-
-Section CONSTRUCTORS.
-
-Variable ge: genv.
-Variable fn: function.
-
-(** Decomposition of integer literals *)
-
-Inductive wf_decomposition: list (Z * Z) -> Prop :=
- | wf_decomp_nil:
- wf_decomposition nil
- | wf_decomp_cons: forall m n p l,
- n = Zzero_ext 16 m -> 0 <= p -> wf_decomposition l ->
- wf_decomposition ((n, p) :: l).
-
-Lemma decompose_int_wf:
- forall N n p, 0 <= p -> wf_decomposition (decompose_int N n p).
-Proof.
-Local Opaque Zzero_ext.
- induction N as [ | N]; simpl; intros.
-- constructor.
-- set (frag := Zzero_ext 16 (Z.shiftr n p)) in *. destruct (Z.eqb frag 0).
-+ apply IHN. omega.
-+ econstructor. reflexivity. omega. apply IHN; omega.
-Qed.
-
-Fixpoint recompose_int (accu: Z) (l: list (Z * Z)) : Z :=
- match l with
- | nil => accu
- | (n, p) :: l => recompose_int (Zinsert accu n p 16) l
- end.
-
-Lemma decompose_int_correct:
- forall N n p accu,
- 0 <= p ->
- (forall i, p <= i -> Z.testbit accu i = false) ->
- (forall i, 0 <= i < p + Z.of_nat N * 16 ->
- Z.testbit (recompose_int accu (decompose_int N n p)) i =
- if zlt i p then Z.testbit accu i else Z.testbit n i).
-Proof.
- induction N as [ | N]; intros until accu; intros PPOS ABOVE i RANGE.
-- simpl. rewrite zlt_true; auto. xomega.
-- rewrite inj_S in RANGE. simpl.
- set (frag := Zzero_ext 16 (Z.shiftr n p)).
- assert (FRAG: forall i, p <= i < p + 16 -> Z.testbit n i = Z.testbit frag (i - p)).
- { unfold frag; intros. rewrite Zzero_ext_spec by omega. rewrite zlt_true by omega.
- rewrite Z.shiftr_spec by omega. f_equal; omega. }
- destruct (Z.eqb_spec frag 0).
-+ rewrite IHN.
-* destruct (zlt i p). rewrite zlt_true by omega. auto.
- destruct (zlt i (p + 16)); auto.
- rewrite ABOVE by omega. rewrite FRAG by omega. rewrite e, Z.testbit_0_l. auto.
-* omega.
-* intros; apply ABOVE; omega.
-* xomega.
-+ simpl. rewrite IHN.
-* destruct (zlt i (p + 16)).
-** rewrite Zinsert_spec by omega. unfold proj_sumbool.
- rewrite zlt_true by omega.
- destruct (zlt i p).
- rewrite zle_false by omega. auto.
- rewrite zle_true by omega. simpl. symmetry; apply FRAG; omega.
-** rewrite Z.ldiff_spec, Z.shiftl_spec by omega.
- change 65535 with (two_p 16 - 1). rewrite Ztestbit_two_p_m1 by omega.
- rewrite zlt_false by omega. rewrite zlt_false by omega. apply andb_true_r.
-* omega.
-* intros. rewrite Zinsert_spec by omega. unfold proj_sumbool.
- rewrite zle_true by omega. rewrite zlt_false by omega. simpl.
- apply ABOVE. omega.
-* xomega.
-Qed.
-
-Corollary decompose_int_eqmod: forall N n,
- eqmod (two_power_nat (N * 16)%nat) (recompose_int 0 (decompose_int N n 0)) n.
-Proof.
- intros; apply eqmod_same_bits; intros.
- rewrite decompose_int_correct. apply zlt_false; omega.
- omega. intros; apply Z.testbit_0_l. xomega.
-Qed.
-
-Corollary decompose_notint_eqmod: forall N n,
- eqmod (two_power_nat (N * 16)%nat)
- (Z.lnot (recompose_int 0 (decompose_int N (Z.lnot n) 0))) n.
-Proof.
- intros; apply eqmod_same_bits; intros.
- rewrite Z.lnot_spec, decompose_int_correct.
- rewrite zlt_false by omega. rewrite Z.lnot_spec by omega. apply negb_involutive.
- omega. intros; apply Z.testbit_0_l. xomega. omega.
-Qed.
-
-Lemma negate_decomposition_wf:
- forall l, wf_decomposition l -> wf_decomposition (negate_decomposition l).
-Proof.
- induction 1; simpl; econstructor; auto.
- instantiate (1 := (Z.lnot m)).
- apply equal_same_bits; intros.
- rewrite H. change 65535 with (two_p 16 - 1).
- rewrite Z.lxor_spec, !Zzero_ext_spec, Z.lnot_spec, Ztestbit_two_p_m1 by omega.
- destruct (zlt i 16).
- apply xorb_true_r.
- auto.
-Qed.
-
-Lemma Zinsert_eqmod:
- forall n x1 x2 y p l, 0 <= p -> 0 <= l ->
- eqmod (two_power_nat n) x1 x2 ->
- eqmod (two_power_nat n) (Zinsert x1 y p l) (Zinsert x2 y p l).
-Proof.
- intros. apply eqmod_same_bits; intros. rewrite ! Zinsert_spec by omega.
- destruct (zle p i && zlt i (p + l)); auto.
- apply same_bits_eqmod with n; auto.
-Qed.
-
-Lemma Zinsert_0_l:
- forall y p l,
- 0 <= p -> 0 <= l ->
- Z.shiftl (Zzero_ext l y) p = Zinsert 0 (Zzero_ext l y) p l.
-Proof.
- intros. apply equal_same_bits; intros.
- rewrite Zinsert_spec by omega. unfold proj_sumbool.
- destruct (zlt i p); [rewrite zle_false by omega|rewrite zle_true by omega]; simpl.
-- rewrite Z.testbit_0_l, Z.shiftl_spec_low by auto. auto.
-- rewrite Z.shiftl_spec by omega.
- destruct (zlt i (p + l)); auto.
- rewrite Zzero_ext_spec, zlt_false, Z.testbit_0_l by omega. auto.
-Qed.
-
-Lemma recompose_int_negated:
- forall l, wf_decomposition l ->
- forall accu, recompose_int (Z.lnot accu) (negate_decomposition l) = Z.lnot (recompose_int accu l).
-Proof.
- induction 1; intros accu; simpl.
-- auto.
-- rewrite <- IHwf_decomposition. f_equal. apply equal_same_bits; intros.
- rewrite Z.lnot_spec, ! Zinsert_spec, Z.lxor_spec, Z.lnot_spec by omega.
- unfold proj_sumbool.
- destruct (zle p i); simpl; auto.
- destruct (zlt i (p + 16)); simpl; auto.
- change 65535 with (two_p 16 - 1).
- rewrite Ztestbit_two_p_m1 by omega. rewrite zlt_true by omega.
- apply xorb_true_r.
-Qed.
-
-Lemma exec_loadimm_k_w:
- forall (rd: ireg) k m l,
- wf_decomposition l ->
- rd <> RA ->
- forall (rs: regset) accu,
- rs#rd = Vint (Int.repr accu) ->
- exists rs',
- exec_straight_opt ge fn (loadimm_k W rd l k) rs m k rs' m
- /\ rs'#rd = Vint (Int.repr (recompose_int accu l))
- /\ (forall r, r <> PC -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
-Proof.
- induction 1; intros RD_NOT_RA rs accu ACCU; simpl.
-- exists rs; split. apply exec_straight_opt_refl. auto.
-- destruct (IHwf_decomposition RD_NOT_RA
- (nextinstr (rs#rd <- (insert_in_int rs#rd n p 16)))
- (Zinsert accu n p 16))
- as (rs' & P & Q & R & S).
- Simpl. rewrite ACCU. simpl. f_equal. apply Int.eqm_samerepr.
- apply Zinsert_eqmod. auto. omega. apply Int.eqm_sym; apply Int.eqm_unsigned_repr.
- exists rs'; split.
- eapply exec_straight_opt_step_opt. simpl; eauto. auto. exact P.
- split. exact Q.
- split.
- { intros; Simpl.
- rewrite R by auto. Simpl. }
- { rewrite S. Simpl. }
-Qed.
-
-Lemma exec_loadimm_z_w:
- forall rd l k rs m,
- wf_decomposition l ->
- rd <> RA ->
- exists rs',
- exec_straight ge fn (loadimm_z W rd l k) rs m k rs' m
- /\ rs'#rd = Vint (Int.repr (recompose_int 0 l))
- /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
-Proof.
- unfold loadimm_z; destruct 1; intro RD_NOT_RA.
-- econstructor; split.
- apply exec_straight_one. simpl; eauto. auto.
- split. Simpl.
- intros; Simpl.
-- set (accu0 := Zinsert 0 n p 16).
- set (rs1 := nextinstr (rs#rd <- (Vint (Int.repr accu0)))).
- destruct (exec_loadimm_k_w rd k m l H1 RD_NOT_RA rs1 accu0) as (rs2 & P & Q & R & S); auto.
- unfold rs1; Simpl.
- exists rs2; split.
- eapply exec_straight_opt_step; eauto.
- simpl. unfold rs1. do 5 f_equal. unfold accu0. rewrite H. apply Zinsert_0_l; omega.
- reflexivity.
- split. exact Q.
- intros. rewrite R by auto. unfold rs1; Simpl.
-Qed.
-
-Lemma exec_loadimm_n_w:
- forall rd l k rs m,
- wf_decomposition l ->
- rd <> RA ->
- exists rs',
- exec_straight ge fn (loadimm_n W rd l k) rs m k rs' m
- /\ rs'#rd = Vint (Int.repr (Z.lnot (recompose_int 0 l)))
- /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
-Proof.
- unfold loadimm_n; destruct 1; intro RD_NOT_RA.
-- econstructor; split.
- apply exec_straight_one. simpl; eauto. auto.
- split. Simpl.
- intros; Simpl.
-- set (accu0 := Z.lnot (Zinsert 0 n p 16)).
- set (rs1 := nextinstr (rs#rd <- (Vint (Int.repr accu0)))).
- destruct (exec_loadimm_k_w rd k m (negate_decomposition l)
- (negate_decomposition_wf l H1)
- RD_NOT_RA rs1 accu0)
- as (rs2 & P & Q & R & S).
- unfold rs1; Simpl.
- exists rs2; split.
- eapply exec_straight_opt_step; eauto.
- simpl. unfold rs1. do 5 f_equal.
- unfold accu0. f_equal. rewrite H. apply Zinsert_0_l; omega.
- reflexivity.
- split. unfold accu0 in Q; rewrite recompose_int_negated in Q by auto. exact Q.
- intros. rewrite R by auto. unfold rs1; Simpl.
-Qed.
-
-Lemma exec_loadimm32:
- forall rd n k rs m
- (RD_NOT_RA : rd <> RA),
- exists rs',
- exec_straight ge fn (loadimm32 rd n k) rs m k rs' m
- /\ rs'#rd = Vint n
- /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
-Proof.
- unfold loadimm32, loadimm; intros.
- destruct (is_logical_imm32 n).
-- econstructor; split.
- apply exec_straight_one. simpl; eauto. auto.
- split. Simpl. rewrite Int.repr_unsigned, Int.or_zero_l; auto.
- intros; Simpl.
-- set (dz := decompose_int 2%nat (Int.unsigned n) 0).
- set (dn := decompose_int 2%nat (Z.lnot (Int.unsigned n)) 0).
- assert (A: Int.repr (recompose_int 0 dz) = n).
- { transitivity (Int.repr (Int.unsigned n)).
- apply Int.eqm_samerepr. apply decompose_int_eqmod.
- apply Int.repr_unsigned. }
- assert (B: Int.repr (Z.lnot (recompose_int 0 dn)) = n).
- { transitivity (Int.repr (Int.unsigned n)).
- apply Int.eqm_samerepr. apply decompose_notint_eqmod.
- apply Int.repr_unsigned. }
- destruct Nat.leb.
-+ rewrite <- A. apply exec_loadimm_z_w. apply decompose_int_wf; omega. trivial.
-+ rewrite <- B. apply exec_loadimm_n_w. apply decompose_int_wf; omega. trivial.
-Qed.
-
-Lemma exec_loadimm_k_x:
- forall (rd: ireg) k m l,
- wf_decomposition l ->
- rd <> RA ->
- forall (rs: regset) accu,
- rs#rd = Vlong (Int64.repr accu) ->
- exists rs',
- exec_straight_opt ge fn (loadimm_k X rd l k) rs m k rs' m
- /\ rs'#rd = Vlong (Int64.repr (recompose_int accu l))
- /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
-Proof.
- induction 1; intros RD_NOT_RA rs accu ACCU; simpl.
-- exists rs; split. apply exec_straight_opt_refl. auto.
-- destruct (IHwf_decomposition RD_NOT_RA
- (nextinstr (rs#rd <- (insert_in_long rs#rd n p 16)))
- (Zinsert accu n p 16))
- as (rs' & P & Q & R).
- Simpl. rewrite ACCU. simpl. f_equal. apply Int64.eqm_samerepr.
- apply Zinsert_eqmod. auto. omega. apply Int64.eqm_sym; apply Int64.eqm_unsigned_repr.
- exists rs'; split.
- eapply exec_straight_opt_step_opt. simpl; eauto. auto. exact P.
- split. exact Q. intros; Simpl. rewrite R by auto. Simpl.
-Qed.
-
-Lemma exec_loadimm_z_x:
- forall rd l k rs m,
- wf_decomposition l ->
- rd <> RA ->
- exists rs',
- exec_straight ge fn (loadimm_z X rd l k) rs m k rs' m
- /\ rs'#rd = Vlong (Int64.repr (recompose_int 0 l))
- /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
-Proof.
- unfold loadimm_z; destruct 1; intro RD_NOT_RA.
-- econstructor; split.
- apply exec_straight_one. simpl; eauto. auto.
- split. Simpl.
- intros; Simpl.
-- set (accu0 := Zinsert 0 n p 16).
- set (rs1 := nextinstr (rs#rd <- (Vlong (Int64.repr accu0)))).
- destruct (exec_loadimm_k_x rd k m l H1 RD_NOT_RA rs1 accu0) as (rs2 & P & Q & R); auto.
- unfold rs1; Simpl.
- exists rs2; split.
- eapply exec_straight_opt_step; eauto.
- simpl. unfold rs1. do 5 f_equal. unfold accu0. rewrite H. apply Zinsert_0_l; omega.
- reflexivity.
- split. exact Q.
- intros. rewrite R by auto. unfold rs1; Simpl.
-Qed.
-
-Lemma exec_loadimm_n_x:
- forall rd l k rs m,
- wf_decomposition l ->
- rd <> RA ->
- exists rs',
- exec_straight ge fn (loadimm_n X rd l k) rs m k rs' m
- /\ rs'#rd = Vlong (Int64.repr (Z.lnot (recompose_int 0 l)))
- /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
-Proof.
- unfold loadimm_n; destruct 1; intro RD_NOT_RA.
-- econstructor; split.
- apply exec_straight_one. simpl; eauto. auto.
- split. Simpl.
- intros; Simpl.
-- set (accu0 := Z.lnot (Zinsert 0 n p 16)).
- set (rs1 := nextinstr (rs#rd <- (Vlong (Int64.repr accu0)))).
- destruct (exec_loadimm_k_x rd k m (negate_decomposition l)
- (negate_decomposition_wf l H1)
- RD_NOT_RA rs1 accu0) as (rs2 & P & Q & R).
- unfold rs1; Simpl.
- exists rs2; split.
- eapply exec_straight_opt_step; eauto.
- simpl. unfold rs1. do 5 f_equal.
- unfold accu0. f_equal. rewrite H. apply Zinsert_0_l; omega.
- reflexivity.
- split. unfold accu0 in Q; rewrite recompose_int_negated in Q by auto. exact Q.
- intros. rewrite R by auto. unfold rs1; Simpl.
-Qed.
-
-Lemma exec_loadimm64:
- forall rd n k rs m,
- rd <> RA ->
- exists rs',
- exec_straight ge fn (loadimm64 rd n k) rs m k rs' m
- /\ rs'#rd = Vlong n
- /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
-Proof.
- unfold loadimm64, loadimm; intros until m; intro RD_NOT_RA.
- destruct (is_logical_imm64 n).
-- econstructor; split.
- apply exec_straight_one. simpl; eauto. auto.
- split. Simpl. rewrite Int64.repr_unsigned, Int64.or_zero_l; auto.
- intros; Simpl.
-- set (dz := decompose_int 4%nat (Int64.unsigned n) 0).
- set (dn := decompose_int 4%nat (Z.lnot (Int64.unsigned n)) 0).
- assert (A: Int64.repr (recompose_int 0 dz) = n).
- { transitivity (Int64.repr (Int64.unsigned n)).
- apply Int64.eqm_samerepr. apply decompose_int_eqmod.
- apply Int64.repr_unsigned. }
- assert (B: Int64.repr (Z.lnot (recompose_int 0 dn)) = n).
- { transitivity (Int64.repr (Int64.unsigned n)).
- apply Int64.eqm_samerepr. apply decompose_notint_eqmod.
- apply Int64.repr_unsigned. }
- destruct Nat.leb.
-+ rewrite <- A. apply exec_loadimm_z_x. apply decompose_int_wf; omega. trivial.
-+ rewrite <- B. apply exec_loadimm_n_x. apply decompose_int_wf; omega. trivial.
-Qed.
-
-(** Add immediate *)
-
-Lemma exec_addimm_aux_32:
- forall (insn: iregsp -> iregsp -> Z -> instruction) (sem: val -> val -> val),
- (forall rd r1 n rs m,
- exec_instr ge fn (insn rd r1 n) rs m =
- Next (nextinstr (rs#rd <- (sem rs#r1 (Vint (Int.repr n))))) m) ->
- (forall v n1 n2, sem (sem v (Vint n1)) (Vint n2) = sem v (Vint (Int.add n1 n2))) ->
- forall rd r1 n k rs m,
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
- exists rs',
- exec_straight ge fn (addimm_aux insn rd r1 (Int.unsigned n) k) rs m k rs' m
- /\ rs'#rd = sem rs#r1 (Vint n)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
-Proof.
- intros insn sem SEM ASSOC; intros until m; intro RD_NOT_RA. unfold addimm_aux.
- set (nlo := Zzero_ext 12 (Int.unsigned n)). set (nhi := Int.unsigned n - nlo).
- assert (E: Int.unsigned n = nhi + nlo) by (unfold nhi; omega).
- rewrite <- (Int.repr_unsigned n).
- destruct (Z.eqb_spec nhi 0); [|destruct (Z.eqb_spec nlo 0)].
-- econstructor; split. apply exec_straight_one. apply SEM. Simpl.
- split. Simpl. do 3 f_equal; omega.
- split; intros; Simpl.
-- econstructor; split. apply exec_straight_one. apply SEM. Simpl.
- split. Simpl. do 3 f_equal; omega.
- split; intros; Simpl.
-- econstructor; split. eapply exec_straight_two.
- apply SEM. apply SEM. Simpl. Simpl.
- split. Simpl. rewrite ASSOC. do 2 f_equal. apply Int.eqm_samerepr.
- rewrite E. auto with ints.
- split; intros; Simpl.
-Qed.
-
-Lemma exec_addimm32:
- forall rd r1 n k rs m,
- r1 <> X16 ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
- exists rs',
- exec_straight ge fn (addimm32 rd r1 n k) rs m k rs' m
- /\ rs'#rd = Val.add rs#r1 (Vint n)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
-Proof.
- intros. unfold addimm32. set (nn := Int.neg n).
- destruct (Int.eq n (Int.zero_ext 24 n)); [| destruct (Int.eq nn (Int.zero_ext 24 nn))].
-- apply exec_addimm_aux_32 with (sem := Val.add); auto. intros; apply Val.add_assoc.
-- rewrite <- Val.sub_opp_add.
- apply exec_addimm_aux_32 with (sem := Val.sub); auto.
- intros. rewrite ! Val.sub_add_opp, Val.add_assoc. rewrite Int.neg_add_distr. auto.
-- destruct (Int.lt n Int.zero).
-+ rewrite <- Val.sub_opp_add; fold nn.
- edestruct (exec_loadimm32 X16 nn) as (rs1 & A & B & C). congruence.
- econstructor; split.
- eapply exec_straight_trans. eexact A. eapply exec_straight_one. simpl; eauto. auto.
- split. Simpl. rewrite B, C; eauto with asmgen.
- split; intros; Simpl.
-+ edestruct (exec_loadimm32 X16 n) as (rs1 & A & B & C). congruence.
- econstructor; split.
- eapply exec_straight_trans. eexact A. eapply exec_straight_one. simpl; eauto. auto.
- split. Simpl. rewrite B, C; eauto with asmgen.
- split; intros; Simpl.
-Qed.
-
-Lemma exec_addimm_aux_64:
- forall (insn: iregsp -> iregsp -> Z -> instruction) (sem: val -> val -> val),
- (forall rd r1 n rs m,
- exec_instr ge fn (insn rd r1 n) rs m =
- Next (nextinstr (rs#rd <- (sem rs#r1 (Vlong (Int64.repr n))))) m) ->
- (forall v n1 n2, sem (sem v (Vlong n1)) (Vlong n2) = sem v (Vlong (Int64.add n1 n2))) ->
- forall rd r1 n k rs m,
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
- exists rs',
- exec_straight ge fn (addimm_aux insn rd r1 (Int64.unsigned n) k) rs m k rs' m
- /\ rs'#rd = sem rs#r1 (Vlong n)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
-Proof.
- intros insn sem SEM ASSOC; intros. unfold addimm_aux.
- set (nlo := Zzero_ext 12 (Int64.unsigned n)). set (nhi := Int64.unsigned n - nlo).
- assert (E: Int64.unsigned n = nhi + nlo) by (unfold nhi; omega).
- rewrite <- (Int64.repr_unsigned n).
- destruct (Z.eqb_spec nhi 0); [|destruct (Z.eqb_spec nlo 0)].
-- econstructor; split. apply exec_straight_one. apply SEM. Simpl.
- split. Simpl. do 3 f_equal; omega.
- split; intros; Simpl.
-- econstructor; split. apply exec_straight_one. apply SEM. Simpl.
- split. Simpl. do 3 f_equal; omega.
- split; intros; Simpl.
-- econstructor; split. eapply exec_straight_two.
- apply SEM. apply SEM. Simpl. Simpl.
- split. Simpl. rewrite ASSOC. do 2 f_equal. apply Int64.eqm_samerepr.
- rewrite E. auto with ints.
- split; intros; Simpl.
-Qed.
-
-Lemma exec_addimm64:
- forall rd r1 n k rs m,
- preg_of_iregsp r1 <> X16 ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
- exists rs',
- exec_straight ge fn (addimm64 rd r1 n k) rs m k rs' m
- /\ rs'#rd = Val.addl rs#r1 (Vlong n)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
-Proof.
- intros.
- unfold addimm64. set (nn := Int64.neg n).
- destruct (Int64.eq n (Int64.zero_ext 24 n)); [| destruct (Int64.eq nn (Int64.zero_ext 24 nn))].
-- apply exec_addimm_aux_64 with (sem := Val.addl); auto. intros; apply Val.addl_assoc.
-- rewrite <- Val.subl_opp_addl.
- apply exec_addimm_aux_64 with (sem := Val.subl); auto.
- intros. rewrite ! Val.subl_addl_opp, Val.addl_assoc. rewrite Int64.neg_add_distr. auto.
-- destruct (Int64.lt n Int64.zero).
-+ rewrite <- Val.subl_opp_addl; fold nn.
- edestruct (exec_loadimm64 X16 nn) as (rs1 & A & B & C). congruence.
- econstructor; split.
- eapply exec_straight_trans. eexact A. eapply exec_straight_one. simpl; eauto. Simpl.
- split. Simpl. rewrite B, C; eauto with asmgen. simpl. rewrite Int64.shl'_zero. auto.
- split; intros; Simpl.
-+ edestruct (exec_loadimm64 X16 n) as (rs1 & A & B & C). congruence.
- econstructor; split.
- eapply exec_straight_trans. eexact A. eapply exec_straight_one. simpl; eauto. Simpl.
- split. Simpl. rewrite B, C; eauto with asmgen. simpl. rewrite Int64.shl'_zero. auto.
- split; intros; Simpl.
-Qed.
-
-(** Logical immediate *)
-
-Lemma exec_logicalimm32:
- forall (insn1: ireg -> ireg0 -> Z -> instruction)
- (insn2: ireg -> ireg0 -> ireg -> shift_op -> instruction)
- (sem: val -> val -> val),
- (forall rd r1 n rs m,
- exec_instr ge fn (insn1 rd r1 n) rs m =
- Next (nextinstr (rs#rd <- (sem rs##r1 (Vint (Int.repr n))))) m) ->
- (forall rd r1 r2 s rs m,
- exec_instr ge fn (insn2 rd r1 r2 s) rs m =
- Next (nextinstr (rs#rd <- (sem rs##r1 (eval_shift_op_int rs#r2 s)))) m) ->
- forall rd r1 n k rs m,
- r1 <> X16 ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
- exists rs',
- exec_straight ge fn (logicalimm32 insn1 insn2 rd r1 n k) rs m k rs' m
- /\ rs'#rd = sem rs#r1 (Vint n)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
-Proof.
- intros until sem; intros SEM1 SEM2; intros. unfold logicalimm32.
- destruct (is_logical_imm32 n).
-- econstructor; split.
- apply exec_straight_one. apply SEM1. reflexivity.
- split. Simpl. rewrite Int.repr_unsigned; auto.
- split; intros; Simpl.
-- edestruct (exec_loadimm32 X16 n) as (rs1 & A & B & C). congruence.
- econstructor; split.
- eapply exec_straight_trans. eexact A.
- apply exec_straight_one. apply SEM2. reflexivity.
- split. Simpl. f_equal; auto. apply C; auto with asmgen.
- split; intros; Simpl.
-Qed.
-
-Lemma exec_logicalimm64:
- forall (insn1: ireg -> ireg0 -> Z -> instruction)
- (insn2: ireg -> ireg0 -> ireg -> shift_op -> instruction)
- (sem: val -> val -> val),
- (forall rd r1 n rs m,
- exec_instr ge fn (insn1 rd r1 n) rs m =
- Next (nextinstr (rs#rd <- (sem rs###r1 (Vlong (Int64.repr n))))) m) ->
- (forall rd r1 r2 s rs m,
- exec_instr ge fn (insn2 rd r1 r2 s) rs m =
- Next (nextinstr (rs#rd <- (sem rs###r1 (eval_shift_op_long rs#r2 s)))) m) ->
- forall rd r1 n k rs m,
- r1 <> X16 ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
- exists rs',
- exec_straight ge fn (logicalimm64 insn1 insn2 rd r1 n k) rs m k rs' m
- /\ rs'#rd = sem rs#r1 (Vlong n)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
-Proof.
- intros until sem; intros SEM1 SEM2; intros. unfold logicalimm64.
- destruct (is_logical_imm64 n).
-- econstructor; split.
- apply exec_straight_one. apply SEM1. reflexivity.
- split. Simpl. rewrite Int64.repr_unsigned. auto.
- split; intros; Simpl.
-- edestruct (exec_loadimm64 X16 n) as (rs1 & A & B & C). congruence.
- econstructor; split.
- eapply exec_straight_trans. eexact A.
- apply exec_straight_one. apply SEM2. reflexivity.
- split. Simpl. f_equal; auto. apply C; auto with asmgen.
- split; intros; Simpl.
-Qed.
-
-(** Load address of symbol *)
-
-Lemma exec_loadsymbol: forall rd s ofs k rs m,
- rd <> X16 \/ Archi.pic_code tt = false ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
- exists rs',
- exec_straight ge fn (loadsymbol rd s ofs k) rs m k rs' m
- /\ rs'#rd = Genv.symbol_address ge s ofs
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs'#RA = rs#RA.
-Proof.
- unfold loadsymbol; intros. destruct (Archi.pic_code tt).
-- predSpec Ptrofs.eq Ptrofs.eq_spec ofs Ptrofs.zero.
-+ subst ofs. econstructor; split.
- apply exec_straight_one; [simpl; eauto | reflexivity].
- split. Simpl. split; intros; Simpl.
-
-+ exploit exec_addimm64. instantiate (1 := rd). simpl. destruct H; congruence.
- instantiate (1 := rd). assumption.
- intros (rs1 & A & B & C & D).
- econstructor; split.
- econstructor. simpl; eauto. auto. eexact A.
- split. simpl in B; rewrite B. Simpl.
- rewrite <- Genv.shift_symbol_address_64 by auto.
- rewrite Ptrofs.add_zero_l, Ptrofs.of_int64_to_int64 by auto. auto.
- split; intros. rewrite C by auto; Simpl.
- rewrite D. Simpl.
-- econstructor; split.
- eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto.
- split. Simpl. rewrite symbol_high_low; auto.
- split; intros; Simpl.
-Qed.
-
-(** Shifted operands *)
-
-Remark transl_shift_not_none:
- forall s a, transl_shift s a <> SOnone.
-Proof.
- destruct s; intros; simpl; congruence.
-Qed.
-
-Remark or_zero_eval_shift_op_int:
- forall v s, s <> SOnone -> Val.or (Vint Int.zero) (eval_shift_op_int v s) = eval_shift_op_int v s.
-Proof.
- intros; destruct s; try congruence; destruct v; auto; simpl;
- destruct (Int.ltu n Int.iwordsize); auto; rewrite Int.or_zero_l; auto.
-Qed.
-
-Remark or_zero_eval_shift_op_long:
- forall v s, s <> SOnone -> Val.orl (Vlong Int64.zero) (eval_shift_op_long v s) = eval_shift_op_long v s.
-Proof.
- intros; destruct s; try congruence; destruct v; auto; simpl;
- destruct (Int.ltu n Int64.iwordsize'); auto; rewrite Int64.or_zero_l; auto.
-Qed.
-
-Remark add_zero_eval_shift_op_long:
- forall v s, s <> SOnone -> Val.addl (Vlong Int64.zero) (eval_shift_op_long v s) = eval_shift_op_long v s.
-Proof.
- intros; destruct s; try congruence; destruct v; auto; simpl;
- destruct (Int.ltu n Int64.iwordsize'); auto; rewrite Int64.add_zero_l; auto.
-Qed.
-
-Lemma transl_eval_shift: forall s v (a: amount32),
- eval_shift_op_int v (transl_shift s a) = eval_shift s v a.
-Proof.
- intros. destruct s; simpl; auto.
-Qed.
-
-Lemma transl_eval_shift': forall s v (a: amount32),
- Val.or (Vint Int.zero) (eval_shift_op_int v (transl_shift s a)) = eval_shift s v a.
-Proof.
- intros. rewrite or_zero_eval_shift_op_int by (apply transl_shift_not_none).
- apply transl_eval_shift.
-Qed.
-
-Lemma transl_eval_shiftl: forall s v (a: amount64),
- eval_shift_op_long v (transl_shift s a) = eval_shiftl s v a.
-Proof.
- intros. destruct s; simpl; auto.
-Qed.
-
-Lemma transl_eval_shiftl': forall s v (a: amount64),
- Val.orl (Vlong Int64.zero) (eval_shift_op_long v (transl_shift s a)) = eval_shiftl s v a.
-Proof.
- intros. rewrite or_zero_eval_shift_op_long by (apply transl_shift_not_none).
- apply transl_eval_shiftl.
-Qed.
-
-Lemma transl_eval_shiftl'': forall s v (a: amount64),
- Val.addl (Vlong Int64.zero) (eval_shift_op_long v (transl_shift s a)) = eval_shiftl s v a.
-Proof.
- intros. rewrite add_zero_eval_shift_op_long by (apply transl_shift_not_none).
- apply transl_eval_shiftl.
-Qed.
-
-(** Zero- and Sign- extensions *)
-
-Lemma exec_move_extended_base: forall rd r1 ex k rs m,
- exists rs',
- exec_straight ge fn (move_extended_base rd r1 ex k) rs m k rs' m
- /\ rs' rd = match ex with Xsgn32 => Val.longofint rs#r1 | Xuns32 => Val.longofintu rs#r1 end
- /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
-Proof.
- unfold move_extended_base; destruct ex; econstructor;
- (split; [apply exec_straight_one; [simpl;eauto|auto] | split; [Simpl|intros;Simpl]]).
-Qed.
-
-Lemma exec_move_extended: forall rd r1 ex (a: amount64) k rs m,
- exists rs',
- exec_straight ge fn (move_extended rd r1 ex a k) rs m k rs' m
- /\ rs' rd = Op.eval_extend ex rs#r1 a
- /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
-Proof.
- unfold move_extended; intros. predSpec Int.eq Int.eq_spec a Int.zero.
-- exploit (exec_move_extended_base rd r1 ex). intros (rs' & A & B & C).
- exists rs'; split. eexact A. split. unfold Op.eval_extend. rewrite H. rewrite B.
- destruct ex, (rs r1); simpl; auto; rewrite Int64.shl'_zero; auto.
- auto.
-- Local Opaque Val.addl.
- exploit (exec_move_extended_base rd r1 ex). intros (rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_trans. eexact A. apply exec_straight_one.
- unfold exec_instr. change (SOlsl a) with (transl_shift Slsl a). rewrite transl_eval_shiftl''. eauto. auto.
- split. Simpl. rewrite B. auto.
- intros; Simpl.
-Qed.
-
-Lemma exec_arith_extended:
- forall (sem: val -> val -> val)
- (insnX: iregsp -> iregsp -> ireg -> extend_op -> instruction)
- (insnS: ireg -> ireg0 -> ireg -> shift_op -> instruction),
- (forall rd r1 r2 x rs m,
- exec_instr ge fn (insnX rd r1 r2 x) rs m =
- Next (nextinstr (rs#rd <- (sem rs#r1 (eval_extend rs#r2 x)))) m) ->
- (forall rd r1 r2 s rs m,
- exec_instr ge fn (insnS rd r1 r2 s) rs m =
- Next (nextinstr (rs#rd <- (sem rs###r1 (eval_shift_op_long rs#r2 s)))) m) ->
- forall (rd r1 r2: ireg) (ex: extension) (a: amount64) (k: code) rs m,
- r1 <> X16 ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
- exists rs',
- exec_straight ge fn (arith_extended insnX insnS rd r1 r2 ex a k) rs m k rs' m
- /\ rs'#rd = sem rs#r1 (Op.eval_extend ex rs#r2 a)
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
-Proof.
- intros sem insnX insnS EX ES; intros. unfold arith_extended. destruct (Int.ltu a (Int.repr 5)).
-- econstructor; split.
- apply exec_straight_one. rewrite EX; eauto. auto.
- split. Simpl. f_equal. destruct ex; auto.
- split; intros; Simpl.
-- exploit (exec_move_extended_base X16 r2 ex). intros (rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_trans. eexact A. apply exec_straight_one.
- rewrite ES. eauto. auto.
- split. Simpl. unfold ir0x. rewrite C by eauto with asmgen. f_equal.
- rewrite B. destruct ex; auto.
- split; intros; Simpl.
-Qed.
-
-(** Extended right shift *)
-
-Lemma exec_shrx32: forall (rd r1: ireg) (n: int) k v (rs: regset) m,
- Val.shrx rs#r1 (Vint n) = Some v ->
- r1 <> X16 ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
- exists rs',
- exec_straight ge fn (shrx32 rd r1 n k) rs m k rs' m
- /\ rs'#rd = v
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
-Proof.
- unfold shrx32; intros. apply Val.shrx_shr_3 in H.
- destruct (Int.eq n Int.zero) eqn:E.
-- econstructor; split. apply exec_straight_one; [simpl;eauto|auto].
- split. Simpl. subst v; auto.
- split; intros; Simpl.
-- generalize (Int.eq_spec n Int.one).
- destruct (Int.eq n Int.one); intro ONE.
- * subst n.
- econstructor; split. eapply exec_straight_two.
- all: simpl; auto.
- split.
- ** subst v; Simpl.
- destruct (Val.add _ _); simpl; trivial.
- change (Int.ltu Int.one Int.iwordsize) with true; simpl.
- rewrite Int.or_zero_l.
- reflexivity.
- ** split; intros; Simpl.
- * econstructor; split. eapply exec_straight_three.
- unfold exec_instr. rewrite or_zero_eval_shift_op_int by congruence. eauto.
- simpl; eauto.
- unfold exec_instr. rewrite or_zero_eval_shift_op_int by congruence. eauto.
- auto. auto. auto.
- split. subst v; Simpl.
- split; intros; Simpl.
-Qed.
-
-Lemma exec_shrx64: forall (rd r1: ireg) (n: int) k v (rs: regset) m,
- Val.shrxl rs#r1 (Vint n) = Some v ->
- r1 <> X16 ->
- (IR RA) <> (preg_of_iregsp (RR1 rd)) ->
- exists rs',
- exec_straight ge fn (shrx64 rd r1 n k) rs m k rs' m
- /\ rs'#rd = v
- /\ (forall r, data_preg r = true -> r <> rd -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
-Proof.
- unfold shrx64; intros. apply Val.shrxl_shrl_3 in H.
- destruct (Int.eq n Int.zero) eqn:E.
-- econstructor; split. apply exec_straight_one; [simpl;eauto|auto].
- split. Simpl. subst v; auto.
- split; intros; Simpl.
-- generalize (Int.eq_spec n Int.one).
- destruct (Int.eq n Int.one); intro ONE.
- * subst n.
- econstructor; split. eapply exec_straight_two.
- all: simpl; auto.
- split.
- ** subst v; Simpl.
- destruct (Val.addl _ _); simpl; trivial.
- change (Int.ltu Int.one Int64.iwordsize') with true; simpl.
- rewrite Int64.or_zero_l.
- reflexivity.
- ** split; intros; Simpl.
- * econstructor; split. eapply exec_straight_three.
- unfold exec_instr. rewrite or_zero_eval_shift_op_long by congruence. eauto.
- simpl; eauto.
- unfold exec_instr. rewrite or_zero_eval_shift_op_long by congruence. eauto.
- auto. auto. auto.
- split. subst v; Simpl.
- split; intros; Simpl.
-Qed.
-
-(** Condition bits *)
-
-Lemma compare_int_spec: forall rs v1 v2 m,
- let rs' := compare_int rs v1 v2 m in
- rs'#CN = (Val.negative (Val.sub v1 v2))
- /\ rs'#CZ = (Val.cmpu (Mem.valid_pointer m) Ceq v1 v2)
- /\ rs'#CC = (Val.cmpu (Mem.valid_pointer m) Cge v1 v2)
- /\ rs'#CV = (Val.sub_overflow v1 v2).
-Proof.
- intros; unfold rs'; auto.
-Qed.
-
-Lemma eval_testcond_compare_sint: forall c v1 v2 b rs m,
- Val.cmp_bool c v1 v2 = Some b ->
- eval_testcond (cond_for_signed_cmp c) (compare_int rs v1 v2 m) = Some b.
-Proof.
- intros. generalize (compare_int_spec rs v1 v2 m).
- set (rs' := compare_int rs v1 v2 m). intros (B & C & D & E).
- unfold eval_testcond; rewrite B, C, D, E.
- destruct v1; try discriminate; destruct v2; try discriminate.
- simpl in H; inv H.
- unfold Val.cmpu; simpl. destruct c; simpl.
-- destruct (Int.eq i i0); auto.
-- destruct (Int.eq i i0); auto.
-- rewrite Int.lt_sub_overflow. destruct (Int.lt i i0); auto.
-- rewrite Int.lt_sub_overflow, Int.not_lt.
- destruct (Int.eq i i0), (Int.lt i i0); auto.
-- rewrite Int.lt_sub_overflow, (Int.lt_not i).
- destruct (Int.eq i i0), (Int.lt i i0); auto.
-- rewrite Int.lt_sub_overflow. destruct (Int.lt i i0); auto.
-Qed.
-
-Lemma eval_testcond_compare_uint: forall c v1 v2 b rs m,
- Val.cmpu_bool (Mem.valid_pointer m) c v1 v2 = Some b ->
- eval_testcond (cond_for_unsigned_cmp c) (compare_int rs v1 v2 m) = Some b.
-Proof.
- intros. generalize (compare_int_spec rs v1 v2 m).
- set (rs' := compare_int rs v1 v2 m). intros (B & C & D & E).
- unfold eval_testcond; rewrite B, C, D, E.
- destruct v1; try discriminate; destruct v2; try discriminate.
- simpl in H; inv H.
- unfold Val.cmpu; simpl. destruct c; simpl.
-- destruct (Int.eq i i0); auto.
-- destruct (Int.eq i i0); auto.
-- destruct (Int.ltu i i0); auto.
-- rewrite (Int.not_ltu i). destruct (Int.eq i i0), (Int.ltu i i0); auto.
-- rewrite (Int.ltu_not i). destruct (Int.eq i i0), (Int.ltu i i0); auto.
-- destruct (Int.ltu i i0); auto.
-Qed.
-
-Lemma compare_long_spec: forall rs v1 v2 m,
- let rs' := compare_long rs v1 v2 m in
- rs'#CN = (Val.negativel (Val.subl v1 v2))
- /\ rs'#CZ = (Val.maketotal (Val.cmplu (Mem.valid_pointer m) Ceq v1 v2))
- /\ rs'#CC = (Val.maketotal (Val.cmplu (Mem.valid_pointer m) Cge v1 v2))
- /\ rs'#CV = (Val.subl_overflow v1 v2).
-Proof.
- intros; unfold rs'; auto.
-Qed.
-
-Remark int64_sub_overflow:
- forall x y,
- Int.xor (Int.repr (Int64.unsigned (Int64.sub_overflow x y Int64.zero)))
- (Int.repr (Int64.unsigned (Int64.negative (Int64.sub x y)))) =
- (if Int64.lt x y then Int.one else Int.zero).
-Proof.
- intros.
- transitivity (Int.repr (Int64.unsigned (if Int64.lt x y then Int64.one else Int64.zero))).
- rewrite <- (Int64.lt_sub_overflow x y).
- unfold Int64.sub_overflow, Int64.negative.
- set (s := Int64.signed x - Int64.signed y - Int64.signed Int64.zero).
- destruct (zle Int64.min_signed s && zle s Int64.max_signed);
- destruct (Int64.lt (Int64.sub x y) Int64.zero);
- auto.
- destruct (Int64.lt x y); auto.
-Qed.
-
-Lemma eval_testcond_compare_slong: forall c v1 v2 b rs m,
- Val.cmpl_bool c v1 v2 = Some b ->
- eval_testcond (cond_for_signed_cmp c) (compare_long rs v1 v2 m) = Some b.
-Proof.
- intros. generalize (compare_long_spec rs v1 v2 m).
- set (rs' := compare_long rs v1 v2 m). intros (B & C & D & E).
- unfold eval_testcond; rewrite B, C, D, E.
- destruct v1; try discriminate; destruct v2; try discriminate.
- simpl in H; inv H.
- unfold Val.cmplu; simpl. destruct c; simpl.
-- destruct (Int64.eq i i0); auto.
-- destruct (Int64.eq i i0); auto.
-- rewrite int64_sub_overflow. destruct (Int64.lt i i0); auto.
-- rewrite int64_sub_overflow, Int64.not_lt.
- destruct (Int64.eq i i0), (Int64.lt i i0); auto.
-- rewrite int64_sub_overflow, (Int64.lt_not i).
- destruct (Int64.eq i i0), (Int64.lt i i0); auto.
-- rewrite int64_sub_overflow. destruct (Int64.lt i i0); auto.
-Qed.
-
-Lemma eval_testcond_compare_ulong: forall c v1 v2 b rs m,
- Val.cmplu_bool (Mem.valid_pointer m) c v1 v2 = Some b ->
- eval_testcond (cond_for_unsigned_cmp c) (compare_long rs v1 v2 m) = Some b.
-Proof.
- intros. generalize (compare_long_spec rs v1 v2 m).
- set (rs' := compare_long rs v1 v2 m). intros (B & C & D & E).
- unfold eval_testcond; rewrite B, C, D, E; unfold Val.cmplu.
- destruct v1; try discriminate; destruct v2; try discriminate; simpl in H.
-- (* int-int *)
- inv H. destruct c; simpl.
-+ destruct (Int64.eq i i0); auto.
-+ destruct (Int64.eq i i0); auto.
-+ destruct (Int64.ltu i i0); auto.
-+ rewrite (Int64.not_ltu i). destruct (Int64.eq i i0), (Int64.ltu i i0); auto.
-+ rewrite (Int64.ltu_not i). destruct (Int64.eq i i0), (Int64.ltu i i0); auto.
-+ destruct (Int64.ltu i i0); auto.
-- (* int-ptr *)
- simpl.
- destruct (Int64.eq i Int64.zero &&
- (Mem.valid_pointer m b0 (Ptrofs.unsigned i0)
- || Mem.valid_pointer m b0 (Ptrofs.unsigned i0 - 1))); try discriminate.
- destruct c; simpl in H; inv H; reflexivity.
-- (* ptr-int *)
- simpl.
- destruct (Int64.eq i0 Int64.zero &&
- (Mem.valid_pointer m b0 (Ptrofs.unsigned i)
- || Mem.valid_pointer m b0 (Ptrofs.unsigned i - 1))); try discriminate.
- destruct c; simpl in H; inv H; reflexivity.
-- (* ptr-ptr *)
- simpl.
- destruct (eq_block b0 b1).
-+ destruct ((Mem.valid_pointer m b0 (Ptrofs.unsigned i)
- || Mem.valid_pointer m b0 (Ptrofs.unsigned i - 1)) &&
- (Mem.valid_pointer m b1 (Ptrofs.unsigned i0)
- || Mem.valid_pointer m b1 (Ptrofs.unsigned i0 - 1)));
- inv H.
- destruct c; simpl.
-* destruct (Ptrofs.eq i i0); auto.
-* destruct (Ptrofs.eq i i0); auto.
-* destruct (Ptrofs.ltu i i0); auto.
-* rewrite (Ptrofs.not_ltu i). destruct (Ptrofs.eq i i0), (Ptrofs.ltu i i0); auto.
-* rewrite (Ptrofs.ltu_not i). destruct (Ptrofs.eq i i0), (Ptrofs.ltu i i0); auto.
-* destruct (Ptrofs.ltu i i0); auto.
-+ destruct (Mem.valid_pointer m b0 (Ptrofs.unsigned i) &&
- Mem.valid_pointer m b1 (Ptrofs.unsigned i0)); try discriminate.
- destruct c; simpl in H; inv H; reflexivity.
-Qed.
-
-Lemma compare_float_spec: forall rs f1 f2,
- let rs' := compare_float rs (Vfloat f1) (Vfloat f2) in
- rs'#CN = (Val.of_bool (Float.cmp Clt f1 f2))
- /\ rs'#CZ = (Val.of_bool (Float.cmp Ceq f1 f2))
- /\ rs'#CC = (Val.of_bool (negb (Float.cmp Clt f1 f2)))
- /\ rs'#CV = (Val.of_bool (negb (Float.ordered f1 f2))).
-Proof.
- intros; auto.
-Qed.
-
-Lemma eval_testcond_compare_float: forall c v1 v2 b rs,
- Val.cmpf_bool c v1 v2 = Some b ->
- eval_testcond (cond_for_float_cmp c) (compare_float rs v1 v2) = Some b.
-Proof.
- intros. destruct v1; try discriminate; destruct v2; simpl in H; inv H.
- generalize (compare_float_spec rs f f0).
- set (rs' := compare_float rs (Vfloat f) (Vfloat f0)).
- intros (B & C & D & E).
- unfold eval_testcond; rewrite B, C, D, E.
-Local Transparent Float.cmp Float.ordered.
- unfold Float.cmp, Float.ordered;
- destruct c; destruct (Float.compare f f0) as [[]|]; reflexivity.
-Qed.
-
-Lemma eval_testcond_compare_not_float: forall c v1 v2 b rs,
- option_map negb (Val.cmpf_bool c v1 v2) = Some b ->
- eval_testcond (cond_for_float_not_cmp c) (compare_float rs v1 v2) = Some b.
-Proof.
- intros. destruct v1; try discriminate; destruct v2; simpl in H; inv H.
- generalize (compare_float_spec rs f f0).
- set (rs' := compare_float rs (Vfloat f) (Vfloat f0)).
- intros (B & C & D & E).
- unfold eval_testcond; rewrite B, C, D, E.
-Local Transparent Float.cmp Float.ordered.
- unfold Float.cmp, Float.ordered;
- destruct c; destruct (Float.compare f f0) as [[]|]; reflexivity.
-Qed.
-
-Lemma compare_single_spec: forall rs f1 f2,
- let rs' := compare_single rs (Vsingle f1) (Vsingle f2) in
- rs'#CN = (Val.of_bool (Float32.cmp Clt f1 f2))
- /\ rs'#CZ = (Val.of_bool (Float32.cmp Ceq f1 f2))
- /\ rs'#CC = (Val.of_bool (negb (Float32.cmp Clt f1 f2)))
- /\ rs'#CV = (Val.of_bool (negb (Float32.ordered f1 f2))).
-Proof.
- intros; auto.
-Qed.
-
-Lemma eval_testcond_compare_single: forall c v1 v2 b rs,
- Val.cmpfs_bool c v1 v2 = Some b ->
- eval_testcond (cond_for_float_cmp c) (compare_single rs v1 v2) = Some b.
-Proof.
- intros. destruct v1; try discriminate; destruct v2; simpl in H; inv H.
- generalize (compare_single_spec rs f f0).
- set (rs' := compare_single rs (Vsingle f) (Vsingle f0)).
- intros (B & C & D & E).
- unfold eval_testcond; rewrite B, C, D, E.
-Local Transparent Float32.cmp Float32.ordered.
- unfold Float32.cmp, Float32.ordered;
- destruct c; destruct (Float32.compare f f0) as [[]|]; reflexivity.
-Qed.
-
-Lemma eval_testcond_compare_not_single: forall c v1 v2 b rs,
- option_map negb (Val.cmpfs_bool c v1 v2) = Some b ->
- eval_testcond (cond_for_float_not_cmp c) (compare_single rs v1 v2) = Some b.
-Proof.
- intros. destruct v1; try discriminate; destruct v2; simpl in H; inv H.
- generalize (compare_single_spec rs f f0).
- set (rs' := compare_single rs (Vsingle f) (Vsingle f0)).
- intros (B & C & D & E).
- unfold eval_testcond; rewrite B, C, D, E.
-Local Transparent Float32.cmp Float32.ordered.
- unfold Float32.cmp, Float32.ordered;
- destruct c; destruct (Float32.compare f f0) as [[]|]; reflexivity.
-Qed.
-
-Remark compare_float_inv: forall rs v1 v2 r,
- match r with CR _ => False | _ => True end ->
- (nextinstr (compare_float rs v1 v2))#r = (nextinstr rs)#r.
-Proof.
- intros; unfold compare_float.
- destruct r; try contradiction; destruct v1; auto; destruct v2; auto.
-Qed.
-
-Remark compare_single_inv: forall rs v1 v2 r,
- match r with CR _ => False | _ => True end ->
- (nextinstr (compare_single rs v1 v2))#r = (nextinstr rs)#r.
-Proof.
- intros; unfold compare_single.
- destruct r; try contradiction; destruct v1; auto; destruct v2; auto.
-Qed.
-
-(** Translation of conditionals *)
-
-Ltac ArgsInv :=
- repeat (match goal with
- | [ H: Error _ = OK _ |- _ ] => discriminate
- | [ H: match ?args with nil => _ | _ :: _ => _ end = OK _ |- _ ] => destruct args
- | [ H: bind _ _ = OK _ |- _ ] => monadInv H
- | [ H: match _ with left _ => _ | right _ => assertion_failed end = OK _ |- _ ] => monadInv H; ArgsInv
- | [ H: match _ with true => _ | false => assertion_failed end = OK _ |- _ ] => monadInv H; ArgsInv
- end);
- subst;
- repeat (match goal with
- | [ H: ireg_of _ = OK _ |- _ ] => simpl in *; rewrite (ireg_of_eq _ _ H) in *
- | [ H: freg_of _ = OK _ |- _ ] => simpl in *; rewrite (freg_of_eq _ _ H) in *
- end).
-
-Lemma compare_int_RA:
- forall rs a b m,
- compare_int rs a b m X30 = rs X30.
-Proof.
- unfold compare_int.
- intros.
- repeat rewrite Pregmap.gso by congruence.
- trivial.
-Qed.
-
-Hint Resolve compare_int_RA : asmgen.
-
-Lemma compare_long_RA:
- forall rs a b m,
- compare_long rs a b m X30 = rs X30.
-Proof.
- unfold compare_long.
- intros.
- repeat rewrite Pregmap.gso by congruence.
- trivial.
-Qed.
-
-Hint Resolve compare_long_RA : asmgen.
-
-Lemma compare_float_RA:
- forall rs a b,
- compare_float rs a b X30 = rs X30.
-Proof.
- unfold compare_float.
- intros.
- destruct a; destruct b.
- all: repeat rewrite Pregmap.gso by congruence; trivial.
-Qed.
-
-Hint Resolve compare_float_RA : asmgen.
-
-
-Lemma compare_single_RA:
- forall rs a b,
- compare_single rs a b X30 = rs X30.
-Proof.
- unfold compare_single.
- intros.
- destruct a; destruct b.
- all: repeat rewrite Pregmap.gso by congruence; trivial.
-Qed.
-
-Hint Resolve compare_single_RA : asmgen.
-
-
-Lemma transl_cond_correct:
- forall cond args k c rs m,
- transl_cond cond args k = OK c ->
- exists rs',
- exec_straight ge fn c rs m k rs' m
- /\ (forall b,
- eval_condition cond (map rs (map preg_of args)) m = Some b ->
- eval_testcond (cond_for_cond cond) rs' = Some b)
- /\ (forall r, data_preg r = true -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
-Proof.
- intros until m; intros TR. destruct cond; simpl in TR; ArgsInv.
-- (* Ccomp *)
- econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. apply eval_testcond_compare_sint; auto.
- destruct r; reflexivity || discriminate.
-- (* Ccompu *)
- econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. apply eval_testcond_compare_uint; auto.
- destruct r; reflexivity || discriminate.
-- (* Ccompimm *)
- destruct (is_arith_imm32 n); [|destruct (is_arith_imm32 (Int.neg n))].
-+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int.repr_unsigned. apply eval_testcond_compare_sint; auto.
- destruct r; reflexivity || discriminate.
-+ econstructor; split.
- apply exec_straight_one. simpl. rewrite Int.repr_unsigned, Int.neg_involutive. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_sint; auto.
- destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm32 X16 n). congruence. intros (rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_trans. eexact A. apply exec_straight_one.
- simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_sint; auto.
- transitivity (rs' r). destruct r; reflexivity || discriminate.
- auto with asmgen.
- Simpl. rewrite compare_int_RA.
- apply C; congruence.
-- (* Ccompuimm *)
- destruct (is_arith_imm32 n); [|destruct (is_arith_imm32 (Int.neg n))].
-+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int.repr_unsigned. apply eval_testcond_compare_uint; auto.
- destruct r; reflexivity || discriminate.
-+ econstructor; split.
- apply exec_straight_one. simpl. rewrite Int.repr_unsigned, Int.neg_involutive. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_uint; auto.
- destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm32 X16 n). congruence. intros (rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_trans. eexact A. apply exec_straight_one.
- simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_uint; auto.
- transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_int_RA.
- apply C; congruence.
-- (* Ccompshift *)
- econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite transl_eval_shift. apply eval_testcond_compare_sint; auto.
- destruct r; reflexivity || discriminate.
-- (* Ccompushift *)
- econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite transl_eval_shift. apply eval_testcond_compare_uint; auto.
- destruct r; reflexivity || discriminate.
-- (* Cmaskzero *)
- destruct (is_logical_imm32 n).
-+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int.repr_unsigned. apply (eval_testcond_compare_sint Ceq); auto.
- destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm32 X16 n). congruence. intros (rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_trans. eexact A.
- apply exec_straight_one. simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply (eval_testcond_compare_sint Ceq); auto.
- transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_int_RA.
- apply C; congruence.
-
-- (* Cmasknotzero *)
- destruct (is_logical_imm32 n).
-+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int.repr_unsigned. apply (eval_testcond_compare_sint Cne); auto.
- destruct r; reflexivity || discriminate.
-
-+ exploit (exec_loadimm32 X16 n). congruence. intros (rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_trans. eexact A.
- apply exec_straight_one. simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply (eval_testcond_compare_sint Cne); auto.
- transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_int_RA.
- apply C; congruence.
-
-- (* Ccompl *)
- econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. apply eval_testcond_compare_slong; auto.
- destruct r; reflexivity || discriminate.
-- (* Ccomplu *)
- econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. apply eval_testcond_compare_ulong; auto.
- destruct r; reflexivity || discriminate.
-- (* Ccomplimm *)
- destruct (is_arith_imm64 n); [|destruct (is_arith_imm64 (Int64.neg n))].
-+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int64.repr_unsigned. apply eval_testcond_compare_slong; auto.
- destruct r; reflexivity || discriminate.
-+ econstructor; split.
- apply exec_straight_one. simpl. rewrite Int64.repr_unsigned, Int64.neg_involutive. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_slong; auto.
- destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm64 X16 n). congruence. intros (rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_trans. eexact A. apply exec_straight_one.
- simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_slong; auto.
- transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_long_RA.
- apply C; congruence.
-
-- (* Ccompluimm *)
- destruct (is_arith_imm64 n); [|destruct (is_arith_imm64 (Int64.neg n))].
-+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int64.repr_unsigned. apply eval_testcond_compare_ulong; auto.
- destruct r; reflexivity || discriminate.
-+ econstructor; split.
- apply exec_straight_one. simpl. rewrite Int64.repr_unsigned, Int64.neg_involutive. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_ulong; auto.
- destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm64 X16 n). congruence. intros (rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_trans. eexact A. apply exec_straight_one.
- simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply eval_testcond_compare_ulong; auto.
- transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_long_RA.
- apply C; congruence.
-
-- (* Ccomplshift *)
- econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite transl_eval_shiftl. apply eval_testcond_compare_slong; auto.
- destruct r; reflexivity || discriminate.
-- (* Ccomplushift *)
- econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite transl_eval_shiftl. apply eval_testcond_compare_ulong; auto.
- destruct r; reflexivity || discriminate.
-- (* Cmasklzero *)
- destruct (is_logical_imm64 n).
-+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int64.repr_unsigned. apply (eval_testcond_compare_slong Ceq); auto.
- destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm64 X16 n). congruence. intros (rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_trans. eexact A.
- apply exec_straight_one. simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply (eval_testcond_compare_slong Ceq); auto.
- transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_long_RA.
- apply C; congruence.
-
-- (* Cmasknotzero *)
- destruct (is_logical_imm64 n).
-+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- repeat split; intros. rewrite Int64.repr_unsigned. apply (eval_testcond_compare_slong Cne); auto.
- destruct r; reflexivity || discriminate.
-+ exploit (exec_loadimm64 X16 n). congruence. intros (rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_trans. eexact A.
- apply exec_straight_one. simpl. rewrite B, C by eauto with asmgen. eauto. auto.
- repeat split; intros. apply (eval_testcond_compare_slong Cne); auto.
- transitivity (rs' r). destruct r; reflexivity || discriminate. auto with asmgen.
- Simpl. rewrite compare_long_RA.
- apply C; congruence.
-
-- (* Ccompf *)
- econstructor; split. apply exec_straight_one. simpl; eauto.
- rewrite compare_float_inv; auto.
- repeat split; intros. apply eval_testcond_compare_float; auto.
- destruct r; discriminate || rewrite compare_float_inv; auto.
- Simpl.
-- (* Cnotcompf *)
- econstructor; split. apply exec_straight_one. simpl; eauto.
- rewrite compare_float_inv; auto.
- repeat split; intros. apply eval_testcond_compare_not_float; auto.
- destruct r; discriminate || rewrite compare_float_inv; auto.
- Simpl.
-- (* Ccompfzero *)
- econstructor; split. apply exec_straight_one. simpl; eauto.
- rewrite compare_float_inv; auto.
- repeat split; intros. apply eval_testcond_compare_float; auto.
- destruct r; discriminate || rewrite compare_float_inv; auto.
- Simpl.
-- (* Cnotcompfzero *)
- econstructor; split. apply exec_straight_one. simpl; eauto.
- rewrite compare_float_inv; auto.
- repeat split; intros. apply eval_testcond_compare_not_float; auto.
- destruct r; discriminate || rewrite compare_float_inv; auto.
- Simpl.
-- (* Ccompfs *)
- econstructor; split. apply exec_straight_one. simpl; eauto.
- rewrite compare_single_inv; auto.
- repeat split; intros. apply eval_testcond_compare_single; auto.
- destruct r; discriminate || rewrite compare_single_inv; auto.
- Simpl.
-- (* Cnotcompfs *)
- econstructor; split. apply exec_straight_one. simpl; eauto.
- rewrite compare_single_inv; auto.
- repeat split; intros. apply eval_testcond_compare_not_single; auto.
- destruct r; discriminate || rewrite compare_single_inv; auto.
- Simpl.
-- (* Ccompfszero *)
- econstructor; split. apply exec_straight_one. simpl; eauto.
- rewrite compare_single_inv; auto.
- repeat split; intros. apply eval_testcond_compare_single; auto.
- destruct r; discriminate || rewrite compare_single_inv; auto.
- Simpl.
-- (* Cnotcompfszero *)
- econstructor; split. apply exec_straight_one. simpl; eauto.
- rewrite compare_single_inv; auto.
- repeat split; intros. apply eval_testcond_compare_not_single; auto.
- destruct r; discriminate || rewrite compare_single_inv; auto.
- Simpl.
-Qed.
-
-(** Translation of conditional branches *)
-
-Lemma transl_cond_branch_correct:
- forall cond args lbl k c rs m b,
- transl_cond_branch cond args lbl k = OK c ->
- eval_condition cond (map rs (map preg_of args)) m = Some b ->
- exists rs' insn,
- exec_straight_opt ge fn c rs m (insn :: k) rs' m
- /\ exec_instr ge fn insn rs' m =
- (if b then goto_label fn lbl rs' m else Next (nextinstr rs') m)
- /\ (forall r, data_preg r = true -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA.
-Proof.
- intros until b; intros TR EV.
- assert (DFL:
- transl_cond_branch_default cond args lbl k = OK c ->
- exists rs' insn,
- exec_straight_opt ge fn c rs m (insn :: k) rs' m
- /\ exec_instr ge fn insn rs' m =
- (if b then goto_label fn lbl rs' m else Next (nextinstr rs') m)
- /\ (forall r, data_preg r = true -> rs'#r = rs#r)
- /\ rs' # RA = rs # RA ).
- {
- unfold transl_cond_branch_default; intros.
- exploit transl_cond_correct; eauto. intros (rs' & A & B & C & D).
- exists rs', (Pbc (cond_for_cond cond) lbl); split.
- apply exec_straight_opt_intro. eexact A.
- repeat split; auto. simpl. rewrite (B b) by auto. auto.
- }
-Local Opaque transl_cond transl_cond_branch_default.
- destruct args as [ | a1 args]; simpl in TR; auto.
- destruct args as [ | a2 args]; simpl in TR; auto.
- destruct cond; simpl in TR; auto.
-- (* Ccompimm *)
- destruct c0; auto; destruct (Int.eq n Int.zero) eqn:N0; auto;
- apply Int.same_if_eq in N0; subst n; ArgsInv.
-+ (* Ccompimm Cne 0 *)
- do 2 econstructor; split.
- apply exec_straight_opt_refl.
- split; auto. simpl. destruct (rs x); simpl in EV; inv EV. simpl. auto.
-+ (* Ccompimm Ceq 0 *)
- do 2 econstructor; split.
- apply exec_straight_opt_refl.
- split; auto. simpl. destruct (rs x); simpl in EV; inv EV. simpl. destruct (Int.eq i Int.zero); auto.
-- (* Ccompuimm *)
- destruct c0; auto; destruct (Int.eq n Int.zero) eqn:N0; auto;
- apply Int.same_if_eq in N0; subst n; ArgsInv.
-+ (* Ccompuimm Cne 0 *)
- do 2 econstructor; split.
- apply exec_straight_opt_refl.
- split; auto. simpl. rewrite EV. auto.
-+ (* Ccompuimm Ceq 0 *)
- do 2 econstructor; split.
- apply exec_straight_opt_refl.
- split; auto. simpl. rewrite (Val.negate_cmpu_bool (Mem.valid_pointer m) Cne), EV. destruct b; auto.
-- (* Cmaskzero *)
- destruct (Int.is_power2 n) as [bit|] eqn:P2; auto. ArgsInv.
- do 2 econstructor; split.
- apply exec_straight_opt_refl.
- split; auto. simpl.
- erewrite <- Int.mul_pow2, Int.mul_commut, Int.mul_one by eauto.
- rewrite (Val.negate_cmp_bool Ceq), EV. destruct b; auto.
-- (* Cmasknotzero *)
- destruct (Int.is_power2 n) as [bit|] eqn:P2; auto. ArgsInv.
- do 2 econstructor; split.
- apply exec_straight_opt_refl.
- split; auto. simpl.
- erewrite <- Int.mul_pow2, Int.mul_commut, Int.mul_one by eauto.
- rewrite EV. auto.
-- (* Ccomplimm *)
- destruct c0; auto; destruct (Int64.eq n Int64.zero) eqn:N0; auto;
- apply Int64.same_if_eq in N0; subst n; ArgsInv.
-+ (* Ccomplimm Cne 0 *)
- do 2 econstructor; split.
- apply exec_straight_opt_refl.
- split; auto. simpl. destruct (rs x); simpl in EV; inv EV. simpl. auto.
-+ (* Ccomplimm Ceq 0 *)
- do 2 econstructor; split.
- apply exec_straight_opt_refl.
- split; auto. simpl. destruct (rs x); simpl in EV; inv EV. simpl. destruct (Int64.eq i Int64.zero); auto.
-- (* Ccompluimm *)
- destruct c0; auto; destruct (Int64.eq n Int64.zero) eqn:N0; auto;
- apply Int64.same_if_eq in N0; subst n; ArgsInv.
-+ (* Ccompluimm Cne 0 *)
- do 2 econstructor; split.
- apply exec_straight_opt_refl.
- split; auto. simpl. rewrite EV. auto.
-+ (* Ccompluimm Ceq 0 *)
- do 2 econstructor; split.
- apply exec_straight_opt_refl.
- split; auto. simpl. rewrite (Val.negate_cmplu_bool (Mem.valid_pointer m) Cne), EV. destruct b; auto.
-- (* Cmasklzero *)
- destruct (Int64.is_power2' n) as [bit|] eqn:P2; auto. ArgsInv.
- do 2 econstructor; split.
- apply exec_straight_opt_refl.
- split; auto. simpl.
- erewrite <- Int64.mul_pow2', Int64.mul_commut, Int64.mul_one by eauto.
- rewrite (Val.negate_cmpl_bool Ceq), EV. destruct b; auto.
-- (* Cmasklnotzero *)
- destruct (Int64.is_power2' n) as [bit|] eqn:P2; auto. ArgsInv.
- do 2 econstructor; split.
- apply exec_straight_opt_refl.
- split; auto. simpl.
- erewrite <- Int64.mul_pow2', Int64.mul_commut, Int64.mul_one by eauto.
- rewrite EV. auto.
-Qed.
-
-(** Translation of arithmetic operations *)
-
-Ltac SimplEval H :=
- match type of H with
- | Some _ = None _ => discriminate
- | Some _ = Some _ => inv H
- | ?a = Some ?b => let A := fresh in assert (A: Val.maketotal a = b) by (rewrite H; reflexivity)
-end.
-
-Ltac TranslOpSimpl :=
- econstructor; split;
- [ apply exec_straight_one; [simpl; eauto | reflexivity]
- | split; [ rewrite ? transl_eval_shift, ? transl_eval_shiftl;
- apply Val.lessdef_same; Simpl; fail
- | split; [ intros; Simpl; fail
- | intros; Simpl; eauto with asmgen; fail] ]].
-
-Ltac TranslOpBase :=
- econstructor; split;
- [ apply exec_straight_one; [simpl; eauto | reflexivity]
- | split; [ rewrite ? transl_eval_shift, ? transl_eval_shiftl; Simpl
- | split; [ intros; Simpl; fail
- | intros; Simpl; eapply RA_not_written2; eauto] ]].
-
-Lemma transl_op_correct:
- forall op args res k (rs: regset) m v c,
- transl_op op args res k = OK c ->
- eval_operation ge (rs#SP) op (map rs (map preg_of args)) m = Some v ->
- exists rs',
- exec_straight ge fn c rs m k rs' m
- /\ Val.lessdef v rs'#(preg_of res)
- /\ (forall r, data_preg r = true -> r <> preg_of res -> preg_notin r (destroyed_by_op op) -> rs' r = rs r)
- /\ rs' RA = rs RA.
-Proof.
-Local Opaque Int.eq Int64.eq Val.add Val.addl Int.zwordsize Int64.zwordsize.
- intros until c; intros TR EV.
- unfold transl_op in TR; destruct op; ArgsInv; simpl in EV; SimplEval EV; try TranslOpSimpl.
-- (* move *)
- destruct (preg_of res) eqn:RR; try discriminate; destruct (preg_of m0) eqn:R1; inv TR.
- all: TranslOpSimpl.
-- (* intconst *)
- exploit exec_loadimm32. apply (ireg_of_not_RA res); eassumption.
- intros (rs' & A & B & C).
- exists rs'; split. eexact A. split. rewrite B; auto.
- split. intros; auto with asmgen.
- apply C. congruence.
- eapply ireg_of_not_RA''; eauto.
-- (* longconst *)
- exploit exec_loadimm64. apply (ireg_of_not_RA res); eassumption.
- intros (rs' & A & B & C).
- exists rs'; split. eexact A. split. rewrite B; auto.
- split. intros; auto with asmgen.
- apply C. congruence.
- eapply ireg_of_not_RA''; eauto.
-- (* floatconst *)
- destruct (Float.eq_dec n Float.zero).
-+ subst n. TranslOpSimpl.
-+ TranslOpSimpl.
-- (* singleconst *)
- destruct (Float32.eq_dec n Float32.zero).
-+ subst n. TranslOpSimpl.
-+ TranslOpSimpl.
-- (* loadsymbol *)
- exploit (exec_loadsymbol x id ofs). eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- exists rs'; split. eexact A. split. rewrite B; auto.
- split; auto.
-- (* addrstack *)
- exploit (exec_addimm64 x XSP (Ptrofs.to_int64 ofs)). simpl; eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- exists rs'; split. eexact A. split. simpl in B; rewrite B.
-Local Transparent Val.addl.
- destruct (rs SP); simpl; auto. rewrite Ptrofs.of_int64_to_int64 by auto. auto.
- auto.
-- (* shift *)
- rewrite <- transl_eval_shift'. TranslOpSimpl.
-- (* addimm *)
- exploit (exec_addimm32 x x0 n). eauto with asmgen. eapply ireg_of_not_RA''; eassumption.
- intros (rs' & A & B & C & D).
- exists rs'; split. eexact A. split. rewrite B; auto. auto.
-- (* mul *)
- TranslOpBase.
-Local Transparent Val.add.
- destruct (rs x0); auto; destruct (rs x1); auto. simpl. rewrite Int.add_zero_l; auto.
-- (* andimm *)
- exploit (exec_logicalimm32 (Pandimm W) (Pand W)).
- intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen. apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- exists rs'; split. eexact A. split. rewrite B; auto.
- split; auto.
-- (* orimm *)
- exploit (exec_logicalimm32 (Porrimm W) (Porr W)).
- intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen. apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- exists rs'; split. eexact A. split. rewrite B; auto.
- split; auto.
-- (* xorimm *)
- exploit (exec_logicalimm32 (Peorimm W) (Peor W)).
- intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen. apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- exists rs'; split. eexact A. split. rewrite B; auto. auto.
-- (* not *)
- TranslOpBase.
- destruct (rs x0); auto. simpl. rewrite Int.or_zero_l; auto.
-- (* notshift *)
- TranslOpBase.
- destruct (eval_shift s (rs x0) a); auto. simpl. rewrite Int.or_zero_l; auto.
-- (* shrx *)
- exploit (exec_shrx32 x x0 n); eauto with asmgen. apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- econstructor; split. eexact A. split. rewrite B; auto.
- split; auto.
-- (* zero-ext *)
- TranslOpBase.
- destruct (rs x0); auto; simpl. rewrite Int.shl_zero. auto.
-- (* sign-ext *)
- TranslOpBase.
- destruct (rs x0); auto; simpl. rewrite Int.shl_zero. auto.
-- (* shlzext *)
- TranslOpBase.
- destruct (rs x0); simpl; auto. rewrite <- Int.shl_zero_ext_min; auto using a32_range.
-- (* shlsext *)
- TranslOpBase.
- destruct (rs x0); simpl; auto. rewrite <- Int.shl_sign_ext_min; auto using a32_range.
-- (* zextshr *)
- TranslOpBase.
- destruct (rs x0); simpl; auto. rewrite ! a32_range; simpl. rewrite <- Int.zero_ext_shru_min; auto using a32_range.
-- (* sextshr *)
- TranslOpBase.
- destruct (rs x0); simpl; auto. rewrite ! a32_range; simpl. rewrite <- Int.sign_ext_shr_min; auto using a32_range.
-- (* shiftl *)
- rewrite <- transl_eval_shiftl'. TranslOpSimpl.
-- (* extend *)
- exploit (exec_move_extended x0 x1 x a k). intros (rs' & A & B & C).
- econstructor; split. eexact A.
- split. rewrite B; auto.
- split; eauto with asmgen.
-- (* addext *)
- exploit (exec_arith_extended Val.addl Paddext (Padd X)).
- auto. auto. instantiate (1 := x1). eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- econstructor; split. eexact A. split. rewrite B; auto.
- split; auto.
-- (* addlimm *)
- exploit (exec_addimm64 x x0 n). simpl. generalize (ireg_of_not_X16 _ _ EQ1). congruence.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- exists rs'; split. eexact A. split. simpl in B; rewrite B; auto. auto.
-- (* subext *)
- exploit (exec_arith_extended Val.subl Psubext (Psub X)).
- auto. auto. instantiate (1 := x1). eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- econstructor; split. eexact A. split. rewrite B; auto.
- split; auto.
-- (* mull *)
- TranslOpBase.
- destruct (rs x0); auto; destruct (rs x1); auto. simpl. rewrite Int64.add_zero_l; auto.
-- (* andlimm *)
- exploit (exec_logicalimm64 (Pandimm X) (Pand X)).
- intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- exists rs'; split. eexact A. split. rewrite B; auto. auto.
-- (* orlimm *)
- exploit (exec_logicalimm64 (Porrimm X) (Porr X)).
- intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- exists rs'; split. eexact A. split. rewrite B; auto. auto.
-- (* xorlimm *)
- exploit (exec_logicalimm64 (Peorimm X) (Peor X)).
- intros; reflexivity. intros; reflexivity. instantiate (1 := x0). eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption.
- intros (rs' & A & B & C & D).
- exists rs'; split. eexact A. split. rewrite B; auto. auto.
-- (* notl *)
- TranslOpBase.
- destruct (rs x0); auto. simpl. rewrite Int64.or_zero_l; auto.
-- (* notlshift *)
- TranslOpBase.
- destruct (eval_shiftl s (rs x0) a); auto. simpl. rewrite Int64.or_zero_l; auto.
-- (* shrx *)
- exploit (exec_shrx64 x x0 n); eauto with asmgen.
- apply (ireg_of_not_RA'' res); eassumption. intros (rs' & A & B & C & D ).
- econstructor; split. eexact A. split. rewrite B; auto. auto.
-- (* zero-ext-l *)
- TranslOpBase.
- destruct (rs x0); auto; simpl. rewrite Int64.shl'_zero. auto.
-- (* sign-ext-l *)
- TranslOpBase.
- destruct (rs x0); auto; simpl. rewrite Int64.shl'_zero. auto.
-- (* shllzext *)
- TranslOpBase.
- destruct (rs x0); simpl; auto. rewrite <- Int64.shl'_zero_ext_min; auto using a64_range.
-- (* shllsext *)
- TranslOpBase.
- destruct (rs x0); simpl; auto. rewrite <- Int64.shl'_sign_ext_min; auto using a64_range.
-- (* zextshrl *)
- TranslOpBase.
- destruct (rs x0); simpl; auto. rewrite ! a64_range; simpl. rewrite <- Int64.zero_ext_shru'_min; auto using a64_range.
-- (* sextshrl *)
- TranslOpBase.
- destruct (rs x0); simpl; auto. rewrite ! a64_range; simpl. rewrite <- Int64.sign_ext_shr'_min; auto using a64_range.
-- (* condition *)
- exploit (transl_cond_correct cond args); eauto. intros (rs' & A & B & C & D).
- econstructor; split.
- eapply exec_straight_trans. eexact A. apply exec_straight_one. simpl; eauto. auto.
- split. Simpl. destruct (eval_condition cond (map rs (map preg_of args)) m) as [b|]; simpl in *.
- rewrite (B b) by auto. auto.
- auto.
- split; intros; Simpl.
-- (* select *)
- destruct (preg_of res) eqn:RES; monadInv TR.
- + (* integer *)
- generalize (ireg_of_eq _ _ EQ) (ireg_of_eq _ _ EQ1); intros E1 E2; rewrite E1, E2.
- exploit (transl_cond_correct cond args); eauto. intros (rs' & A & B & C & D).
- econstructor; split.
- eapply exec_straight_trans. eexact A. apply exec_straight_one. simpl; eauto. auto.
- split. Simpl. destruct (eval_condition cond (map rs (map preg_of args)) m) as [b|]; simpl in *.
- rewrite (B b) by auto. rewrite !C. apply Val.lessdef_normalize.
- rewrite <- E2; auto with asmgen. rewrite <- E1; auto with asmgen.
- auto.
- split; intros; Simpl.
- rewrite <- D.
- eapply RA_not_written2; eassumption.
- + (* FP *)
- generalize (freg_of_eq _ _ EQ) (freg_of_eq _ _ EQ1); intros E1 E2; rewrite E1, E2.
- exploit (transl_cond_correct cond args); eauto. intros (rs' & A & B & C & D).
- econstructor; split.
- eapply exec_straight_trans. eexact A. apply exec_straight_one. simpl; eauto. auto.
- split. Simpl. destruct (eval_condition cond (map rs (map preg_of args)) m) as [b|]; simpl in *.
- rewrite (B b) by auto. rewrite !C. apply Val.lessdef_normalize.
- rewrite <- E2; auto with asmgen. rewrite <- E1; auto with asmgen.
- auto.
- split; intros; Simpl.
-Qed.
-
-(** Translation of addressing modes, loads, stores *)
-
-Lemma transl_addressing_correct:
- forall sz addr args (insn: Asm.addressing -> instruction) k (rs: regset) m c b o,
- transl_addressing sz addr args insn k = OK c ->
- Op.eval_addressing ge (rs#SP) addr (map rs (map preg_of args)) = Some (Vptr b o) ->
- exists ad rs',
- exec_straight_opt ge fn c rs m (insn ad :: k) rs' m
- /\ Asm.eval_addressing ge ad rs' = Vptr b o
- /\ (forall r, data_preg r = true -> rs' r = rs r)
- /\ rs' # RA = rs # RA.
-Proof.
- intros until o; intros TR EV.
- unfold transl_addressing in TR; destruct addr; ArgsInv; SimplEval EV.
-- (* Aindexed *)
- destruct (offset_representable sz ofs); inv EQ0.
-+ econstructor; econstructor; split. apply exec_straight_opt_refl.
- auto.
-+ exploit (exec_loadimm64 X16 ofs). congruence. intros (rs' & A & B & C).
- econstructor; exists rs'; split. apply exec_straight_opt_intro; eexact A.
- split. simpl. rewrite B, C by eauto with asmgen. auto.
- split; eauto with asmgen.
-- (* Aindexed2 *)
- econstructor; econstructor; split. apply exec_straight_opt_refl.
- auto.
-- (* Aindexed2shift *)
- destruct (Int.eq a Int.zero) eqn:E; [|destruct (Int.eq (Int.shl Int.one a) (Int.repr sz))]; inv EQ2.
-+ apply Int.same_if_eq in E. rewrite E.
- econstructor; econstructor; split. apply exec_straight_opt_refl.
- split; auto. simpl.
- rewrite Val.addl_commut in H0. destruct (rs x0); try discriminate.
- unfold Val.shll. rewrite Int64.shl'_zero. auto.
-+ econstructor; econstructor; split. apply exec_straight_opt_refl.
- auto.
-+ econstructor; econstructor; split.
- apply exec_straight_opt_intro. apply exec_straight_one. simpl; eauto. auto.
- split. simpl. Simpl. rewrite H0. simpl. rewrite Ptrofs.add_zero. auto.
- split; intros; Simpl.
-- (* Aindexed2ext *)
- destruct (Int.eq a Int.zero || Int.eq (Int.shl Int.one a) (Int.repr sz)); inv EQ2.
-+ econstructor; econstructor; split. apply exec_straight_opt_refl.
- split; auto. destruct x; auto.
-+ exploit (exec_arith_extended Val.addl Paddext (Padd X)); auto.
- instantiate (1 := x0). eauto with asmgen.
- instantiate (1 := X16). simpl. congruence.
- intros (rs' & A & B & C & D).
- econstructor; exists rs'; split.
- apply exec_straight_opt_intro. eexact A.
- split. simpl. rewrite B. rewrite Val.addl_assoc. f_equal.
- unfold Op.eval_extend; destruct x, (rs x1); simpl; auto; rewrite ! a64_range;
- simpl; rewrite Int64.add_zero; auto.
- split; intros.
- apply C; eauto with asmgen.
- trivial.
-- (* Aglobal *)
- destruct (Ptrofs.eq (Ptrofs.modu ofs (Ptrofs.repr sz)) Ptrofs.zero && symbol_is_aligned id sz); inv TR.
-+ econstructor; econstructor; split.
- apply exec_straight_opt_intro. apply exec_straight_one. simpl; eauto. auto.
- split. simpl. Simpl. rewrite symbol_high_low. simpl in EV. congruence.
- split; intros; Simpl.
-+ exploit (exec_loadsymbol X16 id ofs). auto.
- simpl. congruence.
- intros (rs' & A & B & C & D).
- econstructor; exists rs'; split.
- apply exec_straight_opt_intro. eexact A.
- split. simpl.
- rewrite B. rewrite <- Genv.shift_symbol_address_64, Ptrofs.add_zero by auto.
- simpl in EV. congruence.
- split; auto with asmgen.
-- (* Ainstrack *)
- assert (E: Val.addl (rs SP) (Vlong (Ptrofs.to_int64 ofs)) = Vptr b o).
- { simpl in EV. inv EV. destruct (rs SP); simpl in H1; inv H1. simpl.
- rewrite Ptrofs.of_int64_to_int64 by auto. auto. }
- destruct (offset_representable sz (Ptrofs.to_int64 ofs)); inv TR.
-+ econstructor; econstructor; split. apply exec_straight_opt_refl.
- auto.
-+ exploit (exec_loadimm64 X16 (Ptrofs.to_int64 ofs)).
- simpl. congruence.
- intros (rs' & A & B & C).
- econstructor; exists rs'; split.
- apply exec_straight_opt_intro. eexact A.
- split. simpl. rewrite B, C by eauto with asmgen. auto.
- auto with asmgen.
-Qed.
-
-Lemma transl_load_correct:
- forall chunk addr args dst k c (rs: regset) m vaddr v,
- transl_load TRAP chunk addr args dst k = OK c ->
- Op.eval_addressing ge (rs#SP) addr (map rs (map preg_of args)) = Some vaddr ->
- Mem.loadv chunk m vaddr = Some v ->
- exists rs',
- exec_straight ge fn c rs m k rs' m
- /\ rs'#(preg_of dst) = v
- /\ (forall r, data_preg r = true -> r <> preg_of dst -> rs' r = rs r)
- /\ rs' # RA = rs # RA.
-Proof.
- intros. destruct vaddr; try discriminate.
- assert (A: exists sz insn,
- transl_addressing sz addr args insn k = OK c
- /\ (forall ad rs', exec_instr ge fn (insn ad) rs' m =
- exec_load ge chunk (fun v => v) ad (preg_of dst) rs' m)).
- {
- destruct chunk; monadInv H;
- try rewrite (ireg_of_eq _ _ EQ); try rewrite (freg_of_eq _ _ EQ);
- do 2 econstructor; (split; [eassumption|auto]).
- }
- destruct A as (sz & insn & B & C).
- exploit transl_addressing_correct. eexact B. eexact H0. intros (ad & rs' & P & Q & R & S).
- assert (X: exec_load ge chunk (fun v => v) ad (preg_of dst) rs' m =
- Next (nextinstr (rs'#(preg_of dst) <- v)) m).
- { unfold exec_load. rewrite Q, H1. auto. }
- econstructor; split.
- eapply exec_straight_opt_right. eexact P.
- apply exec_straight_one. rewrite C, X; eauto. Simpl.
- split. Simpl.
- split; intros; Simpl.
- rewrite <- S.
- apply RA_not_written.
-Qed.
-
-Lemma transl_store_correct:
- forall chunk addr args src k c (rs: regset) m vaddr m',
- transl_store chunk addr args src k = OK c ->
- Op.eval_addressing ge (rs#SP) addr (map rs (map preg_of args)) = Some vaddr ->
- Mem.storev chunk m vaddr rs#(preg_of src) = Some m' ->
- exists rs',
- exec_straight ge fn c rs m k rs' m'
- /\ (forall r, data_preg r = true -> rs' r = rs r)
- /\ rs' # RA = rs # RA.
-Proof.
- intros. destruct vaddr; try discriminate.
- set (chunk' := match chunk with Mint8signed => Mint8unsigned
- | Mint16signed => Mint16unsigned
- | _ => chunk end).
- assert (A: exists sz insn,
- transl_addressing sz addr args insn k = OK c
- /\ (forall ad rs', exec_instr ge fn (insn ad) rs' m =
- exec_store ge chunk' ad rs'#(preg_of src) rs' m)).
- {
- unfold chunk'; destruct chunk; monadInv H;
- try rewrite (ireg_of_eq _ _ EQ); try rewrite (freg_of_eq _ _ EQ);
- do 2 econstructor; (split; [eassumption|auto]).
- }
- destruct A as (sz & insn & B & C).
- exploit transl_addressing_correct. eexact B. eexact H0. intros (ad & rs' & P & Q & R & S).
- assert (X: Mem.storev chunk' m (Vptr b i) rs#(preg_of src) = Some m').
- { rewrite <- H1. unfold chunk'. destruct chunk; auto; simpl; symmetry.
- apply Mem.store_signed_unsigned_8.
- apply Mem.store_signed_unsigned_16. }
- assert (Y: exec_store ge chunk' ad rs'#(preg_of src) rs' m =
- Next (nextinstr rs') m').
- { unfold exec_store. rewrite Q, R, X by auto with asmgen. auto. }
- econstructor; split.
- eapply exec_straight_opt_right. eexact P.
- apply exec_straight_one. rewrite C, Y; eauto. Simpl.
- split; intros; Simpl.
-Qed.
-
-(** Translation of indexed memory accesses *)
-
-Lemma indexed_memory_access_correct: forall insn sz (base: iregsp) ofs k (rs: regset) m b i,
- preg_of_iregsp base <> IR X16 ->
- Val.offset_ptr rs#base ofs = Vptr b i ->
- exists ad rs',
- exec_straight_opt ge fn (indexed_memory_access insn sz base ofs k) rs m (insn ad :: k) rs' m
- /\ Asm.eval_addressing ge ad rs' = Vptr b i
- /\ forall r, r <> PC -> r <> X16 -> rs' r = rs r.
-Proof.
- unfold indexed_memory_access; intros.
- assert (Val.addl rs#base (Vlong (Ptrofs.to_int64 ofs)) = Vptr b i).
- { destruct (rs base); try discriminate. simpl in *. rewrite Ptrofs.of_int64_to_int64 by auto. auto. }
- destruct offset_representable.
-- econstructor; econstructor; split. apply exec_straight_opt_refl. auto.
-- exploit (exec_loadimm64 X16); eauto.
- simpl. congruence.
- intros (rs' & A & B & C).
- econstructor; econstructor; split. apply exec_straight_opt_intro; eexact A.
- split. simpl. rewrite B, C by eauto with asmgen. auto. auto.
-Qed.
-
-Lemma loadptr_correct: forall (base: iregsp) ofs dst k m v (rs: regset),
- Mem.loadv Mint64 m (Val.offset_ptr rs#base ofs) = Some v ->
- preg_of_iregsp base <> IR X16 ->
- exists rs',
- exec_straight ge fn (loadptr base ofs dst k) rs m k rs' m
- /\ rs'#dst = v
- /\ (forall r, r <> PC -> r <> X16 -> r <> dst -> rs' r = rs r).
-Proof.
- intros.
- destruct (Val.offset_ptr rs#base ofs) eqn:V; try discriminate.
- exploit indexed_memory_access_correct; eauto. intros (ad & rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_opt_right. eexact A.
- apply exec_straight_one. simpl. unfold exec_load. rewrite B, H. eauto. auto.
- split. Simpl.
- intros; Simpl.
-Qed.
-
-Lemma storeptr_correct: forall (base: iregsp) ofs (src: ireg) k m m' (rs: regset),
- Mem.storev Mint64 m (Val.offset_ptr rs#base ofs) rs#src = Some m' ->
- preg_of_iregsp base <> IR X16 ->
- src <> X16 ->
- exists rs',
- exec_straight ge fn (storeptr src base ofs k) rs m k rs' m'
- /\ (forall r, r <> PC -> r <> X16 -> rs' r = rs r)
- /\ rs' RA = rs RA.
-Proof.
- intros.
- destruct (Val.offset_ptr rs#base ofs) eqn:V; try discriminate.
- exploit indexed_memory_access_correct; eauto. intros (ad & rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_opt_right. eexact A.
- apply exec_straight_one. simpl. unfold exec_store. rewrite B, C, H by eauto with asmgen. eauto. auto.
- split; intros; Simpl.
-Qed.
-
-Lemma loadind_correct: forall (base: iregsp) ofs ty dst k c (rs: regset) m v,
- loadind base ofs ty dst k = OK c ->
- Mem.loadv (chunk_of_type ty) m (Val.offset_ptr rs#base ofs) = Some v ->
- preg_of_iregsp base <> IR X16 ->
- exists rs',
- exec_straight ge fn c rs m k rs' m
- /\ rs'#(preg_of dst) = v
- /\ (forall r, data_preg r = true -> r <> preg_of dst -> rs' r = rs r)
- /\ rs' RA = rs RA.
-Proof.
- intros.
- destruct (Val.offset_ptr rs#base ofs) eqn:V; try discriminate.
- assert (X: exists sz insn,
- c = indexed_memory_access insn sz base ofs k
- /\ (forall ad rs', exec_instr ge fn (insn ad) rs' m =
- exec_load ge (chunk_of_type ty) (fun v => v) ad (preg_of dst) rs' m)).
- {
- unfold loadind in H; destruct ty; destruct (preg_of dst); inv H; do 2 econstructor; eauto.
- }
- destruct X as (sz & insn & EQ & SEM). subst c.
- exploit indexed_memory_access_correct; eauto. intros (ad & rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_opt_right. eexact A.
- apply exec_straight_one. rewrite SEM. unfold exec_load. rewrite B, H0. eauto. Simpl.
- split. Simpl.
- split. intros; Simpl.
- Simpl. rewrite RA_not_written.
- apply C; congruence.
-Qed.
-
-Lemma storeind_correct: forall (base: iregsp) ofs ty src k c (rs: regset) m m',
- storeind src base ofs ty k = OK c ->
- Mem.storev (chunk_of_type ty) m (Val.offset_ptr rs#base ofs) rs#(preg_of src) = Some m' ->
- preg_of_iregsp base <> IR X16 ->
- exists rs',
- exec_straight ge fn c rs m k rs' m'
- /\ (forall r, data_preg r = true -> rs' r = rs r)
- /\ rs' RA = rs RA.
-Proof.
- intros.
- destruct (Val.offset_ptr rs#base ofs) eqn:V; try discriminate.
- assert (X: exists sz insn,
- c = indexed_memory_access insn sz base ofs k
- /\ (forall ad rs', exec_instr ge fn (insn ad) rs' m =
- exec_store ge (chunk_of_type ty) ad rs'#(preg_of src) rs' m)).
- {
- unfold storeind in H; destruct ty; destruct (preg_of src); inv H; do 2 econstructor; eauto.
- }
- destruct X as (sz & insn & EQ & SEM). subst c.
- exploit indexed_memory_access_correct; eauto. intros (ad & rs' & A & B & C).
- econstructor; split.
- eapply exec_straight_opt_right. eexact A.
- apply exec_straight_one. rewrite SEM.
- unfold exec_store. rewrite B, C, H0 by eauto with asmgen. eauto.
- Simpl.
- split. intros; Simpl.
- Simpl.
-Qed.
-
-Lemma make_epilogue_correct:
- forall ge0 f m stk soff cs m' ms rs k tm,
- (is_leaf_function f = true -> rs # (IR RA) = parent_ra cs) ->
- load_stack m (Vptr stk soff) Tptr f.(fn_link_ofs) = Some (parent_sp cs) ->
- ((* FIXME is_leaf_function f = false -> *) load_stack m (Vptr stk soff) Tptr f.(fn_retaddr_ofs) = Some (parent_ra cs)) ->
- Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
- agree ms (Vptr stk soff) rs ->
- Mem.extends m tm ->
- match_stack ge0 cs ->
- exists rs', exists tm',
- exec_straight ge fn (make_epilogue f k) rs tm k rs' tm'
- /\ agree ms (parent_sp cs) rs'
- /\ Mem.extends m' tm'
- /\ rs'#RA = parent_ra cs
- /\ rs'#SP = parent_sp cs
- /\ (forall r, r <> PC -> r <> SP -> r <> RA -> r <> X16 -> rs'#r = rs#r).
-Proof.
- intros until tm; intros LEAF_RA LP LRA FREE AG MEXT MCS.
-
- (* FIXME
- Cannot be used at this point
- destruct (is_leaf_function f) eqn:IS_LEAF.
- {
- exploit Mem.loadv_extends. eauto. eexact LP. auto. simpl. intros (parent' & LP' & LDP').
- exploit lessdef_parent_sp; eauto. intros EQ; subst parent'; clear LDP'.
- exploit Mem.free_parallel_extends; eauto. intros (tm' & FREE' & MEXT').
- unfold make_epilogue.
- rewrite IS_LEAF.
-
- econstructor; econstructor; split.
- apply exec_straight_one. simpl.
- rewrite <- (sp_val _ _ _ AG). simpl; rewrite LP'.
- rewrite FREE'. eauto. auto.
- split. apply agree_nextinstr. apply agree_set_other; auto.
- apply agree_change_sp with (Vptr stk soff).
- apply agree_exten with rs; auto.
- eapply parent_sp_def; eauto.
- split. auto.
- split. Simpl.
- split. Simpl.
- intros. Simpl.
- }
- lapply LRA. 2: reflexivity.
- clear LRA. intro LRA. *)
- exploit Mem.loadv_extends. eauto. eexact LP. auto. simpl. intros (parent' & LP' & LDP').
- exploit Mem.loadv_extends. eauto. eexact LRA. auto. simpl. intros (ra' & LRA' & LDRA').
- exploit lessdef_parent_sp; eauto. intros EQ; subst parent'; clear LDP'.
- exploit lessdef_parent_ra; eauto. intros EQ; subst ra'; clear LDRA'.
- exploit Mem.free_parallel_extends; eauto. intros (tm' & FREE' & MEXT').
- unfold make_epilogue.
- (* FIXME rewrite IS_LEAF. *)
- exploit (loadptr_correct XSP (fn_retaddr_ofs f)).
- instantiate (2 := rs). simpl. rewrite <- (sp_val _ _ _ AG). simpl. eexact LRA'. simpl; congruence.
- intros (rs1 & A1 & B1 & C1).
-
- econstructor; econstructor; split.
- eapply exec_straight_trans. eexact A1. apply exec_straight_one. simpl.
- simpl; rewrite (C1 SP) by auto with asmgen. rewrite <- (sp_val _ _ _ AG). simpl; rewrite LP'.
- rewrite FREE'. eauto. auto.
- split. apply agree_nextinstr. apply agree_set_other; auto.
- apply agree_change_sp with (Vptr stk soff).
- apply agree_exten with rs; auto. intros; apply C1; auto with asmgen.
- eapply parent_sp_def; eauto.
- split. auto.
- split. Simpl.
- split. Simpl.
- intros. Simpl.
-Qed.
-
-End CONSTRUCTORS.
-*) \ No newline at end of file