aboutsummaryrefslogtreecommitdiffstats
path: root/lib/IEEE754_extra.v
diff options
context:
space:
mode:
authorXavier Leroy <xavier.leroy@college-de-france.fr>2019-04-26 14:17:38 +0200
committerXavier Leroy <xavier.leroy@college-de-france.fr>2019-04-26 14:17:38 +0200
commit8df51b9866ccda99980e9f4de7ec2f2a0cd416e6 (patch)
tree8f147509fd48b4892ea1622ffa692e55d2d2de8b /lib/IEEE754_extra.v
parent08fd5faf30c18e17caa610076e67cf002a01d8b4 (diff)
downloadcompcert-kvx-8df51b9866ccda99980e9f4de7ec2f2a0cd416e6.tar.gz
compcert-kvx-8df51b9866ccda99980e9f4de7ec2f2a0cd416e6.zip
Rename Fappli_IEEE_extra.v into IEEE754_extra.v
To match the new module names from version 3 of Flocq. Plus, it's shorter.
Diffstat (limited to 'lib/IEEE754_extra.v')
-rw-r--r--lib/IEEE754_extra.v1515
1 files changed, 1515 insertions, 0 deletions
diff --git a/lib/IEEE754_extra.v b/lib/IEEE754_extra.v
new file mode 100644
index 00000000..c23149be
--- /dev/null
+++ b/lib/IEEE754_extra.v
@@ -0,0 +1,1515 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* Jacques-Henri Jourdan, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the GNU General Public License as published by *)
+(* the Free Software Foundation, either version 2 of the License, or *)
+(* (at your option) any later version. This file is also distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Additional operations and proofs about IEEE-754 binary
+ floating-point numbers, on top of the Flocq library. *)
+
+Require Import Psatz.
+Require Import Bool.
+Require Import Eqdep_dec.
+(*From Flocq *)
+Require Import Core Digits Operations Round Bracket Sterbenz Binary Round_odd.
+
+Local Open Scope Z_scope.
+
+Section Extra_ops.
+
+(** [prec] is the number of bits of the mantissa including the implicit one.
+ [emax] is the exponent of the infinities.
+ Typically p=24 and emax = 128 in single precision. *)
+
+Variable prec emax : Z.
+Context (prec_gt_0_ : Prec_gt_0 prec).
+Let emin := (3 - emax - prec)%Z.
+Let fexp := FLT_exp emin prec.
+Hypothesis Hmax : (prec < emax)%Z.
+Let binary_float := binary_float prec emax.
+
+(** Remarks on [is_finite] *)
+
+Remark is_finite_not_is_nan:
+ forall (f: binary_float), is_finite _ _ f = true -> is_nan _ _ f = false.
+Proof.
+ destruct f; reflexivity || discriminate.
+Qed.
+
+Remark is_finite_strict_finite:
+ forall (f: binary_float), is_finite_strict _ _ f = true -> is_finite _ _ f = true.
+Proof.
+ destruct f; reflexivity || discriminate.
+Qed.
+
+(** Digression on FP numbers that cannot be [-0.0]. *)
+
+Definition is_finite_pos0 (f: binary_float) : bool :=
+ match f with
+ | B754_zero _ _ s => negb s
+ | B754_infinity _ _ _ => false
+ | B754_nan _ _ _ _ _ => false
+ | B754_finite _ _ _ _ _ _ => true
+ end.
+
+Lemma Bsign_pos0:
+ forall x, is_finite_pos0 x = true -> Bsign _ _ x = Rlt_bool (B2R _ _ x) 0%R.
+Proof.
+ intros. destruct x as [ [] | | | [] ex mx Bx ]; try discriminate; simpl.
+- rewrite Rlt_bool_false; auto. lra.
+- rewrite Rlt_bool_true; auto. apply F2R_lt_0. compute; auto.
+- rewrite Rlt_bool_false; auto.
+ assert ((F2R (Float radix2 (Z.pos ex) mx) > 0)%R) by
+ ( apply F2R_gt_0; compute; auto ).
+ lra.
+Qed.
+
+Theorem B2R_inj_pos0:
+ forall x y,
+ is_finite_pos0 x = true -> is_finite_pos0 y = true ->
+ B2R _ _ x = B2R _ _ y ->
+ x = y.
+Proof.
+ intros. apply B2R_Bsign_inj.
+ destruct x; reflexivity||discriminate.
+ destruct y; reflexivity||discriminate.
+ auto.
+ rewrite ! Bsign_pos0 by auto. rewrite H1; auto.
+Qed.
+
+(** ** Decidable equality *)
+
+Definition Beq_dec: forall (f1 f2: binary_float), {f1 = f2} + {f1 <> f2}.
+Proof.
+ assert (UIP_bool: forall (b1 b2: bool) (e e': b1 = b2), e = e').
+ { intros. apply UIP_dec. decide equality. }
+ Ltac try_not_eq := try solve [right; congruence].
+ destruct f1 as [s1|s1|s1 p1 H1|s1 m1 e1 H1], f2 as [s2|s2|s2 p2 H2|s2 m2 e2 H2];
+ try destruct s1; try destruct s2;
+ try solve [left; auto]; try_not_eq.
+ destruct (Pos.eq_dec p1 p2); try_not_eq;
+ subst; left; f_equal; f_equal; apply UIP_bool.
+ destruct (Pos.eq_dec p1 p2); try_not_eq;
+ subst; left; f_equal; f_equal; apply UIP_bool.
+ destruct (Pos.eq_dec m1 m2); try_not_eq;
+ destruct (Z.eq_dec e1 e2); try solve [right; intro H; inversion H; congruence];
+ subst; left; f_equal; apply UIP_bool.
+ destruct (Pos.eq_dec m1 m2); try_not_eq;
+ destruct (Z.eq_dec e1 e2); try solve [right; intro H; inversion H; congruence];
+ subst; left; f_equal; apply UIP_bool.
+Defined.
+
+(** ** Conversion from an integer to a FP number *)
+
+(** Integers that can be represented exactly as FP numbers. *)
+
+Definition integer_representable (n: Z): Prop :=
+ Z.abs n <= 2^emax - 2^(emax - prec) /\ generic_format radix2 fexp (IZR n).
+
+Let int_upper_bound_eq: 2^emax - 2^(emax - prec) = (2^prec - 1) * 2^(emax - prec).
+Proof.
+ red in prec_gt_0_.
+ ring_simplify. rewrite <- (Zpower_plus radix2) by omega. f_equal. f_equal. omega.
+Qed.
+
+Lemma integer_representable_n2p:
+ forall n p,
+ -2^prec < n < 2^prec -> 0 <= p -> p <= emax - prec ->
+ integer_representable (n * 2^p).
+Proof.
+ intros; split.
+- red in prec_gt_0_. replace (Z.abs (n * 2^p)) with (Z.abs n * 2^p).
+ rewrite int_upper_bound_eq.
+ apply Zmult_le_compat. zify; omega. apply (Zpower_le radix2); omega.
+ zify; omega. apply (Zpower_ge_0 radix2).
+ rewrite Z.abs_mul. f_equal. rewrite Z.abs_eq. auto. apply (Zpower_ge_0 radix2).
+- apply generic_format_FLT. exists (Float radix2 n p).
+ unfold F2R; simpl.
+ rewrite <- IZR_Zpower by auto. apply mult_IZR.
+ simpl; zify; omega.
+ unfold emin, Fexp; red in prec_gt_0_; omega.
+Qed.
+
+Lemma integer_representable_2p:
+ forall p,
+ 0 <= p <= emax - 1 ->
+ integer_representable (2^p).
+Proof.
+ intros; split.
+- red in prec_gt_0_.
+ rewrite Z.abs_eq by (apply (Zpower_ge_0 radix2)).
+ apply Z.le_trans with (2^(emax-1)).
+ apply (Zpower_le radix2); omega.
+ assert (2^emax = 2^(emax-1)*2).
+ { change 2 with (2^1) at 3. rewrite <- (Zpower_plus radix2) by omega.
+ f_equal. omega. }
+ assert (2^(emax - prec) <= 2^(emax - 1)).
+ { apply (Zpower_le radix2). omega. }
+ omega.
+- red in prec_gt_0_.
+ apply generic_format_FLT. exists (Float radix2 1 p).
+ unfold F2R; simpl.
+ rewrite Rmult_1_l. rewrite <- IZR_Zpower. auto. omega.
+ simpl Z.abs. change 1 with (2^0). apply (Zpower_lt radix2). omega. auto.
+ unfold emin, Fexp; omega.
+Qed.
+
+Lemma integer_representable_opp:
+ forall n, integer_representable n -> integer_representable (-n).
+Proof.
+ intros n (A & B); split. rewrite Z.abs_opp. auto.
+ rewrite opp_IZR. apply generic_format_opp; auto.
+Qed.
+
+Lemma integer_representable_n2p_wide:
+ forall n p,
+ -2^prec <= n <= 2^prec -> 0 <= p -> p < emax - prec ->
+ integer_representable (n * 2^p).
+Proof.
+ intros. red in prec_gt_0_.
+ destruct (Z.eq_dec n (2^prec)); [idtac | destruct (Z.eq_dec n (-2^prec))].
+- rewrite e. rewrite <- (Zpower_plus radix2) by omega.
+ apply integer_representable_2p. omega.
+- rewrite e. rewrite <- Zopp_mult_distr_l. apply integer_representable_opp.
+ rewrite <- (Zpower_plus radix2) by omega.
+ apply integer_representable_2p. omega.
+- apply integer_representable_n2p; omega.
+Qed.
+
+Lemma integer_representable_n:
+ forall n, -2^prec <= n <= 2^prec -> integer_representable n.
+Proof.
+ red in prec_gt_0_. intros.
+ replace n with (n * 2^0) by (change (2^0) with 1; ring).
+ apply integer_representable_n2p_wide. auto. omega. omega.
+Qed.
+
+Lemma round_int_no_overflow:
+ forall n,
+ Z.abs n <= 2^emax - 2^(emax-prec) ->
+ (Rabs (round radix2 fexp (round_mode mode_NE) (IZR n)) < bpow radix2 emax)%R.
+Proof.
+ intros. red in prec_gt_0_.
+ rewrite <- round_NE_abs.
+ apply Rle_lt_trans with (IZR (2^emax - 2^(emax-prec))).
+ apply round_le_generic. apply fexp_correct; auto. apply valid_rnd_N.
+ apply generic_format_FLT. exists (Float radix2 (2^prec-1) (emax-prec)).
+ rewrite int_upper_bound_eq. unfold F2R; simpl.
+ rewrite <- IZR_Zpower by omega. rewrite <- mult_IZR. auto.
+ assert (0 < 2^prec) by (apply (Zpower_gt_0 radix2); omega).
+ unfold Fnum; simpl; zify; omega.
+ unfold emin, Fexp; omega.
+ rewrite <- abs_IZR. apply IZR_le. auto.
+ rewrite <- IZR_Zpower by omega. apply IZR_lt. simpl.
+ assert (0 < 2^(emax-prec)) by (apply (Zpower_gt_0 radix2); omega).
+ omega.
+ apply fexp_correct. auto.
+Qed.
+
+(** Conversion from an integer. Round to nearest. *)
+
+Definition BofZ (n: Z) : binary_float :=
+ binary_normalize prec emax prec_gt_0_ Hmax mode_NE n 0 false.
+
+Theorem BofZ_correct:
+ forall n,
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode mode_NE) (IZR n))) (bpow radix2 emax)
+ then
+ B2R prec emax (BofZ n) = round radix2 fexp (round_mode mode_NE) (IZR n) /\
+ is_finite _ _ (BofZ n) = true /\
+ Bsign prec emax (BofZ n) = Z.ltb n 0
+ else
+ B2FF prec emax (BofZ n) = binary_overflow prec emax mode_NE (Z.ltb n 0).
+Proof.
+ intros.
+ generalize (binary_normalize_correct prec emax prec_gt_0_ Hmax mode_NE n 0 false).
+ fold emin; fold fexp; fold (BofZ n).
+ replace (F2R {| Fnum := n; Fexp := 0 |}) with (IZR n).
+ destruct Rlt_bool.
+- intros (A & B & C). split; [|split].
+ + auto.
+ + auto.
+ + rewrite C. rewrite Rcompare_IZR.
+ unfold Z.ltb. auto.
+- intros A; rewrite A. f_equal.
+ generalize (Z.ltb_spec n 0); intros SPEC; inversion SPEC.
+ apply Rlt_bool_true; apply IZR_lt; auto.
+ apply Rlt_bool_false; apply IZR_le; auto.
+- unfold F2R; simpl. ring.
+Qed.
+
+Theorem BofZ_finite:
+ forall n,
+ Z.abs n <= 2^emax - 2^(emax-prec) ->
+ B2R _ _ (BofZ n) = round radix2 fexp (round_mode mode_NE) (IZR n)
+ /\ is_finite _ _ (BofZ n) = true
+ /\ Bsign _ _ (BofZ n) = Z.ltb n 0%Z.
+Proof.
+ intros.
+ generalize (BofZ_correct n). rewrite Rlt_bool_true. auto.
+ apply round_int_no_overflow; auto.
+Qed.
+
+Theorem BofZ_representable:
+ forall n,
+ integer_representable n ->
+ B2R _ _ (BofZ n) = IZR n
+ /\ is_finite _ _ (BofZ n) = true
+ /\ Bsign _ _ (BofZ n) = (n <? 0).
+Proof.
+ intros. destruct H as (P & Q). destruct (BofZ_finite n) as (A & B & C). auto.
+ intuition. rewrite A. apply round_generic. apply valid_rnd_round_mode. auto.
+Qed.
+
+Theorem BofZ_exact:
+ forall n,
+ -2^prec <= n <= 2^prec ->
+ B2R _ _ (BofZ n) = IZR n
+ /\ is_finite _ _ (BofZ n) = true
+ /\ Bsign _ _ (BofZ n) = Z.ltb n 0%Z.
+Proof.
+ intros. apply BofZ_representable. apply integer_representable_n; auto.
+Qed.
+
+Lemma BofZ_finite_pos0:
+ forall n,
+ Z.abs n <= 2^emax - 2^(emax-prec) -> is_finite_pos0 (BofZ n) = true.
+Proof.
+ intros.
+ generalize (binary_normalize_correct prec emax prec_gt_0_ Hmax mode_NE n 0 false).
+ fold emin; fold fexp; fold (BofZ n).
+ replace (F2R {| Fnum := n; Fexp := 0 |}) with (IZR n) by
+ (unfold F2R; simpl; ring).
+ rewrite Rlt_bool_true by (apply round_int_no_overflow; auto).
+ intros (A & B & C).
+ destruct (BofZ n); auto; try discriminate.
+ simpl in *. rewrite C. rewrite Rcompare_IZR.
+ generalize (Zcompare_spec n 0); intros SPEC; inversion SPEC; auto.
+ assert ((round radix2 fexp ZnearestE (IZR n) <= -1)%R).
+ { apply round_le_generic. apply fexp_correct. auto. apply valid_rnd_N.
+ apply (integer_representable_opp 1).
+ apply (integer_representable_2p 0).
+ red in prec_gt_0_; omega.
+ apply IZR_le; omega.
+ }
+ lra.
+Qed.
+
+Lemma BofZ_finite_equal:
+ forall x y,
+ Z.abs x <= 2^emax - 2^(emax-prec) ->
+ Z.abs y <= 2^emax - 2^(emax-prec) ->
+ B2R _ _ (BofZ x) = B2R _ _ (BofZ y) ->
+ BofZ x = BofZ y.
+Proof.
+ intros. apply B2R_inj_pos0; auto; apply BofZ_finite_pos0; auto.
+Qed.
+
+(** Commutation properties with addition, subtraction, multiplication. *)
+
+Theorem BofZ_plus:
+ forall nan p q,
+ integer_representable p -> integer_representable q ->
+ Bplus _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) = BofZ (p + q).
+Proof.
+ intros.
+ destruct (BofZ_representable p) as (A & B & C); auto.
+ destruct (BofZ_representable q) as (D & E & F); auto.
+ generalize (Bplus_correct _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) B E).
+ fold emin; fold fexp.
+ rewrite A, D. rewrite <- plus_IZR.
+ generalize (BofZ_correct (p + q)). destruct Rlt_bool.
+- intros (P & Q & R) (U & V & W).
+ apply B2R_Bsign_inj; auto.
+ rewrite P, U; auto.
+ rewrite R, W, C, F.
+ rewrite Rcompare_IZR. unfold Z.ltb at 3.
+ generalize (Zcompare_spec (p + q) 0); intros SPEC; inversion SPEC; auto.
+ assert (EITHER: 0 <= p \/ 0 <= q) by omega.
+ destruct EITHER; [apply andb_false_intro1 | apply andb_false_intro2];
+ apply Zlt_bool_false; auto.
+- intros P (U & V).
+ apply B2FF_inj.
+ rewrite P, U, C. f_equal. rewrite C, F in V.
+ generalize (Zlt_bool_spec p 0) (Zlt_bool_spec q 0). rewrite <- V.
+ intros SPEC1 SPEC2; inversion SPEC1; inversion SPEC2; try congruence; symmetry.
+ apply Zlt_bool_true; omega.
+ apply Zlt_bool_false; omega.
+Qed.
+
+Theorem BofZ_minus:
+ forall nan p q,
+ integer_representable p -> integer_representable q ->
+ Bminus _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) = BofZ (p - q).
+Proof.
+ intros.
+ destruct (BofZ_representable p) as (A & B & C); auto.
+ destruct (BofZ_representable q) as (D & E & F); auto.
+ generalize (Bminus_correct _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) B E).
+ fold emin; fold fexp.
+ rewrite A, D. rewrite <- minus_IZR.
+ generalize (BofZ_correct (p - q)). destruct Rlt_bool.
+- intros (P & Q & R) (U & V & W).
+ apply B2R_Bsign_inj; auto.
+ rewrite P, U; auto.
+ rewrite R, W, C, F.
+ rewrite Rcompare_IZR. unfold Z.ltb at 3.
+ generalize (Zcompare_spec (p - q) 0); intros SPEC; inversion SPEC; auto.
+ assert (EITHER: 0 <= p \/ q < 0) by omega.
+ destruct EITHER; [apply andb_false_intro1 | apply andb_false_intro2].
+ rewrite Zlt_bool_false; auto.
+ rewrite Zlt_bool_true; auto.
+- intros P (U & V).
+ apply B2FF_inj.
+ rewrite P, U, C. f_equal. rewrite C, F in V.
+ generalize (Zlt_bool_spec p 0) (Zlt_bool_spec q 0). rewrite V.
+ intros SPEC1 SPEC2; inversion SPEC1; inversion SPEC2; symmetry.
+ rewrite <- H3 in H1; discriminate.
+ apply Zlt_bool_true; omega.
+ apply Zlt_bool_false; omega.
+ rewrite <- H3 in H1; discriminate.
+Qed.
+
+Theorem BofZ_mult:
+ forall nan p q,
+ integer_representable p -> integer_representable q ->
+ 0 < q ->
+ Bmult _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q) = BofZ (p * q).
+Proof.
+ intros.
+ assert (SIGN: xorb (p <? 0) (q <? 0) = (p * q <? 0)).
+ {
+ rewrite (Zlt_bool_false q) by omega.
+ generalize (Zlt_bool_spec p 0); intros SPEC; inversion SPEC; simpl; symmetry.
+ apply Zlt_bool_true. rewrite Z.mul_comm. apply Z.mul_pos_neg; omega.
+ apply Zlt_bool_false. apply Zsame_sign_imp; omega.
+ }
+ destruct (BofZ_representable p) as (A & B & C); auto.
+ destruct (BofZ_representable q) as (D & E & F); auto.
+ generalize (Bmult_correct _ _ _ Hmax nan mode_NE (BofZ p) (BofZ q)).
+ fold emin; fold fexp.
+ rewrite A, B, C, D, E, F. rewrite <- mult_IZR.
+ generalize (BofZ_correct (p * q)). destruct Rlt_bool.
+- intros (P & Q & R) (U & V & W).
+ apply B2R_Bsign_inj; auto.
+ rewrite P, U; auto.
+ rewrite R, W; auto.
+ apply is_finite_not_is_nan; auto.
+- intros P U.
+ apply B2FF_inj. rewrite P, U. f_equal. auto.
+Qed.
+
+Theorem BofZ_mult_2p:
+ forall nan x p,
+ Z.abs x <= 2^emax - 2^(emax-prec) ->
+ 2^prec <= Z.abs x ->
+ 0 <= p <= emax - 1 ->
+ Bmult _ _ _ Hmax nan mode_NE (BofZ x) (BofZ (2^p)) = BofZ (x * 2^p).
+Proof.
+ intros.
+ destruct (Z.eq_dec x 0).
+- subst x. apply BofZ_mult.
+ apply integer_representable_n.
+ generalize (Zpower_ge_0 radix2 prec). simpl; omega.
+ apply integer_representable_2p. auto.
+ apply (Zpower_gt_0 radix2).
+ omega.
+- assert (IZR x <> 0%R) by (apply (IZR_neq _ _ n)).
+ destruct (BofZ_finite x H) as (A & B & C).
+ destruct (BofZ_representable (2^p)) as (D & E & F).
+ apply integer_representable_2p. auto.
+ assert (cexp radix2 fexp (IZR (x * 2^p)) =
+ cexp radix2 fexp (IZR x) + p).
+ {
+ unfold cexp, fexp. rewrite mult_IZR.
+ change (2^p) with (radix2^p). rewrite IZR_Zpower by omega.
+ rewrite mag_mult_bpow by auto.
+ assert (prec + 1 <= mag radix2 (IZR x)).
+ { rewrite <- (mag_abs radix2 (IZR x)).
+ rewrite <- (mag_bpow radix2 prec).
+ apply mag_le.
+ apply bpow_gt_0. rewrite <- IZR_Zpower by (red in prec_gt_0_;omega).
+ rewrite <- abs_IZR. apply IZR_le; auto. }
+ unfold FLT_exp.
+ unfold emin; red in prec_gt_0_; zify; omega.
+ }
+ assert (forall m, round radix2 fexp m (IZR x) * IZR (2^p) =
+ round radix2 fexp m (IZR (x * 2^p)))%R.
+ {
+ intros. unfold round, scaled_mantissa. rewrite H3.
+ rewrite mult_IZR. rewrite Z.opp_add_distr. rewrite bpow_plus.
+ set (a := IZR x); set (b := bpow radix2 (- cexp radix2 fexp a)).
+ replace (a * IZR (2^p) * (b * bpow radix2 (-p)))%R with (a * b)%R.
+ unfold F2R; simpl. rewrite Rmult_assoc. f_equal.
+ rewrite bpow_plus. f_equal. apply (IZR_Zpower radix2). omega.
+ transitivity ((a * b) * (IZR (2^p) * bpow radix2 (-p)))%R.
+ rewrite (IZR_Zpower radix2). rewrite <- bpow_plus.
+ replace (p + -p) with 0 by omega. change (bpow radix2 0) with 1%R. ring.
+ omega.
+ ring.
+ }
+ assert (forall m x,
+ round radix2 fexp (round_mode m) (round radix2 fexp (round_mode m) x) =
+ round radix2 fexp (round_mode m) x).
+ {
+ intros. apply round_generic. apply valid_rnd_round_mode.
+ apply generic_format_round. apply fexp_correct; auto.
+ apply valid_rnd_round_mode.
+ }
+ assert (xorb (x <? 0) (2^p <? 0) = (x * 2^p <? 0)).
+ {
+ assert (0 < 2^p) by (apply (Zpower_gt_0 radix2); omega).
+ rewrite (Zlt_bool_false (2^p)) by omega. rewrite xorb_false_r.
+ symmetry. generalize (Zlt_bool_spec x 0); intros SPEC; inversion SPEC.
+ apply Zlt_bool_true. apply Z.mul_neg_pos; auto.
+ apply Zlt_bool_false. apply Z.mul_nonneg_nonneg; omega.
+ }
+ generalize (Bmult_correct _ _ _ Hmax nan mode_NE (BofZ x) (BofZ (2^p)))
+ (BofZ_correct (x * 2^p)).
+ fold emin; fold fexp. rewrite A, B, C, D, E, F, H4, H5.
+ destruct Rlt_bool.
++ intros (P & Q & R) (U & V & W).
+ apply B2R_Bsign_inj; auto.
+ rewrite P, U. auto.
+ rewrite R, W. auto.
+ apply is_finite_not_is_nan; auto.
++ intros P U.
+ apply B2FF_inj. rewrite P, U. f_equal; auto.
+Qed.
+
+(** Rounding to odd the argument of [BofZ]. *)
+
+Lemma round_odd_flt:
+ forall prec' emin' x choice,
+ prec > 1 -> prec' > 1 -> prec' >= prec + 2 -> emin' <= emin - 2 ->
+ round radix2 fexp (Znearest choice) (round radix2 (FLT_exp emin' prec') Zrnd_odd x) =
+ round radix2 fexp (Znearest choice) x.
+Proof.
+ intros. apply round_N_odd. auto. apply fexp_correct; auto.
+ apply exists_NE_FLT. right; omega.
+ apply FLT_exp_valid. red; omega.
+ apply exists_NE_FLT. right; omega.
+ unfold fexp, FLT_exp; intros. zify; omega.
+Qed.
+
+Corollary round_odd_fix:
+ forall x p choice,
+ prec > 1 ->
+ 0 <= p ->
+ (bpow radix2 (prec + p + 1) <= Rabs x)%R ->
+ round radix2 fexp (Znearest choice) (round radix2 (FIX_exp p) Zrnd_odd x) =
+ round radix2 fexp (Znearest choice) x.
+Proof.
+ intros. destruct (Req_EM_T x 0%R).
+- subst x. rewrite round_0. auto. apply valid_rnd_odd.
+- set (prec' := mag radix2 x - p).
+ set (emin' := emin - 2).
+ assert (PREC: mag radix2 (bpow radix2 (prec + p + 1)) <= mag radix2 x).
+ { rewrite <- (mag_abs radix2 x).
+ apply mag_le; auto. apply bpow_gt_0. }
+ rewrite mag_bpow in PREC.
+ assert (CANON: cexp radix2 (FLT_exp emin' prec') x =
+ cexp radix2 (FIX_exp p) x).
+ {
+ unfold cexp, FLT_exp, FIX_exp.
+ replace (mag radix2 x - prec') with p by (unfold prec'; omega).
+ apply Z.max_l. unfold emin', emin. red in prec_gt_0_; omega.
+ }
+ assert (RND: round radix2 (FIX_exp p) Zrnd_odd x =
+ round radix2 (FLT_exp emin' prec') Zrnd_odd x).
+ {
+ unfold round, scaled_mantissa. rewrite CANON. auto.
+ }
+ rewrite RND.
+ apply round_odd_flt. auto.
+ unfold prec'. red in prec_gt_0_; omega.
+ unfold prec'. omega.
+ unfold emin'. omega.
+Qed.
+
+Definition int_round_odd (x: Z) (p: Z) :=
+ (if Z.eqb (x mod 2^p) 0 || Z.odd (x / 2^p) then x / 2^p else x / 2^p + 1) * 2^p.
+
+Lemma Zrnd_odd_int:
+ forall n p, 0 <= p ->
+ Zrnd_odd (IZR n * bpow radix2 (-p)) * 2^p =
+ int_round_odd n p.
+Proof.
+ intros.
+ assert (0 < 2^p) by (apply (Zpower_gt_0 radix2); omega).
+ assert (n = (n / 2^p) * 2^p + n mod 2^p) by (rewrite Z.mul_comm; apply Z.div_mod; omega).
+ assert (0 <= n mod 2^p < 2^p) by (apply Z_mod_lt; omega).
+ unfold int_round_odd. set (q := n / 2^p) in *; set (r := n mod 2^p) in *.
+ f_equal.
+ pose proof (bpow_gt_0 radix2 (-p)).
+ assert (bpow radix2 p * bpow radix2 (-p) = 1)%R.
+ { rewrite <- bpow_plus. replace (p + -p) with 0 by omega. auto. }
+ assert (IZR n * bpow radix2 (-p) = IZR q + IZR r * bpow radix2 (-p))%R.
+ { rewrite H1. rewrite plus_IZR, mult_IZR.
+ change (IZR (2^p)) with (IZR (radix2^p)).
+ rewrite IZR_Zpower by omega. ring_simplify.
+ rewrite Rmult_assoc. rewrite H4. ring. }
+ assert (0 <= IZR r < bpow radix2 p)%R.
+ { split. apply IZR_le; omega.
+ rewrite <- IZR_Zpower by omega. apply IZR_lt; tauto. }
+ assert (0 <= IZR r * bpow radix2 (-p) < 1)%R.
+ { generalize (bpow_gt_0 radix2 (-p)). intros.
+ split. apply Rmult_le_pos; lra.
+ rewrite <- H4. apply Rmult_lt_compat_r. auto. tauto. }
+ assert (Zfloor (IZR n * bpow radix2 (-p)) = q).
+ { apply Zfloor_imp. rewrite H5. rewrite plus_IZR. lra. }
+ unfold Zrnd_odd. destruct Req_EM_T.
+- assert (IZR r * bpow radix2 (-p) = 0)%R.
+ { rewrite H8 in e. rewrite e in H5. lra. }
+ apply Rmult_integral in H9. destruct H9; [ | lra ].
+ apply (eq_IZR r 0) in H9. apply <- Z.eqb_eq in H9. rewrite H9. assumption.
+- assert (IZR r * bpow radix2 (-p) <> 0)%R.
+ { rewrite H8 in n0. lra. }
+ destruct (Z.eqb r 0) eqn:RZ.
+ apply Z.eqb_eq in RZ. rewrite RZ in H9.
+ rewrite Rmult_0_l in H9. congruence.
+ rewrite Zceil_floor_neq by lra. rewrite H8.
+ change Zeven with Z.even. rewrite Zodd_even_bool. destruct (Z.even q); auto.
+Qed.
+
+Lemma int_round_odd_le:
+ forall p x y, 0 <= p ->
+ x <= y -> int_round_odd x p <= int_round_odd y p.
+Proof.
+ intros.
+ assert (Zrnd_odd (IZR x * bpow radix2 (-p)) <= Zrnd_odd (IZR y * bpow radix2 (-p))).
+ { apply Zrnd_le. apply valid_rnd_odd. apply Rmult_le_compat_r. apply bpow_ge_0.
+ apply IZR_le; auto. }
+ rewrite <- ! Zrnd_odd_int by auto.
+ apply Zmult_le_compat_r. auto. apply (Zpower_ge_0 radix2).
+Qed.
+
+Lemma int_round_odd_exact:
+ forall p x, 0 <= p ->
+ (2^p | x) -> int_round_odd x p = x.
+Proof.
+ intros. unfold int_round_odd. apply Znumtheory.Zdivide_mod in H0.
+ rewrite H0. simpl. rewrite Z.mul_comm. symmetry. apply Z_div_exact_2.
+ apply Z.lt_gt. apply (Zpower_gt_0 radix2). auto. auto.
+Qed.
+
+Theorem BofZ_round_odd:
+ forall x p,
+ prec > 1 ->
+ Z.abs x <= 2^emax - 2^(emax-prec) ->
+ 0 <= p <= emax - prec ->
+ 2^(prec + p + 1) <= Z.abs x ->
+ BofZ x = BofZ (int_round_odd x p).
+Proof.
+ intros x p PREC XRANGE PRANGE XGE.
+ assert (DIV: (2^p | 2^emax - 2^(emax - prec))).
+ { rewrite int_upper_bound_eq. apply Z.divide_mul_r.
+ exists (2^(emax - prec - p)). red in prec_gt_0_.
+ rewrite <- (Zpower_plus radix2) by omega. f_equal; omega. }
+ assert (YRANGE: Z.abs (int_round_odd x p) <= 2^emax - 2^(emax-prec)).
+ { apply Z.abs_le. split.
+ replace (-(2^emax - 2^(emax-prec))) with (int_round_odd (-(2^emax - 2^(emax-prec))) p).
+ apply int_round_odd_le; zify; omega.
+ apply int_round_odd_exact. omega. apply Z.divide_opp_r. auto.
+ replace (2^emax - 2^(emax-prec)) with (int_round_odd (2^emax - 2^(emax-prec)) p).
+ apply int_round_odd_le; zify; omega.
+ apply int_round_odd_exact. omega. auto. }
+ destruct (BofZ_finite x XRANGE) as (X1 & X2 & X3).
+ destruct (BofZ_finite (int_round_odd x p) YRANGE) as (Y1 & Y2 & Y3).
+ apply BofZ_finite_equal; auto.
+ rewrite X1, Y1.
+ assert (IZR (int_round_odd x p) = round radix2 (FIX_exp p) Zrnd_odd (IZR x)).
+ {
+ unfold round, scaled_mantissa, cexp, FIX_exp.
+ rewrite <- Zrnd_odd_int by omega.
+ unfold F2R; simpl. rewrite mult_IZR. f_equal. apply (IZR_Zpower radix2). omega.
+ }
+ rewrite H. symmetry. apply round_odd_fix. auto. omega.
+ rewrite <- IZR_Zpower. rewrite <- abs_IZR. apply IZR_le; auto.
+ red in prec_gt_0_; omega.
+Qed.
+
+Lemma int_round_odd_shifts:
+ forall x p, 0 <= p ->
+ int_round_odd x p =
+ Z.shiftl (if Z.eqb (x mod 2^p) 0 then Z.shiftr x p else Z.lor (Z.shiftr x p) 1) p.
+Proof.
+ intros.
+ unfold int_round_odd. rewrite Z.shiftl_mul_pow2 by auto. f_equal.
+ rewrite Z.shiftr_div_pow2 by auto.
+ destruct (x mod 2^p =? 0) eqn:E. auto.
+ assert (forall n, (if Z.odd n then n else n + 1) = Z.lor n 1).
+ { destruct n; simpl; auto.
+ destruct p0; auto.
+ destruct p0; auto. induction p0; auto. }
+ simpl. apply H0.
+Qed.
+
+Lemma int_round_odd_bits:
+ forall x y p, 0 <= p ->
+ (forall i, 0 <= i < p -> Z.testbit y i = false) ->
+ Z.testbit y p = (if Z.eqb (x mod 2^p) 0 then Z.testbit x p else true) ->
+ (forall i, p < i -> Z.testbit y i = Z.testbit x i) ->
+ int_round_odd x p = y.
+Proof.
+ intros until p; intros PPOS BELOW AT ABOVE.
+ rewrite int_round_odd_shifts by auto.
+ apply Z.bits_inj'. intros.
+ generalize (Zcompare_spec n p); intros SPEC; inversion SPEC.
+- rewrite BELOW by auto. apply Z.shiftl_spec_low; auto.
+- subst n. rewrite AT. rewrite Z.shiftl_spec_high by omega.
+ replace (p - p) with 0 by omega.
+ destruct (x mod 2^p =? 0).
+ + rewrite Z.shiftr_spec by omega. f_equal; omega.
+ + rewrite Z.lor_spec. apply orb_true_r.
+- rewrite ABOVE by auto. rewrite Z.shiftl_spec_high by omega.
+ destruct (x mod 2^p =? 0).
+ rewrite Z.shiftr_spec by omega. f_equal; omega.
+ rewrite Z.lor_spec, Z.shiftr_spec by omega.
+ change 1 with (Z.ones 1). rewrite Z.ones_spec_high by omega. rewrite orb_false_r.
+ f_equal; omega.
+Qed.
+
+(** ** Conversion from a FP number to an integer *)
+
+(** Always rounds toward zero. *)
+
+Definition ZofB (f: binary_float): option Z :=
+ match f with
+ | B754_finite _ _ s m (Zpos e) _ => Some (cond_Zopp s (Zpos m) * Z.pow_pos radix2 e)%Z
+ | B754_finite _ _ s m 0 _ => Some (cond_Zopp s (Zpos m))
+ | B754_finite _ _ s m (Zneg e) _ => Some (cond_Zopp s (Zpos m / Z.pow_pos radix2 e))%Z
+ | B754_zero _ _ _ => Some 0%Z
+ | _ => None
+ end.
+
+Theorem ZofB_correct:
+ forall f,
+ ZofB f = if is_finite _ _ f then Some (Ztrunc (B2R _ _ f)) else None.
+Proof.
+ destruct f as [s|s|s p H|s m e H]; simpl; auto.
+- f_equal. symmetry. apply (Ztrunc_IZR 0).
+- destruct e; f_equal.
+ + unfold F2R; simpl. rewrite Rmult_1_r. rewrite Ztrunc_IZR. auto.
+ + unfold F2R; simpl. rewrite <- mult_IZR. rewrite Ztrunc_IZR. auto.
+ + unfold F2R; simpl. rewrite IZR_cond_Zopp. rewrite <- cond_Ropp_mult_l.
+ assert (EQ: forall x, Ztrunc (cond_Ropp s x) = cond_Zopp s (Ztrunc x)).
+ {
+ intros. destruct s; simpl; auto. apply Ztrunc_opp.
+ }
+ rewrite EQ. f_equal.
+ generalize (Zpower_pos_gt_0 2 p (eq_refl _)); intros.
+ rewrite Ztrunc_floor. symmetry. apply Zfloor_div. omega.
+ apply Rmult_le_pos. apply IZR_le. compute; congruence.
+ apply Rlt_le. apply Rinv_0_lt_compat. apply IZR_lt. auto.
+Qed.
+
+(** Interval properties. *)
+
+Remark Ztrunc_range_pos:
+ forall x, 0 < Ztrunc x -> (IZR (Ztrunc x) <= x < IZR (Ztrunc x + 1)%Z)%R.
+Proof.
+ intros.
+ rewrite Ztrunc_floor. split. apply Zfloor_lb. rewrite plus_IZR. apply Zfloor_ub.
+ generalize (Rle_bool_spec 0%R x). intros RLE; inversion RLE; subst; clear RLE.
+ auto.
+ rewrite Ztrunc_ceil in H by lra. unfold Zceil in H.
+ assert (-x < 0)%R.
+ { apply Rlt_le_trans with (IZR (Zfloor (-x)) + 1)%R. apply Zfloor_ub.
+ rewrite <- plus_IZR.
+ apply IZR_le. omega. }
+ lra.
+Qed.
+
+Remark Ztrunc_range_zero:
+ forall x, Ztrunc x = 0 -> (-1 < x < 1)%R.
+Proof.
+ intros; generalize (Rle_bool_spec 0%R x). intros RLE; inversion RLE; subst; clear RLE.
+- rewrite Ztrunc_floor in H by auto. split.
+ + apply Rlt_le_trans with 0%R; auto. rewrite <- Ropp_0. apply Ropp_lt_contravar. apply Rlt_0_1.
+ + replace 1%R with (IZR (Zfloor x) + 1)%R. apply Zfloor_ub. rewrite H. simpl. apply Rplus_0_l.
+- rewrite Ztrunc_ceil in H by (apply Rlt_le; auto). split.
+ + apply (Ropp_lt_cancel (-(1))). rewrite Ropp_involutive.
+ replace 1%R with (IZR (Zfloor (-x)) + 1)%R. apply Zfloor_ub.
+ unfold Zceil in H. replace (Zfloor (-x)) with 0 by omega. simpl. apply Rplus_0_l.
+ + apply Rlt_le_trans with 0%R; auto. apply Rle_0_1.
+Qed.
+
+Theorem ZofB_range_pos:
+ forall f n, ZofB f = Some n -> 0 < n -> (IZR n <= B2R _ _ f < IZR (n + 1)%Z)%R.
+Proof.
+ intros. rewrite ZofB_correct in H. destruct (is_finite prec emax f) eqn:FIN; inversion H.
+ apply Ztrunc_range_pos. congruence.
+Qed.
+
+Theorem ZofB_range_neg:
+ forall f n, ZofB f = Some n -> n < 0 -> (IZR (n - 1)%Z < B2R _ _ f <= IZR n)%R.
+Proof.
+ intros. rewrite ZofB_correct in H. destruct (is_finite prec emax f) eqn:FIN; inversion H.
+ set (x := B2R prec emax f) in *. set (y := (-x)%R).
+ assert (A: (IZR (Ztrunc y) <= y < IZR (Ztrunc y + 1)%Z)%R).
+ { apply Ztrunc_range_pos. unfold y. rewrite Ztrunc_opp. omega. }
+ destruct A as [B C].
+ unfold y in B, C. rewrite Ztrunc_opp in B, C.
+ replace (- Ztrunc x + 1) with (- (Ztrunc x - 1)) in C by omega.
+ rewrite opp_IZR in B, C. lra.
+Qed.
+
+Theorem ZofB_range_zero:
+ forall f, ZofB f = Some 0 -> (-1 < B2R _ _ f < 1)%R.
+Proof.
+ intros. rewrite ZofB_correct in H. destruct (is_finite prec emax f) eqn:FIN; inversion H.
+ apply Ztrunc_range_zero. auto.
+Qed.
+
+Theorem ZofB_range_nonneg:
+ forall f n, ZofB f = Some n -> 0 <= n -> (-1 < B2R _ _ f < IZR (n + 1)%Z)%R.
+Proof.
+ intros. destruct (Z.eq_dec n 0).
+- subst n. apply ZofB_range_zero. auto.
+- destruct (ZofB_range_pos f n) as (A & B). auto. omega.
+ split; auto. apply Rlt_le_trans with 0%R. simpl; lra.
+ apply Rle_trans with (IZR n); auto. apply IZR_le; auto.
+Qed.
+
+(** For representable integers, [ZofB] is left inverse of [BofZ]. *)
+
+Theorem ZofBofZ_exact:
+ forall n, integer_representable n -> ZofB (BofZ n) = Some n.
+Proof.
+ intros. destruct (BofZ_representable n H) as (A & B & C).
+ rewrite ZofB_correct. rewrite A, B. f_equal. apply Ztrunc_IZR.
+Qed.
+
+(** Compatibility with subtraction *)
+
+Remark Zfloor_minus:
+ forall x n, Zfloor (x - IZR n) = Zfloor x - n.
+Proof.
+ intros. apply Zfloor_imp. replace (Zfloor x - n + 1) with ((Zfloor x + 1) - n) by omega.
+ rewrite ! minus_IZR. unfold Rminus. split.
+ apply Rplus_le_compat_r. apply Zfloor_lb.
+ apply Rplus_lt_compat_r. rewrite plus_IZR. apply Zfloor_ub.
+Qed.
+
+Theorem ZofB_minus:
+ forall minus_nan m f p q,
+ ZofB f = Some p -> 0 <= p < 2*q -> q <= 2^prec -> (IZR q <= B2R _ _ f)%R ->
+ ZofB (Bminus _ _ _ Hmax minus_nan m f (BofZ q)) = Some (p - q).
+Proof.
+ intros.
+ assert (Q: -2^prec <= q <= 2^prec).
+ { split; auto. generalize (Zpower_ge_0 radix2 prec); simpl; omega. }
+ assert (RANGE: (-1 < B2R _ _ f < IZR (p + 1)%Z)%R) by (apply ZofB_range_nonneg; auto; omega).
+ rewrite ZofB_correct in H. destruct (is_finite prec emax f) eqn:FIN; try discriminate.
+ assert (PQ2: (IZR (p + 1) <= IZR q * 2)%R).
+ { rewrite <- mult_IZR. apply IZR_le. omega. }
+ assert (EXACT: round radix2 fexp (round_mode m) (B2R _ _ f - IZR q)%R = (B2R _ _ f - IZR q)%R).
+ { apply round_generic. apply valid_rnd_round_mode.
+ apply sterbenz_aux. now apply FLT_exp_valid. apply FLT_exp_monotone. apply generic_format_B2R.
+ apply integer_representable_n. auto. lra. }
+ destruct (BofZ_exact q Q) as (A & B & C).
+ generalize (Bminus_correct _ _ _ Hmax minus_nan m f (BofZ q) FIN B).
+ rewrite Rlt_bool_true.
+- fold emin; fold fexp. intros (D & E & F).
+ rewrite ZofB_correct. rewrite E. rewrite D. rewrite A. rewrite EXACT.
+ inversion H. f_equal. rewrite ! Ztrunc_floor. apply Zfloor_minus.
+ lra. lra.
+- rewrite A. fold emin; fold fexp. rewrite EXACT.
+ apply Rle_lt_trans with (bpow radix2 prec).
+ apply Rle_trans with (IZR q). apply Rabs_le. lra.
+ rewrite <- IZR_Zpower. apply IZR_le; auto. red in prec_gt_0_; omega.
+ apply bpow_lt. auto.
+Qed.
+
+(** A variant of [ZofB] that bounds the range of representable integers. *)
+
+Definition ZofB_range (f: binary_float) (zmin zmax: Z): option Z :=
+ match ZofB f with
+ | None => None
+ | Some z => if Z.leb zmin z && Z.leb z zmax then Some z else None
+ end.
+
+Theorem ZofB_range_correct:
+ forall f min max,
+ let n := Ztrunc (B2R _ _ f) in
+ ZofB_range f min max =
+ if is_finite _ _ f && Z.leb min n && Z.leb n max then Some n else None.
+Proof.
+ intros. unfold ZofB_range. rewrite ZofB_correct. fold n.
+ destruct (is_finite prec emax f); auto.
+Qed.
+
+Lemma ZofB_range_inversion:
+ forall f min max n,
+ ZofB_range f min max = Some n ->
+ min <= n /\ n <= max /\ ZofB f = Some n.
+Proof.
+ intros. rewrite ZofB_range_correct in H. rewrite ZofB_correct.
+ destruct (is_finite prec emax f); try discriminate.
+ set (n1 := Ztrunc (B2R _ _ f)) in *.
+ destruct (min <=? n1) eqn:MIN; try discriminate.
+ destruct (n1 <=? max) eqn:MAX; try discriminate.
+ simpl in H. inversion H. subst n.
+ split. apply Zle_bool_imp_le; auto.
+ split. apply Zle_bool_imp_le; auto.
+ auto.
+Qed.
+
+Theorem ZofB_range_minus:
+ forall minus_nan m f p q,
+ ZofB_range f 0 (2 * q - 1) = Some p -> q <= 2^prec -> (IZR q <= B2R _ _ f)%R ->
+ ZofB_range (Bminus _ _ _ Hmax minus_nan m f (BofZ q)) (-q) (q - 1) = Some (p - q).
+Proof.
+ intros. destruct (ZofB_range_inversion _ _ _ _ H) as (A & B & C).
+ set (f' := Bminus prec emax prec_gt_0_ Hmax minus_nan m f (BofZ q)).
+ assert (D: ZofB f' = Some (p - q)).
+ { apply ZofB_minus. auto. omega. auto. auto. }
+ unfold ZofB_range. rewrite D. rewrite Zle_bool_true by omega. rewrite Zle_bool_true by omega. auto.
+Qed.
+
+(** ** Algebraic identities *)
+
+(** Commutativity of addition and multiplication *)
+
+Theorem Bplus_commut:
+ forall plus_nan mode (x y: binary_float),
+ plus_nan x y = plus_nan y x ->
+ Bplus _ _ _ Hmax plus_nan mode x y = Bplus _ _ _ Hmax plus_nan mode y x.
+Proof.
+ intros until y; intros NAN.
+ pose proof (Bplus_correct _ _ _ Hmax plus_nan mode x y).
+ pose proof (Bplus_correct _ _ _ Hmax plus_nan mode y x).
+ unfold Bplus in *; destruct x as [sx|sx|sx px Hx|sx mx ex Hx]; destruct y as [sy|sy|sy py Hy|sy my ey Hy]; auto.
+- rewrite (eqb_sym sy sx). destruct (eqb sx sy) eqn:EQB; auto.
+ f_equal; apply eqb_prop; auto.
+- rewrite NAN; auto.
+- rewrite (eqb_sym sy sx). destruct (eqb sx sy) eqn:EQB.
+ f_equal; apply eqb_prop; auto.
+ rewrite NAN; auto.
+- rewrite NAN; auto.
+- rewrite NAN; auto.
+- rewrite NAN; auto.
+- rewrite NAN; auto.
+- rewrite NAN; auto.
+- rewrite NAN; auto.
+- generalize (H (eq_refl _) (eq_refl _)); clear H.
+ generalize (H0 (eq_refl _) (eq_refl _)); clear H0.
+ fold emin. fold fexp.
+ set (x := B754_finite prec emax sx mx ex Hx). set (rx := B2R _ _ x).
+ set (y := B754_finite prec emax sy my ey Hy). set (ry := B2R _ _ y).
+ rewrite (Rplus_comm ry rx). destruct Rlt_bool.
+ + intros (A1 & A2 & A3) (B1 & B2 & B3).
+ apply B2R_Bsign_inj; auto. rewrite <- B1 in A1. auto.
+ rewrite Z.add_comm. rewrite Z.min_comm. auto.
+ + intros (A1 & A2) (B1 & B2). apply B2FF_inj. rewrite B2 in B1. rewrite <- B1 in A1. auto.
+Qed.
+
+Theorem Bmult_commut:
+ forall mult_nan mode (x y: binary_float),
+ mult_nan x y = mult_nan y x ->
+ Bmult _ _ _ Hmax mult_nan mode x y = Bmult _ _ _ Hmax mult_nan mode y x.
+Proof.
+ intros until y; intros NAN.
+ pose proof (Bmult_correct _ _ _ Hmax mult_nan mode x y).
+ pose proof (Bmult_correct _ _ _ Hmax mult_nan mode y x).
+ unfold Bmult in *; destruct x as [sx|sx|sx px Hx|sx mx ex Hx]; destruct y as [sy|sy|sy py Hy|sy my ey Hy]; auto.
+- rewrite (xorb_comm sx sy); auto.
+- rewrite NAN; auto.
+- rewrite NAN; auto.
+- rewrite (xorb_comm sx sy); auto.
+- rewrite NAN; auto.
+- rewrite (xorb_comm sx sy); auto.
+- rewrite NAN; auto.
+- rewrite (xorb_comm sx sy); auto.
+- rewrite NAN; auto.
+- rewrite NAN; auto.
+- rewrite NAN; auto.
+- rewrite NAN; auto.
+- rewrite (xorb_comm sx sy); auto.
+- rewrite (xorb_comm sx sy); auto.
+- rewrite NAN; auto.
+- revert H H0. fold emin. fold fexp.
+ set (x := B754_finite prec emax sx mx ex Hx). set (rx := B2R _ _ x).
+ set (y := B754_finite prec emax sy my ey Hy). set (ry := B2R _ _ y).
+ rewrite (Rmult_comm ry rx).
+ destruct (Rlt_bool (Rabs (round radix2 fexp (round_mode mode) (rx * ry)))
+ (bpow radix2 emax)).
+ + intros (A1 & A2 & A3) (B1 & B2 & B3).
+ apply B2R_Bsign_inj; auto. rewrite <- B1 in A1. auto.
+ rewrite ! Bsign_FF2B. f_equal. f_equal. apply xorb_comm. now rewrite Pos.mul_comm. apply Z.add_comm.
+ + intros A B. apply B2FF_inj. etransitivity. eapply A. rewrite xorb_comm. auto.
+Qed.
+
+(** Multiplication by 2 is diagonal addition. *)
+
+Theorem Bmult2_Bplus:
+ forall plus_nan mult_nan mode (f: binary_float),
+ (forall (x y: binary_float),
+ is_nan _ _ x = true -> is_finite _ _ y = true -> plus_nan x x = mult_nan x y) ->
+ Bplus _ _ _ Hmax plus_nan mode f f = Bmult _ _ _ Hmax mult_nan mode f (BofZ 2%Z).
+Proof.
+ intros until f; intros NAN.
+ destruct (BofZ_representable 2) as (A & B & C).
+ apply (integer_representable_2p 1). red in prec_gt_0_; omega.
+ pose proof (Bmult_correct _ _ _ Hmax mult_nan mode f (BofZ 2%Z)). fold emin in H.
+ rewrite A, B, C in H. rewrite xorb_false_r in H.
+ destruct (is_finite _ _ f) eqn:FIN.
+- pose proof (Bplus_correct _ _ _ Hmax plus_nan mode f f FIN FIN). fold emin in H0.
+ assert (EQ: (B2R prec emax f * IZR 2%Z = B2R prec emax f + B2R prec emax f)%R).
+ { ring. }
+ rewrite <- EQ in H0. destruct Rlt_bool.
+ + destruct H0 as (P & Q & R). destruct H as (S & T & U).
+ apply B2R_Bsign_inj; auto.
+ rewrite P, S. auto.
+ rewrite R, U.
+ replace 0%R with (0 * 2)%R by ring. rewrite Rcompare_mult_r.
+ rewrite andb_diag, orb_diag. destruct f as [s|s|s p H|s m e H]; try discriminate; simpl.
+ rewrite Rcompare_Eq by auto. destruct mode; auto.
+ replace 0%R with (@F2R radix2 {| Fnum := 0%Z; Fexp := e |}).
+ rewrite Rcompare_F2R. destruct s; auto.
+ unfold F2R. simpl. ring.
+ apply IZR_lt. omega.
+ destruct (Bmult prec emax prec_gt_0_ Hmax mult_nan mode f (BofZ 2)); reflexivity || discriminate.
+ + destruct H0 as (P & Q). apply B2FF_inj. rewrite P, H. auto.
+- destruct f as [sf|sf|sf pf Hf|sf mf ef Hf]; try discriminate.
+ + simpl Bplus. rewrite eqb_true. destruct (BofZ 2) as [| | |s2 m2 e2 H2] eqn:B2; try discriminate; simpl in *.
+ assert ((0 = 2)%Z) by (apply eq_IZR; auto). discriminate.
+ subst s2. rewrite xorb_false_r. auto.
+ auto.
+ + unfold Bplus, Bmult. rewrite <- NAN by auto. auto.
+Qed.
+
+(** Divisions that can be turned into multiplications by an inverse *)
+
+Definition Bexact_inverse_mantissa := Z.iter (prec - 1) xO xH.
+
+Remark Bexact_inverse_mantissa_value:
+ Zpos Bexact_inverse_mantissa = 2 ^ (prec - 1).
+Proof.
+ assert (REC: forall n, Z.pos (nat_rect _ xH (fun _ => xO) n) = 2 ^ (Z.of_nat n)).
+ { induction n. reflexivity.
+ simpl nat_rect. transitivity (2 * Z.pos (nat_rect _ xH (fun _ => xO) n)). reflexivity.
+ rewrite Nat2Z.inj_succ. rewrite IHn. unfold Z.succ. rewrite Zpower_plus by omega.
+ change (2 ^ 1) with 2. ring. }
+ red in prec_gt_0_.
+ unfold Bexact_inverse_mantissa. rewrite iter_nat_of_Z by omega. rewrite REC.
+ rewrite Zabs2Nat.id_abs. rewrite Z.abs_eq by omega. auto.
+Qed.
+
+Remark Bexact_inverse_mantissa_digits2_pos:
+ Z.pos (digits2_pos Bexact_inverse_mantissa) = prec.
+Proof.
+ assert (DIGITS: forall n, digits2_pos (nat_rect _ xH (fun _ => xO) n) = Pos.of_nat (n+1)).
+ { induction n; simpl. auto. rewrite IHn. destruct n; auto. }
+ red in prec_gt_0_.
+ unfold Bexact_inverse_mantissa. rewrite iter_nat_of_Z by omega. rewrite DIGITS.
+ rewrite Zabs2Nat.abs_nat_nonneg, Z2Nat.inj_sub by omega.
+ destruct prec; try discriminate. rewrite Nat.sub_add.
+ simpl. rewrite Pos2Nat.id. auto.
+ simpl. zify; omega.
+Qed.
+
+Remark bounded_Bexact_inverse:
+ forall e,
+ emin <= e <= emax - prec <-> bounded prec emax Bexact_inverse_mantissa e = true.
+Proof.
+ intros. unfold bounded, canonical_mantissa. rewrite andb_true_iff.
+ rewrite <- Zeq_is_eq_bool. rewrite <- Zle_is_le_bool.
+ rewrite Bexact_inverse_mantissa_digits2_pos.
+ split.
+- intros; split. unfold FLT_exp. unfold emin in H. zify; omega. omega.
+- intros [A B]. unfold FLT_exp in A. unfold emin. zify; omega.
+Qed.
+
+Program Definition Bexact_inverse (f: binary_float) : option binary_float :=
+ match f with
+ | B754_finite _ _ s m e B =>
+ if Pos.eq_dec m Bexact_inverse_mantissa then
+ let e' := -e - (prec - 1) * 2 in
+ if Z_le_dec emin e' then
+ if Z_le_dec e' emax then
+ Some(B754_finite _ _ s m e' _)
+ else None else None else None
+ | _ => None
+ end.
+Next Obligation.
+ rewrite <- bounded_Bexact_inverse in B. rewrite <- bounded_Bexact_inverse.
+ unfold emin in *. omega.
+Qed.
+
+Lemma Bexact_inverse_correct:
+ forall f f', Bexact_inverse f = Some f' ->
+ is_finite_strict _ _ f = true
+ /\ is_finite_strict _ _ f' = true
+ /\ B2R _ _ f' = (/ B2R _ _ f)%R
+ /\ B2R _ _ f <> 0%R
+ /\ Bsign _ _ f' = Bsign _ _ f.
+Proof with (try discriminate).
+ intros f f' EI. unfold Bexact_inverse in EI. destruct f as [s|s|s p H|s m e H]...
+ destruct (Pos.eq_dec m Bexact_inverse_mantissa)...
+ set (e' := -e - (prec - 1) * 2) in *.
+ destruct (Z_le_dec emin e')...
+ destruct (Z_le_dec e' emax)...
+ inversion EI; clear EI; subst f' m.
+ split. auto. split. auto. split. unfold B2R. rewrite Bexact_inverse_mantissa_value.
+ unfold F2R; simpl. rewrite IZR_cond_Zopp.
+ rewrite <- ! cond_Ropp_mult_l.
+ red in prec_gt_0_.
+ replace (IZR (2 ^ (prec - 1))) with (bpow radix2 (prec - 1))
+ by (symmetry; apply (IZR_Zpower radix2); omega).
+ rewrite <- ! bpow_plus.
+ replace (prec - 1 + e') with (- (prec - 1 + e)) by (unfold e'; omega).
+ rewrite bpow_opp. unfold cond_Ropp; destruct s; auto.
+ rewrite Ropp_inv_permute. auto. apply Rgt_not_eq. apply bpow_gt_0.
+ split. simpl. apply F2R_neq_0. destruct s; simpl in H; discriminate.
+ auto.
+Qed.
+
+Theorem Bdiv_mult_inverse:
+ forall div_nan mult_nan mode x y z,
+ (forall (x y z: binary_float),
+ is_nan _ _ x = true -> is_finite _ _ y = true -> is_finite _ _ z = true ->
+ div_nan x y = mult_nan x z) ->
+ Bexact_inverse y = Some z ->
+ Bdiv _ _ _ Hmax div_nan mode x y = Bmult _ _ _ Hmax mult_nan mode x z.
+Proof.
+ intros until z; intros NAN; intros. destruct (Bexact_inverse_correct _ _ H) as (A & B & C & D & E).
+ pose proof (Bmult_correct _ _ _ Hmax mult_nan mode x z).
+ fold emin in H0. fold fexp in H0.
+ pose proof (Bdiv_correct _ _ _ Hmax div_nan mode x y D).
+ fold emin in H1. fold fexp in H1.
+ unfold Rdiv in H1. rewrite <- C in H1.
+ destruct (is_finite _ _ x) eqn:FINX.
+- destruct Rlt_bool.
+ + destruct H0 as (P & Q & R). destruct H1 as (S & T & U).
+ apply B2R_Bsign_inj; auto.
+ rewrite Q. simpl. apply is_finite_strict_finite; auto.
+ rewrite P, S. auto.
+ rewrite R, U, E. auto.
+ apply is_finite_not_is_nan; auto.
+ apply is_finite_not_is_nan. rewrite Q. simpl. apply is_finite_strict_finite; auto. + apply B2FF_inj. rewrite H0, H1. rewrite E. auto.
+- destruct y; try discriminate. destruct z; try discriminate.
+ destruct x; try discriminate; simpl.
+ + simpl in E; congruence.
+ + erewrite NAN; eauto.
+Qed.
+
+(** ** Conversion from scientific notation *)
+
+(** Russian peasant exponentiation *)
+
+Fixpoint pos_pow (x y: positive) : positive :=
+ match y with
+ | xH => x
+ | xO y => Pos.square (pos_pow x y)
+ | xI y => Pos.mul x (Pos.square (pos_pow x y))
+ end.
+
+Lemma pos_pow_spec:
+ forall x y, Z.pos (pos_pow x y) = Z.pos x ^ Z.pos y.
+Proof.
+ intros x.
+ assert (REC: forall y a, Pos.iter (Pos.mul x) a y = Pos.mul (pos_pow x y) a).
+ { induction y; simpl; intros.
+ - rewrite ! IHy, Pos.square_spec, ! Pos.mul_assoc. auto.
+ - rewrite ! IHy, Pos.square_spec, ! Pos.mul_assoc. auto.
+ - auto.
+ }
+ intros. simpl. rewrite <- Pos2Z.inj_pow_pos. unfold Pos.pow. rewrite REC. rewrite Pos.mul_1_r. auto.
+Qed.
+
+(** Given a base [base], a mantissa [m] and an exponent [e], the following function
+ computes the FP number closest to [m * base ^ e], using round to odd, ties break to even.
+ The algorithm is naive, computing [base ^ |e|] exactly before doing a multiplication or
+ division with [m]. However, we treat specially very large or very small values of [e],
+ when the result is known to be [+infinity] or [0.0] respectively. *)
+
+Definition Bparse (base: positive) (m: positive) (e: Z): binary_float :=
+ match e with
+ | Z0 =>
+ BofZ (Zpos m)
+ | Zpos p =>
+ if e * Z.log2 (Zpos base) <? emax
+ then BofZ (Zpos m * Zpos (pos_pow base p))
+ else B754_infinity _ _ false
+ | Zneg p =>
+ if e * Z.log2 (Zpos base) + Z.log2_up (Zpos m) <? emin
+ then B754_zero _ _ false
+ else FF2B prec emax _ (proj1 (Bdiv_correct_aux prec emax prec_gt_0_ Hmax mode_NE
+ false m Z0 false (pos_pow base p) Z0))
+ end.
+
+(** Properties of [Z.log2] and [Z.log2_up]. *)
+
+Lemma Zpower_log:
+ forall (base: radix) n,
+ 0 < n ->
+ 2 ^ (n * Z.log2 base) <= base ^ n <= 2 ^ (n * Z.log2_up base).
+Proof.
+ intros.
+ assert (A: 0 < base) by apply radix_gt_0.
+ assert (B: 0 <= Z.log2 base) by apply Z.log2_nonneg.
+ assert (C: 0 <= Z.log2_up base) by apply Z.log2_up_nonneg.
+ destruct (Z.log2_spec base) as [D E]; auto.
+ destruct (Z.log2_up_spec base) as [F G]. apply radix_gt_1.
+ assert (K: 0 <= 2 ^ Z.log2 base) by (apply Z.pow_nonneg; omega).
+ rewrite ! (Z.mul_comm n). rewrite ! Z.pow_mul_r by omega.
+ split; apply Z.pow_le_mono_l; omega.
+Qed.
+
+Lemma bpow_log_pos:
+ forall (base: radix) n,
+ 0 < n ->
+ (bpow radix2 (n * Z.log2 base)%Z <= bpow base n)%R.
+Proof.
+ intros. rewrite <- ! IZR_Zpower. apply IZR_le; apply Zpower_log; auto.
+ omega.
+ rewrite Z.mul_comm; apply Zmult_gt_0_le_0_compat. omega. apply Z.log2_nonneg.
+Qed.
+
+Lemma bpow_log_neg:
+ forall (base: radix) n,
+ n < 0 ->
+ (bpow base n <= bpow radix2 (n * Z.log2 base)%Z)%R.
+Proof.
+ intros. set (m := -n). replace n with (-m) by (unfold m; omega).
+ rewrite ! Z.mul_opp_l, ! bpow_opp. apply Rinv_le.
+ apply bpow_gt_0.
+ apply bpow_log_pos. unfold m; omega.
+Qed.
+
+(** Overflow and underflow conditions. *)
+
+Lemma round_integer_overflow:
+ forall (base: radix) e m,
+ 0 < e ->
+ emax <= e * Z.log2 base ->
+ (bpow radix2 emax <= round radix2 fexp (round_mode mode_NE) (IZR (Zpos m) * bpow base e))%R.
+Proof.
+ intros.
+ rewrite <- (round_generic radix2 fexp (round_mode mode_NE) (bpow radix2 emax)); auto.
+ apply round_le; auto. apply fexp_correct; auto. apply valid_rnd_round_mode.
+ rewrite <- (Rmult_1_l (bpow radix2 emax)). apply Rmult_le_compat.
+ apply Rle_0_1.
+ apply bpow_ge_0.
+ apply IZR_le. zify; omega.
+ eapply Rle_trans. eapply bpow_le. eassumption. apply bpow_log_pos; auto.
+ apply generic_format_FLT. exists (Float radix2 1 emax).
+ unfold F2R; simpl. ring.
+ simpl. apply (Zpower_gt_1 radix2); auto.
+ simpl. unfold emin; red in prec_gt_0_; omega.
+Qed.
+
+Lemma round_NE_underflows:
+ forall x,
+ (0 <= x <= bpow radix2 (emin - 1))%R ->
+ round radix2 fexp (round_mode mode_NE) x = 0%R.
+Proof.
+ intros.
+ set (eps := bpow radix2 (emin - 1)) in *.
+ assert (A: round radix2 fexp (round_mode mode_NE) eps = 0%R).
+ { unfold round. simpl.
+ assert (E: cexp radix2 fexp eps = emin).
+ { unfold cexp, eps. rewrite mag_bpow. unfold fexp, FLT_exp. zify; red in prec_gt_0_; omega. }
+ unfold scaled_mantissa; rewrite E.
+ assert (P: (eps * bpow radix2 (-emin) = / 2)%R).
+ { unfold eps. rewrite <- bpow_plus. replace (emin - 1 + -emin) with (-1) by omega. auto. }
+ rewrite P. unfold Znearest.
+ assert (F: Zfloor (/ 2)%R = 0).
+ { apply Zfloor_imp. simpl. lra. }
+ rewrite F. rewrite Rminus_0_r. rewrite Rcompare_Eq by auto.
+ simpl. unfold F2R; simpl. apply Rmult_0_l.
+ }
+ apply Rle_antisym.
+- rewrite <- A. apply round_le. apply fexp_correct; auto. apply valid_rnd_round_mode. tauto.
+- rewrite <- (round_0 radix2 fexp (round_mode mode_NE)).
+ apply round_le. apply fexp_correct; auto. apply valid_rnd_round_mode. tauto.
+Qed.
+
+Lemma round_integer_underflow:
+ forall (base: radix) e m,
+ e < 0 ->
+ e * Z.log2 base + Z.log2_up (Zpos m) < emin ->
+ round radix2 fexp (round_mode mode_NE) (IZR (Zpos m) * bpow base e) = 0%R.
+Proof.
+ intros. apply round_NE_underflows. split.
+- apply Rmult_le_pos. apply IZR_le. zify; omega. apply bpow_ge_0.
+- apply Rle_trans with (bpow radix2 (Z.log2_up (Z.pos m) + e * Z.log2 base)).
++ rewrite bpow_plus. apply Rmult_le_compat.
+ apply IZR_le; zify; omega.
+ apply bpow_ge_0.
+ rewrite <- IZR_Zpower. apply IZR_le.
+ destruct (Z.eq_dec (Z.pos m) 1).
+ rewrite e0. simpl. omega.
+ apply Z.log2_up_spec. zify; omega.
+ apply Z.log2_up_nonneg.
+ apply bpow_log_neg. auto.
++ apply bpow_le. omega.
+Qed.
+
+(** Correctness of Bparse *)
+
+Theorem Bparse_correct:
+ forall b m e (BASE: 2 <= Zpos b),
+ let base := {| radix_val := Zpos b; radix_prop := Zle_imp_le_bool _ _ BASE |} in
+ let r := round radix2 fexp (round_mode mode_NE) (IZR (Zpos m) * bpow base e) in
+ if Rlt_bool (Rabs r) (bpow radix2 emax) then
+ B2R _ _ (Bparse b m e) = r
+ /\ is_finite _ _ (Bparse b m e) = true
+ /\ Bsign _ _ (Bparse b m e) = false
+ else
+ B2FF _ _ (Bparse b m e) = F754_infinity false.
+Proof.
+ intros.
+ assert (A: forall x, @F2R radix2 {| Fnum := x; Fexp := 0 |} = IZR x).
+ { intros. unfold F2R, Fnum; simpl. ring. }
+ unfold Bparse, r. destruct e as [ | e | e].
+- (* e = Z0 *)
+ change (bpow base 0) with 1%R. rewrite Rmult_1_r.
+ exact (BofZ_correct (Z.pos m)).
+- (* e = Zpos e *)
+ destruct (Z.ltb_spec (Z.pos e * Z.log2 (Z.pos b)) emax).
++ (* no overflow *)
+ rewrite pos_pow_spec. rewrite <- IZR_Zpower by (zify; omega). rewrite <- mult_IZR.
+ replace false with (Z.pos m * Z.pos b ^ Z.pos e <? 0).
+ exact (BofZ_correct (Z.pos m * Z.pos b ^ Z.pos e)).
+ rewrite Z.ltb_ge. rewrite Z.mul_comm. apply Zmult_gt_0_le_0_compat. zify; omega. apply (Zpower_ge_0 base).
++ (* overflow *)
+ rewrite Rlt_bool_false. auto. eapply Rle_trans; [idtac|apply Rle_abs].
+ apply (round_integer_overflow base). zify; omega. auto.
+- (* e = Zneg e *)
+ destruct (Z.ltb_spec (Z.neg e * Z.log2 (Z.pos b) + Z.log2_up (Z.pos m)) emin).
++ (* undeflow *)
+ rewrite round_integer_underflow; auto.
+ rewrite Rlt_bool_true. auto.
+ replace (Rabs 0)%R with 0%R. apply bpow_gt_0. apply (abs_IZR 0).
+ zify; omega.
++ (* no underflow *)
+ generalize (Bdiv_correct_aux prec emax prec_gt_0_ Hmax mode_NE false m 0 false (pos_pow b e) 0).
+ set (f := let '(mz, ez, lz) := Fdiv_core_binary prec emax (Z.pos m) 0 (Z.pos (pos_pow b e)) 0
+ in binary_round_aux prec emax mode_NE (xorb false false) mz ez lz).
+ fold emin; fold fexp. rewrite ! A. unfold cond_Zopp. rewrite pos_pow_spec.
+ assert (B: (IZR (Z.pos m) / IZR (Z.pos b ^ Z.pos e) =
+ IZR (Z.pos m) * bpow base (Z.neg e))%R).
+ { change (Z.neg e) with (- (Z.pos e)). rewrite bpow_opp. auto. }
+ rewrite B. intros [P Q].
+ destruct (Rlt_bool
+ (Rabs
+ (round radix2 fexp (round_mode mode_NE)
+ (IZR (Z.pos m) * bpow base (Z.neg e))))
+ (bpow radix2 emax)).
+* destruct Q as (Q1 & Q2 & Q3).
+ split. rewrite B2R_FF2B, Q1. auto.
+ split. rewrite is_finite_FF2B. auto.
+ rewrite Bsign_FF2B. auto.
+* rewrite B2FF_FF2B. auto.
+Qed.
+
+End Extra_ops.
+
+(** ** Conversions between two FP formats *)
+
+Section Conversions.
+
+Variable prec1 emax1 prec2 emax2 : Z.
+Context (prec1_gt_0_ : Prec_gt_0 prec1) (prec2_gt_0_ : Prec_gt_0 prec2).
+Let emin1 := (3 - emax1 - prec1)%Z.
+Let fexp1 := FLT_exp emin1 prec1.
+Let emin2 := (3 - emax2 - prec2)%Z.
+Let fexp2 := FLT_exp emin2 prec2.
+Hypothesis Hmax1 : (prec1 < emax1)%Z.
+Hypothesis Hmax2 : (prec2 < emax2)%Z.
+Let binary_float1 := binary_float prec1 emax1.
+Let binary_float2 := binary_float prec2 emax2.
+
+Definition Bconv (conv_nan: binary_float1 -> {x | is_nan prec2 emax2 x = true}) (md: mode) (f: binary_float1) : binary_float2 :=
+ match f with
+ | B754_nan _ _ _ _ _ => build_nan prec2 emax2 (conv_nan f)
+ | B754_infinity _ _ s => B754_infinity _ _ s
+ | B754_zero _ _ s => B754_zero _ _ s
+ | B754_finite _ _ s m e _ => binary_normalize _ _ _ Hmax2 md (cond_Zopp s (Zpos m)) e s
+ end.
+
+Theorem Bconv_correct:
+ forall conv_nan m f,
+ is_finite _ _ f = true ->
+ if Rlt_bool (Rabs (round radix2 fexp2 (round_mode m) (B2R _ _ f))) (bpow radix2 emax2)
+ then
+ B2R _ _ (Bconv conv_nan m f) = round radix2 fexp2 (round_mode m) (B2R _ _ f)
+ /\ is_finite _ _ (Bconv conv_nan m f) = true
+ /\ Bsign _ _ (Bconv conv_nan m f) = Bsign _ _ f
+ else
+ B2FF _ _ (Bconv conv_nan m f) = binary_overflow prec2 emax2 m (Bsign _ _ f).
+Proof.
+ intros. destruct f as [sf|sf|sf pf Hf|sf mf ef Hf]; try discriminate.
+- simpl. rewrite round_0. rewrite Rabs_R0. rewrite Rlt_bool_true. auto.
+ apply bpow_gt_0. apply valid_rnd_round_mode.
+- generalize (binary_normalize_correct _ _ _ Hmax2 m (cond_Zopp sf (Zpos mf)) ef sf).
+ fold emin2; fold fexp2. simpl. destruct Rlt_bool.
+ + intros (A & B & C). split. auto. split. auto. rewrite C.
+ destruct sf; simpl.
+ rewrite Rcompare_Lt. auto. apply F2R_lt_0. simpl. compute; auto.
+ rewrite Rcompare_Gt. auto. apply F2R_gt_0. simpl. compute; auto.
+ + intros A. rewrite A. f_equal. destruct sf.
+ apply Rlt_bool_true. apply F2R_lt_0. simpl. compute; auto.
+ apply Rlt_bool_false. apply Rlt_le. apply Rgt_lt. apply F2R_gt_0. simpl. compute; auto.
+Qed.
+
+(** Converting a finite FP number to higher or equal precision preserves its value. *)
+
+Theorem Bconv_widen_exact:
+ (prec2 >= prec1)%Z -> (emax2 >= emax1)%Z ->
+ forall conv_nan m f,
+ is_finite _ _ f = true ->
+ B2R _ _ (Bconv conv_nan m f) = B2R _ _ f
+ /\ is_finite _ _ (Bconv conv_nan m f) = true
+ /\ Bsign _ _ (Bconv conv_nan m f) = Bsign _ _ f.
+Proof.
+ intros PREC EMAX; intros. generalize (Bconv_correct conv_nan m f H).
+ assert (LT: (Rabs (B2R _ _ f) < bpow radix2 emax2)%R).
+ {
+ destruct f; try discriminate; simpl.
+ rewrite Rabs_R0. apply bpow_gt_0.
+ apply Rlt_le_trans with (bpow radix2 emax1).
+ rewrite F2R_cond_Zopp. rewrite abs_cond_Ropp. rewrite <- F2R_Zabs. simpl Z.abs.
+ eapply bounded_lt_emax; eauto.
+ apply bpow_le. omega.
+ }
+ assert (EQ: round radix2 fexp2 (round_mode m) (B2R prec1 emax1 f) = B2R prec1 emax1 f).
+ {
+ apply round_generic. apply valid_rnd_round_mode. eapply generic_inclusion_le.
+ 5: apply generic_format_B2R. apply fexp_correct; auto. apply fexp_correct; auto.
+ instantiate (1 := emax2). intros. unfold fexp2, FLT_exp. unfold emin2. zify; omega.
+ apply Rlt_le; auto.
+ }
+ rewrite EQ. rewrite Rlt_bool_true by auto. auto.
+Qed.
+
+(** Conversion from integers and change of format *)
+
+Theorem Bconv_BofZ:
+ forall conv_nan n,
+ integer_representable prec1 emax1 n ->
+ Bconv conv_nan mode_NE (BofZ prec1 emax1 _ Hmax1 n) = BofZ prec2 emax2 _ Hmax2 n.
+Proof.
+ intros.
+ destruct (BofZ_representable _ _ _ Hmax1 n H) as (A & B & C).
+ set (f := BofZ prec1 emax1 prec1_gt_0_ Hmax1 n) in *.
+ generalize (Bconv_correct conv_nan mode_NE f B).
+ unfold BofZ.
+ generalize (binary_normalize_correct _ _ _ Hmax2 mode_NE n 0 false).
+ fold emin2; fold fexp2. rewrite A.
+ replace (F2R {| Fnum := n; Fexp := 0 |}) with (IZR n).
+ destruct Rlt_bool.
+- intros (P & Q & R) (D & E & F). apply B2R_Bsign_inj; auto.
+ congruence. rewrite F, C, R. rewrite Rcompare_IZR.
+ unfold Z.ltb. auto.
+- intros P Q. apply B2FF_inj. rewrite P, Q. rewrite C. f_equal.
+ generalize (Zlt_bool_spec n 0); intros LT; inversion LT.
+ rewrite Rlt_bool_true; auto. apply IZR_lt; auto.
+ rewrite Rlt_bool_false; auto. apply IZR_le; auto.
+- unfold F2R; simpl. rewrite Rmult_1_r. auto.
+Qed.
+
+(** Change of format (to higher precision) and conversion to integer. *)
+
+Theorem ZofB_Bconv:
+ prec2 >= prec1 -> emax2 >= emax1 ->
+ forall conv_nan m f n,
+ ZofB _ _ f = Some n -> ZofB _ _ (Bconv conv_nan m f) = Some n.
+Proof.
+ intros. rewrite ZofB_correct in H1. destruct (is_finite _ _ f) eqn:FIN; inversion H1.
+ destruct (Bconv_widen_exact H H0 conv_nan m f) as (A & B & C). auto.
+ rewrite ZofB_correct. rewrite B. rewrite A. auto.
+Qed.
+
+Theorem ZofB_range_Bconv:
+ forall min1 max1 min2 max2,
+ prec2 >= prec1 -> emax2 >= emax1 -> min2 <= min1 -> max1 <= max2 ->
+ forall conv_nan m f n,
+ ZofB_range _ _ f min1 max1 = Some n ->
+ ZofB_range _ _ (Bconv conv_nan m f) min2 max2 = Some n.
+Proof.
+ intros.
+ destruct (ZofB_range_inversion _ _ _ _ _ _ H3) as (A & B & C).
+ unfold ZofB_range. erewrite ZofB_Bconv by eauto.
+ rewrite ! Zle_bool_true by omega. auto.
+Qed.
+
+(** Change of format (to higher precision) and comparison. *)
+
+Theorem Bcompare_Bconv_widen:
+ prec2 >= prec1 -> emax2 >= emax1 ->
+ forall conv_nan m x y,
+ Bcompare _ _ (Bconv conv_nan m x) (Bconv conv_nan m y) = Bcompare _ _ x y.
+Proof.
+ intros. destruct (is_finite _ _ x && is_finite _ _ y) eqn:FIN.
+- apply andb_true_iff in FIN. destruct FIN.
+ destruct (Bconv_widen_exact H H0 conv_nan m x H1) as (A & B & C).
+ destruct (Bconv_widen_exact H H0 conv_nan m y H2) as (D & E & F).
+ rewrite ! Bcompare_correct by auto. rewrite A, D. auto.
+- generalize (Bconv_widen_exact H H0 conv_nan m x)
+ (Bconv_widen_exact H H0 conv_nan m y); intros P Q.
+ destruct x as [sx|sx|sx px Hx|sx mx ex Hx], y as [sy|sy|sy py Hy|sy my ey Hy]; try discriminate; simpl in P, Q; simpl;
+ repeat (match goal with |- context [conv_nan ?b ?pl] => destruct (conv_nan b pl) end);
+ auto.
+ destruct Q as (D & E & F); auto.
+ now destruct binary_normalize.
+ destruct P as (A & B & C); auto.
+ now destruct binary_normalize.
+ destruct P as (A & B & C); auto.
+ now destruct binary_normalize.
+Qed.
+
+End Conversions.
+
+Section Compose_Conversions.
+
+Variable prec1 emax1 prec2 emax2 : Z.
+Context (prec1_gt_0_ : Prec_gt_0 prec1) (prec2_gt_0_ : Prec_gt_0 prec2).
+Let emin1 := (3 - emax1 - prec1)%Z.
+Let fexp1 := FLT_exp emin1 prec1.
+Let emin2 := (3 - emax2 - prec2)%Z.
+Let fexp2 := FLT_exp emin2 prec2.
+Hypothesis Hmax1 : (prec1 < emax1)%Z.
+Hypothesis Hmax2 : (prec2 < emax2)%Z.
+Let binary_float1 := binary_float prec1 emax1.
+Let binary_float2 := binary_float prec2 emax2.
+
+(** Converting to a higher precision then down to the original format
+ is the identity. *)
+Theorem Bconv_narrow_widen:
+ prec2 >= prec1 -> emax2 >= emax1 ->
+ forall narrow_nan widen_nan m f,
+ is_nan _ _ f = false ->
+ Bconv prec2 emax2 prec1 emax1 _ Hmax1 narrow_nan m (Bconv prec1 emax1 prec2 emax2 _ Hmax2 widen_nan m f) = f.
+Proof.
+ intros. destruct (is_finite _ _ f) eqn:FIN.
+- assert (EQ: round radix2 fexp1 (round_mode m) (B2R prec1 emax1 f) = B2R prec1 emax1 f).
+ { apply round_generic. apply valid_rnd_round_mode. apply generic_format_B2R. }
+ generalize (Bconv_widen_exact _ _ _ _ _ _ Hmax2 H H0 widen_nan m f FIN).
+ set (f' := Bconv prec1 emax1 prec2 emax2 _ Hmax2 widen_nan m f).
+ intros (A & B & C).
+ generalize (Bconv_correct _ _ _ _ _ Hmax1 narrow_nan m f' B).
+ fold emin1. fold fexp1. rewrite A, C, EQ. rewrite Rlt_bool_true.
+ intros (D & E & F).
+ apply B2R_Bsign_inj; auto.
+ destruct f; try discriminate; simpl.
+ rewrite Rabs_R0. apply bpow_gt_0.
+ rewrite F2R_cond_Zopp. rewrite abs_cond_Ropp. rewrite <- F2R_Zabs. simpl Z.abs.
+ eapply bounded_lt_emax; eauto.
+- destruct f; try discriminate. simpl. auto.
+Qed.
+
+End Compose_Conversions.