aboutsummaryrefslogtreecommitdiffstats
path: root/backend/CSE2.v
diff options
context:
space:
mode:
authorDavid Monniaux <david.monniaux@univ-grenoble-alpes.fr>2020-01-28 19:11:29 +0100
committerDavid Monniaux <david.monniaux@univ-grenoble-alpes.fr>2020-01-28 19:11:29 +0100
commitb71f1c635f20550f6ffdea7f99e65b8516d46768 (patch)
tree853d5ba16befcee59369d6ec283727fb5619da27 /backend/CSE2.v
parentfd2181ce5f6a3a5ba27349d1642ee4c59a6d9b34 (diff)
parent3bdfc2288714f1c238a5b59586aa1409f4eda056 (diff)
downloadcompcert-kvx-b71f1c635f20550f6ffdea7f99e65b8516d46768.tar.gz
compcert-kvx-b71f1c635f20550f6ffdea7f99e65b8516d46768.zip
Merge branch 'dm-cse2' of /home/monniaux/progs/CompCert into mppa-cs2
Diffstat (limited to 'backend/CSE2.v')
-rw-r--r--backend/CSE2.v503
1 files changed, 503 insertions, 0 deletions
diff --git a/backend/CSE2.v b/backend/CSE2.v
new file mode 100644
index 00000000..a1c1d9cb
--- /dev/null
+++ b/backend/CSE2.v
@@ -0,0 +1,503 @@
+Require Import Coqlib Maps Errors Integers Floats Lattice Kildall.
+Require Import AST Linking.
+Require Import Memory Registers Op RTL Maps.
+
+(* Static analysis *)
+
+Inductive sym_val : Type :=
+| SMove (src : reg)
+| SOp (op : operation) (args : list reg)
+| SLoad (chunk : memory_chunk) (addr : addressing) (args : list reg).
+
+Definition eq_args (x y : list reg) : { x = y } + { x <> y } :=
+ list_eq_dec peq x y.
+
+Definition eq_sym_val : forall x y : sym_val,
+ {x = y} + { x <> y }.
+Proof.
+ generalize eq_operation.
+ generalize eq_args.
+ generalize peq.
+ generalize eq_addressing.
+ generalize chunk_eq.
+ decide equality.
+Defined.
+
+Module RELATION.
+
+Definition t := (PTree.t sym_val).
+Definition eq (r1 r2 : t) :=
+ forall x, (PTree.get x r1) = (PTree.get x r2).
+
+Definition top : t := PTree.empty sym_val.
+
+Lemma eq_refl: forall x, eq x x.
+Proof.
+ unfold eq.
+ intros; reflexivity.
+Qed.
+
+Lemma eq_sym: forall x y, eq x y -> eq y x.
+Proof.
+ unfold eq.
+ intros; eauto.
+Qed.
+
+Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
+Proof.
+ unfold eq.
+ intros; congruence.
+Qed.
+
+Definition sym_val_beq (x y : sym_val) :=
+ if eq_sym_val x y then true else false.
+
+Definition beq (r1 r2 : t) := PTree.beq sym_val_beq r1 r2.
+
+Lemma beq_correct: forall r1 r2, beq r1 r2 = true -> eq r1 r2.
+Proof.
+ unfold beq, eq. intros r1 r2 EQ x.
+ pose proof (PTree.beq_correct sym_val_beq r1 r2) as CORRECT.
+ destruct CORRECT as [CORRECTF CORRECTB].
+ pose proof (CORRECTF EQ x) as EQx.
+ clear CORRECTF CORRECTB EQ.
+ unfold sym_val_beq in *.
+ destruct (r1 ! x) as [R1x | ] in *;
+ destruct (r2 ! x) as [R2x | ] in *;
+ trivial; try contradiction.
+ destruct (eq_sym_val R1x R2x) in *; congruence.
+Qed.
+
+Definition ge (r1 r2 : t) :=
+ forall x,
+ match PTree.get x r1 with
+ | None => True
+ | Some v => (PTree.get x r2) = Some v
+ end.
+
+Lemma ge_refl: forall r1 r2, eq r1 r2 -> ge r1 r2.
+Proof.
+ unfold eq, ge.
+ intros r1 r2 EQ x.
+ pose proof (EQ x) as EQx.
+ clear EQ.
+ destruct (r1 ! x).
+ - congruence.
+ - trivial.
+Qed.
+
+Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
+Proof.
+ unfold ge.
+ intros r1 r2 r3 GE12 GE23 x.
+ pose proof (GE12 x) as GE12x; clear GE12.
+ pose proof (GE23 x) as GE23x; clear GE23.
+ destruct (r1 ! x); trivial.
+ destruct (r2 ! x); congruence.
+Qed.
+
+Definition lub (r1 r2 : t) :=
+ PTree.combine
+ (fun ov1 ov2 =>
+ match ov1, ov2 with
+ | (Some v1), (Some v2) =>
+ if eq_sym_val v1 v2
+ then ov1
+ else None
+ | None, _
+ | _, None => None
+ end)
+ r1 r2.
+
+Lemma ge_lub_left: forall x y, ge (lub x y) x.
+Proof.
+ unfold ge, lub.
+ intros r1 r2 x.
+ rewrite PTree.gcombine by reflexivity.
+ destruct (_ ! _); trivial.
+ destruct (_ ! _); trivial.
+ destruct (eq_sym_val _ _); trivial.
+Qed.
+
+Lemma ge_lub_right: forall x y, ge (lub x y) y.
+Proof.
+ unfold ge, lub.
+ intros r1 r2 x.
+ rewrite PTree.gcombine by reflexivity.
+ destruct (_ ! _); trivial.
+ destruct (_ ! _); trivial.
+ destruct (eq_sym_val _ _); trivial.
+ congruence.
+Qed.
+
+End RELATION.
+
+Module Type SEMILATTICE_WITHOUT_BOTTOM.
+
+ Parameter t: Type.
+ Parameter eq: t -> t -> Prop.
+ Axiom eq_refl: forall x, eq x x.
+ Axiom eq_sym: forall x y, eq x y -> eq y x.
+ Axiom eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
+ Parameter beq: t -> t -> bool.
+ Axiom beq_correct: forall x y, beq x y = true -> eq x y.
+ Parameter ge: t -> t -> Prop.
+ Axiom ge_refl: forall x y, eq x y -> ge x y.
+ Axiom ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
+ Parameter lub: t -> t -> t.
+ Axiom ge_lub_left: forall x y, ge (lub x y) x.
+ Axiom ge_lub_right: forall x y, ge (lub x y) y.
+
+End SEMILATTICE_WITHOUT_BOTTOM.
+
+Module ADD_BOTTOM(L : SEMILATTICE_WITHOUT_BOTTOM).
+ Definition t := option L.t.
+ Definition eq (a b : t) :=
+ match a, b with
+ | None, None => True
+ | Some x, Some y => L.eq x y
+ | Some _, None | None, Some _ => False
+ end.
+
+ Lemma eq_refl: forall x, eq x x.
+ Proof.
+ unfold eq; destruct x; trivial.
+ apply L.eq_refl.
+ Qed.
+
+ Lemma eq_sym: forall x y, eq x y -> eq y x.
+ Proof.
+ unfold eq; destruct x; destruct y; trivial.
+ apply L.eq_sym.
+ Qed.
+
+ Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
+ Proof.
+ unfold eq; destruct x; destruct y; destruct z; trivial.
+ - apply L.eq_trans.
+ - contradiction.
+ Qed.
+
+ Definition beq (x y : t) :=
+ match x, y with
+ | None, None => true
+ | Some x, Some y => L.beq x y
+ | Some _, None | None, Some _ => false
+ end.
+
+ Lemma beq_correct: forall x y, beq x y = true -> eq x y.
+ Proof.
+ unfold beq, eq.
+ destruct x; destruct y; trivial; try congruence.
+ apply L.beq_correct.
+ Qed.
+
+ Definition ge (x y : t) :=
+ match x, y with
+ | None, Some _ => False
+ | _, None => True
+ | Some a, Some b => L.ge a b
+ end.
+
+ Lemma ge_refl: forall x y, eq x y -> ge x y.
+ Proof.
+ unfold eq, ge.
+ destruct x; destruct y; trivial.
+ apply L.ge_refl.
+ Qed.
+
+ Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
+ Proof.
+ unfold ge.
+ destruct x; destruct y; destruct z; trivial; try contradiction.
+ apply L.ge_trans.
+ Qed.
+
+ Definition bot: t := None.
+ Lemma ge_bot: forall x, ge x bot.
+ Proof.
+ unfold ge, bot.
+ destruct x; trivial.
+ Qed.
+
+ Definition lub (a b : t) :=
+ match a, b with
+ | None, _ => b
+ | _, None => a
+ | (Some x), (Some y) => Some (L.lub x y)
+ end.
+
+ Lemma ge_lub_left: forall x y, ge (lub x y) x.
+ Proof.
+ unfold ge, lub.
+ destruct x; destruct y; trivial.
+ - apply L.ge_lub_left.
+ - apply L.ge_refl.
+ apply L.eq_refl.
+ Qed.
+
+ Lemma ge_lub_right: forall x y, ge (lub x y) y.
+ Proof.
+ unfold ge, lub.
+ destruct x; destruct y; trivial.
+ - apply L.ge_lub_right.
+ - apply L.ge_refl.
+ apply L.eq_refl.
+ Qed.
+End ADD_BOTTOM.
+
+Module RB := ADD_BOTTOM(RELATION).
+Module DS := Dataflow_Solver(RB)(NodeSetForward).
+
+Definition kill_sym_val (dst : reg) (sv : sym_val) :=
+ match sv with
+ | SMove src => if peq dst src then true else false
+ | SOp op args => List.existsb (peq dst) args
+ | SLoad chunk addr args => List.existsb (peq dst) args
+ end.
+
+Definition kill_reg (dst : reg) (rel : RELATION.t) :=
+ PTree.filter1 (fun x => negb (kill_sym_val dst x))
+ (PTree.remove dst rel).
+
+Definition kill_sym_val_mem (sv: sym_val) :=
+ match sv with
+ | SMove _ => false
+ | SOp op _ => op_depends_on_memory op
+ | SLoad _ _ _ => true
+ end.
+
+Definition kill_mem (rel : RELATION.t) :=
+ PTree.filter1 (fun x => negb (kill_sym_val_mem x)) rel.
+
+
+Definition forward_move (rel : RELATION.t) (x : reg) : reg :=
+ match rel ! x with
+ | Some (SMove org) => org
+ | _ => x
+ end.
+
+Definition move (src dst : reg) (rel : RELATION.t) :=
+ PTree.set dst (SMove (forward_move rel src)) (kill_reg dst rel).
+
+Definition find_op_fold op args (already : option reg) x sv :=
+ match already with
+ | Some found => already
+ | None =>
+ match sv with
+ | (SOp op' args') =>
+ if (eq_operation op op') && (eq_args args args')
+ then Some x
+ else None
+ | _ => None
+ end
+ end.
+
+Definition find_op (rel : RELATION.t) (op : operation) (args : list reg) :=
+ PTree.fold (find_op_fold op args) rel None.
+
+Definition find_load_fold chunk addr args (already : option reg) x sv :=
+ match already with
+ | Some found => already
+ | None =>
+ match sv with
+ | (SLoad chunk' addr' args') =>
+ if (chunk_eq chunk chunk') &&
+ (eq_addressing addr addr') &&
+ (eq_args args args')
+ then Some x
+ else None
+ | _ => None
+ end
+ end.
+
+Definition find_load (rel : RELATION.t) (chunk : memory_chunk) (addr : addressing) (args : list reg) :=
+ PTree.fold (find_load_fold chunk addr args) rel None.
+
+Definition oper2 (op: operation) (dst : reg) (args : list reg)
+ (rel : RELATION.t) :=
+ let rel' := kill_reg dst rel in
+ PTree.set dst (SOp op (List.map (forward_move rel') args)) rel'.
+
+Definition oper1 (op: operation) (dst : reg) (args : list reg)
+ (rel : RELATION.t) :=
+ if List.in_dec peq dst args
+ then kill_reg dst rel
+ else oper2 op dst args rel.
+
+Definition oper (op: operation) (dst : reg) (args : list reg)
+ (rel : RELATION.t) :=
+ match find_op rel op (List.map (forward_move rel) args) with
+ | Some r => move r dst rel
+ | None => oper1 op dst args rel
+ end.
+
+Definition gen_oper (op: operation) (dst : reg) (args : list reg)
+ (rel : RELATION.t) :=
+ match op, args with
+ | Omove, src::nil => move src dst rel
+ | _, _ => oper op dst args rel
+ end.
+
+Definition load2 (chunk: memory_chunk) (addr : addressing)
+ (dst : reg) (args : list reg) (rel : RELATION.t) :=
+ let rel' := kill_reg dst rel in
+ PTree.set dst (SLoad chunk addr (List.map (forward_move rel') args)) rel'.
+
+Definition load1 (chunk: memory_chunk) (addr : addressing)
+ (dst : reg) (args : list reg) (rel : RELATION.t) :=
+ if List.in_dec peq dst args
+ then kill_reg dst rel
+ else load2 chunk addr dst args rel.
+
+Definition load (chunk: memory_chunk) (addr : addressing)
+ (dst : reg) (args : list reg) (rel : RELATION.t) :=
+ match find_load rel chunk addr (List.map (forward_move rel) args) with
+ | Some r => move r dst rel
+ | None => load1 chunk addr dst args rel
+ end.
+
+(* NO LONGER NEEDED
+Fixpoint list_represents { X : Type } (l : list (positive*X)) (tr : PTree.t X) : Prop :=
+ match l with
+ | nil => True
+ | (r,sv)::tail => (tr ! r) = Some sv /\ list_represents tail tr
+ end.
+
+Lemma elements_represent :
+ forall { X : Type },
+ forall tr : (PTree.t X),
+ (list_represents (PTree.elements tr) tr).
+Proof.
+ intros.
+ generalize (PTree.elements_complete tr).
+ generalize (PTree.elements tr).
+ induction l; simpl; trivial.
+ intro COMPLETE.
+ destruct a as [ r sv ].
+ split.
+ {
+ apply COMPLETE.
+ left; reflexivity.
+ }
+ apply IHl; auto.
+Qed.
+*)
+
+Definition apply_instr instr (rel : RELATION.t) : RB.t :=
+ match instr with
+ | Inop _
+ | Icond _ _ _ _
+ | Ijumptable _ _ => Some rel
+ | Istore _ _ _ _ _ => Some (kill_mem rel)
+ | Iop op args dst _ => Some (gen_oper op dst args rel)
+ | Iload TRAP chunk addr args dst _ => Some (load chunk addr dst args rel)
+ | Iload NOTRAP chunk addr args dst _ => Some (kill_reg dst rel)
+ | Icall _ _ _ dst _ => Some (kill_reg dst (kill_mem rel))
+ | Ibuiltin _ _ res _ => Some (RELATION.top) (* TODO (kill_builtin_res res x) *)
+ | Itailcall _ _ _ | Ireturn _ => RB.bot
+ end.
+
+Definition apply_instr' code (pc : node) (ro : RB.t) : RB.t :=
+ match ro with
+ | None => None
+ | Some x =>
+ match code ! pc with
+ | None => RB.bot
+ | Some instr => apply_instr instr x
+ end
+ end.
+
+Definition forward_map (f : RTL.function) := DS.fixpoint
+ (RTL.fn_code f) RTL.successors_instr
+ (apply_instr' (RTL.fn_code f)) (RTL.fn_entrypoint f) (Some RELATION.top).
+
+Definition forward_move_b (rb : RB.t) (x : reg) :=
+ match rb with
+ | None => x
+ | Some rel => forward_move rel x
+ end.
+
+Definition subst_arg (fmap : option (PMap.t RB.t)) (pc : node) (x : reg) : reg :=
+ match fmap with
+ | None => x
+ | Some inv => forward_move_b (PMap.get pc inv) x
+ end.
+
+Definition subst_args fmap pc := List.map (subst_arg fmap pc).
+
+(* Transform *)
+Definition find_op_in_fmap fmap pc op args :=
+ match fmap with
+ | None => None
+ | Some map =>
+ match PMap.get pc map with
+ | Some rel => find_op rel op args
+ | None => None
+ end
+ end.
+
+Definition find_load_in_fmap fmap pc chunk addr args :=
+ match fmap with
+ | None => None
+ | Some map =>
+ match PMap.get pc map with
+ | Some rel => find_load rel chunk addr args
+ | None => None
+ end
+ end.
+
+Definition transf_instr (fmap : option (PMap.t RB.t))
+ (pc: node) (instr: instruction) :=
+ match instr with
+ | Iop op args dst s =>
+ let args' := subst_args fmap pc args in
+ match find_op_in_fmap fmap pc op args' with
+ | None => Iop op args' dst s
+ | Some src => Iop Omove (src::nil) dst s
+ end
+ | Iload TRAP chunk addr args dst s =>
+ let args' := subst_args fmap pc args in
+ match find_load_in_fmap fmap pc chunk addr args' with
+ | None => Iload TRAP chunk addr args' dst s
+ | Some src => Iop Omove (src::nil) dst s
+ end
+ | Iload NOTRAP chunk addr args dst s =>
+ Iload NOTRAP chunk addr (subst_args fmap pc args) dst s
+ | Istore chunk addr args src s =>
+ Istore chunk addr (subst_args fmap pc args) src s
+ | Icall sig ros args dst s =>
+ Icall sig ros (subst_args fmap pc args) dst s
+ | Itailcall sig ros args =>
+ Itailcall sig ros (subst_args fmap pc args)
+ | Icond cond args s1 s2 =>
+ Icond cond (subst_args fmap pc args) s1 s2
+ | Ijumptable arg tbl =>
+ Ijumptable (subst_arg fmap pc arg) tbl
+ | Ireturn (Some arg) =>
+ Ireturn (Some (subst_arg fmap pc arg))
+ | _ => instr
+ end.
+
+Definition transf_function (f: function) : function :=
+ {| fn_sig := f.(fn_sig);
+ fn_params := f.(fn_params);
+ fn_stacksize := f.(fn_stacksize);
+ fn_code := PTree.map (transf_instr (forward_map f)) f.(fn_code);
+ fn_entrypoint := f.(fn_entrypoint) |}.
+
+
+Definition transf_fundef (fd: fundef) : fundef :=
+ AST.transf_fundef transf_function fd.
+
+Definition transf_program (p: program) : program :=
+ transform_program transf_fundef p.
+
+Definition match_prog (p tp: RTL.program) :=
+ match_program (fun ctx f tf => tf = transf_fundef f) eq p tp.
+
+Lemma transf_program_match:
+ forall p, match_prog p (transf_program p).
+Proof.
+ intros. eapply match_transform_program; eauto.
+Qed.