aboutsummaryrefslogtreecommitdiffstats
path: root/lib/HashedSet.v
diff options
context:
space:
mode:
authorDavid Monniaux <david.monniaux@univ-grenoble-alpes.fr>2020-03-05 16:17:52 +0100
committerDavid Monniaux <david.monniaux@univ-grenoble-alpes.fr>2020-03-05 16:17:52 +0100
commit84a198eddcc2a8cb825e144c9e97642aa45fed7c (patch)
tree89b0a9b4dba8e075a99f1746b662c1bc0e5cd776 /lib/HashedSet.v
parent668912983cd68f5f233bfd3af280f911a8522a84 (diff)
downloadcompcert-kvx-84a198eddcc2a8cb825e144c9e97642aa45fed7c.tar.gz
compcert-kvx-84a198eddcc2a8cb825e144c9e97642aa45fed7c.zip
move lattice stuff where it belongs
Diffstat (limited to 'lib/HashedSet.v')
-rw-r--r--lib/HashedSet.v1270
1 files changed, 1270 insertions, 0 deletions
diff --git a/lib/HashedSet.v b/lib/HashedSet.v
new file mode 100644
index 00000000..bf781a49
--- /dev/null
+++ b/lib/HashedSet.v
@@ -0,0 +1,1270 @@
+Require Import ZArith.
+Require Import Bool.
+Require Import List.
+Require Coq.Logic.Eqdep_dec.
+
+ (* begin from Maps *)
+ Fixpoint prev_append (i j: positive) {struct i} : positive :=
+ match i with
+ | xH => j
+ | xI i' => prev_append i' (xI j)
+ | xO i' => prev_append i' (xO j)
+ end.
+
+ Definition prev (i: positive) : positive :=
+ prev_append i xH.
+
+ Lemma prev_append_prev i j:
+ prev (prev_append i j) = prev_append j i.
+ Proof.
+ revert j. unfold prev.
+ induction i as [i IH|i IH|]. 3: reflexivity.
+ intros j. simpl. rewrite IH. reflexivity.
+ intros j. simpl. rewrite IH. reflexivity.
+ Qed.
+
+ Lemma prev_involutive i :
+ prev (prev i) = i.
+ Proof (prev_append_prev i xH).
+
+ Lemma prev_append_inj i j j' :
+ prev_append i j = prev_append i j' -> j = j'.
+ Proof.
+ revert j j'.
+ induction i as [i Hi|i Hi|]; intros j j' H; auto;
+ specialize (Hi _ _ H); congruence.
+ Qed.
+
+ (* end from Maps *)
+
+Lemma orb_idem: forall b, orb b b = b.
+Proof.
+ destruct b; reflexivity.
+Qed.
+
+Lemma andb_idem: forall b, andb b b = b.
+Proof.
+ destruct b; reflexivity.
+Qed.
+
+Lemma andb_negb_false: forall b, andb b (negb b) = false.
+Proof.
+ destruct b; reflexivity.
+Qed.
+
+Hint Rewrite orb_false_r andb_false_r andb_true_r orb_true_r orb_idem andb_idem andb_negb_false: pset.
+
+Module WR.
+Inductive pset : Type :=
+| Empty : pset
+| Node : pset -> bool -> pset -> pset.
+
+Definition empty := Empty.
+
+Definition is_empty x :=
+ match x with
+ | Empty => true
+ | Node _ _ _ => false
+ end.
+
+Fixpoint wf x :=
+ match x with
+ | Empty => true
+ | Node b0 f b1 =>
+ (wf b0) && (wf b1) &&
+ ((negb (is_empty b0)) || f || (negb (is_empty b1)))
+ end.
+
+Definition iswf x := (wf x)=true.
+
+Lemma empty_wf : iswf empty.
+Proof.
+ reflexivity.
+Qed.
+
+Definition pset_eq :
+ forall s s': pset, { s=s' } + { s <> s' }.
+Proof.
+ induction s; destruct s'; repeat decide equality.
+Qed.
+
+Fixpoint contains (s : pset) (i : positive) {struct i} : bool :=
+ match s with
+ | Empty => false
+ | Node b0 f b1 =>
+ match i with
+ | xH => f
+ | xO ii => contains b0 ii
+ | xI ii => contains b1 ii
+ end
+ end.
+
+Lemma gempty :
+ forall i : positive,
+ contains Empty i = false.
+Proof.
+ destruct i; simpl; reflexivity.
+Qed.
+
+Hint Resolve gempty : pset.
+Hint Rewrite gempty : pset.
+
+Definition node (b0 : pset) (f : bool) (b1 : pset) : pset :=
+ match b0, f, b1 with
+ | Empty, false, Empty => Empty
+ | _, _, _ => Node b0 f b1
+ end.
+
+Lemma wf_node :
+ forall b0 f b1,
+ iswf b0 -> iswf b1 -> iswf (node b0 f b1).
+Proof.
+ destruct b0; destruct f; destruct b1; simpl.
+ all: unfold iswf; simpl; intros; trivial.
+ all: autorewrite with pset; trivial.
+ all: rewrite H.
+ all: rewrite H0.
+ all: reflexivity.
+Qed.
+
+Hint Resolve wf_node: pset.
+
+Lemma gnode :
+ forall b0 f b1 i,
+ contains (node b0 f b1) i =
+ contains (Node b0 f b1) i.
+Proof.
+ destruct b0; simpl; trivial.
+ destruct f; simpl; trivial.
+ destruct b1; simpl; trivial.
+ intro.
+ rewrite gempty.
+ destruct i; simpl; trivial.
+ all: symmetry; apply gempty.
+Qed.
+
+Hint Rewrite gnode : pset.
+
+Fixpoint add (i : positive) (s : pset) {struct i} : pset :=
+ match s with
+ | Empty =>
+ match i with
+ | xH => Node Empty true Empty
+ | xO ii => Node (add ii Empty) false Empty
+ | xI ii => Node Empty false (add ii Empty)
+ end
+ | Node b0 f b1 =>
+ match i with
+ | xH => Node b0 true b1
+ | xO ii => Node (add ii b0) f b1
+ | xI ii => Node b0 f (add ii b1)
+ end
+ end.
+
+Lemma add_nonempty:
+ forall i s, is_empty (add i s) = false.
+Proof.
+ induction i; destruct s; simpl; trivial.
+Qed.
+
+Hint Rewrite add_nonempty : pset.
+Hint Resolve add_nonempty : pset.
+
+Lemma wf_add:
+ forall i s, (iswf s) -> (iswf (add i s)).
+Proof.
+ induction i; destruct s; simpl; trivial.
+ all: unfold iswf in *; simpl.
+ all: autorewrite with pset; simpl; trivial.
+ 1,3: auto with pset.
+ all: intro Z.
+ all: repeat rewrite andb_true_iff in Z.
+ all: intuition.
+Qed.
+
+Hint Resolve wf_add : pset.
+
+Theorem gadds :
+ forall i : positive,
+ forall s : pset,
+ contains (add i s) i = true.
+Proof.
+ induction i; destruct s; simpl; auto.
+Qed.
+
+Hint Resolve gadds : pset.
+Hint Rewrite gadds : pset.
+
+Theorem gaddo :
+ forall i j : positive,
+ forall s : pset,
+ i <> j ->
+ contains (add i s) j = contains s j.
+Proof.
+ induction i; destruct j; destruct s; simpl; intro; auto with pset.
+ 5, 6: congruence.
+ all: rewrite IHi by congruence.
+ all: trivial.
+ all: apply gempty.
+Qed.
+
+Hint Resolve gaddo : pset.
+
+Fixpoint remove (i : positive) (s : pset) { struct i } : pset :=
+ match i with
+ | xH =>
+ match s with
+ | Empty => Empty
+ | Node b0 f b1 => node b0 false b1
+ end
+ | xO ii =>
+ match s with
+ | Empty => Empty
+ | Node b0 f b1 => node (remove ii b0) f b1
+ end
+ | xI ii =>
+ match s with
+ | Empty => Empty
+ | Node b0 f b1 => node b0 f (remove ii b1)
+ end
+ end.
+
+Lemma wf_remove :
+ forall i s, (iswf s) -> (iswf (remove i s)).
+Proof.
+ induction i; destruct s; simpl; trivial.
+ all: unfold iswf in *; simpl.
+ all: intro Z.
+ all: repeat rewrite andb_true_iff in Z.
+ all: apply wf_node.
+ all: intuition.
+ all: apply IHi.
+ all: assumption.
+Qed.
+
+
+Fixpoint remove_noncanon (i : positive) (s : pset) { struct i } : pset :=
+ match i with
+ | xH =>
+ match s with
+ | Empty => Empty
+ | Node b0 f b1 => Node b0 false b1
+ end
+ | xO ii =>
+ match s with
+ | Empty => Empty
+ | Node b0 f b1 => Node (remove_noncanon ii b0) f b1
+ end
+ | xI ii =>
+ match s with
+ | Empty => Empty
+ | Node b0 f b1 => Node b0 f (remove_noncanon ii b1)
+ end
+ end.
+
+Lemma remove_noncanon_same:
+ forall i j s, (contains (remove i s) j) = (contains (remove_noncanon i s) j).
+Proof.
+ induction i; destruct s; simpl; trivial.
+ all: rewrite gnode.
+ 3: reflexivity.
+ all: destruct j; simpl; trivial.
+Qed.
+
+Lemma remove_empty :
+ forall i, remove i Empty = Empty.
+Proof.
+ induction i; simpl; trivial.
+Qed.
+
+Hint Rewrite remove_empty : pset.
+Hint Resolve remove_empty : pset.
+
+Lemma gremove_noncanon_s :
+ forall i : positive,
+ forall s : pset,
+ contains (remove_noncanon i s) i = false.
+Proof.
+ induction i; destruct s; simpl; trivial.
+Qed.
+
+Theorem gremoves :
+ forall i : positive,
+ forall s : pset,
+ contains (remove i s) i = false.
+Proof.
+ intros.
+ rewrite remove_noncanon_same.
+ apply gremove_noncanon_s.
+Qed.
+
+Hint Resolve gremoves : pset.
+Hint Rewrite gremoves : pset.
+
+Lemma gremove_noncanon_o :
+ forall i j : positive,
+ forall s : pset,
+ i<>j ->
+ contains (remove_noncanon i s) j = contains s j.
+Proof.
+ induction i; destruct j; destruct s; simpl; intro; trivial.
+ 1, 2: rewrite IHi by congruence.
+ 1, 2: reflexivity.
+ congruence.
+Qed.
+
+Theorem gremoveo :
+ forall i j : positive,
+ forall s : pset,
+ i<>j ->
+ contains (remove i s) j = contains s j.
+Proof.
+ intros.
+ rewrite remove_noncanon_same.
+ apply gremove_noncanon_o.
+ assumption.
+Qed.
+
+Hint Resolve gremoveo : pset.
+
+Fixpoint union_nonopt (s s' : pset) : pset :=
+ match s, s' with
+ | Empty, _ => s'
+ | _, Empty => s
+ | (Node b0 f b1), (Node b0' f' b1') =>
+ Node (union_nonopt b0 b0') (orb f f') (union_nonopt b1 b1')
+ end.
+
+Theorem gunion_nonopt:
+ forall s s' : pset,
+ forall j : positive,
+ (contains (union_nonopt s s')) j = orb (contains s j) (contains s' j).
+Proof.
+ induction s; destruct s'; intro; simpl; autorewrite with pset; simpl; trivial.
+ destruct j; simpl; trivial.
+Qed.
+
+
+Fixpoint union (s s' : pset) : pset :=
+ if pset_eq s s' then s else
+ match s, s' with
+ | Empty, _ => s'
+ | _, Empty => s
+ | (Node b0 f b1), (Node b0' f' b1') =>
+ Node (union b0 b0') (orb f f') (union b1 b1')
+ end.
+
+Lemma union_nonempty1:
+ forall s s',
+ (is_empty s) = false -> is_empty (union s s')= false.
+Proof.
+ induction s; destruct s'; simpl; try discriminate.
+ all: destruct pset_eq; simpl; trivial.
+Qed.
+
+Lemma union_nonempty2:
+ forall s s',
+ (is_empty s') = false -> is_empty (union s s')= false.
+Proof.
+ induction s; destruct s'; simpl; try discriminate.
+ all: destruct pset_eq; simpl; trivial; discriminate.
+Qed.
+
+Hint Resolve union_nonempty1 union_nonempty2 : pset.
+
+Lemma wf_union :
+ forall s s', (iswf s) -> (iswf s') -> (iswf (union s s')).
+Proof.
+ induction s; destruct s'; intros; simpl.
+ all: destruct pset_eq; trivial.
+ unfold iswf in *. simpl in *.
+ repeat rewrite andb_true_iff in H.
+ repeat rewrite andb_true_iff in H0.
+ rewrite IHs1.
+ rewrite IHs2.
+ simpl.
+ all: intuition.
+ repeat rewrite orb_true_iff in H2, H3.
+ repeat rewrite negb_true_iff in H2, H3.
+ repeat rewrite orb_true_iff.
+ repeat rewrite negb_true_iff.
+ intuition auto with pset.
+Qed.
+
+Hint Resolve wf_union : pset.
+
+Theorem gunion:
+ forall s s' : pset,
+ forall j : positive,
+ (contains (union s s')) j = orb (contains s j) (contains s' j).
+Proof.
+ induction s; destruct s'; intro; simpl.
+ all: destruct pset_eq as [EQ | NEQ]; try congruence.
+ all: autorewrite with pset; simpl; trivial.
+ - rewrite <- EQ.
+ symmetry.
+ apply orb_idem.
+ - destruct j; simpl; trivial.
+Qed.
+
+Fixpoint inter_noncanon (s s' : pset) : pset :=
+ if pset_eq s s' then s else
+ match s, s' with
+ | Empty, _ | _, Empty => Empty
+ | (Node b0 f b1), (Node b0' f' b1') =>
+ Node (inter_noncanon b0 b0') (andb f f') (inter_noncanon b1 b1')
+ end.
+
+Lemma ginter_noncanon:
+ forall s s' : pset,
+ forall j : positive,
+ (contains (inter_noncanon s s')) j = andb (contains s j) (contains s' j).
+Proof.
+ induction s; destruct s'; intro; simpl.
+ all: destruct pset_eq as [EQ | NEQ]; try congruence.
+ all: autorewrite with pset; simpl; trivial.
+ - rewrite <- EQ.
+ symmetry.
+ apply andb_idem.
+ - destruct j; simpl; trivial.
+Qed.
+
+Fixpoint inter (s s' : pset) : pset :=
+ if pset_eq s s' then s else
+ match s, s' with
+ | Empty, _ | _, Empty => Empty
+ | (Node b0 f b1), (Node b0' f' b1') =>
+ node (inter b0 b0') (andb f f') (inter b1 b1')
+ end.
+
+Lemma wf_inter :
+ forall s s', (iswf s) -> (iswf s') -> (iswf (inter s s')).
+Proof.
+ induction s; destruct s'; intros; simpl.
+ all: destruct pset_eq; trivial.
+ unfold iswf in H, H0.
+ simpl in H, H0.
+ repeat rewrite andb_true_iff in H.
+ repeat rewrite andb_true_iff in H0.
+ fold (iswf s1) in *.
+ fold (iswf s2) in *.
+ intuition.
+Qed.
+
+Hint Resolve wf_inter : pset.
+
+Lemma inter_noncanon_same:
+ forall s s' j, (contains (inter s s') j) = (contains (inter_noncanon s s') j).
+Proof.
+ induction s; destruct s'; simpl; trivial.
+ destruct pset_eq; trivial.
+ destruct j; rewrite gnode; simpl; auto.
+Qed.
+
+Theorem ginter:
+ forall s s' : pset,
+ forall j : positive,
+ (contains (inter s s')) j = andb (contains s j) (contains s' j).
+Proof.
+ intros.
+ rewrite inter_noncanon_same.
+ apply ginter_noncanon.
+Qed.
+
+Hint Resolve ginter gunion : pset.
+Hint Rewrite ginter gunion : pset.
+
+Fixpoint subtract_noncanon (s s' : pset) : pset :=
+ if pset_eq s s' then Empty else
+ match s, s' with
+ | Empty, _ => Empty
+ | _, Empty => s
+ | (Node b0 f b1), (Node b0' f' b1') =>
+ Node (subtract_noncanon b0 b0') (andb f (negb f')) (subtract_noncanon b1 b1')
+ end.
+
+Lemma gsubtract_noncanon:
+ forall s s' : pset,
+ forall j : positive,
+ (contains (subtract_noncanon s s')) j = andb (contains s j) (negb (contains s' j)).
+Proof.
+ induction s; destruct s'; intro; simpl.
+ all: destruct pset_eq as [EQ | NEQ]; try congruence.
+ all: autorewrite with pset; simpl; trivial.
+ - rewrite <- EQ.
+ symmetry.
+ apply andb_negb_false.
+ - destruct j; simpl; trivial.
+Qed.
+
+Fixpoint subtract (s s' : pset) : pset :=
+ if pset_eq s s' then Empty else
+ match s, s' with
+ | Empty, _ => Empty
+ | _, Empty => s
+ | (Node b0 f b1), (Node b0' f' b1') =>
+ node (subtract b0 b0') (andb f (negb f')) (subtract b1 b1')
+ end.
+
+Lemma wf_subtract :
+ forall s s', (iswf s) -> (iswf s') -> (iswf (subtract s s')).
+Proof.
+ induction s; destruct s'; intros; simpl.
+ all: destruct pset_eq; trivial.
+ reflexivity.
+
+ unfold iswf in H, H0.
+ simpl in H, H0.
+
+ repeat rewrite andb_true_iff in H.
+ repeat rewrite andb_true_iff in H0.
+ fold (iswf s1) in *.
+ fold (iswf s2) in *.
+ intuition.
+Qed.
+
+Hint Resolve wf_subtract : pset.
+
+Lemma subtract_noncanon_same:
+ forall s s' j, (contains (subtract s s') j) = (contains (subtract_noncanon s s') j).
+Proof.
+ induction s; destruct s'; simpl; trivial.
+ destruct pset_eq; trivial.
+ destruct j; rewrite gnode; simpl; auto.
+Qed.
+
+Theorem gsubtract:
+ forall s s' : pset,
+ forall j : positive,
+ (contains (subtract s s')) j = andb (contains s j) (negb (contains s' j)).
+Proof.
+ intros.
+ rewrite subtract_noncanon_same.
+ apply gsubtract_noncanon.
+Qed.
+
+Hint Resolve gsubtract : pset.
+Hint Rewrite gsubtract : pset.
+
+Lemma wf_is_nonempty :
+ forall s, iswf s -> is_empty s = false -> exists i, contains s i = true.
+Proof.
+ induction s; simpl; trivial.
+ discriminate.
+ intro WF.
+ unfold iswf in WF.
+ simpl in WF.
+ repeat rewrite andb_true_iff in WF.
+ repeat rewrite orb_true_iff in WF.
+ repeat rewrite negb_true_iff in WF.
+ fold (iswf s1) in WF.
+ fold (iswf s2) in WF.
+ intuition.
+ - destruct H5 as [i K].
+ exists (xO i).
+ simpl.
+ assumption.
+ - exists xH.
+ simpl.
+ assumption.
+ - destruct H5 as [i K].
+ exists (xI i).
+ simpl.
+ assumption.
+Qed.
+
+Hint Resolve wf_is_nonempty : pset.
+
+Lemma wf_is_empty1 :
+ forall s, iswf s -> (forall i, (contains s i) = false) -> is_empty s = true.
+Proof.
+ induction s; trivial.
+ intro WF.
+ unfold iswf in WF.
+ simpl in WF.
+ repeat rewrite andb_true_iff in WF.
+ fold (iswf s1) in WF.
+ fold (iswf s2) in WF.
+ intro ALL.
+ intuition.
+ exfalso.
+ repeat rewrite orb_true_iff in H0.
+ repeat rewrite negb_true_iff in H0.
+ intuition.
+ - rewrite H in H0. discriminate.
+ intro i.
+ specialize ALL with (xO i).
+ simpl in ALL.
+ assumption.
+ - specialize ALL with xH.
+ simpl in ALL.
+ congruence.
+ - rewrite H3 in H4. discriminate.
+ intro i.
+ specialize ALL with (xI i).
+ simpl in ALL.
+ assumption.
+Qed.
+
+Hint Resolve wf_is_empty1 : pset.
+
+Lemma wf_eq :
+ forall s s', iswf s -> iswf s' -> s <> s' ->
+ exists i, (contains s i) <> (contains s' i).
+Proof.
+ induction s; destruct s'; intros WF WF' DIFF; simpl.
+ - congruence.
+ - assert (exists i, (contains (Node s'1 b s'2) i)= true) as K by auto with pset.
+ destruct K as [i Z].
+ exists i.
+ rewrite Z.
+ rewrite gempty.
+ discriminate.
+ - assert (exists i, (contains (Node s1 b s2) i)= true) as K by auto with pset.
+ destruct K as [i Z].
+ exists i.
+ rewrite Z.
+ rewrite gempty.
+ discriminate.
+ - destruct (pset_eq s1 s'1).
+ + subst s'1.
+ destruct (pset_eq s2 s'2).
+ * subst s'2.
+ exists xH.
+ simpl.
+ congruence.
+ * specialize IHs2 with s'2.
+ unfold iswf in WF.
+ simpl in WF.
+ repeat rewrite andb_true_iff in WF.
+ fold (iswf s1) in WF.
+ fold (iswf s2) in WF.
+ unfold iswf in WF'.
+ simpl in WF'.
+ repeat rewrite andb_true_iff in WF'.
+ fold (iswf s'2) in WF'.
+ intuition.
+ destruct H1 as [i K].
+ exists (xI i).
+ simpl.
+ assumption.
+ + specialize IHs1 with s'1.
+ unfold iswf in WF.
+ simpl in WF.
+ repeat rewrite andb_true_iff in WF.
+ fold (iswf s1) in WF.
+ fold (iswf s2) in WF.
+ unfold iswf in WF'.
+ simpl in WF'.
+ repeat rewrite andb_true_iff in WF'.
+ fold (iswf s'1) in WF'.
+ fold (iswf s'2) in WF'.
+ intuition.
+ destruct H1 as [i K].
+ exists (xO i).
+ simpl.
+ assumption.
+Qed.
+
+Theorem eq_correct:
+ forall s s',
+ (iswf s) -> (iswf s') ->
+ (forall i, (contains s i) = (contains s' i)) <-> s = s'.
+Proof.
+ intros s s' WF WF'.
+ split.
+ {
+ intro ALL.
+ destruct (pset_eq s s') as [ | INEQ]; trivial.
+ exfalso.
+ destruct (wf_eq s s' WF WF' INEQ) as [i K].
+ specialize ALL with i.
+ congruence.
+ }
+ intro EQ.
+ subst s'.
+ trivial.
+Qed.
+
+Lemma wf_irrelevant:
+ forall s,
+ forall WF WF' : iswf s, WF = WF'.
+Proof.
+ unfold iswf.
+ intros.
+ apply Coq.Logic.Eqdep_dec.eq_proofs_unicity_on.
+ decide equality.
+Qed.
+
+Fixpoint xelements (s : pset) (i : positive)
+ (k: list positive) {struct s}
+ : list positive :=
+ match s with
+ | Empty => k
+ | Node b0 false b1 =>
+ xelements b0 (xO i) (xelements b1 (xI i) k)
+ | Node b0 true b1 =>
+ xelements b0 (xO i) ((prev i) :: xelements b1 (xI i) k)
+ end.
+
+Definition elements (m : pset) := xelements m xH nil.
+
+ Remark xelements_append:
+ forall (m: pset) i k1 k2,
+ xelements m i (k1 ++ k2) = xelements m i k1 ++ k2.
+ Proof.
+ induction m; intros; simpl.
+ - auto.
+ - destruct b; rewrite IHm2; rewrite <- IHm1; auto.
+ Qed.
+
+ Remark xelements_empty:
+ forall i, xelements Empty i nil = nil.
+ Proof.
+ intros; reflexivity.
+ Qed.
+
+ Remark xelements_node:
+ forall (m1: pset) o (m2: pset) i,
+ xelements (Node m1 o m2) i nil =
+ xelements m1 (xO i) nil
+ ++ (if o then (prev i) :: nil else nil)
+ ++ xelements m2 (xI i) nil.
+ Proof.
+ intros. simpl. destruct o; simpl;
+ rewrite <- xelements_append; trivial.
+ Qed.
+
+ Lemma xelements_incl:
+ forall (m: pset) (i : positive) k x,
+ In x k -> In x (xelements m i k).
+ Proof.
+ induction m; intros; simpl.
+ auto.
+ destruct b.
+ apply IHm1. simpl; right; auto.
+ auto.
+ Qed.
+
+ Lemma xelements_correct:
+ forall (m: pset) (i j : positive) k,
+ contains m i=true -> In (prev (prev_append i j)) (xelements m j k).
+ Proof.
+ induction m; intros; simpl.
+ - rewrite gempty in H. discriminate.
+ - destruct b; destruct i; simpl; simpl in H; auto.
+ + apply xelements_incl. simpl.
+ right. auto.
+ + apply xelements_incl. simpl.
+ left. trivial.
+ + apply xelements_incl. auto.
+ + discriminate.
+ Qed.
+
+ Theorem elements_correct:
+ forall (m: pset) (i: positive),
+ contains m i = true -> In i (elements m).
+ Proof.
+ intros m i H.
+ generalize (xelements_correct m i xH nil H). rewrite prev_append_prev. exact id.
+ Qed.
+
+ Lemma in_xelements:
+ forall (m: pset) (i k: positive),
+ In k (xelements m i nil) ->
+ exists j, k = prev (prev_append j i) /\ contains m j = true.
+ Proof.
+ induction m; intros.
+ - rewrite xelements_empty in H. contradiction.
+ - rewrite xelements_node in H. rewrite ! in_app_iff in H. destruct H as [P | [P | P]].
+ + specialize IHm1 with (k := k) (i := xO i).
+ intuition.
+ destruct H as [j [Q R]].
+ exists (xO j).
+ auto.
+ + destruct b; simpl in P; intuition auto. subst k. exists xH; auto.
+ + specialize IHm2 with (k := k) (i := xI i).
+ intuition.
+ destruct H as [j [Q R]].
+ exists (xI j).
+ auto.
+ Qed.
+
+ Theorem elements_complete:
+ forall (m: pset) (i: positive),
+ In i (elements m) -> contains m i = true.
+ Proof.
+ unfold elements. intros m i H.
+ destruct (in_xelements m 1 i H) as [j [P Q]].
+ rewrite prev_append_prev in P. change i with (prev_append 1 i) in P.
+ replace j with i in * by (apply prev_append_inj; auto).
+ assumption.
+ Qed.
+
+
+ Fixpoint xfold {B: Type} (f: B -> positive -> B)
+ (i: positive) (m: pset) (v: B) {struct m} : B :=
+ match m with
+ | Empty => v
+ | Node l false r =>
+ let v1 := xfold f (xO i) l v in
+ xfold f (xI i) r v1
+ | Node l true r =>
+ let v1 := xfold f (xO i) l v in
+ let v2 := f v1 (prev i) in
+ xfold f (xI i) r v2
+ end.
+
+ Definition fold {B : Type} (f: B -> positive -> B) (m: pset) (v: B) :=
+ xfold f xH m v.
+
+
+ Lemma xfold_xelements:
+ forall {B: Type} (f: B -> positive -> B) m i v l,
+ List.fold_left f l (xfold f i m v) =
+ List.fold_left f (xelements m i l) v.
+ Proof.
+ induction m; intros; simpl; trivial.
+ destruct b; simpl.
+ all: rewrite <- IHm1; simpl; rewrite <- IHm2; trivial.
+ Qed.
+
+ Theorem fold_spec:
+ forall {B: Type} (f: B -> positive -> B) (v: B) (m: pset),
+ fold f m v =
+ List.fold_left f (elements m) v.
+ Proof.
+ intros. unfold fold, elements. rewrite <- xfold_xelements. auto.
+ Qed.
+
+ Fixpoint is_subset (s s' : pset) {struct s} :=
+ if pset_eq s s' then true else
+ match s, s' with
+ | Empty, _ => true
+ | _, Empty => false
+ | (Node b0 f b1), (Node b0' f' b1') =>
+ ((negb f) || f') &&
+ (is_subset b0 b0') &&
+ (is_subset b1 b1')
+ end.
+
+ Theorem is_subset_spec1:
+ forall s s',
+ is_subset s s' = true ->
+ (forall i, contains s i = true -> contains s' i = true).
+ Proof.
+ induction s; destruct s'; simpl; intros; trivial.
+ all: destruct pset_eq.
+ all: try discriminate.
+ all: try rewrite gempty in *.
+ all: try discriminate.
+ { congruence.
+ }
+ repeat rewrite andb_true_iff in H.
+ repeat rewrite orb_true_iff in H.
+ repeat rewrite negb_true_iff in H.
+ specialize IHs1 with (s' := s'1).
+ specialize IHs2 with (s' := s'2).
+ intuition.
+ - destruct i; simpl in *; auto. congruence.
+ - destruct i; simpl in *; auto.
+ Qed.
+
+ Theorem is_subset_spec2:
+ forall s s',
+ iswf s ->
+ (forall i, contains s i = true -> contains s' i = true) ->
+ is_subset s s' = true.
+ Proof.
+ induction s; destruct s'; simpl.
+ all: intro WF.
+ all: unfold iswf in WF.
+ all: simpl in WF.
+ all: repeat rewrite andb_true_iff in WF.
+ all: destruct pset_eq; trivial.
+ all: fold (iswf s1) in WF.
+ all: fold (iswf s2) in WF.
+ - repeat rewrite orb_true_iff in WF.
+ repeat rewrite negb_true_iff in WF.
+ intuition.
+ + destruct (wf_is_nonempty s1 H2 H1) as [i K].
+ specialize H with (xO i).
+ simpl in H.
+ auto.
+ + specialize H with xH.
+ simpl in H.
+ auto.
+ + destruct (wf_is_nonempty s2 H3 H0) as [i K].
+ specialize H with (xI i).
+ simpl in H.
+ auto.
+ - intro CONTAINS.
+ repeat rewrite andb_true_iff.
+ specialize IHs1 with (s' := s'1).
+ specialize IHs2 with (s' := s'2).
+ intuition.
+ + specialize CONTAINS with xH.
+ simpl in CONTAINS.
+ destruct b; destruct b0; intuition congruence.
+ + apply H.
+ intros.
+ specialize CONTAINS with (xO i).
+ simpl in CONTAINS.
+ auto.
+ + apply H3.
+ intros.
+ specialize CONTAINS with (xI i).
+ simpl in CONTAINS.
+ auto.
+ Qed.
+
+ Fixpoint xfilter (fn : positive -> bool)
+ (s : pset) (i : positive) {struct s} : pset :=
+ match s with
+ | Empty => Empty
+ | Node b0 f b1 =>
+ node (xfilter fn b0 (xO i))
+ (f && (fn (prev i)))
+ (xfilter fn b1 (xI i))
+ end.
+
+ Lemma gxfilter:
+ forall fn s j i,
+ contains (xfilter fn s i) j =
+ contains s j &&
+ (fn (prev (prev_append j i))).
+ Proof.
+ induction s; simpl; intros; trivial.
+ {
+ rewrite gempty.
+ trivial.
+ }
+ rewrite gnode.
+ destruct j; simpl; auto.
+ Qed.
+
+ Definition filter (fn : positive -> bool) m := xfilter fn m xH.
+
+ Lemma gfilter:
+ forall fn s j,
+ contains (filter fn s) j =
+ contains s j && (fn j).
+ Proof.
+ intros.
+ unfold filter.
+ rewrite gxfilter.
+ rewrite prev_append_prev.
+ reflexivity.
+ Qed.
+
+ Lemma wf_xfilter:
+ forall fn s j,
+ iswf s -> iswf (xfilter fn s j).
+ Proof.
+ induction s; intros; trivial.
+ simpl.
+ unfold iswf in H.
+ simpl in H.
+ repeat rewrite andb_true_iff in H.
+ fold (iswf s1) in H.
+ fold (iswf s2) in H.
+ intuition.
+ Qed.
+
+ Lemma wf_filter:
+ forall fn s,
+ iswf s -> iswf (filter fn s).
+ Proof.
+ intros.
+ apply wf_xfilter; auto.
+ Qed.
+End WR.
+
+Record pset : Type := mkpset
+{
+ pset_x : WR.pset ;
+ pset_wf : WR.wf pset_x = true
+}.
+
+Definition t := pset.
+
+Program Definition empty : t := mkpset WR.empty _.
+
+Definition contains (s : t) (i : positive) :=
+ WR.contains (pset_x s) i.
+
+Theorem gempty :
+ forall i : positive,
+ contains empty i = false.
+Proof.
+ intro.
+ unfold empty, contains.
+ simpl.
+ auto with pset.
+Qed.
+
+Program Definition add (i : positive) (s : t) :=
+ mkpset (WR.add i (pset_x s)) _.
+Obligation 1.
+ destruct s.
+ apply WR.wf_add.
+ simpl.
+ assumption.
+Qed.
+
+Theorem gaddo :
+ forall i j : positive,
+ forall s : t,
+ i <> j ->
+ contains (add i s) j = contains s j.
+Proof.
+ intros.
+ unfold contains.
+ simpl.
+ auto with pset.
+Qed.
+
+Theorem gadds :
+ forall i : positive,
+ forall s : pset,
+ contains (add i s) i = true.
+Proof.
+ intros.
+ unfold contains.
+ simpl.
+ auto with pset.
+Qed.
+
+Program Definition remove (i : positive) (s : t) :=
+ mkpset (WR.remove i (pset_x s)) _.
+Obligation 1.
+ destruct s.
+ apply WR.wf_remove.
+ simpl.
+ assumption.
+Qed.
+
+Theorem gremoves :
+ forall i : positive,
+ forall s : pset,
+ contains (remove i s) i = false.
+Proof.
+ intros.
+ unfold contains.
+ simpl.
+ auto with pset.
+Qed.
+
+Theorem gremoveo :
+ forall i j : positive,
+ forall s : pset,
+ i<>j ->
+ contains (remove i s) j = contains s j.
+Proof.
+ intros.
+ unfold contains.
+ simpl.
+ auto with pset.
+Qed.
+
+Program Definition union (s s' : t) :=
+ mkpset (WR.union (pset_x s) (pset_x s')) _.
+Obligation 1.
+ destruct s; destruct s'.
+ apply WR.wf_union; simpl; assumption.
+Qed.
+
+Theorem gunion:
+ forall s s' : pset,
+ forall j : positive,
+ (contains (union s s')) j = orb (contains s j) (contains s' j).
+Proof.
+ intros.
+ unfold contains.
+ simpl.
+ auto with pset.
+Qed.
+
+Program Definition inter (s s' : t) :=
+ mkpset (WR.inter (pset_x s) (pset_x s')) _.
+Obligation 1.
+ destruct s; destruct s'.
+ apply WR.wf_inter; simpl; assumption.
+Qed.
+
+Theorem ginter:
+ forall s s' : pset,
+ forall j : positive,
+ (contains (inter s s')) j = andb (contains s j) (contains s' j).
+Proof.
+ intros.
+ unfold contains.
+ simpl.
+ auto with pset.
+Qed.
+
+Program Definition subtract (s s' : t) :=
+ mkpset (WR.subtract (pset_x s) (pset_x s')) _.
+Obligation 1.
+ destruct s; destruct s'.
+ apply WR.wf_subtract; simpl; assumption.
+Qed.
+
+Theorem gsubtract:
+ forall s s' : pset,
+ forall j : positive,
+ (contains (subtract s s')) j = andb (contains s j) (negb (contains s' j)).
+Proof.
+ intros.
+ unfold contains.
+ simpl.
+ auto with pset.
+Qed.
+
+Theorem uneq_exists :
+ forall s s', s <> s' ->
+ exists i, (contains s i) <> (contains s' i).
+Proof.
+ destruct s as [s WF]; destruct s' as [s' WF']; simpl.
+ intro UNEQ.
+ destruct (WR.pset_eq s s').
+ { subst s'.
+ pose proof (WR.wf_irrelevant s WF WF').
+ subst WF'.
+ congruence.
+ }
+ unfold contains; simpl.
+ apply WR.wf_eq; trivial.
+Qed.
+
+Definition eq:
+ forall s s' : t, {s = s'} + {s <> s'}.
+Proof.
+ destruct s as [s WF].
+ destruct s' as [s' WF'].
+ destruct (WR.pset_eq s s'); simpl.
+ {
+ subst s'.
+ left.
+ pose proof (WR.wf_irrelevant s WF WF').
+ subst WF'.
+ reflexivity.
+ }
+ right.
+ congruence.
+Qed.
+
+Theorem eq_spec :
+ forall s s',
+ (forall i, (contains s i) = (contains s' i)) <-> s = s'.
+Proof.
+ intros.
+ split; intro K.
+ 2: subst s'; reflexivity.
+ destruct s as [s WF].
+ destruct s' as [s' WF'].
+ unfold contains in K.
+ simpl in K.
+ fold (WR.iswf s) in WF.
+ fold (WR.iswf s') in WF'.
+ assert (s = s').
+ {
+ apply WR.eq_correct; assumption.
+ }
+ subst s'.
+ pose proof (WR.wf_irrelevant s WF WF').
+ subst WF'.
+ reflexivity.
+Qed.
+
+
+Definition elements (m : t) := WR.elements (pset_x m).
+
+
+Theorem elements_correct:
+ forall (m: pset) (i: positive),
+ contains m i = true -> In i (elements m).
+Proof.
+ destruct m; unfold elements, contains; simpl.
+ apply WR.elements_correct.
+Qed.
+
+
+Theorem elements_complete:
+ forall (m: pset) (i: positive),
+ In i (elements m) -> contains m i = true.
+Proof.
+ destruct m; unfold elements, contains; simpl.
+ apply WR.elements_complete.
+Qed.
+
+
+Definition fold {B : Type} (f : B -> positive -> B) (m : t) (v : B) : B :=
+ WR.fold f (pset_x m) v.
+
+Theorem fold_spec:
+ forall {B: Type} (f: B -> positive -> B) (v: B) (m: pset),
+ fold f m v =
+ List.fold_left f (elements m) v.
+Proof.
+ destruct m; unfold fold, elements; simpl.
+ apply WR.fold_spec.
+Qed.
+
+Definition is_subset (s s' : t) := WR.is_subset (pset_x s) (pset_x s').
+
+Theorem is_subset_spec1:
+ forall s s',
+ is_subset s s' = true ->
+ (forall i, contains s i = true -> contains s' i = true).
+Proof.
+ unfold is_subset, contains.
+ intros s s' H.
+ apply WR.is_subset_spec1.
+ assumption.
+Qed.
+
+Theorem is_subset_spec2:
+ forall s s',
+ (forall i, contains s i = true -> contains s' i = true) ->
+ is_subset s s' = true.
+Proof.
+ destruct s; destruct s';
+ unfold is_subset, contains;
+ intros.
+ apply WR.is_subset_spec2.
+ all: simpl.
+ all: assumption.
+Qed.
+
+Hint Resolve is_subset_spec1 is_subset_spec2 : pset.
+
+Theorem is_subset_spec:
+ forall s s',
+ is_subset s s' = true <->
+ (forall i, contains s i = true -> contains s' i = true).
+Proof.
+ intros.
+ split;
+ eauto with pset.
+Qed.
+
+Program Definition filter (fn : positive -> bool) (m : t) : t :=
+ (mkpset (WR.filter fn (pset_x m)) _).
+Obligation 1.
+ apply WR.wf_filter.
+ unfold WR.iswf.
+ destruct m.
+ assumption.
+Qed.
+
+Theorem gfilter:
+ forall fn s j,
+ contains (filter fn s) j =
+ contains s j && (fn j).
+Proof.
+ unfold contains, filter.
+ simpl.
+ intros.
+ apply WR.gfilter.
+Qed.