aboutsummaryrefslogtreecommitdiffstats
path: root/powerpc/Asmgenproof.v
diff options
context:
space:
mode:
authorxleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2013-03-01 15:32:13 +0000
committerxleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2013-03-01 15:32:13 +0000
commit5020a5a07da3fd690f5d171a48d0c73ef48f9430 (patch)
tree3ddd75a3ef65543de814f2e0881f8467df73e089 /powerpc/Asmgenproof.v
parentf401437a97b09726d029e3a1b65143f34baaea70 (diff)
downloadcompcert-kvx-5020a5a07da3fd690f5d171a48d0c73ef48f9430.tar.gz
compcert-kvx-5020a5a07da3fd690f5d171a48d0c73ef48f9430.zip
Revised Stacking and Asmgen passes and Mach semantics:
- no more prediction of return addresses (Asmgenretaddr is gone) - instead, punch a hole for the retaddr in Mach stack frame and fill this hole with the return address in the Asmgen proof. git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2129 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'powerpc/Asmgenproof.v')
-rw-r--r--powerpc/Asmgenproof.v1723
1 files changed, 630 insertions, 1093 deletions
diff --git a/powerpc/Asmgenproof.v b/powerpc/Asmgenproof.v
index de9decbd..6c95744a 100644
--- a/powerpc/Asmgenproof.v
+++ b/powerpc/Asmgenproof.v
@@ -27,11 +27,9 @@ Require Import Op.
Require Import Locations.
Require Import Conventions.
Require Import Mach.
-Require Import Machsem.
-Require Import Machtyping.
Require Import Asm.
Require Import Asmgen.
-Require Import Asmgenretaddr.
+Require Import Asmgenproof0.
Require Import Asmgenproof1.
Section PRESERVATION.
@@ -67,210 +65,53 @@ Proof
(Genv.find_funct_ptr_transf_partial transf_fundef _ TRANSF).
Lemma functions_transl:
- forall f b,
+ forall f b tf,
Genv.find_funct_ptr ge b = Some (Internal f) ->
- Genv.find_funct_ptr tge b = Some (Internal (transl_function f)).
+ transf_function f = OK tf ->
+ Genv.find_funct_ptr tge b = Some (Internal tf).
Proof.
intros.
- destruct (functions_translated _ _ H) as [tf [A B]].
- rewrite A. generalize B. unfold transf_fundef, transf_partial_fundef, transf_function.
- case (zlt Int.max_unsigned (list_length_z (transl_function f))); simpl; intro.
- congruence. intro. inv B0. auto.
-Qed.
-
-Lemma functions_transl_no_overflow:
- forall b f,
- Genv.find_funct_ptr ge b = Some (Internal f) ->
- list_length_z (transl_function f) <= Int.max_unsigned.
-Proof.
- intros.
- destruct (functions_translated _ _ H) as [tf [A B]].
- generalize B. unfold transf_fundef, transf_partial_fundef, transf_function.
- case (zlt Int.max_unsigned (list_length_z (transl_function f))); simpl; intro.
- congruence. intro; omega.
+ destruct (functions_translated _ _ H) as [tf' [A B]].
+ rewrite A. monadInv B. f_equal. congruence.
Qed.
(** * Properties of control flow *)
-Lemma find_instr_in:
- forall c pos i,
- find_instr pos c = Some i -> In i c.
-Proof.
- induction c; simpl. intros; discriminate.
- intros until i. case (zeq pos 0); intros.
- left; congruence. right; eauto.
-Qed.
-
-Lemma find_instr_tail:
- forall c1 i c2 pos,
- code_tail pos c1 (i :: c2) ->
- find_instr pos c1 = Some i.
-Proof.
- induction c1; simpl; intros.
- inv H.
- destruct (zeq pos 0). subst pos.
- inv H. auto. generalize (code_tail_pos _ _ _ H4). intro. omegaContradiction.
- inv H. congruence. replace (pos0 + 1 - 1) with pos0 by omega.
- eauto.
-Qed.
-
-Remark code_tail_bounds:
- forall fn ofs i c,
- code_tail ofs fn (i :: c) -> 0 <= ofs < list_length_z fn.
+Lemma transf_function_no_overflow:
+ forall f tf,
+ transf_function f = OK tf -> list_length_z tf <= Int.max_unsigned.
Proof.
- assert (forall ofs fn c, code_tail ofs fn c ->
- forall i c', c = i :: c' -> 0 <= ofs < list_length_z fn).
- induction 1; intros; simpl.
- rewrite H. rewrite list_length_z_cons. generalize (list_length_z_pos c'). omega.
- rewrite list_length_z_cons. generalize (IHcode_tail _ _ H0). omega.
- eauto.
-Qed.
-
-Lemma code_tail_next:
- forall fn ofs i c,
- code_tail ofs fn (i :: c) ->
- code_tail (ofs + 1) fn c.
-Proof.
- assert (forall ofs fn c, code_tail ofs fn c ->
- forall i c', c = i :: c' -> code_tail (ofs + 1) fn c').
- induction 1; intros.
- subst c. constructor. constructor.
- constructor. eauto.
- eauto.
-Qed.
-
-Lemma code_tail_next_int:
- forall fn ofs i c,
- list_length_z fn <= Int.max_unsigned ->
- code_tail (Int.unsigned ofs) fn (i :: c) ->
- code_tail (Int.unsigned (Int.add ofs Int.one)) fn c.
-Proof.
- intros. rewrite Int.add_unsigned.
- change (Int.unsigned Int.one) with 1.
- rewrite Int.unsigned_repr. apply code_tail_next with i; auto.
- generalize (code_tail_bounds _ _ _ _ H0). omega.
-Qed.
-
-(** [transl_code_at_pc pc fn c] holds if the code pointer [pc] points
- within the PPC code generated by translating Mach function [fn],
- and [c] is the tail of the generated code at the position corresponding
- to the code pointer [pc]. *)
-
-Inductive transl_code_at_pc: val -> block -> Mach.function -> Mach.code -> Prop :=
- transl_code_at_pc_intro:
- forall b ofs f c,
- Genv.find_funct_ptr ge b = Some (Internal f) ->
- code_tail (Int.unsigned ofs) (transl_function f) (transl_code f c) ->
- transl_code_at_pc (Vptr b ofs) b f c.
-
-(** The following lemmas show that straight-line executions
- (predicate [exec_straight]) correspond to correct PPC executions
- (predicate [exec_steps]) under adequate [transl_code_at_pc] hypotheses. *)
-
-Lemma exec_straight_steps_1:
- forall fn c rs m c' rs' m',
- exec_straight tge fn c rs m c' rs' m' ->
- list_length_z fn <= Int.max_unsigned ->
- forall b ofs,
- rs#PC = Vptr b ofs ->
- Genv.find_funct_ptr tge b = Some (Internal fn) ->
- code_tail (Int.unsigned ofs) fn c ->
- plus step tge (State rs m) E0 (State rs' m').
-Proof.
- induction 1; intros.
- apply plus_one.
- econstructor; eauto.
- eapply find_instr_tail. eauto.
- eapply plus_left'.
- econstructor; eauto.
- eapply find_instr_tail. eauto.
- apply IHexec_straight with b (Int.add ofs Int.one).
- auto. rewrite H0. rewrite H3. reflexivity.
- auto.
- apply code_tail_next_int with i; auto.
- traceEq.
-Qed.
-
-Lemma exec_straight_steps_2:
- forall fn c rs m c' rs' m',
- exec_straight tge fn c rs m c' rs' m' ->
- list_length_z fn <= Int.max_unsigned ->
- forall b ofs,
- rs#PC = Vptr b ofs ->
- Genv.find_funct_ptr tge b = Some (Internal fn) ->
- code_tail (Int.unsigned ofs) fn c ->
- exists ofs',
- rs'#PC = Vptr b ofs'
- /\ code_tail (Int.unsigned ofs') fn c'.
-Proof.
- induction 1; intros.
- exists (Int.add ofs Int.one). split.
- rewrite H0. rewrite H2. auto.
- apply code_tail_next_int with i1; auto.
- apply IHexec_straight with (Int.add ofs Int.one).
- auto. rewrite H0. rewrite H3. reflexivity. auto.
- apply code_tail_next_int with i; auto.
+ intros. monadInv H. destruct (zlt Int.max_unsigned (list_length_z x)); inv EQ0.
+ omega.
Qed.
Lemma exec_straight_exec:
- forall fb f c c' rs m rs' m',
- transl_code_at_pc (rs PC) fb f c ->
- exec_straight tge (transl_function f)
- (transl_code f c) rs m c' rs' m' ->
+ forall f c ep tf tc c' rs m rs' m',
+ transl_code_at_pc ge (rs PC) f c ep tf tc ->
+ exec_straight tge tf tc rs m c' rs' m' ->
plus step tge (State rs m) E0 (State rs' m').
Proof.
- intros. inversion H. subst.
+ intros. inv H.
eapply exec_straight_steps_1; eauto.
- eapply functions_transl_no_overflow; eauto.
- eapply functions_transl; eauto.
+ eapply transf_function_no_overflow; eauto.
+ eapply functions_transl; eauto.
Qed.
Lemma exec_straight_at:
- forall fb f c c' rs m rs' m',
- transl_code_at_pc (rs PC) fb f c ->
- exec_straight tge (transl_function f)
- (transl_code f c) rs m (transl_code f c') rs' m' ->
- transl_code_at_pc (rs' PC) fb f c'.
+ forall f c ep tf tc c' ep' tc' rs m rs' m',
+ transl_code_at_pc ge (rs PC) f c ep tf tc ->
+ transl_code f c' ep' = OK tc' ->
+ exec_straight tge tf tc rs m tc' rs' m' ->
+ transl_code_at_pc ge (rs' PC) f c' ep' tf tc'.
Proof.
- intros. inversion H. subst.
- generalize (functions_transl_no_overflow _ _ H2). intro.
- generalize (functions_transl _ _ H2). intro.
- generalize (exec_straight_steps_2 _ _ _ _ _ _ _
- H0 H4 _ _ (sym_equal H1) H5 H3).
+ intros. inv H.
+ exploit exec_straight_steps_2; eauto.
+ eapply transf_function_no_overflow; eauto.
+ eapply functions_transl; eauto.
intros [ofs' [PC' CT']].
rewrite PC'. constructor; auto.
Qed.
-(** Correctness of the return addresses predicted by
- [PPCgen.return_address_offset]. *)
-
-Remark code_tail_no_bigger:
- forall pos c1 c2, code_tail pos c1 c2 -> (length c2 <= length c1)%nat.
-Proof.
- induction 1; simpl; omega.
-Qed.
-
-Remark code_tail_unique:
- forall fn c pos pos',
- code_tail pos fn c -> code_tail pos' fn c -> pos = pos'.
-Proof.
- induction fn; intros until pos'; intros ITA CT; inv ITA; inv CT; auto.
- generalize (code_tail_no_bigger _ _ _ H3); simpl; intro; omega.
- generalize (code_tail_no_bigger _ _ _ H3); simpl; intro; omega.
- f_equal. eauto.
-Qed.
-
-Lemma return_address_offset_correct:
- forall b ofs fb f c ofs',
- transl_code_at_pc (Vptr b ofs) fb f c ->
- return_address_offset f c ofs' ->
- ofs' = ofs.
-Proof.
- intros. inv H0. inv H.
- generalize (code_tail_unique _ _ _ _ H1 H7). intro. rewrite H.
- apply Int.repr_unsigned.
-Qed.
-
(** The [find_label] function returns the code tail starting at the
given label. A connection with [code_tail] is then established. *)
@@ -391,119 +232,137 @@ Qed.
Hint Rewrite rolm_label: labels.
Remark loadind_label:
- forall base ofs ty dst k, find_label lbl (loadind base ofs ty dst k) = find_label lbl k.
+ forall base ofs ty dst k c,
+ loadind base ofs ty dst k = OK c ->
+ find_label lbl c = find_label lbl k.
Proof.
- intros; unfold loadind.
- destruct (Int.eq (high_s ofs) Int.zero); destruct ty; autorewrite with labels; auto.
+ unfold loadind; intros.
+ destruct ty; destruct (Int.eq (high_s ofs) Int.zero); monadInv H;
+ autorewrite with labels; auto.
Qed.
-Hint Rewrite loadind_label: labels.
Remark storeind_label:
- forall base ofs ty src k, find_label lbl (storeind base src ofs ty k) = find_label lbl k.
+ forall base ofs ty src k c,
+ storeind base src ofs ty k = OK c ->
+ find_label lbl c = find_label lbl k.
Proof.
- intros; unfold storeind.
- destruct (Int.eq (high_s ofs) Int.zero); destruct ty; autorewrite with labels; auto.
+ unfold storeind; intros.
+ destruct ty; destruct (Int.eq (high_s ofs) Int.zero); monadInv H;
+ autorewrite with labels; auto.
Qed.
-Hint Rewrite storeind_label: labels.
Remark floatcomp_label:
forall cmp r1 r2 k, find_label lbl (floatcomp cmp r1 r2 k) = find_label lbl k.
Proof.
intros; unfold floatcomp. destruct cmp; reflexivity.
Qed.
+Hint Rewrite floatcomp_label: labels.
Remark transl_cond_label:
- forall cond args k, find_label lbl (transl_cond cond args k) = find_label lbl k.
+ forall cond args k c,
+ transl_cond cond args k = OK c -> find_label lbl c = find_label lbl k.
Proof.
- intros; unfold transl_cond.
- destruct cond; (destruct args;
- [try reflexivity | destruct args;
- [try reflexivity | destruct args; try reflexivity]]).
- case (Int.eq (high_s i) Int.zero). reflexivity.
- autorewrite with labels; reflexivity.
- case (Int.eq (high_u i) Int.zero). reflexivity.
- autorewrite with labels; reflexivity.
- apply floatcomp_label. apply floatcomp_label.
- apply andimm_base_label. apply andimm_base_label.
+ unfold transl_cond; intros; destruct cond;
+ (destruct args;
+ [try discriminate | destruct args;
+ [try discriminate | destruct args; try discriminate]]);
+ monadInv H; autorewrite with labels; auto.
+ destruct (Int.eq (high_s i) Int.zero); inv EQ0; autorewrite with labels; auto.
+ destruct (Int.eq (high_u i) Int.zero); inv EQ0; autorewrite with labels; auto.
Qed.
-Hint Rewrite transl_cond_label: labels.
Remark transl_cond_op_label:
- forall c args r k,
- find_label lbl (transl_cond_op c args r k) = find_label lbl k.
+ forall cond args r k c,
+ transl_cond_op cond args r k = OK c -> find_label lbl c = find_label lbl k.
Proof.
- intros c args.
- unfold transl_cond_op. destruct (classify_condition c args); intros; auto.
- autorewrite with labels. destruct (snd (crbit_for_cond c)); auto.
+ unfold transl_cond_op; intros; destruct (classify_condition cond args);
+ monadInv H; auto.
+ erewrite transl_cond_label. 2: eauto.
+ destruct (snd (crbit_for_cond c0)); auto.
Qed.
-Hint Rewrite transl_cond_op_label: labels.
Remark transl_op_label:
- forall op args r k, find_label lbl (transl_op op args r k) = find_label lbl k.
+ forall op args r k c,
+ transl_op op args r k = OK c -> find_label lbl c = find_label lbl k.
Proof.
- intros; unfold transl_op;
- destruct op; destruct args; try (destruct args); try (destruct args); try (destruct args);
- try reflexivity; autorewrite with labels; try reflexivity.
- case (mreg_type m); reflexivity.
- case (symbol_is_small_data i i0); reflexivity.
- case (Int.eq (high_s i) Int.zero); autorewrite with labels; reflexivity.
- case (Int.eq (high_s i) Int.zero); autorewrite with labels; reflexivity.
- destruct (mreg_eq m r); reflexivity.
+ unfold transl_op; intros; destruct op; try (eapply transl_cond_op_label; eauto; fail);
+ (destruct args;
+ [try discriminate | destruct args;
+ [try discriminate | destruct args; try discriminate]]);
+ try (monadInv H); autorewrite with labels; auto.
+ destruct (preg_of r); try discriminate; destruct (preg_of m); inv H; auto.
+ destruct (symbol_is_small_data i i0); auto.
+ destruct (Int.eq (high_s i) Int.zero); autorewrite with labels; auto.
+ destruct (Int.eq (high_s i) Int.zero); autorewrite with labels; auto.
Qed.
-Hint Rewrite transl_op_label: labels.
-Remark transl_load_store_label:
+Remark transl_memory_access_label:
forall (mk1: constant -> ireg -> instruction) (mk2: ireg -> ireg -> instruction)
- addr args temp k,
+ addr args temp k c,
+ transl_memory_access mk1 mk2 addr args temp k = OK c ->
(forall c r, is_label lbl (mk1 c r) = false) ->
(forall r1 r2, is_label lbl (mk2 r1 r2) = false) ->
- find_label lbl (transl_load_store mk1 mk2 addr args temp k) = find_label lbl k.
-Proof.
- intros; unfold transl_load_store.
- destruct addr; destruct args; try (destruct args); try (destruct args);
- try reflexivity.
- destruct (Int.eq (high_s i) Int.zero); simpl; rewrite H; auto.
+ find_label lbl c = find_label lbl k.
+Proof.
+ unfold transl_memory_access; intros; destruct addr;
+ (destruct args;
+ [try discriminate | destruct args;
+ [try discriminate | destruct args; try discriminate]]);
+ monadInv H; autorewrite with labels; auto.
+ destruct (Int.eq (high_s i) Int.zero); simpl; rewrite H0; auto.
+ simpl; rewrite H1; auto.
+ destruct (symbol_is_small_data i i0); simpl; rewrite H0; auto.
simpl; rewrite H0; auto.
- destruct (symbol_is_small_data i i0); simpl; rewrite H; auto.
- simpl; rewrite H; auto.
- destruct (Int.eq (high_s i) Int.zero); simpl; rewrite H; auto.
+ destruct (Int.eq (high_s i) Int.zero); simpl; rewrite H0; auto.
Qed.
-Hint Rewrite transl_load_store_label: labels.
Lemma transl_instr_label:
- forall f i k,
- find_label lbl (transl_instr f i k) =
- if Mach.is_label lbl i then Some k else find_label lbl k.
-Proof.
- intros. generalize (Mach.is_label_correct lbl i).
- case (Mach.is_label lbl i); intro.
- subst i. simpl. rewrite peq_true. auto.
- destruct i; simpl; autorewrite with labels; try reflexivity.
- destruct m; rewrite transl_load_store_label; intros; reflexivity.
- destruct m; rewrite transl_load_store_label; intros; reflexivity.
- destruct s0; reflexivity.
- destruct s0; reflexivity.
- rewrite peq_false. auto. congruence.
- case (snd (crbit_for_cond c)); reflexivity.
+ forall f i ep k c,
+ transl_instr f i ep k = OK c ->
+ find_label lbl c = if Mach.is_label lbl i then Some k else find_label lbl k.
+Proof.
+ unfold transl_instr, Mach.is_label; intros; destruct i; try (monadInv H);
+ autorewrite with labels; auto.
+ eapply loadind_label; eauto.
+ eapply storeind_label; eauto.
+ destruct ep. eapply loadind_label; eauto.
+ monadInv H. transitivity (find_label lbl x); eapply loadind_label; eauto.
+ eapply transl_op_label; eauto.
+ destruct m; monadInv H; rewrite (transl_memory_access_label _ _ _ _ _ _ _ EQ0); auto.
+ destruct m; monadInv H; rewrite (transl_memory_access_label _ _ _ _ _ _ _ EQ0); auto.
+ destruct s0; monadInv H; auto.
+ destruct s0; monadInv H; auto.
+ erewrite transl_cond_label. 2: eauto. destruct (snd (crbit_for_cond c0)); auto.
Qed.
Lemma transl_code_label:
- forall f c,
- find_label lbl (transl_code f c) =
- option_map (transl_code f) (Mach.find_label lbl c).
+ forall f c ep tc,
+ transl_code f c ep = OK tc ->
+ match Mach.find_label lbl c with
+ | None => find_label lbl tc = None
+ | Some c' => exists tc', find_label lbl tc = Some tc' /\ transl_code f c' false = OK tc'
+ end.
Proof.
induction c; simpl; intros.
- auto. rewrite transl_instr_label.
- case (Mach.is_label lbl a). reflexivity.
- auto.
+ inv H. auto.
+ monadInv H. rewrite (transl_instr_label _ _ _ _ _ EQ0).
+ generalize (Mach.is_label_correct lbl a).
+ destruct (Mach.is_label lbl a); intros.
+ subst a. simpl in EQ. exists x; auto.
+ eapply IHc; eauto.
Qed.
Lemma transl_find_label:
- forall f,
- find_label lbl (transl_function f) =
- option_map (transl_code f) (Mach.find_label lbl f.(fn_code)).
+ forall f tf,
+ transf_function f = OK tf ->
+ match Mach.find_label lbl f.(Mach.fn_code) with
+ | None => find_label lbl tf = None
+ | Some c => exists tc, find_label lbl tf = Some tc /\ transl_code f c false = OK tc
+ end.
Proof.
- intros. unfold transl_function. simpl. apply transl_code_label.
+ intros. monadInv H. destruct (zlt Int.max_unsigned (list_length_z x)); inv EQ0.
+ monadInv EQ. simpl.
+ eapply transl_code_label; eauto.
Qed.
End TRANSL_LABEL.
@@ -512,28 +371,26 @@ End TRANSL_LABEL.
transition in the generated PPC code. *)
Lemma find_label_goto_label:
- forall f lbl rs m c' b ofs,
+ forall f tf lbl rs m c' b ofs,
Genv.find_funct_ptr ge b = Some (Internal f) ->
+ transf_function f = OK tf ->
rs PC = Vptr b ofs ->
- Mach.find_label lbl f.(fn_code) = Some c' ->
- exists rs',
- goto_label (transl_function f) lbl rs m = OK rs' m
- /\ transl_code_at_pc (rs' PC) b f c'
+ Mach.find_label lbl f.(Mach.fn_code) = Some c' ->
+ exists tc', exists rs',
+ goto_label tf lbl rs m = Next rs' m
+ /\ transl_code_at_pc ge (rs' PC) f c' false tf tc'
/\ forall r, r <> PC -> rs'#r = rs#r.
Proof.
- intros.
- generalize (transl_find_label lbl f).
- rewrite H1; simpl. intro.
- generalize (label_pos_code_tail lbl (transl_function f) 0
- (transl_code f c') H2).
- intros [pos' [A [B C]]].
- exists (rs#PC <- (Vptr b (Int.repr pos'))).
- split. unfold goto_label. rewrite A. rewrite H0. auto.
+ intros. exploit (transl_find_label lbl f tf); eauto. rewrite H2.
+ intros [tc [A B]].
+ exploit label_pos_code_tail; eauto. instantiate (1 := 0).
+ intros [pos' [P [Q R]]].
+ exists tc; exists (rs#PC <- (Vptr b (Int.repr pos'))).
+ split. unfold goto_label. rewrite P. rewrite H1. auto.
split. rewrite Pregmap.gss. constructor; auto.
- rewrite Int.unsigned_repr. replace (pos' - 0) with pos' in B.
- auto. omega.
- generalize (functions_transl_no_overflow _ _ H).
- omega.
+ rewrite Int.unsigned_repr. replace (pos' - 0) with pos' in Q.
+ auto. omega.
+ generalize (transf_function_no_overflow _ _ H0). omega.
intros. apply Pregmap.gso; auto.
Qed.
@@ -555,108 +412,92 @@ Qed.
- Mach register values and PPC register values agree.
*)
-Inductive match_stack: list Machsem.stackframe -> Prop :=
- | match_stack_nil:
- match_stack nil
- | match_stack_cons: forall fb sp ra c s f,
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- wt_function f ->
- incl c f.(fn_code) ->
- transl_code_at_pc ra fb f c ->
- sp <> Vundef ->
- ra <> Vundef ->
- match_stack s ->
- match_stack (Stackframe fb sp ra c :: s).
-
-Inductive match_states: Machsem.state -> Asm.state -> Prop :=
+Inductive match_states: Mach.state -> Asm.state -> Prop :=
| match_states_intro:
- forall s fb sp c ms m rs m' f
- (STACKS: match_stack s)
- (FIND: Genv.find_funct_ptr ge fb = Some (Internal f))
- (WTF: wt_function f)
- (INCL: incl c f.(fn_code))
- (AT: transl_code_at_pc (rs PC) fb f c)
- (AG: agree ms sp rs)
- (MEXT: Mem.extends m m'),
- match_states (Machsem.State s fb sp c ms m)
+ forall s f sp c ep ms m m' rs tf tc ra
+ (STACKS: match_stack ge s m m' ra sp)
+ (MEXT: Mem.extends m m')
+ (AT: transl_code_at_pc ge (rs PC) f c ep tf tc)
+ (AG: agree ms (Vptr sp Int.zero) rs)
+ (RSA: retaddr_stored_at m m' sp (Int.unsigned f.(fn_retaddr_ofs)) ra)
+ (DXP: ep = true -> rs#GPR11 = parent_sp s),
+ match_states (Mach.State s f (Vptr sp Int.zero) c ms m)
(Asm.State rs m')
| match_states_call:
- forall s fb ms m rs m'
- (STACKS: match_stack s)
- (AG: agree ms (parent_sp s) rs)
+ forall s fd ms m m' rs fb
+ (STACKS: match_stack ge s m m' (rs LR) (Mem.nextblock m))
(MEXT: Mem.extends m m')
+ (AG: agree ms (parent_sp s) rs)
(ATPC: rs PC = Vptr fb Int.zero)
- (ATLR: rs LR = parent_ra s),
- match_states (Machsem.Callstate s fb ms m)
+ (FUNCT: Genv.find_funct_ptr ge fb = Some fd)
+ (WTRA: Val.has_type (rs LR) Tint),
+ match_states (Mach.Callstate s fd ms m)
(Asm.State rs m')
| match_states_return:
- forall s ms m rs m'
- (STACKS: match_stack s)
- (AG: agree ms (parent_sp s) rs)
+ forall s ms m m' rs
+ (STACKS: match_stack ge s m m' (rs PC) (Mem.nextblock m))
(MEXT: Mem.extends m m')
- (ATPC: rs PC = parent_ra s),
- match_states (Machsem.Returnstate s ms m)
+ (AG: agree ms (parent_sp s) rs),
+ match_states (Mach.Returnstate s ms m)
(Asm.State rs m').
Lemma exec_straight_steps:
- forall s fb sp m1' f c1 rs1 c2 m2 m2' ms2,
- match_stack s ->
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- wt_function f ->
- incl c2 f.(fn_code) ->
- transl_code_at_pc (rs1 PC) fb f c1 ->
- (exists rs2,
- exec_straight tge (transl_function f) (transl_code f c1) rs1 m1' (transl_code f c2) rs2 m2'
- /\ agree ms2 sp rs2) ->
+ forall s f rs1 i c ep tf tc m1' m2 m2' sp ms2 ra,
+ match_stack ge s m2 m2' ra sp ->
Mem.extends m2 m2' ->
+ retaddr_stored_at m2 m2' sp (Int.unsigned f.(fn_retaddr_ofs)) ra ->
+ transl_code_at_pc ge (rs1 PC) f (i :: c) ep tf tc ->
+ (forall k c (TR: transl_instr f i ep k = OK c),
+ exists rs2,
+ exec_straight tge tf c rs1 m1' k rs2 m2'
+ /\ agree ms2 (Vptr sp Int.zero) rs2
+ /\ (r11_is_parent ep i = true -> rs2#GPR11 = parent_sp s)) ->
exists st',
plus step tge (State rs1 m1') E0 st' /\
- match_states (Machsem.State s fb sp c2 ms2 m2) st'.
+ match_states (Mach.State s f (Vptr sp Int.zero) c ms2 m2) st'.
Proof.
- intros. destruct H4 as [rs2 [A B]].
+ intros. inversion H2; subst. monadInv H7.
+ exploit H3; eauto. intros [rs2 [A [B C]]].
exists (State rs2 m2'); split.
- eapply exec_straight_exec; eauto.
+ eapply exec_straight_exec; eauto.
econstructor; eauto. eapply exec_straight_at; eauto.
Qed.
-Lemma exec_straight_steps_bis:
- forall s fb sp m1' f c1 rs1 c2 m2 ms2,
- match_stack s ->
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- wt_function f ->
- incl c2 f.(fn_code) ->
- transl_code_at_pc (rs1 PC) fb f c1 ->
- (exists m2',
- Mem.extends m2 m2'
- /\ exists rs2,
- exec_straight tge (transl_function f) (transl_code f c1) rs1 m1' (transl_code f c2) rs2 m2'
- /\ agree ms2 sp rs2) ->
+Lemma exec_straight_steps_goto:
+ forall s f rs1 i c ep tf tc m1' m2 m2' sp ms2 lbl c' ra,
+ match_stack ge s m2 m2' ra sp ->
+ Mem.extends m2 m2' ->
+ retaddr_stored_at m2 m2' sp (Int.unsigned f.(fn_retaddr_ofs)) ra ->
+ Mach.find_label lbl f.(Mach.fn_code) = Some c' ->
+ transl_code_at_pc ge (rs1 PC) f (i :: c) ep tf tc ->
+ r11_is_parent ep i = false ->
+ (forall k c (TR: transl_instr f i ep k = OK c),
+ exists jmp, exists k', exists rs2,
+ exec_straight tge tf c rs1 m1' (jmp :: k') rs2 m2'
+ /\ agree ms2 (Vptr sp Int.zero) rs2
+ /\ exec_instr tge tf jmp rs2 m2' = goto_label tf lbl rs2 m2') ->
exists st',
plus step tge (State rs1 m1') E0 st' /\
- match_states (Machsem.State s fb sp c2 ms2 m2) st'.
+ match_states (Mach.State s f (Vptr sp Int.zero) c' ms2 m2) st'.
Proof.
- intros. destruct H4 as [m2' [A B]].
- eapply exec_straight_steps; eauto.
-Qed.
-
-Lemma parent_sp_def: forall s, match_stack s -> parent_sp s <> Vundef.
-Proof. induction 1; simpl. congruence. auto. Qed.
-
-Lemma parent_ra_def: forall s, match_stack s -> parent_ra s <> Vundef.
-Proof. induction 1; simpl. unfold Vzero. congruence. auto. Qed.
-
-Lemma lessdef_parent_sp:
- forall s v,
- match_stack s -> Val.lessdef (parent_sp s) v -> v = parent_sp s.
-Proof.
- intros. inv H0. auto. exploit parent_sp_def; eauto. tauto.
-Qed.
-
-Lemma lessdef_parent_ra:
- forall s v,
- match_stack s -> Val.lessdef (parent_ra s) v -> v = parent_ra s.
-Proof.
- intros. inv H0. auto. exploit parent_ra_def; eauto. tauto.
+ intros. inversion H3; subst. monadInv H9.
+ exploit H5; eauto. intros [jmp [k' [rs2 [A [B C]]]]].
+ generalize (functions_transl _ _ _ H7 H8); intro FN.
+ generalize (transf_function_no_overflow _ _ H8); intro NOOV.
+ exploit exec_straight_steps_2; eauto.
+ intros [ofs' [PC2 CT2]].
+ exploit find_label_goto_label; eauto.
+ intros [tc' [rs3 [GOTO [AT' OTH]]]].
+ exists (State rs3 m2'); split.
+ eapply plus_right'.
+ eapply exec_straight_steps_1; eauto.
+ econstructor; eauto.
+ eapply find_instr_tail. eauto.
+ rewrite C. eexact GOTO.
+ traceEq.
+ econstructor; eauto.
+ apply agree_exten with rs2; auto with asmgen.
+ congruence.
Qed.
(** We need to show that, in the simulation diagram, we cannot
@@ -667,448 +508,285 @@ Qed.
So, the following integer measure will suffice to rule out
the unwanted behaviour. *)
-Definition measure (s: Machsem.state) : nat :=
+Definition measure (s: Mach.state) : nat :=
match s with
- | Machsem.State _ _ _ _ _ _ => 0%nat
- | Machsem.Callstate _ _ _ _ => 0%nat
- | Machsem.Returnstate _ _ _ => 1%nat
+ | Mach.State _ _ _ _ _ _ => 0%nat
+ | Mach.Callstate _ _ _ _ => 0%nat
+ | Mach.Returnstate _ _ _ => 1%nat
end.
-(** We show the simulation diagram by case analysis on the Mach transition
- on the left. Since the proof is large, we break it into one lemma
- per transition. *)
-
-Definition exec_instr_prop (s1: Machsem.state) (t: trace) (s2: Machsem.state) : Prop :=
- forall s1' (MS: match_states s1 s1'),
- (exists s2', plus step tge s1' t s2' /\ match_states s2 s2')
- \/ (measure s2 < measure s1 /\ t = E0 /\ match_states s2 s1')%nat.
-
-
-Lemma exec_Mlabel_prop:
- forall (s : list stackframe) (fb : block) (sp : val)
- (lbl : Mach.label) (c : list Mach.instruction) (ms : Mach.regset)
- (m : mem),
- exec_instr_prop (Machsem.State s fb sp (Mlabel lbl :: c) ms m) E0
- (Machsem.State s fb sp c ms m).
+Remark preg_of_not_GPR11: forall r, negb (mreg_eq r IT1) = true -> IR GPR11 <> preg_of r.
Proof.
- intros; red; intros; inv MS.
- left; eapply exec_straight_steps; eauto with coqlib.
- exists (nextinstr rs); split.
- simpl. apply exec_straight_one. reflexivity. reflexivity.
- apply agree_nextinstr; auto.
+ intros. change (IR GPR11) with (preg_of IT1). red; intros.
+ exploit preg_of_injective; eauto. intros; subst r; discriminate.
Qed.
-Lemma exec_Mgetstack_prop:
- forall (s : list stackframe) (fb : block) (sp : val) (ofs : int)
- (ty : typ) (dst : mreg) (c : list Mach.instruction)
- (ms : Mach.regset) (m : mem) (v : val),
- load_stack m sp ty ofs = Some v ->
- exec_instr_prop (Machsem.State s fb sp (Mgetstack ofs ty dst :: c) ms m) E0
- (Machsem.State s fb sp c (Regmap.set dst v ms) m).
-Proof.
- intros; red; intros; inv MS.
- unfold load_stack in H.
- generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
- intro WTI. inversion WTI.
- exploit Mem.loadv_extends; eauto. intros [v' [A B]].
- rewrite (sp_val _ _ _ AG) in A.
- exploit (loadind_correct tge (transl_function f) GPR1 ofs ty dst (transl_code f c) rs m' v').
- auto. auto. congruence.
- intros [rs2 [EX [RES OTH]]].
- left; eapply exec_straight_steps; eauto with coqlib.
- simpl. exists rs2; split. auto.
- apply agree_set_mreg with rs; auto with ppcgen. congruence.
-Qed.
+(** This is the simulation diagram. We prove it by case analysis on the Mach transition. *)
-Lemma exec_Msetstack_prop:
- forall (s : list stackframe) (fb : block) (sp : val) (src : mreg)
- (ofs : int) (ty : typ) (c : list Mach.instruction)
- (ms : mreg -> val) (m m' : mem),
- store_stack m sp ty ofs (ms src) = Some m' ->
- exec_instr_prop (Machsem.State s fb sp (Msetstack src ofs ty :: c) ms m) E0
- (Machsem.State s fb sp c ms m').
+Theorem step_simulation:
+ forall S1 t S2, Mach.step ge S1 t S2 ->
+ forall S1' (MS: match_states S1 S1'),
+ (exists S2', plus step tge S1' t S2' /\ match_states S2 S2')
+ \/ (measure S2 < measure S1 /\ t = E0 /\ match_states S2 S1')%nat.
Proof.
- intros; red; intros; inv MS.
- unfold store_stack in H.
- generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
- intro WTI. inv WTI.
- generalize (preg_val ms sp rs src AG). intro.
- exploit Mem.storev_extends; eauto.
- intros [m2' [A B]].
+ induction 1; intros; inv MS.
+
+- (* Mlabel *)
+ left; eapply exec_straight_steps; eauto; intros.
+ monadInv TR. econstructor; split. apply exec_straight_one. simpl; eauto. auto.
+ split. apply agree_nextinstr; auto. simpl; congruence.
+
+- (* Mgetstack *)
+ unfold load_stack in H.
+ exploit Mem.loadv_extends; eauto. intros [v' [A B]].
rewrite (sp_val _ _ _ AG) in A.
- exploit (storeind_correct tge (transl_function f) GPR1 ofs (mreg_type src)
- src (transl_code f c) rs).
- eauto. auto. congruence.
- intros [rs2 [EX OTH]].
- left; eapply exec_straight_steps; eauto with coqlib.
- exists rs2; split; auto.
- apply agree_exten with rs; auto with ppcgen.
-Qed.
+ left; eapply exec_straight_steps; eauto. intros. simpl in TR.
+ exploit loadind_correct; eauto with asmgen. intros [rs' [P [Q R]]].
+ exists rs'; split. eauto.
+ split. eapply agree_set_mreg; eauto with asmgen. congruence.
+ simpl; congruence.
-Lemma exec_Mgetparam_prop:
- forall (s : list stackframe) (fb : block) (f: Mach.function) (sp : val)
- (ofs : int) (ty : typ) (dst : mreg) (c : list Mach.instruction)
- (ms : Mach.regset) (m : mem) (v : val),
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- load_stack m sp Tint f.(fn_link_ofs) = Some (parent_sp s) ->
- load_stack m (parent_sp s) ty ofs = Some v ->
- exec_instr_prop (Machsem.State s fb sp (Mgetparam ofs ty dst :: c) ms m) E0
- (Machsem.State s fb sp c (Regmap.set dst v (Regmap.set IT1 Vundef ms)) m).
-Proof.
- intros; red; intros; inv MS.
- assert (f0 = f) by congruence. subst f0.
- generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
- intro WTI. inv WTI.
- unfold load_stack in *. simpl in H0.
+- (* Msetstack *)
+ unfold store_stack in H.
+ assert (Val.lessdef (rs src) (rs0 (preg_of src))). eapply preg_val; eauto.
+ exploit Mem.storev_extends; eauto. intros [m2' [A B]].
+ left; eapply exec_straight_steps; eauto.
+ eapply match_stack_storev; eauto.
+ eapply retaddr_stored_at_storev; eauto.
+ rewrite (sp_val _ _ _ AG) in A. intros. simpl in TR.
+ exploit storeind_correct; eauto with asmgen. intros [rs' [P Q]].
+ exists rs'; split. eauto.
+ split. change (undef_setstack rs) with rs. apply agree_exten with rs0; auto with asmgen.
+ simpl; intros. rewrite Q; auto with asmgen.
+
+- (* Mgetparam *)
+ unfold load_stack in *.
+ exploit Mem.loadv_extends. eauto. eexact H. auto.
+ intros [parent' [A B]]. rewrite (sp_val _ _ _ AG) in A.
+ exploit lessdef_parent_sp; eauto. clear B; intros B; subst parent'.
exploit Mem.loadv_extends. eauto. eexact H0. auto.
- intros [parent' [A B]].
- exploit Mem.loadv_extends. eauto. eexact H1.
- instantiate (1 := (Val.add parent' (Vint ofs))).
- inv B. auto. simpl; auto.
intros [v' [C D]].
- left; eapply exec_straight_steps; eauto with coqlib. simpl.
- set (rs1 := nextinstr (rs#GPR11 <- parent')).
- exploit (loadind_correct tge (transl_function f) GPR11 ofs (mreg_type dst) dst (transl_code f c) rs1 m' v').
- unfold rs1. rewrite nextinstr_inv; auto with ppcgen. auto. congruence.
- intros [rs2 [U [V W]]].
- exists rs2; split.
- apply exec_straight_step with rs1 m'.
- simpl. unfold load1. simpl. rewrite gpr_or_zero_not_zero.
- rewrite <- (sp_val _ _ _ AG). rewrite A. auto. congruence. auto.
- auto.
- apply agree_set_mreg with rs1; auto with ppcgen.
- unfold rs1. change (IR GPR11) with (preg_of IT1).
- apply agree_nextinstr. apply agree_set_mreg with rs; auto with ppcgen.
- intros. apply Pregmap.gso; auto with ppcgen.
- congruence.
-Qed.
-
-Lemma exec_Mop_prop:
- forall (s : list stackframe) (fb : block) (sp : val) (op : operation)
- (args : list mreg) (res : mreg) (c : list Mach.instruction)
- (ms : mreg -> val) (m : mem) (v : val),
- eval_operation ge sp op ms ## args m = Some v ->
- exec_instr_prop (Machsem.State s fb sp (Mop op args res :: c) ms m) E0
- (Machsem.State s fb sp c (Regmap.set res v (undef_op op ms)) m).
-Proof.
- intros; red; intros; inv MS.
- generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
- intro WTI.
- left; eapply exec_straight_steps; eauto with coqlib.
- simpl. eapply transl_op_correct; eauto.
- rewrite <- H. apply eval_operation_preserved. exact symbols_preserved.
-Qed.
-
-Remark loadv_8_signed_unsigned:
- forall m a v,
- Mem.loadv Mint8signed m a = Some v ->
- exists v', Mem.loadv Mint8unsigned m a = Some v' /\ v = Val.sign_ext 8 v'.
-Proof.
- unfold Mem.loadv; intros. destruct a; try congruence.
- generalize (Mem.load_int8_signed_unsigned m b (Int.unsigned i)).
- rewrite H. destruct (Mem.load Mint8unsigned m b (Int.unsigned i)).
- simpl; intros. exists v0; split; congruence.
+Opaque loadind.
+ left; eapply exec_straight_steps; eauto; intros.
+ destruct ep; simpl in TR.
+(* GPR11 contains parent *)
+ exploit loadind_correct. eexact TR.
+ instantiate (2 := rs0). rewrite DXP; eauto. congruence.
+ intros [rs1 [P [Q R]]].
+ exists rs1; split. eauto.
+ split. eapply agree_set_mreg. eapply agree_set_mreg; eauto. congruence. auto with asmgen.
+ simpl; intros. rewrite R; auto with asmgen.
+ apply preg_of_not_GPR11; auto.
+(* GPR11 does not contain parent *)
+ monadInv TR.
+ exploit loadind_correct. eexact EQ0. eauto. congruence. intros [rs1 [P [Q R]]]. simpl in Q.
+ exploit loadind_correct. eexact EQ. instantiate (2 := rs1). rewrite Q. eauto. congruence.
+ intros [rs2 [S [T U]]].
+ exists rs2; split. eapply exec_straight_trans; eauto.
+ split. eapply agree_set_mreg. eapply agree_set_mreg. eauto. eauto.
+ instantiate (1 := rs1#GPR11 <- (rs2#GPR11)). intros.
+ rewrite Pregmap.gso; auto with asmgen.
+ congruence. intros. unfold Pregmap.set. destruct (PregEq.eq r' GPR11). congruence. auto with asmgen.
+ simpl; intros. rewrite U; auto with asmgen.
+ apply preg_of_not_GPR11; auto.
+
+- (* Mop *)
+ assert (eval_operation tge (Vptr sp0 Int.zero) op rs##args m = Some v).
+ rewrite <- H. apply eval_operation_preserved. exact symbols_preserved.
+ exploit eval_operation_lessdef. eapply preg_vals; eauto. eauto. eexact H0.
+ intros [v' [A B]]. rewrite (sp_val _ _ _ AG) in A.
+ left; eapply exec_straight_steps; eauto; intros. simpl in TR.
+ exploit transl_op_correct; eauto. intros [rs2 [P [Q R]]].
+ exists rs2; split. eauto. split. auto.
+ simpl. destruct op; try congruence. destruct ep; simpl; try congruence. intros.
+ rewrite R; auto. apply preg_of_not_GPR11; auto.
+
+- (* Mload *)
+ assert (eval_addressing tge (Vptr sp0 Int.zero) addr rs##args = Some a).
+ rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved.
+ exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1.
+ intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A.
+ exploit Mem.loadv_extends; eauto. intros [v' [C D]].
+ left; eapply exec_straight_steps; eauto; intros. simpl in TR.
+ exploit transl_load_correct; eauto. intros [rs2 [P [Q R]]].
+ exists rs2; split. eauto.
+ split. eapply agree_set_undef_mreg; eauto. congruence.
+ intros; auto with asmgen.
simpl; congruence.
-Qed.
-Lemma exec_Mload_prop:
- forall (s : list stackframe) (fb : block) (sp : val)
- (chunk : memory_chunk) (addr : addressing) (args : list mreg)
- (dst : mreg) (c : list Mach.instruction) (ms : mreg -> val)
- (m : mem) (a v : val),
- eval_addressing ge sp addr ms ## args = Some a ->
- Mem.loadv chunk m a = Some v ->
- exec_instr_prop (Machsem.State s fb sp (Mload chunk addr args dst :: c) ms m)
- E0 (Machsem.State s fb sp c (Regmap.set dst v (undef_temps ms)) m).
-Proof.
- intros; red; intros; inv MS.
- generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
- intro WTI; inversion WTI.
- assert (eval_addressing tge sp addr ms##args = Some a).
+- (* Mstore *)
+ assert (eval_addressing tge (Vptr sp0 Int.zero) addr rs##args = Some a).
rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved.
- left; eapply exec_straight_steps; eauto with coqlib;
- destruct chunk; simpl; simpl in H6;
- (* all cases but Mint8signed and Mfloat64 *)
- try (eapply transl_load_correct; eauto;
- intros; simpl; unfold preg_of; rewrite H6; auto; fail).
- (* Mint8signed *)
- exploit loadv_8_signed_unsigned; eauto. intros [v' [LOAD EQ]].
- assert (X1: forall (cst : constant) (r1 : ireg) (rs1 : regset),
- exec_instr tge (transl_function f) (Plbz (ireg_of dst) cst r1) rs1 m' =
- load1 tge Mint8unsigned (preg_of dst) cst r1 rs1 m').
- intros. unfold preg_of; rewrite H6. reflexivity.
- assert (X2: forall (r1 r2 : ireg) (rs1 : regset),
- exec_instr tge (transl_function f) (Plbzx (ireg_of dst) r1 r2) rs1 m' =
- load2 Mint8unsigned (preg_of dst) r1 r2 rs1 m').
- intros. unfold preg_of; rewrite H6. reflexivity.
- exploit transl_load_correct; eauto.
- intros [rs2 [EX1 AG1]].
- econstructor; split.
- eapply exec_straight_trans. eexact EX1.
- apply exec_straight_one. simpl. eauto. auto.
- apply agree_nextinstr.
- eapply agree_set_twice_mireg; eauto.
- rewrite EQ. apply Val.sign_ext_lessdef.
- generalize (ireg_val _ _ _ dst AG1 H6). rewrite Regmap.gss. auto.
- (* Mfloat64 *)
- exploit Mem.loadv_float64al32; eauto. intros. clear H0.
- eapply transl_load_correct; eauto;
- intros; simpl; unfold preg_of; rewrite H6; auto.
-Qed.
-
-Lemma storev_8_signed_unsigned:
- forall m a v,
- Mem.storev Mint8signed m a v = Mem.storev Mint8unsigned m a v.
-Proof.
- intros. unfold Mem.storev. destruct a; auto.
- apply Mem.store_signed_unsigned_8.
-Qed.
-
-Lemma storev_16_signed_unsigned:
- forall m a v,
- Mem.storev Mint16signed m a v = Mem.storev Mint16unsigned m a v.
-Proof.
- intros. unfold Mem.storev. destruct a; auto.
- apply Mem.store_signed_unsigned_16.
-Qed.
-
-Lemma exec_Mstore_prop:
- forall (s : list stackframe) (fb : block) (sp : val)
- (chunk : memory_chunk) (addr : addressing) (args : list mreg)
- (src : mreg) (c : list Mach.instruction) (ms : mreg -> val)
- (m m' : mem) (a : val),
- eval_addressing ge sp addr ms ## args = Some a ->
- Mem.storev chunk m a (ms src) = Some m' ->
- exec_instr_prop (Machsem.State s fb sp (Mstore chunk addr args src :: c) ms m) E0
- (Machsem.State s fb sp c (undef_temps ms) m').
-Proof.
- intros; red; intros; inv MS.
- generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
- intro WTI; inv WTI.
- rewrite <- (eval_addressing_preserved _ _ symbols_preserved) in H.
- left; eapply exec_straight_steps_bis; eauto with coqlib.
- destruct chunk; simpl; simpl in H6;
- try (generalize (Mem.storev_float64al32 _ _ _ _ H0); intros);
- try (rewrite storev_8_signed_unsigned in H0);
- try (rewrite storev_16_signed_unsigned in H0);
- simpl; eapply transl_store_correct; eauto;
- (unfold preg_of; rewrite H6; intros; econstructor; eauto).
- split. simpl. rewrite H1. eauto. intros; apply Pregmap.gso; auto.
- split. simpl. rewrite H1. eauto. intros; apply Pregmap.gso; auto.
-Qed.
+ exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1.
+ intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A.
+ assert (Val.lessdef (rs src) (rs0 (preg_of src))). eapply preg_val; eauto.
+ exploit Mem.storev_extends; eauto. intros [m2' [C D]].
+ left; eapply exec_straight_steps; eauto.
+ eapply match_stack_storev; eauto.
+ eapply retaddr_stored_at_storev; eauto.
+ intros. simpl in TR. exploit transl_store_correct; eauto. intros [rs2 [P Q]].
+ exists rs2; split. eauto.
+ split. eapply agree_exten_temps; eauto. intros; auto with asmgen.
+ simpl; congruence.
-Lemma exec_Mcall_prop:
- forall (s : list stackframe) (fb : block) (sp : val)
- (sig : signature) (ros : mreg + ident) (c : Mach.code)
- (ms : Mach.regset) (m : mem) (f : function) (f' : block)
- (ra : int),
- find_function_ptr ge ros ms = Some f' ->
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- return_address_offset f c ra ->
- exec_instr_prop (Machsem.State s fb sp (Mcall sig ros :: c) ms m) E0
- (Callstate (Stackframe fb sp (Vptr fb ra) c :: s) f' ms m).
-Proof.
- intros; red; intros; inv MS.
- assert (f0 = f) by congruence. subst f0.
- generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
- intro WTI. inversion WTI.
+- (* Mcall *)
inv AT.
- assert (NOOV: list_length_z (transl_function f) <= Int.max_unsigned).
- eapply functions_transl_no_overflow; eauto.
- destruct ros; simpl in H; simpl transl_code in H7.
- (* Indirect call *)
- generalize (code_tail_next_int _ _ _ _ NOOV H7). intro CT1.
+ assert (NOOV: list_length_z tf <= Int.max_unsigned).
+ eapply transf_function_no_overflow; eauto.
+ destruct ros as [rf|fid]; simpl in H; monadInv H3.
++ (* Indirect call *)
+ exploit Genv.find_funct_inv; eauto. intros [bf EQ2].
+ rewrite EQ2 in H; rewrite Genv.find_funct_find_funct_ptr in H.
+ assert (rs0 x0 = Vptr bf Int.zero).
+ exploit ireg_val; eauto. rewrite EQ2; intros LD; inv LD; auto.
+ generalize (code_tail_next_int _ _ _ _ NOOV H4). intro CT1.
generalize (code_tail_next_int _ _ _ _ NOOV CT1). intro CT2.
- assert (P1: ms m0 = Vptr f' Int.zero).
- destruct (ms m0); try congruence.
- generalize H; predSpec Int.eq Int.eq_spec i Int.zero; intros; congruence.
- assert (P2: rs (ireg_of m0) = Vptr f' Int.zero).
- generalize (ireg_val _ _ _ m0 AG H3).
- rewrite P1. intro. inv H2. auto.
- set (rs2 := nextinstr (rs#CTR <- (Vptr f' Int.zero))).
- set (rs3 := rs2 #LR <- (Val.add rs2#PC Vone) #PC <- (Vptr f' Int.zero)).
- assert (ATPC: rs3 PC = Vptr f' Int.zero). reflexivity.
- exploit return_address_offset_correct; eauto. constructor; eauto.
- intro RA_EQ.
- assert (ATLR: rs3 LR = Vptr fb ra).
- rewrite RA_EQ.
- change (rs3 LR) with (Val.add (Val.add (rs PC) Vone) Vone).
- rewrite <- H5. reflexivity.
- assert (AG3: agree ms sp rs3).
- unfold rs3, rs2; auto 8 with ppcgen.
- left; exists (State rs3 m'); split.
- apply plus_left with E0 (State rs2 m') E0.
- econstructor. eauto. apply functions_transl. eexact H0.
- eapply find_instr_tail. eauto.
- simpl. rewrite P2. auto.
- apply star_one. econstructor.
- change (rs2 PC) with (Val.add (rs PC) Vone). rewrite <- H5.
- simpl. auto.
- apply functions_transl. eexact H0.
- eapply find_instr_tail. eauto.
- simpl. reflexivity.
+ assert (TCA: transl_code_at_pc ge (Vptr b (Int.add (Int.add ofs Int.one) Int.one)) f c false tf x).
+ econstructor; eauto.
+ left; econstructor; split.
+ eapply plus_left. eapply exec_step_internal. eauto.
+ eapply functions_transl; eauto. eapply find_instr_tail; eauto.
+ simpl. eauto.
+ apply star_one. eapply exec_step_internal. Simpl. rewrite <- H0; simpl; eauto.
+ eapply functions_transl; eauto. eapply find_instr_tail; eauto.
+ simpl. eauto.
traceEq.
+ econstructor; eauto.
econstructor; eauto.
- econstructor; eauto with coqlib.
- rewrite RA_EQ. econstructor; eauto.
- eapply agree_sp_def; eauto. congruence.
-
- (* Direct call *)
- generalize (code_tail_next_int _ _ _ _ NOOV H7). intro CT1.
- set (rs2 := rs #LR <- (Val.add rs#PC Vone) #PC <- (symbol_offset tge i Int.zero)).
- assert (ATPC: rs2 PC = Vptr f' Int.zero).
- change (rs2 PC) with (symbol_offset tge i Int.zero).
- unfold symbol_offset. rewrite symbols_preserved. rewrite H. auto.
- exploit return_address_offset_correct; eauto. constructor; eauto.
- intro RA_EQ.
- assert (ATLR: rs2 LR = Vptr fb ra).
- rewrite RA_EQ.
- change (rs2 LR) with (Val.add (rs PC) Vone).
- rewrite <- H5. reflexivity.
- assert (AG2: agree ms sp rs2).
- unfold rs2; auto 8 with ppcgen.
- left; exists (State rs2 m'); split.
- apply plus_one. econstructor.
- eauto.
- apply functions_transl. eexact H0.
- eapply find_instr_tail. eauto.
- simpl. reflexivity.
- econstructor; eauto with coqlib.
- econstructor; eauto with coqlib.
- rewrite RA_EQ. econstructor; eauto.
- eapply agree_sp_def; eauto. congruence.
-Qed.
-
-Lemma exec_Mtailcall_prop:
- forall (s : list stackframe) (fb stk : block) (soff : int)
- (sig : signature) (ros : mreg + ident) (c : list Mach.instruction)
- (ms : Mach.regset) (m : mem) (f: Mach.function) (f' : block) m',
- find_function_ptr ge ros ms = Some f' ->
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- load_stack m (Vptr stk soff) Tint f.(fn_link_ofs) = Some (parent_sp s) ->
- load_stack m (Vptr stk soff) Tint f.(fn_retaddr_ofs) = Some (parent_ra s) ->
- Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
- exec_instr_prop
- (Machsem.State s fb (Vptr stk soff) (Mtailcall sig ros :: c) ms m) E0
- (Callstate s f' ms m').
-Proof.
- intros; red; intros; inv MS.
- assert (f0 = f) by congruence. subst f0.
- generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
- intro WTI. inversion WTI.
- inversion AT. subst b f0 c0.
- assert (NOOV: list_length_z (transl_function f) <= Int.max_unsigned).
- eapply functions_transl_no_overflow; eauto.
- exploit Mem.free_parallel_extends; eauto.
- intros [m2' [FREE' EXT']].
- unfold load_stack in *. simpl in H1; simpl in H2.
- exploit Mem.load_extends. eexact MEXT. eexact H1.
- intros [parent' [LOAD1 LD1]].
- rewrite (lessdef_parent_sp s parent' STACKS LD1) in LOAD1.
- exploit Mem.load_extends. eexact MEXT. eexact H2.
- intros [ra' [LOAD2 LD2]].
- rewrite (lessdef_parent_ra s ra' STACKS LD2) in LOAD2.
- destruct ros; simpl in H; simpl in H9.
- (* Indirect call *)
- assert (P1: ms m0 = Vptr f' Int.zero).
- destruct (ms m0); try congruence.
- generalize H; predSpec Int.eq Int.eq_spec i Int.zero; intros; congruence.
- assert (P2: rs (ireg_of m0) = Vptr f' Int.zero).
- generalize (ireg_val _ _ _ m0 AG H7).
- rewrite P1. intro. inv H11. auto.
- set (rs2 := nextinstr (rs#CTR <- (Vptr f' Int.zero))).
- set (rs3 := nextinstr (rs2#GPR0 <- (parent_ra s))).
- set (rs4 := nextinstr (rs3#LR <- (parent_ra s))).
+ Simpl. rewrite <- H0; eexact TCA.
+ change (Mem.valid_block m sp0). eapply retaddr_stored_at_valid; eauto.
+ simpl. eapply agree_exten; eauto. intros. Simpl.
+ Simpl. rewrite <- H0. exact I.
++ (* Direct call *)
+ destruct (Genv.find_symbol ge fid) as [bf|] eqn:FS; try discriminate.
+ generalize (code_tail_next_int _ _ _ _ NOOV H4). intro CT1.
+ assert (TCA: transl_code_at_pc ge (Vptr b (Int.add ofs Int.one)) f c false tf x).
+ econstructor; eauto.
+ left; econstructor; split.
+ apply plus_one. eapply exec_step_internal. eauto.
+ eapply functions_transl; eauto. eapply find_instr_tail; eauto.
+ simpl. unfold symbol_offset. rewrite symbols_preserved. rewrite FS. eauto.
+ econstructor; eauto.
+ econstructor; eauto.
+ rewrite <- H0. eexact TCA.
+ change (Mem.valid_block m sp0). eapply retaddr_stored_at_valid; eauto.
+ simpl. eapply agree_exten; eauto. intros. Simpl.
+ auto.
+ rewrite <- H0. exact I.
+
+- (* Mtailcall *)
+ inversion AT; subst.
+ assert (NOOV: list_length_z tf <= Int.max_unsigned).
+ eapply transf_function_no_overflow; eauto.
+ rewrite (sp_val _ _ _ AG) in *. unfold load_stack in *.
+ exploit Mem.loadv_extends. eauto. eexact H0. auto. simpl. intros [parent' [A B]].
+ exploit lessdef_parent_sp; eauto. intros. subst parent'. clear B.
+ assert (C: Mem.loadv Mint32 m'0 (Val.add (rs0 GPR1) (Vint (fn_retaddr_ofs f))) = Some ra).
+Opaque Int.repr.
+ erewrite agree_sp; eauto. simpl. rewrite Int.add_zero_l.
+ eapply rsa_contains; eauto.
+ exploit retaddr_stored_at_can_free; eauto. intros [m2' [E F]].
+ assert (M: match_stack ge s m'' m2' ra (Mem.nextblock m'')).
+ apply match_stack_change_bound with stk.
+ eapply match_stack_free_left; eauto.
+ eapply match_stack_free_left; eauto.
+ eapply match_stack_free_right; eauto.
+ omega.
+ apply Z.lt_le_incl. change (Mem.valid_block m'' stk).
+ eapply Mem.valid_block_free_1; eauto. eapply Mem.valid_block_free_1; eauto.
+ eapply retaddr_stored_at_valid; eauto.
+ destruct ros as [rf|fid]; simpl in H; monadInv H6.
++ (* Indirect call *)
+ exploit Genv.find_funct_inv; eauto. intros [bf EQ2].
+ rewrite EQ2 in H; rewrite Genv.find_funct_find_funct_ptr in H.
+ assert (rs0 x0 = Vptr bf Int.zero).
+ exploit ireg_val; eauto. rewrite EQ2; intros LD; inv LD; auto.
+ set (rs2 := nextinstr (rs0#CTR <- (Vptr bf Int.zero))).
+ set (rs3 := nextinstr (rs2#GPR0 <- ra)).
+ set (rs4 := nextinstr (rs3#LR <- ra)).
set (rs5 := nextinstr (rs4#GPR1 <- (parent_sp s))).
set (rs6 := rs5#PC <- (rs5 CTR)).
- assert (exec_straight tge (transl_function f)
- (transl_code f (Mtailcall sig (inl ident m0) :: c)) rs m'0
- (Pbctr :: transl_code f c) rs5 m2').
- simpl. apply exec_straight_step with rs2 m'0.
- simpl. rewrite P2. auto. auto.
+ assert (exec_straight tge tf
+ (Pmtctr x0 :: Plwz GPR0 (Cint (fn_retaddr_ofs f)) GPR1 :: Pmtlr GPR0
+ :: Pfreeframe (fn_stacksize f) (fn_link_ofs f) :: Pbctr :: x)
+ rs0 m'0
+ (Pbctr :: x) rs5 m2').
+ apply exec_straight_step with rs2 m'0.
+ simpl. rewrite H6. auto. auto.
apply exec_straight_step with rs3 m'0.
simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low.
- change (rs2 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
- simpl. rewrite LOAD2. auto. congruence. auto.
+ change (rs2 GPR1) with (rs0 GPR1). rewrite C. auto. congruence. auto.
apply exec_straight_step with rs4 m'0.
simpl. reflexivity. reflexivity.
apply exec_straight_one.
- simpl. change (rs4 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
- simpl. rewrite LOAD1. rewrite FREE'. reflexivity. reflexivity.
+ simpl. change (rs4 GPR1) with (rs0 GPR1). rewrite A. rewrite <- (sp_val _ _ _ AG).
+ rewrite E. reflexivity. reflexivity.
left; exists (State rs6 m2'); split.
(* execution *)
eapply plus_right'. eapply exec_straight_exec; eauto.
econstructor.
- change (rs5 PC) with (Val.add (Val.add (Val.add (Val.add (rs PC) Vone) Vone) Vone) Vone).
- rewrite <- H8; simpl. eauto.
+ change (rs5 PC) with (Val.add (Val.add (Val.add (Val.add (rs0 PC) Vone) Vone) Vone) Vone).
+ rewrite <- H3; simpl. eauto.
eapply functions_transl; eauto.
eapply find_instr_tail.
repeat (eapply code_tail_next_int; auto). eauto.
simpl. reflexivity. traceEq.
(* match states *)
econstructor; eauto.
- assert (AG4: agree ms (Vptr stk soff) rs4).
- unfold rs4, rs3, rs2; auto 10 with ppcgen.
- assert (AG5: agree ms (parent_sp s) rs5).
- unfold rs5. apply agree_nextinstr.
- split. reflexivity. apply parent_sp_def; auto.
- intros. inv AG4. rewrite Pregmap.gso; auto with ppcgen.
- unfold rs6; auto with ppcgen.
- (* direct call *)
- set (rs2 := nextinstr (rs#GPR0 <- (parent_ra s))).
- set (rs3 := nextinstr (rs2#LR <- (parent_ra s))).
+Hint Resolve agree_nextinstr agree_set_other: asmgen.
+ assert (AG4: agree rs (Vptr stk Int.zero) rs4).
+ unfold rs4, rs3, rs2; auto 10 with asmgen.
+ assert (AG5: agree rs (parent_sp s) rs5).
+ unfold rs5. apply agree_nextinstr. eapply agree_change_sp. eauto.
+ eapply parent_sp_def; eauto.
+ unfold rs6, rs5; auto 10 with asmgen.
+ reflexivity.
+ change (rs6 LR) with ra. eapply retaddr_stored_at_type; eauto.
++ (* Direct call *)
+ destruct (Genv.find_symbol ge fid) as [bf|] eqn:FS; try discriminate.
+ set (rs2 := nextinstr (rs0#GPR0 <- ra)).
+ set (rs3 := nextinstr (rs2#LR <- ra)).
set (rs4 := nextinstr (rs3#GPR1 <- (parent_sp s))).
- set (rs5 := rs4#PC <- (Vptr f' Int.zero)).
- assert (exec_straight tge (transl_function f)
- (transl_code f (Mtailcall sig (inr mreg i) :: c)) rs m'0
- (Pbs i :: transl_code f c) rs4 m2').
- simpl. apply exec_straight_step with rs2 m'0.
+ set (rs5 := rs4#PC <- (Vptr bf Int.zero)).
+ assert (exec_straight tge tf
+ (Plwz GPR0 (Cint (fn_retaddr_ofs f)) GPR1 :: Pmtlr GPR0
+ :: Pfreeframe (fn_stacksize f) (fn_link_ofs f) :: Pbs fid :: x)
+ rs0 m'0
+ (Pbs fid :: x) rs4 m2').
+ apply exec_straight_step with rs2 m'0.
simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low.
- rewrite <- (sp_val _ _ _ AG).
- simpl. rewrite LOAD2. auto. discriminate. auto.
+ rewrite C. auto. congruence. auto.
apply exec_straight_step with rs3 m'0.
simpl. reflexivity. reflexivity.
apply exec_straight_one.
- simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
- simpl. rewrite LOAD1. rewrite FREE'. reflexivity. reflexivity.
+ simpl. change (rs3 GPR1) with (rs0 GPR1). rewrite A. rewrite <- (sp_val _ _ _ AG).
+ rewrite E. reflexivity. reflexivity.
left; exists (State rs5 m2'); split.
(* execution *)
eapply plus_right'. eapply exec_straight_exec; eauto.
econstructor.
- change (rs4 PC) with (Val.add (Val.add (Val.add (rs PC) Vone) Vone) Vone).
- rewrite <- H8; simpl. eauto.
+ change (rs4 PC) with (Val.add (Val.add (Val.add (rs0 PC) Vone) Vone) Vone).
+ rewrite <- H3; simpl. eauto.
eapply functions_transl; eauto.
eapply find_instr_tail.
repeat (eapply code_tail_next_int; auto). eauto.
- simpl. unfold symbol_offset. rewrite symbols_preserved. rewrite H.
- reflexivity. traceEq.
+ simpl. unfold symbol_offset. rewrite symbols_preserved. rewrite FS. auto. traceEq.
(* match states *)
econstructor; eauto.
- assert (AG3: agree ms (Vptr stk soff) rs3).
- unfold rs3, rs2; auto 10 with ppcgen.
- assert (AG4: agree ms (parent_sp s) rs4).
- unfold rs4. apply agree_nextinstr.
- split. reflexivity.
- apply parent_sp_def; auto.
- intros. inv AG3. rewrite Pregmap.gso; auto with ppcgen.
- unfold rs5; auto with ppcgen.
-Qed.
+Hint Resolve agree_nextinstr agree_set_other: asmgen.
+ assert (AG3: agree rs (Vptr stk Int.zero) rs3).
+ unfold rs3, rs2; auto 10 with asmgen.
+ assert (AG4: agree rs (parent_sp s) rs4).
+ unfold rs4. apply agree_nextinstr. eapply agree_change_sp. eauto.
+ eapply parent_sp_def; eauto.
+ unfold rs5; auto 10 with asmgen.
+ reflexivity.
+ change (rs5 LR) with ra. eapply retaddr_stored_at_type; eauto.
-Lemma exec_Mbuiltin_prop:
- forall (s : list stackframe) (f : block) (sp : val)
- (ms : Mach.regset) (m : mem) (ef : external_function)
- (args : list mreg) (res : mreg) (b : list Mach.instruction)
- (t : trace) (v : val) (m' : mem),
- external_call ef ge ms ## args m t v m' ->
- exec_instr_prop (Machsem.State s f sp (Mbuiltin ef args res :: b) ms m) t
- (Machsem.State s f sp b (Regmap.set res v (undef_temps ms)) m').
-Proof.
- intros; red; intros; inv MS.
- generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
- intro WTI. inv WTI.
- inv AT. simpl in H3.
- generalize (functions_transl _ _ FIND); intro FN.
- generalize (functions_transl_no_overflow _ _ FIND); intro NOOV.
+- (* Mbuiltin *)
+ inv AT. monadInv H3.
+ exploit functions_transl; eauto. intro FN.
+ generalize (transf_function_no_overflow _ _ H2); intro NOOV.
exploit external_call_mem_extends; eauto. eapply preg_vals; eauto.
intros [vres' [m2' [A [B [C D]]]]].
left. econstructor; split. apply plus_one.
@@ -1116,30 +794,23 @@ Proof.
eapply find_instr_tail; eauto.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
- econstructor; eauto with coqlib.
- unfold nextinstr. rewrite Pregmap.gss. repeat rewrite Pregmap.gso; auto with ppcgen.
- rewrite <- H0. simpl. constructor; auto.
- eapply code_tail_next_int; eauto.
- apply sym_not_equal. auto with ppcgen.
- apply agree_nextinstr. apply agree_set_mreg_undef_temps with rs; auto.
- rewrite Pregmap.gss. auto.
- intros. repeat rewrite Pregmap.gso; auto with ppcgen.
-Qed.
+ econstructor; eauto.
+ eapply match_stack_extcall; eauto.
+ intros; eapply external_call_max_perm; eauto.
+ instantiate (2 := tf); instantiate (1 := x).
+ Simpl. rewrite <- H0. simpl. econstructor; eauto.
+ eapply code_tail_next_int; eauto.
+ apply agree_nextinstr. eapply agree_set_undef_mreg; eauto.
+ rewrite Pregmap.gss. auto.
+ intros. Simpl.
+ eapply retaddr_stored_at_extcall; eauto.
+ intros; eapply external_call_max_perm; eauto.
+ congruence.
-Lemma exec_Mannot_prop:
- forall (s : list stackframe) (f : block) (sp : val)
- (ms : Mach.regset) (m : mem) (ef : external_function)
- (args : list Mach.annot_param) (b : list Mach.instruction)
- (vargs: list val) (t : trace) (v : val) (m' : mem),
- Machsem.annot_arguments ms m sp args vargs ->
- external_call ef ge vargs m t v m' ->
- exec_instr_prop (Machsem.State s f sp (Mannot ef args :: b) ms m) t
- (Machsem.State s f sp b ms m').
-Proof.
- intros; red; intros; inv MS.
- inv AT. simpl in H3.
- generalize (functions_transl _ _ FIND); intro FN.
- generalize (functions_transl_no_overflow _ _ FIND); intro NOOV.
+- (* Mannot *)
+ inv AT. monadInv H4.
+ exploit functions_transl; eauto. intro FN.
+ generalize (transf_function_no_overflow _ _ H3); intro NOOV.
exploit annot_arguments_match; eauto. intros [vargs' [P Q]].
exploit external_call_mem_extends; eauto.
intros [vres' [m2' [A [B [C D]]]]].
@@ -1148,373 +819,238 @@ Proof.
eapply find_instr_tail; eauto. eauto.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
- econstructor; eauto with coqlib.
+ eapply match_states_intro with (ep := false); eauto with coqlib.
+ eapply match_stack_extcall; eauto.
+ intros; eapply external_call_max_perm; eauto.
unfold nextinstr. rewrite Pregmap.gss.
- rewrite <- H1; simpl. econstructor; auto.
+ rewrite <- H1; simpl. econstructor; eauto.
eapply code_tail_next_int; eauto.
apply agree_nextinstr. auto.
-Qed.
+ eapply retaddr_stored_at_extcall; eauto.
+ intros; eapply external_call_max_perm; eauto.
+ congruence.
-Lemma exec_Mgoto_prop:
- forall (s : list stackframe) (fb : block) (f : function) (sp : val)
- (lbl : Mach.label) (c : list Mach.instruction) (ms : Mach.regset)
- (m : mem) (c' : Mach.code),
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- Mach.find_label lbl (fn_code f) = Some c' ->
- exec_instr_prop (Machsem.State s fb sp (Mgoto lbl :: c) ms m) E0
- (Machsem.State s fb sp c' ms m).
-Proof.
- intros; red; intros; inv MS.
- assert (f0 = f) by congruence. subst f0.
- inv AT. simpl in H3.
- generalize (find_label_goto_label f lbl rs m' _ _ _ FIND (sym_equal H1) H0).
- intros [rs2 [GOTO [AT2 INV]]].
- left; exists (State rs2 m'); split.
+- (* Mgoto *)
+ inv AT. monadInv H3.
+ exploit find_label_goto_label; eauto. intros [tc' [rs' [GOTO [AT2 INV]]]].
+ left; exists (State rs' m'); split.
apply plus_one. econstructor; eauto.
- apply functions_transl; eauto.
+ eapply functions_transl; eauto.
eapply find_instr_tail; eauto.
- simpl; auto.
- econstructor; eauto.
- eapply Mach.find_label_incl; eauto.
- apply agree_exten with rs; auto with ppcgen.
-Qed.
-
-Lemma exec_Mcond_true_prop:
- forall (s : list stackframe) (fb : block) (f : function) (sp : val)
- (cond : condition) (args : list mreg) (lbl : Mach.label)
- (c : list Mach.instruction) (ms : mreg -> val) (m : mem)
- (c' : Mach.code),
- eval_condition cond ms ## args m = Some true ->
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- Mach.find_label lbl (fn_code f) = Some c' ->
- exec_instr_prop (Machsem.State s fb sp (Mcond cond args lbl :: c) ms m) E0
- (Machsem.State s fb sp c' (undef_temps ms) m).
-Proof.
- intros; red; intros; inv MS. assert (f0 = f) by congruence. subst f0.
- generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
- intro WTI. inv WTI.
- pose (k1 :=
- if snd (crbit_for_cond cond)
- then Pbt (fst (crbit_for_cond cond)) lbl :: transl_code f c
- else Pbf (fst (crbit_for_cond cond)) lbl :: transl_code f c).
- exploit transl_cond_correct; eauto.
- simpl. intros [rs2 [EX [RES AG2]]].
- inv AT. simpl in H5.
- generalize (functions_transl _ _ H4); intro FN.
- generalize (functions_transl_no_overflow _ _ H4); intro NOOV.
- exploit exec_straight_steps_2; eauto.
- intros [ofs' [PC2 CT2]].
- generalize (find_label_goto_label f lbl rs2 m' _ _ _ FIND PC2 H1).
- intros [rs3 [GOTO [AT3 INV3]]].
- left; exists (State rs3 m'); split.
- eapply plus_right'.
- eapply exec_straight_steps_1; eauto.
- caseEq (snd (crbit_for_cond cond)); intro ISSET; rewrite ISSET in RES.
- econstructor; eauto.
- eapply find_instr_tail. unfold k1 in CT2; rewrite ISSET in CT2. eauto.
- simpl. rewrite RES. simpl. auto.
+ simpl; eauto.
econstructor; eauto.
- eapply find_instr_tail. unfold k1 in CT2; rewrite ISSET in CT2. eauto.
- simpl. rewrite RES. simpl. auto.
- traceEq.
- econstructor; eauto.
- eapply Mach.find_label_incl; eauto.
- apply agree_undef_temps with rs2; auto with ppcgen.
-Qed.
-
-Lemma exec_Mcond_false_prop:
- forall (s : list stackframe) (fb : block) (sp : val)
- (cond : condition) (args : list mreg) (lbl : Mach.label)
- (c : list Mach.instruction) (ms : mreg -> val) (m : mem),
- eval_condition cond ms ## args m = Some false ->
- exec_instr_prop (Machsem.State s fb sp (Mcond cond args lbl :: c) ms m) E0
- (Machsem.State s fb sp c (undef_temps ms) m).
-Proof.
- intros; red; intros; inv MS.
- generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
- intro WTI. inversion WTI.
- exploit transl_cond_correct; eauto.
- simpl. intros [rs2 [EX [RES AG2]]].
- left; eapply exec_straight_steps; eauto with coqlib.
- exists (nextinstr rs2); split.
- simpl. eapply exec_straight_trans. eexact EX.
- caseEq (snd (crbit_for_cond cond)); intro ISSET; rewrite ISSET in RES.
- apply exec_straight_one. simpl. rewrite RES. reflexivity.
- reflexivity.
- apply exec_straight_one. simpl. rewrite RES. reflexivity.
- reflexivity.
- apply agree_nextinstr. apply agree_undef_temps with rs2; auto.
-Qed.
+ eapply agree_exten; eauto with asmgen.
+ congruence.
-Lemma exec_Mjumptable_prop:
- forall (s : list stackframe) (fb : block) (f : function) (sp : val)
- (arg : mreg) (tbl : list Mach.label) (c : list Mach.instruction)
- (rs : mreg -> val) (m : mem) (n : int) (lbl : Mach.label)
- (c' : Mach.code),
- rs arg = Vint n ->
- list_nth_z tbl (Int.unsigned n) = Some lbl ->
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- Mach.find_label lbl (fn_code f) = Some c' ->
- exec_instr_prop
- (Machsem.State s fb sp (Mjumptable arg tbl :: c) rs m) E0
- (Machsem.State s fb sp c' (undef_temps rs) m).
-Proof.
- intros; red; intros; inv MS.
- assert (f0 = f) by congruence. subst f0.
- generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
- intro WTI. inv WTI.
- exploit list_nth_z_range; eauto. intro RANGE.
- assert (SHIFT: Int.unsigned (Int.rolm n (Int.repr 2) (Int.repr (-4))) = Int.unsigned n * 4).
- replace (Int.repr (-4)) with (Int.shl Int.mone (Int.repr 2)).
- rewrite <- Int.shl_rolm. rewrite Int.shl_mul.
- unfold Int.mul. apply Int.unsigned_repr. omega.
- compute. reflexivity.
- apply Int.mkint_eq. compute. reflexivity.
- inv AT. simpl in H7.
- set (k1 := Pbtbl GPR12 tbl :: transl_code f c).
- set (rs1 := nextinstr (rs0 # GPR12 <- (Vint (Int.rolm n (Int.repr 2) (Int.repr (-4)))))).
- generalize (functions_transl _ _ H4); intro FN.
- generalize (functions_transl_no_overflow _ _ H4); intro NOOV.
- assert (exec_straight tge (transl_function f)
- (Prlwinm GPR12 (ireg_of arg) (Int.repr 2) (Int.repr (-4)) :: k1) rs0 m'
- k1 rs1 m').
- apply exec_straight_one.
- simpl. generalize (ireg_val _ _ _ arg AG H5). rewrite H. intro. inv H8.
- reflexivity. reflexivity.
- exploit exec_straight_steps_2; eauto.
- intros [ofs' [PC1 CT1]].
- set (rs2 := rs1 # GPR12 <- Vundef # CTR <- Vundef).
- assert (PC2: rs2 PC = Vptr fb ofs'). rewrite <- PC1. reflexivity.
- generalize (find_label_goto_label f lbl rs2 m' _ _ _ FIND PC2 H2).
- intros [rs3 [GOTO [AT3 INV3]]].
- left; exists (State rs3 m'); split.
- eapply plus_right'.
- eapply exec_straight_steps_1; eauto.
- econstructor; eauto.
- eapply find_instr_tail. unfold k1 in CT1. eauto.
- unfold exec_instr. rewrite gpr_or_zero_not_zero; auto with ppcgen.
- change (rs1 GPR12) with (Vint (Int.rolm n (Int.repr 2) (Int.repr (-4)))).
- lazy iota beta. rewrite SHIFT. rewrite Z_mod_mult. rewrite zeq_true.
- rewrite Z_div_mult.
- change label with Mach.label; rewrite H0. exact GOTO. omega. traceEq.
+- (* Mcond true *)
+ exploit eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto. intros EC.
+ left; eapply exec_straight_steps_goto; eauto.
+ intros. simpl in TR.
+ destruct (transl_cond_correct_1 tge tf cond args _ rs0 m' _ TR) as [rs' [A [B C]]].
+ rewrite EC in B.
+ destruct (snd (crbit_for_cond cond)).
+ (* Pbt, taken *)
+ econstructor; econstructor; econstructor; split. eexact A.
+ split. eapply agree_exten_temps; eauto with asmgen.
+ simpl. rewrite B. reflexivity.
+ (* Pbf, taken *)
+ econstructor; econstructor; econstructor; split. eexact A.
+ split. eapply agree_exten_temps; eauto with asmgen.
+ simpl. rewrite B. reflexivity.
+
+- (* Mcond false *)
+ exploit eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto. intros EC.
+ left; eapply exec_straight_steps; eauto. intros. simpl in TR.
+ destruct (transl_cond_correct_1 tge tf cond args _ rs0 m' _ TR) as [rs' [A [B C]]].
+ rewrite EC in B.
+ econstructor; split.
+ eapply exec_straight_trans. eexact A.
+ destruct (snd (crbit_for_cond cond)).
+ apply exec_straight_one. simpl. rewrite B. reflexivity. auto.
+ apply exec_straight_one. simpl. rewrite B. reflexivity. auto.
+ split. eapply agree_exten_temps; eauto with asmgen.
+ intros; Simpl.
+ simpl. congruence.
+
+- (* Mjumptable *)
+ inv AT. monadInv H5.
+ exploit functions_transl; eauto. intro FN.
+ generalize (transf_function_no_overflow _ _ H4); intro NOOV.
+ exploit find_label_goto_label. eauto. eauto.
+ instantiate (2 := rs0#GPR12 <- Vundef #CTR <- Vundef).
+ Simpl. eauto.
+ eauto.
+ intros [tc' [rs' [A [B C]]]].
+ exploit ireg_val; eauto. rewrite H. intros LD; inv LD.
+ left; econstructor; split.
+ apply plus_one. econstructor; eauto.
+ eapply find_instr_tail; eauto.
+ simpl. rewrite <- H8. unfold Mach.label in H0; unfold label; rewrite H0. eexact A.
econstructor; eauto.
- eapply Mach.find_label_incl; eauto.
- apply agree_undef_temps with rs0; auto.
- intros. rewrite INV3; auto with ppcgen.
- unfold rs2. repeat rewrite Pregmap.gso; auto with ppcgen.
- unfold rs1. rewrite nextinstr_inv; auto with ppcgen.
- apply Pregmap.gso; auto with ppcgen.
-Qed.
+ eapply agree_exten_temps; eauto. intros. rewrite C; auto with asmgen. Simpl.
+ congruence.
-Lemma exec_Mreturn_prop:
- forall (s : list stackframe) (fb stk : block) (soff : int)
- (c : list Mach.instruction) (ms : Mach.regset) (m : mem) (f: Mach.function) m',
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- load_stack m (Vptr stk soff) Tint f.(fn_link_ofs) = Some (parent_sp s) ->
- load_stack m (Vptr stk soff) Tint f.(fn_retaddr_ofs) = Some (parent_ra s) ->
- Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
- exec_instr_prop (Machsem.State s fb (Vptr stk soff) (Mreturn :: c) ms m) E0
- (Returnstate s ms m').
-Proof.
- intros; red; intros; inv MS.
- assert (f0 = f) by congruence. subst f0.
- exploit Mem.free_parallel_extends; eauto.
- intros [m2' [FREE' EXT']].
- unfold load_stack in *. simpl in H0; simpl in H1.
- exploit Mem.load_extends. eexact MEXT. eexact H0.
- intros [parent' [LOAD1 LD1]].
- rewrite (lessdef_parent_sp s parent' STACKS LD1) in LOAD1.
- exploit Mem.load_extends. eexact MEXT. eexact H1.
- intros [ra' [LOAD2 LD2]].
- rewrite (lessdef_parent_ra s ra' STACKS LD2) in LOAD2.
- set (rs2 := nextinstr (rs#GPR0 <- (parent_ra s))).
- set (rs3 := nextinstr (rs2#LR <- (parent_ra s))).
+- (* Mreturn *)
+ inversion AT; subst.
+ assert (NOOV: list_length_z tf <= Int.max_unsigned).
+ eapply transf_function_no_overflow; eauto.
+ rewrite (sp_val _ _ _ AG) in *. unfold load_stack in *.
+ exploit Mem.loadv_extends. eauto. eexact H. auto. simpl. intros [parent' [A B]].
+ exploit lessdef_parent_sp; eauto. intros. subst parent'. clear B.
+ assert (C: Mem.loadv Mint32 m'0 (Val.add (rs0 GPR1) (Vint (fn_retaddr_ofs f))) = Some ra).
+Opaque Int.repr.
+ erewrite agree_sp; eauto. simpl. rewrite Int.add_zero_l.
+ eapply rsa_contains; eauto.
+ exploit retaddr_stored_at_can_free; eauto. intros [m2' [E F]].
+ assert (M: match_stack ge s m'' m2' ra (Mem.nextblock m'')).
+ apply match_stack_change_bound with stk.
+ eapply match_stack_free_left; eauto.
+ eapply match_stack_free_left; eauto.
+ eapply match_stack_free_right; eauto. omega.
+ apply Z.lt_le_incl. change (Mem.valid_block m'' stk).
+ eapply Mem.valid_block_free_1; eauto. eapply Mem.valid_block_free_1; eauto.
+ eapply retaddr_stored_at_valid; eauto.
+ monadInv H5.
+ set (rs2 := nextinstr (rs0#GPR0 <- ra)).
+ set (rs3 := nextinstr (rs2#LR <- ra)).
set (rs4 := nextinstr (rs3#GPR1 <- (parent_sp s))).
- set (rs5 := rs4#PC <- (parent_ra s)).
- assert (exec_straight tge (transl_function f)
- (transl_code f (Mreturn :: c)) rs m'0
- (Pblr :: transl_code f c) rs4 m2').
+ set (rs5 := rs4#PC <- ra).
+ assert (exec_straight tge tf
+ (Plwz GPR0 (Cint (fn_retaddr_ofs f)) GPR1
+ :: Pmtlr GPR0
+ :: Pfreeframe (fn_stacksize f) (fn_link_ofs f) :: Pblr :: x) rs0 m'0
+ (Pblr :: x) rs4 m2').
simpl. apply exec_straight_three with rs2 m'0 rs3 m'0.
- simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low.
- rewrite <- (sp_val _ _ _ AG). simpl. rewrite LOAD2.
- reflexivity. discriminate.
- unfold rs3. reflexivity.
- simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
- simpl. rewrite LOAD1. rewrite FREE'. reflexivity.
- reflexivity. reflexivity. reflexivity.
+ simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low. rewrite C. auto. congruence.
+ simpl. auto.
+ simpl. change (rs3 GPR1) with (rs0 GPR1). rewrite A.
+ rewrite <- (sp_val _ _ _ AG). rewrite E. auto.
+ auto. auto. auto.
left; exists (State rs5 m2'); split.
(* execution *)
apply plus_right' with E0 (State rs4 m2') E0.
eapply exec_straight_exec; eauto.
- inv AT. econstructor.
- change (rs4 PC) with (Val.add (Val.add (Val.add (rs PC) Vone) Vone) Vone).
- rewrite <- H4. simpl. eauto.
- apply functions_transl; eauto.
- generalize (functions_transl_no_overflow _ _ H5); intro NOOV.
- simpl in H6. eapply find_instr_tail.
+ econstructor.
+ change (rs4 PC) with (Val.add (Val.add (Val.add (rs0 PC) Vone) Vone) Vone).
+ rewrite <- H2. simpl. eauto.
+ eapply functions_transl; eauto.
+ eapply find_instr_tail.
eapply code_tail_next_int; auto.
eapply code_tail_next_int; auto.
eapply code_tail_next_int; eauto.
reflexivity. traceEq.
(* match states *)
econstructor; eauto.
- assert (AG3: agree ms (Vptr stk soff) rs3).
- unfold rs3, rs2; auto 10 with ppcgen.
- assert (AG4: agree ms (parent_sp s) rs4).
- split. reflexivity. apply parent_sp_def; auto. intros. unfold rs4.
- rewrite nextinstr_inv. rewrite Pregmap.gso.
- elim AG3; auto. auto with ppcgen. auto with ppcgen.
- unfold rs5; auto with ppcgen.
-Qed.
-
-Hypothesis wt_prog: wt_program prog.
-
-Lemma exec_function_internal_prop:
- forall (s : list stackframe) (fb : block) (ms : Mach.regset)
- (m : mem) (f : function) (m1 m2 m3 : mem) (stk : block),
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- Mem.alloc m 0 (fn_stacksize f) = (m1, stk) ->
- let sp := Vptr stk Int.zero in
- store_stack m1 sp Tint f.(fn_link_ofs) (parent_sp s) = Some m2 ->
- store_stack m2 sp Tint f.(fn_retaddr_ofs) (parent_ra s) = Some m3 ->
- exec_instr_prop (Machsem.Callstate s fb ms m) E0
- (Machsem.State s fb sp (fn_code f) (undef_temps ms) m3).
-Proof.
- intros; red; intros; inv MS.
- assert (WTF: wt_function f).
- generalize (Genv.find_funct_ptr_prop wt_fundef _ _ wt_prog H); intro TY.
- inversion TY; auto.
- exploit functions_transl; eauto. intro TFIND.
- generalize (functions_transl_no_overflow _ _ H); intro NOOV.
- unfold store_stack in *; simpl in *.
- exploit Mem.alloc_extends; eauto. apply Zle_refl. apply Zle_refl.
- intros [m1' [ALLOC' MEXT1]].
- exploit Mem.store_within_extends. eexact MEXT1. eexact H1. auto.
- intros [m2' [STORE2 MEXT2]].
- exploit Mem.store_within_extends. eexact MEXT2. eexact H2. auto.
- intros [m3' [STORE3 MEXT3]].
- set (rs2 := nextinstr (rs#GPR1 <- sp #GPR0 <- Vundef)).
- set (rs3 := nextinstr (rs2#GPR0 <- (parent_ra s))).
- set (rs4 := nextinstr rs3).
+ assert (AG3: agree rs (Vptr stk Int.zero) rs3).
+ unfold rs3, rs2; auto 10 with asmgen.
+ assert (AG4: agree rs (parent_sp s) rs4).
+ unfold rs4. apply agree_nextinstr. eapply agree_change_sp; eauto.
+ eapply parent_sp_def; eauto.
+ unfold rs5; auto with asmgen.
+
+- (* internal function *)
+ exploit functions_translated; eauto. intros [tf [A B]]. monadInv B.
+ generalize EQ; intros EQ'. monadInv EQ'.
+ destruct (zlt Int.max_unsigned (list_length_z x0)); inversion EQ1. clear EQ1.
+ unfold store_stack in *.
+ exploit Mem.alloc_extends. eauto. eauto. apply Zle_refl. apply Zle_refl.
+ intros [m1' [C D]].
+ assert (E: Mem.extends m2 m1') by (eapply Mem.free_left_extends; eauto).
+ exploit Mem.storev_extends. eexact E. eexact H1. eauto. eauto.
+ intros [m2' [F G]].
+ exploit retaddr_stored_at_can_alloc. eexact H. eauto. eauto. eauto. eauto.
+ auto. auto. auto. auto. eauto.
+ intros [m3' [P [Q R]]].
(* Execution of function prologue *)
+ monadInv EQ0.
+ set (rs2 := nextinstr (rs0#GPR1 <- sp #GPR0 <- Vundef)).
+ set (rs3 := nextinstr (rs2#GPR0 <- (rs0#LR))).
+ set (rs4 := nextinstr rs3).
assert (EXEC_PROLOGUE:
- exec_straight tge (transl_function f)
- (transl_function f) rs m'
- (transl_code f (fn_code f)) rs4 m3').
- unfold transl_function at 2.
+ exec_straight tge x
+ x rs0 m'
+ x1 rs4 m3').
+ rewrite <- H5 at 2.
apply exec_straight_three with rs2 m2' rs3 m2'.
- unfold exec_instr. rewrite ALLOC'. fold sp.
- rewrite <- (sp_val _ _ _ AG). unfold sp; simpl; rewrite STORE2. reflexivity.
- simpl. change (rs2 LR) with (rs LR). rewrite ATLR. reflexivity.
+ unfold exec_instr. rewrite C. fold sp.
+ rewrite <- (sp_val _ _ _ AG). unfold chunk_of_type in F. rewrite F. auto.
+ simpl. auto.
simpl. unfold store1. rewrite gpr_or_zero_not_zero.
- unfold const_low. change (rs3 GPR1) with sp. change (rs3 GPR0) with (parent_ra s).
- simpl. rewrite STORE3. reflexivity.
- discriminate. reflexivity. reflexivity. reflexivity.
- (* Agreement at end of prologue *)
- assert (AT4: transl_code_at_pc rs4#PC fb f f.(fn_code)).
- change (rs4 PC) with (Val.add (Val.add (Val.add (rs PC) Vone) Vone) Vone).
- rewrite ATPC. simpl. constructor. auto.
- eapply code_tail_next_int; auto.
- eapply code_tail_next_int; auto.
- eapply code_tail_next_int; auto.
- change (Int.unsigned Int.zero) with 0.
- unfold transl_function. constructor.
- assert (AG2: agree ms sp rs2).
- split. reflexivity. unfold sp. congruence.
- intros. unfold rs2. rewrite nextinstr_inv.
- repeat (rewrite Pregmap.gso). inv AG; auto.
- auto with ppcgen. auto with ppcgen. auto with ppcgen.
- assert (AG4: agree ms sp rs4).
- unfold rs4, rs3; auto with ppcgen.
+ change (rs3 GPR1) with sp. change (rs3 GPR0) with (rs0 LR). simpl.
+ rewrite Int.add_zero_l. rewrite P. auto. congruence.
+ auto. auto. auto.
left; exists (State rs4 m3'); split.
- (* execution *)
- eapply exec_straight_steps_1; eauto.
- change (Int.unsigned Int.zero) with 0. constructor.
- (* match states *)
- econstructor; eauto with coqlib. apply agree_undef_temps with rs4; auto.
-Qed.
+ eapply exec_straight_steps_1; eauto. unfold fn_code; omega. constructor.
+ econstructor; eauto.
+ assert (STK: stk = Mem.nextblock m) by (eapply Mem.alloc_result; eauto).
+ rewrite <- STK in STACKS. simpl in F. simpl in H1.
+ eapply match_stack_invariant; eauto.
+ intros. eapply Mem.perm_alloc_4; eauto. eapply Mem.perm_free_3; eauto.
+ eapply Mem.perm_store_2; eauto. unfold block; omega.
+ intros. eapply Mem.perm_store_1; eauto. eapply Mem.perm_store_1; eauto.
+ eapply Mem.perm_alloc_1; eauto.
+ intros. erewrite Mem.load_store_other. 2: eauto.
+ erewrite Mem.load_store_other. 2: eauto.
+ eapply Mem.load_alloc_other; eauto.
+ left; unfold block; omega.
+ left; unfold block; omega.
+ change (rs4 PC) with (Val.add (Val.add (Val.add (rs0 PC) Vone) Vone) Vone).
+ rewrite ATPC. simpl. constructor; eauto.
+ subst x. unfold fn_code. eapply code_tail_next_int. omega.
+ eapply code_tail_next_int. omega.
+ eapply code_tail_next_int. omega.
+ constructor.
+ unfold rs4, rs3, rs2.
+ apply agree_nextinstr. apply agree_set_other; auto. apply agree_set_other; auto.
+ apply agree_nextinstr. apply agree_set_other; auto.
+ eapply agree_change_sp; eauto. apply agree_exten_temps with rs0; eauto.
+ unfold sp; congruence.
+ congruence.
-Lemma exec_function_external_prop:
- forall (s : list stackframe) (fb : block) (ms : Mach.regset)
- (m : mem) (t0 : trace) (ms' : RegEq.t -> val)
- (ef : external_function) (args : list val) (res : val) (m': mem),
- Genv.find_funct_ptr ge fb = Some (External ef) ->
- external_call ef ge args m t0 res m' ->
- Machsem.extcall_arguments ms m (parent_sp s) (ef_sig ef) args ->
- ms' = Regmap.set (loc_result (ef_sig ef)) res ms ->
- exec_instr_prop (Machsem.Callstate s fb ms m)
- t0 (Machsem.Returnstate s ms' m').
-Proof.
- intros; red; intros; inv MS.
+- (* external function *)
exploit functions_translated; eauto.
- intros [tf [A B]]. simpl in B. inv B.
+ intros [tf [A B]]. simpl in B. inv B.
exploit extcall_arguments_match; eauto.
intros [args' [C D]].
- exploit external_call_mem_extends; eauto.
+ exploit external_call_mem_extends; eauto.
intros [res' [m2' [P [Q [R S]]]]].
- left; exists (State (rs#(loc_external_result (ef_sig ef)) <- res' #PC <- (rs LR))
- m2'); split.
+ left; econstructor; split.
apply plus_one. eapply exec_step_external; eauto.
- eapply external_call_symbols_preserved; eauto.
+ eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
econstructor; eauto.
- unfold loc_external_result.
- apply agree_set_other; auto with ppcgen.
- apply agree_set_mreg with rs; auto.
- rewrite Pregmap.gss; auto.
- intros; apply Pregmap.gso; auto.
-Qed.
-
-Lemma exec_return_prop:
- forall (s : list stackframe) (fb : block) (sp ra : val)
- (c : Mach.code) (ms : Mach.regset) (m : mem),
- exec_instr_prop (Machsem.Returnstate (Stackframe fb sp ra c :: s) ms m) E0
- (Machsem.State s fb sp c ms m).
-Proof.
- intros; red; intros; inv MS. inv STACKS. simpl in *.
+ rewrite Pregmap.gss. apply match_stack_change_bound with (Mem.nextblock m).
+ eapply match_stack_extcall; eauto.
+ intros. eapply external_call_max_perm; eauto.
+ eapply external_call_nextblock; eauto.
+ unfold loc_external_result.
+ eapply agree_set_mreg; eauto.
+ rewrite Pregmap.gso; auto with asmgen. rewrite Pregmap.gss. auto.
+ intros; Simpl.
+
+- (* return *)
+ inv STACKS. simpl in *.
right. split. omega. split. auto.
- econstructor; eauto. rewrite ATPC; auto.
+ econstructor; eauto. congruence.
Qed.
-Theorem transf_instr_correct:
- forall s1 t s2, Machsem.step ge s1 t s2 ->
- exec_instr_prop s1 t s2.
-Proof
- (Machsem.step_ind ge exec_instr_prop
- exec_Mlabel_prop
- exec_Mgetstack_prop
- exec_Msetstack_prop
- exec_Mgetparam_prop
- exec_Mop_prop
- exec_Mload_prop
- exec_Mstore_prop
- exec_Mcall_prop
- exec_Mtailcall_prop
- exec_Mbuiltin_prop
- exec_Mannot_prop
- exec_Mgoto_prop
- exec_Mcond_true_prop
- exec_Mcond_false_prop
- exec_Mjumptable_prop
- exec_Mreturn_prop
- exec_function_internal_prop
- exec_function_external_prop
- exec_return_prop).
-
Lemma transf_initial_states:
- forall st1, Machsem.initial_state prog st1 ->
+ forall st1, Mach.initial_state prog st1 ->
exists st2, Asm.initial_state tprog st2 /\ match_states st1 st2.
Proof.
intros. inversion H. unfold ge0 in *.
+ exploit functions_translated; eauto. intros [tf [A B]].
econstructor; split.
econstructor.
eapply Genv.init_mem_transf_partial; eauto.
replace (symbol_offset (Genv.globalenv tprog) (prog_main tprog) Int.zero)
- with (Vptr fb Int.zero).
- econstructor; eauto. constructor.
- split. auto. simpl. congruence.
- intros. repeat rewrite Pregmap.gso; auto with ppcgen.
+ with (Vptr b Int.zero).
+ econstructor; eauto.
+ constructor.
apply Mem.extends_refl.
+ split. auto. intros. rewrite Regmap.gi. auto.
+ reflexivity.
+ exact I.
unfold symbol_offset.
rewrite (transform_partial_program_main _ _ TRANSF).
rewrite symbols_preserved. unfold ge; rewrite H1. auto.
@@ -1522,21 +1058,22 @@ Qed.
Lemma transf_final_states:
forall st1 st2 r,
- match_states st1 st2 -> Machsem.final_state st1 r -> Asm.final_state st2 r.
+ match_states st1 st2 -> Mach.final_state st1 r -> Asm.final_state st2 r.
Proof.
- intros. inv H0. inv H. constructor. auto.
- compute in H1.
- exploit (ireg_val _ _ _ R3 AG). auto. rewrite H1; intro. inv H. auto.
+ intros. inv H0. inv H. inv STACKS. constructor.
+ auto.
+ compute in H1.
+ generalize (preg_val _ _ _ R3 AG). rewrite H1. intros LD; inv LD. auto.
Qed.
Theorem transf_program_correct:
- forward_simulation (Machsem.semantics prog) (Asm.semantics tprog).
+ forward_simulation (Mach.semantics prog) (Asm.semantics tprog).
Proof.
eapply forward_simulation_star with (measure := measure).
eexact symbols_preserved.
eexact transf_initial_states.
eexact transf_final_states.
- exact transf_instr_correct.
+ exact step_simulation.
Qed.
End PRESERVATION.