aboutsummaryrefslogtreecommitdiffstats
path: root/backend/Constpropproof.v
diff options
context:
space:
mode:
authorXavier Leroy <xavier.leroy@inria.fr>2016-03-06 10:31:26 +0100
committerXavier Leroy <xavier.leroy@inria.fr>2016-03-06 10:31:26 +0100
commite4723d142aa7b1229cdf5989340342d7c5ce870c (patch)
tree988bdd3027231544239cdac13313c587e9ec83b9 /backend/Constpropproof.v
parenta803f6926dc6d817447b3926cc409913e5d86cc0 (diff)
downloadcompcert-kvx-e4723d142aa7b1229cdf5989340342d7c5ce870c.tar.gz
compcert-kvx-e4723d142aa7b1229cdf5989340342d7c5ce870c.zip
Update the back-end proofs to the new linking framework.
Diffstat (limited to 'backend/Constpropproof.v')
-rw-r--r--backend/Constpropproof.v264
1 files changed, 123 insertions, 141 deletions
diff --git a/backend/Constpropproof.v b/backend/Constpropproof.v
index ad9068ab..4e76c641 100644
--- a/backend/Constpropproof.v
+++ b/backend/Constpropproof.v
@@ -12,35 +12,30 @@
(** Correctness proof for constant propagation. *)
-Require Import Coqlib.
-Require Import Maps.
-Require Compopts.
-Require Import AST.
-Require Import Integers.
-Require Import Values.
-Require Import Events.
-Require Import Memory.
-Require Import Globalenvs.
-Require Import Smallstep.
-Require Import Op.
-Require Import Registers.
-Require Import RTL.
-Require Import Lattice.
-Require Import Kildall.
-Require Import ValueDomain.
-Require Import ValueAOp.
-Require Import ValueAnalysis.
-Require Import ConstpropOp.
-Require Import Constprop.
-Require Import ConstpropOpproof.
+Require Import Coqlib Maps Integers Floats Lattice Kildall.
+Require Import AST Linking.
+Require Import Values Events Memory Globalenvs Smallstep.
+Require Compopts Machregs.
+Require Import Op Registers RTL.
+Require Import Liveness ValueDomain ValueAOp ValueAnalysis.
+Require Import ConstpropOp ConstpropOpproof Constprop.
+
+Definition match_prog (prog tprog: program) :=
+ match_program (fun cu f tf => tf = transf_fundef (romem_for cu) f) eq prog tprog.
+
+Lemma transf_program_match:
+ forall prog, match_prog prog (transf_program prog).
+Proof.
+ intros. eapply match_transform_program_contextual. auto.
+Qed.
Section PRESERVATION.
Variable prog: program.
-Let tprog := transf_program prog.
+Variable tprog: program.
+Hypothesis TRANSL: match_prog prog tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
-Let rm := romem_for_program prog.
(** * Correctness of the code transformation *)
@@ -49,45 +44,32 @@ Let rm := romem_for_program prog.
Lemma symbols_preserved:
forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
-Proof.
- intros; unfold ge, tge, tprog, transf_program.
- apply Genv.find_symbol_transf.
-Qed.
-
-Lemma public_preserved:
- forall (s: ident), Genv.public_symbol tge s = Genv.public_symbol ge s.
-Proof.
- intros; unfold ge, tge, tprog, transf_program.
- apply Genv.public_symbol_transf.
-Qed.
+Proof (Genv.find_symbol_match TRANSL).
-Lemma varinfo_preserved:
- forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
-Proof.
- intros; unfold ge, tge, tprog, transf_program.
- apply Genv.find_var_info_transf.
-Qed.
+Lemma senv_preserved:
+ Senv.equiv ge tge.
+Proof (Genv.senv_match TRANSL).
Lemma functions_translated:
forall (v: val) (f: fundef),
Genv.find_funct ge v = Some f ->
- Genv.find_funct tge v = Some (transf_fundef rm f).
+ exists cunit, Genv.find_funct tge v = Some (transf_fundef (romem_for cunit) f) /\ linkorder cunit prog.
Proof.
- intros.
- exact (Genv.find_funct_transf (transf_fundef rm) _ _ H).
+ intros. exploit (Genv.find_funct_match TRANSL); eauto.
+ intros (cu & tf & A & B & C). subst tf. exists cu; auto.
Qed.
Lemma function_ptr_translated:
forall (b: block) (f: fundef),
Genv.find_funct_ptr ge b = Some f ->
- Genv.find_funct_ptr tge b = Some (transf_fundef rm f).
+ exists cunit, Genv.find_funct_ptr tge b = Some (transf_fundef (romem_for cunit) f) /\ linkorder cunit prog.
Proof.
- intros.
- exact (Genv.find_funct_ptr_transf (transf_fundef rm) _ _ H).
+ intros. exploit (Genv.find_funct_ptr_match TRANSL); eauto.
+ intros (cu & tf & A & B & C). subst tf. exists cu; auto.
Qed.
Lemma sig_function_translated:
- forall f,
+ forall rm f,
funsig (transf_fundef rm f) = funsig f.
Proof.
intros. destruct f; reflexivity.
@@ -110,12 +92,17 @@ Lemma transf_ros_correct:
ematch bc rs ae ->
find_function ge ros rs = Some f ->
regs_lessdef rs rs' ->
- find_function tge (transf_ros ae ros) rs' = Some (transf_fundef rm f).
+ exists cunit,
+ find_function tge (transf_ros ae ros) rs' = Some (transf_fundef (romem_for cunit) f)
+ /\ linkorder cunit prog.
Proof.
intros until rs'; intros GE EM FF RLD. destruct ros; simpl in *.
- (* function pointer *)
generalize (EM r); fold (areg ae r); intro VM. generalize (RLD r); intro LD.
- assert (DEFAULT: find_function tge (inl _ r) rs' = Some (transf_fundef rm f)).
+ assert (DEFAULT:
+ exists cunit,
+ find_function tge (inl _ r) rs' = Some (transf_fundef (romem_for cunit) f)
+ /\ linkorder cunit prog).
{
simpl. inv LD. apply functions_translated; auto. rewrite <- H0 in FF; discriminate.
}
@@ -162,35 +149,45 @@ Proof.
eapply vmatch_ptr_stk; eauto.
Qed.
-Inductive match_pc (f: function) (ae: AE.t): nat -> node -> node -> Prop :=
+Inductive match_pc (f: function) (rs: regset) (m: mem): nat -> node -> node -> Prop :=
| match_pc_base: forall n pc,
- match_pc f ae n pc pc
+ match_pc f rs m n pc pc
| match_pc_nop: forall n pc s pcx,
f.(fn_code)!pc = Some (Inop s) ->
- match_pc f ae n s pcx ->
- match_pc f ae (S n) pc pcx
- | match_pc_cond: forall n pc cond args s1 s2 b pcx,
+ match_pc f rs m n s pcx ->
+ match_pc f rs m (S n) pc pcx
+ | match_pc_cond: forall n pc cond args s1 s2 pcx,
f.(fn_code)!pc = Some (Icond cond args s1 s2) ->
- resolve_branch (eval_static_condition cond (aregs ae args)) = Some b ->
- match_pc f ae n (if b then s1 else s2) pcx ->
- match_pc f ae (S n) pc pcx.
+ (forall b,
+ eval_condition cond rs##args m = Some b ->
+ match_pc f rs m n (if b then s1 else s2) pcx) ->
+ match_pc f rs m (S n) pc pcx.
Lemma match_successor_rec:
- forall f ae n pc, match_pc f ae n pc (successor_rec n f ae pc).
+ forall f rs m bc ae,
+ ematch bc rs ae ->
+ forall n pc,
+ match_pc f rs m n pc (successor_rec n f ae pc).
Proof.
induction n; simpl; intros.
- apply match_pc_base.
- destruct (fn_code f)!pc as [[]|] eqn:INSTR; try apply match_pc_base.
- eapply match_pc_nop; eauto.
- destruct (resolve_branch (eval_static_condition c (aregs ae l))) as [b|] eqn:COND.
- eapply match_pc_cond; eauto.
- apply match_pc_base.
++ eapply match_pc_nop; eauto.
++ destruct (resolve_branch (eval_static_condition c (aregs ae l))) as [b|] eqn:STATIC;
+ try apply match_pc_base.
+ eapply match_pc_cond; eauto. intros b' DYNAMIC.
+ assert (b = b').
+ { eapply resolve_branch_sound; eauto.
+ rewrite <- DYNAMIC. apply eval_static_condition_sound with bc.
+ apply aregs_sound; auto. }
+ subst b'. apply IHn.
Qed.
Lemma match_successor:
- forall f ae pc, match_pc f ae num_iter pc (successor f ae pc).
+ forall f rs m bc ae pc,
+ ematch bc rs ae -> match_pc f rs m num_iter pc (successor f ae pc).
Proof.
- unfold successor; intros. apply match_successor_rec.
+ intros. eapply match_successor_rec; eauto.
Qed.
Lemma builtin_arg_reduction_correct:
@@ -300,29 +297,31 @@ Qed.
Inductive match_stackframes: stackframe -> stackframe -> Prop :=
match_stackframe_intro:
- forall res sp pc rs f rs',
+ forall res sp pc rs f rs' cu,
+ linkorder cu prog ->
regs_lessdef rs rs' ->
match_stackframes
(Stackframe res f sp pc rs)
- (Stackframe res (transf_function rm f) sp pc rs').
+ (Stackframe res (transf_function (romem_for cu) f) sp pc rs').
Inductive match_states: nat -> state -> state -> Prop :=
| match_states_intro:
- forall s sp pc rs m f s' pc' rs' m' bc ae n
- (MATCH: ematch bc rs ae)
+ forall s sp pc rs m f s' pc' rs' m' cu n
+ (LINK: linkorder cu prog)
(STACKS: list_forall2 match_stackframes s s')
- (PC: match_pc f ae n pc pc')
+ (PC: match_pc f rs m n pc pc')
(REGS: regs_lessdef rs rs')
(MEM: Mem.extends m m'),
match_states n (State s f sp pc rs m)
- (State s' (transf_function rm f) sp pc' rs' m')
+ (State s' (transf_function (romem_for cu) f) sp pc' rs' m')
| match_states_call:
- forall s f args m s' args' m'
+ forall s f args m s' args' m' cu
+ (LINK: linkorder cu prog)
(STACKS: list_forall2 match_stackframes s s')
(ARGS: Val.lessdef_list args args')
(MEM: Mem.extends m m'),
match_states O (Callstate s f args m)
- (Callstate s' (transf_fundef rm f) args' m')
+ (Callstate s' (transf_fundef (romem_for cu) f) args' m')
| match_states_return:
forall s v m s' v' m'
(STACKS: list_forall2 match_stackframes s s')
@@ -333,21 +332,19 @@ Inductive match_states: nat -> state -> state -> Prop :=
(Returnstate s' v' m').
Lemma match_states_succ:
- forall s f sp pc rs m s' rs' m',
- sound_state prog (State s f sp pc rs m) ->
+ forall s f sp pc rs m s' rs' m' cu,
+ linkorder cu prog ->
list_forall2 match_stackframes s s' ->
regs_lessdef rs rs' ->
Mem.extends m m' ->
match_states O (State s f sp pc rs m)
- (State s' (transf_function rm f) sp pc rs' m').
+ (State s' (transf_function (romem_for cu) f) sp pc rs' m').
Proof.
- intros. inv H.
- apply match_states_intro with (bc := bc) (ae := ae); auto.
- constructor.
+ intros. apply match_states_intro; auto. constructor.
Qed.
Lemma transf_instr_at:
- forall f pc i,
+ forall rm f pc i,
f.(fn_code)!pc = Some i ->
(transf_function rm f).(fn_code)!pc = Some(transf_instr f (analyze rm f) rm pc i).
Proof.
@@ -357,8 +354,8 @@ Qed.
Ltac TransfInstr :=
match goal with
| H1: (PTree.get ?pc (fn_code ?f) = Some ?instr),
- H2: (analyze (romem_for_program prog) ?f)#?pc = VA.State ?ae ?am |- _ =>
- fold rm in H2; generalize (transf_instr_at _ _ _ H1); unfold transf_instr; rewrite H2
+ H2: (analyze ?rm ?f)#?pc = VA.State ?ae ?am |- _ =>
+ generalize (transf_instr_at rm _ _ _ H1); unfold transf_instr; rewrite H2
end.
(** The proof of simulation proceeds by case analysis on the transition
@@ -367,38 +364,38 @@ Ltac TransfInstr :=
Lemma transf_step_correct:
forall s1 t s2,
step ge s1 t s2 ->
- forall n1 s1' (SS1: sound_state prog s1) (SS2: sound_state prog s2) (MS: match_states n1 s1 s1'),
+ forall n1 s1' (SS: sound_state prog s1) (MS: match_states n1 s1 s1'),
(exists n2, exists s2', step tge s1' t s2' /\ match_states n2 s2 s2')
\/ (exists n2, n2 < n1 /\ t = E0 /\ match_states n2 s2 s1')%nat.
Proof.
- induction 1; intros; inv SS1; inv MS; try (inv PC; try congruence).
+ induction 1; intros; inv MS; try InvSoundState; try (inv PC; try congruence).
- (* Inop, preserved *)
+- (* Inop, preserved *)
rename pc'0 into pc. TransfInstr; intros.
left; econstructor; econstructor; split.
eapply exec_Inop; eauto.
eapply match_states_succ; eauto.
- (* Inop, skipped over *)
+- (* Inop, skipped over *)
assert (s0 = pc') by congruence. subst s0.
right; exists n; split. omega. split. auto.
- apply match_states_intro with bc0 ae0; auto.
+ apply match_states_intro; auto.
- (* Iop *)
+- (* Iop *)
rename pc'0 into pc. TransfInstr.
set (a := eval_static_operation op (aregs ae args)).
set (ae' := AE.set res a ae).
assert (VMATCH: vmatch bc v a) by (eapply eval_static_operation_sound; eauto with va).
assert (MATCH': ematch bc (rs#res <- v) ae') by (eapply ematch_update; eauto).
destruct (const_for_result a) as [cop|] eqn:?; intros.
- (* constant is propagated *)
++ (* constant is propagated *)
exploit const_for_result_correct; eauto. intros (v' & A & B).
left; econstructor; econstructor; split.
eapply exec_Iop; eauto.
- apply match_states_intro with bc ae'; auto.
- apply match_successor.
+ apply match_states_intro; auto.
+ eapply match_successor; eauto.
apply set_reg_lessdef; auto.
- (* operator is strength-reduced *)
++ (* operator is strength-reduced *)
assert(OP:
let (op', args') := op_strength_reduction op args (aregs ae args) in
exists v',
@@ -413,24 +410,24 @@ Proof.
left; econstructor; econstructor; split.
eapply exec_Iop; eauto.
erewrite eval_operation_preserved. eexact EV''. exact symbols_preserved.
- apply match_states_intro with bc ae'; auto.
- apply match_successor.
+ apply match_states_intro; auto.
+ eapply match_successor; eauto.
apply set_reg_lessdef; auto. eapply Val.lessdef_trans; eauto.
- (* Iload *)
+- (* Iload *)
rename pc'0 into pc. TransfInstr.
set (aa := eval_static_addressing addr (aregs ae args)).
assert (VM1: vmatch bc a aa) by (eapply eval_static_addressing_sound; eauto with va).
- set (av := loadv chunk rm am aa).
+ set (av := loadv chunk (romem_for cu) am aa).
assert (VM2: vmatch bc v av) by (eapply loadv_sound; eauto).
destruct (const_for_result av) as [cop|] eqn:?; intros.
- (* constant-propagated *)
++ (* constant-propagated *)
exploit const_for_result_correct; eauto. intros (v' & A & B).
left; econstructor; econstructor; split.
eapply exec_Iop; eauto.
eapply match_states_succ; eauto.
apply set_reg_lessdef; auto.
- (* strength-reduced *)
++ (* strength-reduced *)
assert (ADDR:
let (addr', args') := addr_strength_reduction addr args (aregs ae args) in
exists a',
@@ -449,7 +446,7 @@ Proof.
eapply exec_Iload; eauto.
eapply match_states_succ; eauto. apply set_reg_lessdef; auto.
- (* Istore *)
+- (* Istore *)
rename pc'0 into pc. TransfInstr.
assert (ADDR:
let (addr', args') := addr_strength_reduction addr args (aregs ae args) in
@@ -469,9 +466,9 @@ Proof.
eapply exec_Istore; eauto.
eapply match_states_succ; eauto.
- (* Icall *)
+- (* Icall *)
rename pc'0 into pc.
- exploit transf_ros_correct; eauto. intro FIND'.
+ exploit transf_ros_correct; eauto. intros (cu' & FIND & LINK').
TransfInstr; intro.
left; econstructor; econstructor; split.
eapply exec_Icall; eauto. apply sig_function_translated; auto.
@@ -479,17 +476,17 @@ Proof.
econstructor; eauto.
apply regs_lessdef_regs; auto.
- (* Itailcall *)
+- (* Itailcall *)
exploit Mem.free_parallel_extends; eauto. intros [m2' [A B]].
- exploit transf_ros_correct; eauto. intros FIND'.
+ exploit transf_ros_correct; eauto. intros (cu' & FIND & LINK').
TransfInstr; intro.
left; econstructor; econstructor; split.
eapply exec_Itailcall; eauto. apply sig_function_translated; auto.
constructor; auto.
apply regs_lessdef_regs; auto.
- (* Ibuiltin *)
- rename pc'0 into pc. clear MATCH. TransfInstr; intros.
+- (* Ibuiltin *)
+ rename pc'0 into pc. TransfInstr; intros.
Opaque builtin_strength_reduction.
exploit builtin_strength_reduction_correct; eauto. intros (vargs' & P & Q).
exploit (@eval_builtin_args_lessdef _ ge (fun r => rs#r) (fun r => rs'#r)).
@@ -500,13 +497,12 @@ Opaque builtin_strength_reduction.
left; econstructor; econstructor; split.
eapply exec_Ibuiltin; eauto.
eapply eval_builtin_args_preserved. eexact symbols_preserved. eauto.
- eapply external_call_symbols_preserved; eauto.
- exact symbols_preserved. exact public_preserved. exact varinfo_preserved.
+ eapply external_call_symbols_preserved; eauto. apply senv_preserved.
eapply match_states_succ; eauto.
apply set_res_lessdef; auto.
- (* Icond, preserved *)
- rename pc' into pc. TransfInstr.
+- (* Icond, preserved *)
+ rename pc'0 into pc. TransfInstr.
set (ac := eval_static_condition cond (aregs ae args)).
assert (C: cmatch (eval_condition cond rs ## args m) ac)
by (eapply eval_static_condition_sound; eauto with va).
@@ -514,7 +510,7 @@ Opaque builtin_strength_reduction.
generalize (cond_strength_reduction_correct bc ae rs m EM cond args (aregs ae args) (refl_equal _)).
destruct (cond_strength_reduction cond args (aregs ae args)) as [cond' args'].
intros EV1 TCODE.
- left; exists O; exists (State s' (transf_function rm f) (Vptr sp0 Int.zero) (if b then ifso else ifnot) rs' m'); split.
+ left; exists O; exists (State s' (transf_function (romem_for cu) f) (Vptr sp0 Int.zero) (if b then ifso else ifnot) rs' m'); split.
destruct (resolve_branch ac) eqn: RB.
assert (b0 = b) by (eapply resolve_branch_sound; eauto). subst b0.
destruct b; eapply exec_Inop; eauto.
@@ -522,20 +518,15 @@ Opaque builtin_strength_reduction.
eapply eval_condition_lessdef with (vl1 := rs##args'); eauto. eapply regs_lessdef_regs; eauto. congruence.
eapply match_states_succ; eauto.
- (* Icond, skipped over *)
+- (* Icond, skipped over *)
rewrite H1 in H; inv H.
- set (ac := eval_static_condition cond (aregs ae0 args)) in *.
- assert (C: cmatch (eval_condition cond rs ## args m) ac)
- by (eapply eval_static_condition_sound; eauto with va).
- rewrite H0 in C.
- assert (b0 = b) by (eapply resolve_branch_sound; eauto). subst b0.
- right; exists n; split. omega. split. auto.
+ right; exists n; split. omega. split. auto.
econstructor; eauto.
- (* Ijumptable *)
+- (* Ijumptable *)
rename pc'0 into pc.
- assert (A: (fn_code (transf_function rm f))!pc = Some(Ijumptable arg tbl)
- \/ (fn_code (transf_function rm f))!pc = Some(Inop pc')).
+ assert (A: (fn_code (transf_function (romem_for cu) f))!pc = Some(Ijumptable arg tbl)
+ \/ (fn_code (transf_function (romem_for cu) f))!pc = Some(Inop pc')).
{ TransfInstr.
destruct (areg ae arg) eqn:A; auto.
generalize (EM arg). fold (areg ae arg); rewrite A.
@@ -543,23 +534,20 @@ Opaque builtin_strength_reduction.
rewrite H1. auto. }
assert (rs'#arg = Vint n).
{ generalize (REGS arg). rewrite H0. intros LD; inv LD; auto. }
- left; exists O; exists (State s' (transf_function rm f) (Vptr sp0 Int.zero) pc' rs' m'); split.
+ left; exists O; exists (State s' (transf_function (romem_for cu) f) (Vptr sp0 Int.zero) pc' rs' m'); split.
destruct A. eapply exec_Ijumptable; eauto. eapply exec_Inop; eauto.
eapply match_states_succ; eauto.
- (* Ireturn *)
+- (* Ireturn *)
exploit Mem.free_parallel_extends; eauto. intros [m2' [A B]].
left; exists O; exists (Returnstate s' (regmap_optget or Vundef rs') m2'); split.
eapply exec_Ireturn; eauto. TransfInstr; auto.
constructor; auto.
destruct or; simpl; auto.
- (* internal function *)
+- (* internal function *)
exploit Mem.alloc_extends. eauto. eauto. apply Zle_refl. apply Zle_refl.
intros [m2' [A B]].
- assert (X: exists bc ae, ematch bc (init_regs args (fn_params f)) ae).
- { inv SS2. exists bc0; exists ae; auto. }
- destruct X as (bc1 & ae1 & MATCH).
simpl. unfold transf_function.
left; exists O; econstructor; split.
eapply exec_function_internal; simpl; eauto.
@@ -567,19 +555,15 @@ Opaque builtin_strength_reduction.
constructor.
apply init_regs_lessdef; auto.
- (* external function *)
+- (* external function *)
exploit external_call_mem_extends; eauto.
intros [v' [m2' [A [B [C D]]]]].
simpl. left; econstructor; econstructor; split.
eapply exec_function_external; eauto.
- eapply external_call_symbols_preserved; eauto.
- exact symbols_preserved. exact public_preserved. exact varinfo_preserved.
+ eapply external_call_symbols_preserved; eauto. apply senv_preserved.
constructor; auto.
- (* return *)
- assert (X: exists bc ae, ematch bc (rs#res <- vres) ae).
- { inv SS2. exists bc0; exists ae; auto. }
- destruct X as (bc1 & ae1 & MATCH).
+- (* return *)
inv H4. inv H1.
left; exists O; econstructor; split.
eapply exec_return; eauto.
@@ -591,15 +575,15 @@ Lemma transf_initial_states:
exists n, exists st2, initial_state tprog st2 /\ match_states n st1 st2.
Proof.
intros. inversion H.
- exploit function_ptr_translated; eauto. intro FIND.
- exists O; exists (Callstate nil (transf_fundef rm f) nil m0); split.
+ exploit function_ptr_translated; eauto. intros (cu & FIND & LINK).
+ exists O; exists (Callstate nil (transf_fundef (romem_for cu) f) nil m0); split.
econstructor; eauto.
- apply Genv.init_mem_transf; auto.
+ apply (Genv.init_mem_match TRANSL); auto.
replace (prog_main tprog) with (prog_main prog).
rewrite symbols_preserved. eauto.
- reflexivity.
+ symmetry; eapply match_program_main; eauto.
rewrite <- H3. apply sig_function_translated.
- constructor. constructor. constructor. apply Mem.extends_refl.
+ constructor. auto. constructor. constructor. apply Mem.extends_refl.
Qed.
Lemma transf_final_states:
@@ -615,9 +599,7 @@ Qed.
Theorem transf_program_correct:
forward_simulation (RTL.semantics prog) (RTL.semantics tprog).
Proof.
- apply Forward_simulation with
- (fsim_order := lt)
- (fsim_match_states := fun n s1 s2 => sound_state prog s1 /\ match_states n s1 s2).
+ apply Forward_simulation with lt (fun n s1 s2 => sound_state prog s1 /\ match_states n s1 s2); constructor.
- apply lt_wf.
- simpl; intros. exploit transf_initial_states; eauto. intros (n & st2 & A & B).
exists n, st2; intuition. eapply sound_initial; eauto.
@@ -629,7 +611,7 @@ Proof.
intros [ [n2 [s2' [A B]]] | [n2 [A [B C]]]].
exists n2; exists s2'; split; auto. left; apply plus_one; auto.
exists n2; exists s2; split; auto. right; split; auto. subst t; apply star_refl.
-- eexact public_preserved.
+- apply senv_preserved.
Qed.
End PRESERVATION.