aboutsummaryrefslogtreecommitdiffstats
path: root/cfrontend/Clight.v
diff options
context:
space:
mode:
authorxleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2012-10-14 14:01:15 +0000
committerxleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2012-10-14 14:01:15 +0000
commitfccd14d21ad7d4848fad1e11ec56ee28486b08af (patch)
tree1ab0dae7cc50e181453f349918785c459945e748 /cfrontend/Clight.v
parentb7ece9390230882513633413f13f5cf7a34040db (diff)
downloadcompcert-kvx-fccd14d21ad7d4848fad1e11ec56ee28486b08af.tar.gz
compcert-kvx-fccd14d21ad7d4848fad1e11ec56ee28486b08af.zip
Clight: split off the big step semantics in ClightBigstep.
Cstrategy: updated the big-step semantics with Eseqand and Eseqor. git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2062 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'cfrontend/Clight.v')
-rw-r--r--cfrontend/Clight.v554
1 files changed, 0 insertions, 554 deletions
diff --git a/cfrontend/Clight.v b/cfrontend/Clight.v
index f95cbe6e..d1ab673a 100644
--- a/cfrontend/Clight.v
+++ b/cfrontend/Clight.v
@@ -673,557 +673,3 @@ Proof.
eapply external_call_trace_length; eauto.
Qed.
-(** * Alternate big-step semantics *)
-
-Section BIGSTEP.
-
-Variable ge: genv.
-
-(** ** Big-step semantics for terminating statements and functions *)
-
-(** The execution of a statement produces an ``outcome'', indicating
- how the execution terminated: either normally or prematurely
- through the execution of a [break], [continue] or [return] statement. *)
-
-Inductive outcome: Type :=
- | Out_break: outcome (**r terminated by [break] *)
- | Out_continue: outcome (**r terminated by [continue] *)
- | Out_normal: outcome (**r terminated normally *)
- | Out_return: option (val * type) -> outcome. (**r terminated by [return] *)
-
-Inductive out_normal_or_continue : outcome -> Prop :=
- | Out_normal_or_continue_N: out_normal_or_continue Out_normal
- | Out_normal_or_continue_C: out_normal_or_continue Out_continue.
-
-Inductive out_break_or_return : outcome -> outcome -> Prop :=
- | Out_break_or_return_B: out_break_or_return Out_break Out_normal
- | Out_break_or_return_R: forall ov,
- out_break_or_return (Out_return ov) (Out_return ov).
-
-Definition outcome_switch (out: outcome) : outcome :=
- match out with
- | Out_break => Out_normal
- | o => o
- end.
-
-Definition outcome_result_value (out: outcome) (t: type) (v: val) : Prop :=
- match out, t with
- | Out_normal, Tvoid => v = Vundef
- | Out_return None, Tvoid => v = Vundef
- | Out_return (Some (v',t')), ty => ty <> Tvoid /\ sem_cast v' t' t = Some v
- | _, _ => False
- end.
-
-(** [exec_stmt ge e m1 s t m2 out] describes the execution of
- the statement [s]. [out] is the outcome for this execution.
- [m1] is the initial memory state, [m2] the final memory state.
- [t] is the trace of input/output events performed during this
- evaluation. *)
-
-Inductive exec_stmt: env -> temp_env -> mem -> statement -> trace -> temp_env -> mem -> outcome -> Prop :=
- | exec_Sskip: forall e le m,
- exec_stmt e le m Sskip
- E0 le m Out_normal
- | exec_Sassign: forall e le m a1 a2 loc ofs v2 v m',
- eval_lvalue ge e le m a1 loc ofs ->
- eval_expr ge e le m a2 v2 ->
- sem_cast v2 (typeof a2) (typeof a1) = Some v ->
- assign_loc (typeof a1) m loc ofs v m' ->
- exec_stmt e le m (Sassign a1 a2)
- E0 le m' Out_normal
- | exec_Sset: forall e le m id a v,
- eval_expr ge e le m a v ->
- exec_stmt e le m (Sset id a)
- E0 (PTree.set id v le) m Out_normal
- | exec_Scall: forall e le m optid a al tyargs tyres vf vargs f t m' vres,
- classify_fun (typeof a) = fun_case_f tyargs tyres ->
- eval_expr ge e le m a vf ->
- eval_exprlist ge e le m al tyargs vargs ->
- Genv.find_funct ge vf = Some f ->
- type_of_fundef f = Tfunction tyargs tyres ->
- eval_funcall m f vargs t m' vres ->
- exec_stmt e le m (Scall optid a al)
- t (set_opttemp optid vres le) m' Out_normal
- | exec_Sbuiltin: forall e le m optid ef al tyargs vargs t m' vres,
- eval_exprlist ge e le m al tyargs vargs ->
- external_call ef ge vargs m t vres m' ->
- exec_stmt e le m (Sbuiltin optid ef tyargs al)
- t (set_opttemp optid vres le) m' Out_normal
- | exec_Sseq_1: forall e le m s1 s2 t1 le1 m1 t2 le2 m2 out,
- exec_stmt e le m s1 t1 le1 m1 Out_normal ->
- exec_stmt e le1 m1 s2 t2 le2 m2 out ->
- exec_stmt e le m (Ssequence s1 s2)
- (t1 ** t2) le2 m2 out
- | exec_Sseq_2: forall e le m s1 s2 t1 le1 m1 out,
- exec_stmt e le m s1 t1 le1 m1 out ->
- out <> Out_normal ->
- exec_stmt e le m (Ssequence s1 s2)
- t1 le1 m1 out
- | exec_Sifthenelse: forall e le m a s1 s2 v1 b t le' m' out,
- eval_expr ge e le m a v1 ->
- bool_val v1 (typeof a) = Some b ->
- exec_stmt e le m (if b then s1 else s2) t le' m' out ->
- exec_stmt e le m (Sifthenelse a s1 s2)
- t le' m' out
- | exec_Sreturn_none: forall e le m,
- exec_stmt e le m (Sreturn None)
- E0 le m (Out_return None)
- | exec_Sreturn_some: forall e le m a v,
- eval_expr ge e le m a v ->
- exec_stmt e le m (Sreturn (Some a))
- E0 le m (Out_return (Some (v, typeof a)))
- | exec_Sbreak: forall e le m,
- exec_stmt e le m Sbreak
- E0 le m Out_break
- | exec_Scontinue: forall e le m,
- exec_stmt e le m Scontinue
- E0 le m Out_continue
- | exec_Sloop_stop1: forall e le m s1 s2 t le' m' out' out,
- exec_stmt e le m s1 t le' m' out' ->
- out_break_or_return out' out ->
- exec_stmt e le m (Sloop s1 s2)
- t le' m' out
- | exec_Sloop_stop2: forall e le m s1 s2 t1 le1 m1 out1 t2 le2 m2 out2 out,
- exec_stmt e le m s1 t1 le1 m1 out1 ->
- out_normal_or_continue out1 ->
- exec_stmt e le1 m1 s2 t2 le2 m2 out2 ->
- out_break_or_return out2 out ->
- exec_stmt e le m (Sloop s1 s2)
- (t1**t2) le2 m2 out
- | exec_Sloop_loop: forall e le m s1 s2 t1 le1 m1 out1 t2 le2 m2 t3 le3 m3 out,
- exec_stmt e le m s1 t1 le1 m1 out1 ->
- out_normal_or_continue out1 ->
- exec_stmt e le1 m1 s2 t2 le2 m2 Out_normal ->
- exec_stmt e le2 m2 (Sloop s1 s2) t3 le3 m3 out ->
- exec_stmt e le m (Sloop s1 s2)
- (t1**t2**t3) le3 m3 out
- | exec_Sswitch: forall e le m a t n sl le1 m1 out,
- eval_expr ge e le m a (Vint n) ->
- exec_stmt e le m (seq_of_labeled_statement (select_switch n sl)) t le1 m1 out ->
- exec_stmt e le m (Sswitch a sl)
- t le1 m1 (outcome_switch out)
-
-(** [eval_funcall m1 fd args t m2 res] describes the invocation of
- function [fd] with arguments [args]. [res] is the value returned
- by the call. *)
-
-with eval_funcall: mem -> fundef -> list val -> trace -> mem -> val -> Prop :=
- | eval_funcall_internal: forall le m f vargs t e m1 m2 m3 out vres m4,
- alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
- list_norepet (var_names f.(fn_params) ++ var_names f.(fn_vars)) ->
- bind_parameters e m1 f.(fn_params) vargs m2 ->
- exec_stmt e (create_undef_temps f.(fn_temps)) m2 f.(fn_body) t le m3 out ->
- outcome_result_value out f.(fn_return) vres ->
- Mem.free_list m3 (blocks_of_env e) = Some m4 ->
- eval_funcall m (Internal f) vargs t m4 vres
- | eval_funcall_external: forall m ef targs tres vargs t vres m',
- external_call ef ge vargs m t vres m' ->
- eval_funcall m (External ef targs tres) vargs t m' vres.
-
-Scheme exec_stmt_ind2 := Minimality for exec_stmt Sort Prop
- with eval_funcall_ind2 := Minimality for eval_funcall Sort Prop.
-Combined Scheme exec_stmt_funcall_ind from exec_stmt_ind2, eval_funcall_ind2.
-
-(** ** Big-step semantics for diverging statements and functions *)
-
-(** Coinductive semantics for divergence.
- [execinf_stmt ge e m s t] holds if the execution of statement [s]
- diverges, i.e. loops infinitely. [t] is the possibly infinite
- trace of observable events performed during the execution. *)
-
-CoInductive execinf_stmt: env -> temp_env -> mem -> statement -> traceinf -> Prop :=
- | execinf_Scall: forall e le m optid a al vf tyargs tyres vargs f t,
- classify_fun (typeof a) = fun_case_f tyargs tyres ->
- eval_expr ge e le m a vf ->
- eval_exprlist ge e le m al tyargs vargs ->
- Genv.find_funct ge vf = Some f ->
- type_of_fundef f = Tfunction tyargs tyres ->
- evalinf_funcall m f vargs t ->
- execinf_stmt e le m (Scall optid a al) t
- | execinf_Sseq_1: forall e le m s1 s2 t,
- execinf_stmt e le m s1 t ->
- execinf_stmt e le m (Ssequence s1 s2) t
- | execinf_Sseq_2: forall e le m s1 s2 t1 le1 m1 t2,
- exec_stmt e le m s1 t1 le1 m1 Out_normal ->
- execinf_stmt e le1 m1 s2 t2 ->
- execinf_stmt e le m (Ssequence s1 s2) (t1 *** t2)
- | execinf_Sifthenelse: forall e le m a s1 s2 v1 b t,
- eval_expr ge e le m a v1 ->
- bool_val v1 (typeof a) = Some b ->
- execinf_stmt e le m (if b then s1 else s2) t ->
- execinf_stmt e le m (Sifthenelse a s1 s2) t
- | execinf_Sloop_body1: forall e le m s1 s2 t,
- execinf_stmt e le m s1 t ->
- execinf_stmt e le m (Sloop s1 s2) t
- | execinf_Sloop_body2: forall e le m s1 s2 t1 le1 m1 out1 t2,
- exec_stmt e le m s1 t1 le1 m1 out1 ->
- out_normal_or_continue out1 ->
- execinf_stmt e le1 m1 s2 t2 ->
- execinf_stmt e le m (Sloop s1 s2) (t1***t2)
- | execinf_Sloop_loop: forall e le m s1 s2 t1 le1 m1 out1 t2 le2 m2 t3,
- exec_stmt e le m s1 t1 le1 m1 out1 ->
- out_normal_or_continue out1 ->
- exec_stmt e le1 m1 s2 t2 le2 m2 Out_normal ->
- execinf_stmt e le2 m2 (Sloop s1 s2) t3 ->
- execinf_stmt e le m (Sloop s1 s2) (t1***t2***t3)
- | execinf_Sswitch: forall e le m a t n sl,
- eval_expr ge e le m a (Vint n) ->
- execinf_stmt e le m (seq_of_labeled_statement (select_switch n sl)) t ->
- execinf_stmt e le m (Sswitch a sl) t
-
-(** [evalinf_funcall ge m fd args t] holds if the invocation of function
- [fd] on arguments [args] diverges, with observable trace [t]. *)
-
-with evalinf_funcall: mem -> fundef -> list val -> traceinf -> Prop :=
- | evalinf_funcall_internal: forall m f vargs t e m1 m2,
- alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) e m1 ->
- list_norepet (var_names f.(fn_params) ++ var_names f.(fn_vars)) ->
- bind_parameters e m1 f.(fn_params) vargs m2 ->
- execinf_stmt e (create_undef_temps f.(fn_temps)) m2 f.(fn_body) t ->
- evalinf_funcall m (Internal f) vargs t.
-
-End BIGSTEP.
-
-(** Big-step execution of a whole program. *)
-
-Inductive bigstep_program_terminates (p: program): trace -> int -> Prop :=
- | bigstep_program_terminates_intro: forall b f m0 m1 t r,
- let ge := Genv.globalenv p in
- Genv.init_mem p = Some m0 ->
- Genv.find_symbol ge p.(prog_main) = Some b ->
- Genv.find_funct_ptr ge b = Some f ->
- type_of_fundef f = Tfunction Tnil type_int32s ->
- eval_funcall ge m0 f nil t m1 (Vint r) ->
- bigstep_program_terminates p t r.
-
-Inductive bigstep_program_diverges (p: program): traceinf -> Prop :=
- | bigstep_program_diverges_intro: forall b f m0 t,
- let ge := Genv.globalenv p in
- Genv.init_mem p = Some m0 ->
- Genv.find_symbol ge p.(prog_main) = Some b ->
- Genv.find_funct_ptr ge b = Some f ->
- type_of_fundef f = Tfunction Tnil type_int32s ->
- evalinf_funcall ge m0 f nil t ->
- bigstep_program_diverges p t.
-
-Definition bigstep_semantics (p: program) :=
- Bigstep_semantics (bigstep_program_terminates p) (bigstep_program_diverges p).
-
-(** * Implication from big-step semantics to transition semantics *)
-
-Section BIGSTEP_TO_TRANSITIONS.
-
-Variable prog: program.
-Let ge : genv := Genv.globalenv prog.
-
-Inductive outcome_state_match
- (e: env) (le: temp_env) (m: mem) (f: function) (k: cont): outcome -> state -> Prop :=
- | osm_normal:
- outcome_state_match e le m f k Out_normal (State f Sskip k e le m)
- | osm_break:
- outcome_state_match e le m f k Out_break (State f Sbreak k e le m)
- | osm_continue:
- outcome_state_match e le m f k Out_continue (State f Scontinue k e le m)
- | osm_return_none: forall k',
- call_cont k' = call_cont k ->
- outcome_state_match e le m f k
- (Out_return None) (State f (Sreturn None) k' e le m)
- | osm_return_some: forall a v k',
- call_cont k' = call_cont k ->
- eval_expr ge e le m a v ->
- outcome_state_match e le m f k
- (Out_return (Some (v,typeof a))) (State f (Sreturn (Some a)) k' e le m).
-
-Lemma is_call_cont_call_cont:
- forall k, is_call_cont k -> call_cont k = k.
-Proof.
- destruct k; simpl; intros; contradiction || auto.
-Qed.
-
-Lemma exec_stmt_eval_funcall_steps:
- (forall e le m s t le' m' out,
- exec_stmt ge e le m s t le' m' out ->
- forall f k, exists S,
- star step ge (State f s k e le m) t S
- /\ outcome_state_match e le' m' f k out S)
-/\
- (forall m fd args t m' res,
- eval_funcall ge m fd args t m' res ->
- forall k,
- is_call_cont k ->
- star step ge (Callstate fd args k m) t (Returnstate res k m')).
-Proof.
- apply exec_stmt_funcall_ind; intros.
-
-(* skip *)
- econstructor; split. apply star_refl. constructor.
-
-(* assign *)
- econstructor; split. apply star_one. econstructor; eauto. constructor.
-
-(* set *)
- econstructor; split. apply star_one. econstructor; eauto. constructor.
-
-(* call *)
- econstructor; split.
- eapply star_left. econstructor; eauto.
- eapply star_right. apply H5. simpl; auto. econstructor. reflexivity. traceEq.
- constructor.
-
-(* builtin *)
- econstructor; split. apply star_one. econstructor; eauto. constructor.
-
-(* sequence 2 *)
- destruct (H0 f (Kseq s2 k)) as [S1 [A1 B1]]. inv B1.
- destruct (H2 f k) as [S2 [A2 B2]].
- econstructor; split.
- eapply star_left. econstructor.
- eapply star_trans. eexact A1.
- eapply star_left. constructor. eexact A2.
- reflexivity. reflexivity. traceEq.
- auto.
-
-(* sequence 1 *)
- destruct (H0 f (Kseq s2 k)) as [S1 [A1 B1]].
- set (S2 :=
- match out with
- | Out_break => State f Sbreak k e le1 m1
- | Out_continue => State f Scontinue k e le1 m1
- | _ => S1
- end).
- exists S2; split.
- eapply star_left. econstructor.
- eapply star_trans. eexact A1.
- unfold S2; inv B1.
- congruence.
- apply star_one. apply step_break_seq.
- apply star_one. apply step_continue_seq.
- apply star_refl.
- apply star_refl.
- reflexivity. traceEq.
- unfold S2; inv B1; congruence || econstructor; eauto.
-
-(* ifthenelse *)
- destruct (H2 f k) as [S1 [A1 B1]].
- exists S1; split.
- eapply star_left. 2: eexact A1. eapply step_ifthenelse; eauto. traceEq.
- auto.
-
-(* return none *)
- econstructor; split. apply star_refl. constructor. auto.
-
-(* return some *)
- econstructor; split. apply star_refl. econstructor; eauto.
-
-(* break *)
- econstructor; split. apply star_refl. constructor.
-
-(* continue *)
- econstructor; split. apply star_refl. constructor.
-
-(* loop stop 1 *)
- destruct (H0 f (Kloop1 s1 s2 k)) as [S1 [A1 B1]].
- set (S2 :=
- match out' with
- | Out_break => State f Sskip k e le' m'
- | _ => S1
- end).
- exists S2; split.
- eapply star_left. eapply step_loop.
- eapply star_trans. eexact A1.
- unfold S2. inversion H1; subst.
- inv B1. apply star_one. constructor.
- apply star_refl.
- reflexivity. traceEq.
- unfold S2. inversion H1; subst. constructor. inv B1; econstructor; eauto.
-
-(* loop stop 2 *)
- destruct (H0 f (Kloop1 s1 s2 k)) as [S1 [A1 B1]].
- destruct (H3 f (Kloop2 s1 s2 k)) as [S2 [A2 B2]].
- set (S3 :=
- match out2 with
- | Out_break => State f Sskip k e le2 m2
- | _ => S2
- end).
- exists S3; split.
- eapply star_left. eapply step_loop.
- eapply star_trans. eexact A1.
- eapply star_left with (s2 := State f s2 (Kloop2 s1 s2 k) e le1 m1).
- inv H1; inv B1; constructor; auto.
- eapply star_trans. eexact A2.
- unfold S3. inversion H4; subst.
- inv B2. apply star_one. constructor. apply star_refl.
- reflexivity. reflexivity. reflexivity. traceEq.
- unfold S3. inversion H4; subst. constructor. inv B2; econstructor; eauto.
-
-(* loop loop *)
- destruct (H0 f (Kloop1 s1 s2 k)) as [S1 [A1 B1]].
- destruct (H3 f (Kloop2 s1 s2 k)) as [S2 [A2 B2]].
- destruct (H5 f k) as [S3 [A3 B3]].
- exists S3; split.
- eapply star_left. eapply step_loop.
- eapply star_trans. eexact A1.
- eapply star_left with (s2 := State f s2 (Kloop2 s1 s2 k) e le1 m1).
- inv H1; inv B1; constructor; auto.
- eapply star_trans. eexact A2.
- eapply star_left with (s2 := State f (Sloop s1 s2) k e le2 m2).
- inversion H4; subst; inv B2; constructor; auto.
- eexact A3.
- reflexivity. reflexivity. reflexivity. reflexivity. traceEq.
- auto.
-
-(* switch *)
- destruct (H1 f (Kswitch k)) as [S1 [A1 B1]].
- set (S2 :=
- match out with
- | Out_normal => State f Sskip k e le1 m1
- | Out_break => State f Sskip k e le1 m1
- | Out_continue => State f Scontinue k e le1 m1
- | _ => S1
- end).
- exists S2; split.
- eapply star_left. eapply step_switch; eauto.
- eapply star_trans. eexact A1.
- unfold S2; inv B1.
- apply star_one. constructor. auto.
- apply star_one. constructor. auto.
- apply star_one. constructor.
- apply star_refl.
- apply star_refl.
- reflexivity. traceEq.
- unfold S2. inv B1; simpl; econstructor; eauto.
-
-(* call internal *)
- destruct (H3 f k) as [S1 [A1 B1]].
- eapply star_left. eapply step_internal_function; eauto.
- eapply star_right. eexact A1.
- inv B1; simpl in H4; try contradiction.
- (* Out_normal *)
- assert (fn_return f = Tvoid /\ vres = Vundef).
- destruct (fn_return f); auto || contradiction.
- destruct H7. subst vres. apply step_skip_call; auto.
- (* Out_return None *)
- assert (fn_return f = Tvoid /\ vres = Vundef).
- destruct (fn_return f); auto || contradiction.
- destruct H8. subst vres.
- rewrite <- (is_call_cont_call_cont k H6). rewrite <- H7.
- apply step_return_0; auto.
- (* Out_return Some *)
- destruct H4.
- rewrite <- (is_call_cont_call_cont k H6). rewrite <- H7.
- eapply step_return_1; eauto.
- reflexivity. traceEq.
-
-(* call external *)
- apply star_one. apply step_external_function; auto.
-Qed.
-
-Lemma exec_stmt_steps:
- forall e le m s t le' m' out,
- exec_stmt ge e le m s t le' m' out ->
- forall f k, exists S,
- star step ge (State f s k e le m) t S
- /\ outcome_state_match e le' m' f k out S.
-Proof (proj1 exec_stmt_eval_funcall_steps).
-
-Lemma eval_funcall_steps:
- forall m fd args t m' res,
- eval_funcall ge m fd args t m' res ->
- forall k,
- is_call_cont k ->
- star step ge (Callstate fd args k m) t (Returnstate res k m').
-Proof (proj2 exec_stmt_eval_funcall_steps).
-
-Definition order (x y: unit) := False.
-
-Lemma evalinf_funcall_forever:
- forall m fd args T k,
- evalinf_funcall ge m fd args T ->
- forever_N step order ge tt (Callstate fd args k m) T.
-Proof.
- cofix CIH_FUN.
- assert (forall e le m s T f k,
- execinf_stmt ge e le m s T ->
- forever_N step order ge tt (State f s k e le m) T).
- cofix CIH_STMT.
- intros. inv H.
-
-(* call *)
- eapply forever_N_plus.
- apply plus_one. eapply step_call; eauto.
- eapply CIH_FUN. eauto. traceEq.
-
-(* seq 1 *)
- eapply forever_N_plus.
- apply plus_one. econstructor.
- apply CIH_STMT; eauto. traceEq.
-(* seq 2 *)
- destruct (exec_stmt_steps _ _ _ _ _ _ _ _ H0 f (Kseq s2 k)) as [S1 [A1 B1]].
- inv B1.
- eapply forever_N_plus.
- eapply plus_left. constructor. eapply star_trans. eexact A1.
- apply star_one. constructor. reflexivity. reflexivity.
- apply CIH_STMT; eauto. traceEq.
-
-(* ifthenelse *)
- eapply forever_N_plus.
- apply plus_one. eapply step_ifthenelse with (b := b); eauto.
- apply CIH_STMT; eauto. traceEq.
-
-(* loop body 1 *)
- eapply forever_N_plus.
- eapply plus_one. constructor.
- apply CIH_STMT; eauto. traceEq.
-(* loop body 2 *)
- destruct (exec_stmt_steps _ _ _ _ _ _ _ _ H0 f (Kloop1 s1 s2 k)) as [S1 [A1 B1]].
- eapply forever_N_plus with (s2 := State f s2 (Kloop2 s1 s2 k) e le1 m1).
- eapply plus_left. constructor.
- eapply star_right. eexact A1.
- inv H1; inv B1; constructor; auto.
- reflexivity. reflexivity.
- apply CIH_STMT; eauto. traceEq.
-(* loop loop *)
- destruct (exec_stmt_steps _ _ _ _ _ _ _ _ H0 f (Kloop1 s1 s2 k)) as [S1 [A1 B1]].
- destruct (exec_stmt_steps _ _ _ _ _ _ _ _ H2 f (Kloop2 s1 s2 k)) as [S2 [A2 B2]].
- eapply forever_N_plus with (s2 := State f (Sloop s1 s2) k e le2 m2).
- eapply plus_left. constructor.
- eapply star_trans. eexact A1.
- eapply star_left. inv H1; inv B1; constructor; auto.
- eapply star_right. eexact A2.
- inv B2. constructor.
- reflexivity. reflexivity. reflexivity. reflexivity.
- apply CIH_STMT; eauto. traceEq.
-
-(* switch *)
- eapply forever_N_plus.
- eapply plus_one. eapply step_switch; eauto.
- apply CIH_STMT; eauto.
- traceEq.
-
-(* call internal *)
- intros. inv H0.
- eapply forever_N_plus.
- eapply plus_one. econstructor; eauto.
- apply H; eauto.
- traceEq.
-Qed.
-
-Theorem bigstep_semantics_sound:
- bigstep_sound (bigstep_semantics prog) (semantics prog).
-Proof.
- constructor; simpl; intros.
-(* termination *)
- inv H. econstructor; econstructor.
- split. econstructor; eauto.
- split. eapply eval_funcall_steps. eauto. red; auto.
- econstructor.
-(* divergence *)
- inv H. econstructor.
- split. econstructor; eauto.
- eapply forever_N_forever with (order := order).
- red; intros. constructor; intros. red in H. elim H.
- eapply evalinf_funcall_forever; eauto.
-Qed.
-
-End BIGSTEP_TO_TRANSITIONS.
-