aboutsummaryrefslogtreecommitdiffstats
path: root/powerpc
diff options
context:
space:
mode:
authorxleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2008-12-30 14:48:33 +0000
committerxleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2008-12-30 14:48:33 +0000
commit6d25b4f3fc23601b3a84b4a70aab40ba429ac4b9 (patch)
treef7adbc5ec8accc4bec3e38939bdf570a266f0e83 /powerpc
parent1bce6b0f9f8cd614038a6e7fc21fb984724204a4 (diff)
downloadcompcert-kvx-6d25b4f3fc23601b3a84b4a70aab40ba429ac4b9.tar.gz
compcert-kvx-6d25b4f3fc23601b3a84b4a70aab40ba429ac4b9.zip
Reorganized the development, modularizing away machine-dependent parts.
Started to merge the ARM code generator. Started to add support for PowerPC/EABI. Use ocamlbuild to construct executable from Caml files. git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@930 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'powerpc')
-rw-r--r--powerpc/Asm.v880
-rw-r--r--powerpc/Asmgen.v510
-rw-r--r--powerpc/Asmgenproof.v1394
-rw-r--r--powerpc/Asmgenproof1.v1632
-rw-r--r--powerpc/Asmgenretaddr.v188
-rw-r--r--powerpc/Constprop.v1093
-rw-r--r--powerpc/Constpropproof.v954
-rw-r--r--powerpc/Machregs.v107
-rw-r--r--powerpc/Op.v925
-rw-r--r--powerpc/PrintAsm.ml532
-rw-r--r--powerpc/PrintAsm.mli13
-rw-r--r--powerpc/Selection.v1196
-rw-r--r--powerpc/Selectionproof.v1398
-rw-r--r--powerpc/eabi/Conventions.v798
-rw-r--r--powerpc/eabi/Stacklayout.v79
-rw-r--r--powerpc/macosx/Conventions.v805
-rw-r--r--powerpc/macosx/Stacklayout.v79
17 files changed, 12583 insertions, 0 deletions
diff --git a/powerpc/Asm.v b/powerpc/Asm.v
new file mode 100644
index 00000000..7be155bf
--- /dev/null
+++ b/powerpc/Asm.v
@@ -0,0 +1,880 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Abstract syntax and semantics for PowerPC assembly language *)
+
+Require Import Coqlib.
+Require Import Maps.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Mem.
+Require Import Events.
+Require Import Globalenvs.
+Require Import Smallstep.
+Require Import Locations.
+Require Stacklayout.
+Require Conventions.
+
+(** * Abstract syntax *)
+
+(** Integer registers, floating-point registers. *)
+
+Inductive ireg: Set :=
+ | GPR0: ireg | GPR1: ireg | GPR2: ireg | GPR3: ireg
+ | GPR4: ireg | GPR5: ireg | GPR6: ireg | GPR7: ireg
+ | GPR8: ireg | GPR9: ireg | GPR10: ireg | GPR11: ireg
+ | GPR12: ireg | GPR13: ireg | GPR14: ireg | GPR15: ireg
+ | GPR16: ireg | GPR17: ireg | GPR18: ireg | GPR19: ireg
+ | GPR20: ireg | GPR21: ireg | GPR22: ireg | GPR23: ireg
+ | GPR24: ireg | GPR25: ireg | GPR26: ireg | GPR27: ireg
+ | GPR28: ireg | GPR29: ireg | GPR30: ireg | GPR31: ireg.
+
+Inductive freg: Set :=
+ | FPR0: freg | FPR1: freg | FPR2: freg | FPR3: freg
+ | FPR4: freg | FPR5: freg | FPR6: freg | FPR7: freg
+ | FPR8: freg | FPR9: freg | FPR10: freg | FPR11: freg
+ | FPR12: freg | FPR13: freg | FPR14: freg | FPR15: freg
+ | FPR16: freg | FPR17: freg | FPR18: freg | FPR19: freg
+ | FPR20: freg | FPR21: freg | FPR22: freg | FPR23: freg
+ | FPR24: freg | FPR25: freg | FPR26: freg | FPR27: freg
+ | FPR28: freg | FPR29: freg | FPR30: freg | FPR31: freg.
+
+Lemma ireg_eq: forall (x y: ireg), {x=y} + {x<>y}.
+Proof. decide equality. Defined.
+
+Lemma freg_eq: forall (x y: freg), {x=y} + {x<>y}.
+Proof. decide equality. Defined.
+
+(** Symbolic constants. Immediate operands to an arithmetic instruction
+ or an indexed memory access can be either integer literals
+ or the low or high 16 bits of a symbolic reference (the address
+ of a symbol plus a displacement). These symbolic references are
+ resolved later by the linker.
+*)
+
+Inductive constant: Set :=
+ | Cint: int -> constant
+ | Csymbol_low: ident -> int -> constant
+ | Csymbol_high: ident -> int -> constant.
+
+(** A note on constants: while immediate operands to PowerPC
+ instructions must be representable in 16 bits (with
+ sign extension or left shift by 16 positions for some instructions),
+ we do not attempt to capture these restrictions in the
+ abstract syntax nor in the semantics. The assembler will
+ emit an error if immediate operands exceed the representable
+ range. Of course, our PPC generator (file [PPCgen]) is
+ careful to respect this range. *)
+
+(** Bits in the condition register. We are only interested in the
+ first 4 bits. *)
+
+Inductive crbit: Set :=
+ | CRbit_0: crbit
+ | CRbit_1: crbit
+ | CRbit_2: crbit
+ | CRbit_3: crbit.
+
+(** The instruction set. Most instructions correspond exactly to
+ actual instructions of the PowerPC processor. See the PowerPC
+ reference manuals for more details. Some instructions,
+ described below, are pseudo-instructions: they expand to
+ canned instruction sequences during the printing of the assembly
+ code. *)
+
+Definition label := positive.
+
+Inductive instruction : Set :=
+ | Padd: ireg -> ireg -> ireg -> instruction (**r integer addition *)
+ | Paddi: ireg -> ireg -> constant -> instruction (**r add immediate *)
+ | Paddis: ireg -> ireg -> constant -> instruction (**r add immediate high *)
+ | Paddze: ireg -> ireg -> instruction (**r add Carry bit *)
+ | Pallocblock: instruction (**r allocate new heap block *)
+ | Pallocframe: Z -> Z -> int -> instruction (**r allocate new stack frame *)
+ | Pand_: ireg -> ireg -> ireg -> instruction (**r bitwise and *)
+ | Pandc: ireg -> ireg -> ireg -> instruction (**r bitwise and-complement *)
+ | Pandi_: ireg -> ireg -> constant -> instruction (**r and immediate and set conditions *)
+ | Pandis_: ireg -> ireg -> constant -> instruction (**r and immediate high and set conditions *)
+ | Pb: label -> instruction (**r unconditional branch *)
+ | Pbctr: instruction (**r branch to contents of register CTR *)
+ | Pbctrl: instruction (**r branch to contents of CTR and link *)
+ | Pbf: crbit -> label -> instruction (**r branch if false *)
+ | Pbl: ident -> instruction (**r branch and link *)
+ | Pbs: ident -> instruction (**r branch to symbol *)
+ | Pblr: instruction (**r branch to contents of register LR *)
+ | Pbt: crbit -> label -> instruction (**r branch if true *)
+ | Pcmplw: ireg -> ireg -> instruction (**r unsigned integer comparison *)
+ | Pcmplwi: ireg -> constant -> instruction (**r same, with immediate argument *)
+ | Pcmpw: ireg -> ireg -> instruction (**r signed integer comparison *)
+ | Pcmpwi: ireg -> constant -> instruction (**r same, with immediate argument *)
+ | Pcror: crbit -> crbit -> crbit -> instruction (**r or between condition bits *)
+ | Pdivw: ireg -> ireg -> ireg -> instruction (**r signed division *)
+ | Pdivwu: ireg -> ireg -> ireg -> instruction (**r unsigned division *)
+ | Peqv: ireg -> ireg -> ireg -> instruction (**r bitwise not-xor *)
+ | Pextsb: ireg -> ireg -> instruction (**r 8-bit sign extension *)
+ | Pextsh: ireg -> ireg -> instruction (**r 16-bit sign extension *)
+ | Pfreeframe: int -> instruction (**r deallocate stack frame and restore previous frame *)
+ | Pfabs: freg -> freg -> instruction (**r float absolute value *)
+ | Pfadd: freg -> freg -> freg -> instruction (**r float addition *)
+ | Pfcmpu: freg -> freg -> instruction (**r float comparison *)
+ | Pfcti: ireg -> freg -> instruction (**r float-to-signed-int conversion *)
+ | Pfctiu: ireg -> freg -> instruction (**r float-to-unsigned-int conversion *)
+ | Pfdiv: freg -> freg -> freg -> instruction (**r float division *)
+ | Pfmadd: freg -> freg -> freg -> freg -> instruction (**r float multiply-add *)
+ | Pfmr: freg -> freg -> instruction (**r float move *)
+ | Pfmsub: freg -> freg -> freg -> freg -> instruction (**r float multiply-sub *)
+ | Pfmul: freg -> freg -> freg -> instruction (**r float multiply *)
+ | Pfneg: freg -> freg -> instruction (**r float negation *)
+ | Pfrsp: freg -> freg -> instruction (**r float round to single precision *)
+ | Pfsub: freg -> freg -> freg -> instruction (**r float subtraction *)
+ | Pictf: freg -> ireg -> instruction (**r int-to-float conversion *)
+ | Piuctf: freg -> ireg -> instruction (**r unsigned int-to-float conversion *)
+ | Plbz: ireg -> constant -> ireg -> instruction (**r load 8-bit unsigned int *)
+ | Plbzx: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
+ | Plfd: freg -> constant -> ireg -> instruction (**r load 64-bit float *)
+ | Plfdx: freg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
+ | Plfs: freg -> constant -> ireg -> instruction (**r load 32-bit float *)
+ | Plfsx: freg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
+ | Plha: ireg -> constant -> ireg -> instruction (**r load 16-bit signed int *)
+ | Plhax: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
+ | Plhz: ireg -> constant -> ireg -> instruction (**r load 16-bit unsigned int *)
+ | Plhzx: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
+ | Plfi: freg -> float -> instruction (**r load float constant *)
+ | Plwz: ireg -> constant -> ireg -> instruction (**r load 32-bit int *)
+ | Plwzx: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
+ | Pmfcrbit: ireg -> crbit -> instruction (**r move condition bit to reg *)
+ | Pmflr: ireg -> instruction (**r move LR to reg *)
+ | Pmr: ireg -> ireg -> instruction (**r integer move *)
+ | Pmtctr: ireg -> instruction (**r move ireg to CTR *)
+ | Pmtlr: ireg -> instruction (**r move ireg to LR *)
+ | Pmulli: ireg -> ireg -> constant -> instruction (**r integer multiply immediate *)
+ | Pmullw: ireg -> ireg -> ireg -> instruction (**r integer multiply *)
+ | Pnand: ireg -> ireg -> ireg -> instruction (**r bitwise not-and *)
+ | Pnor: ireg -> ireg -> ireg -> instruction (**r bitwise not-or *)
+ | Por: ireg -> ireg -> ireg -> instruction (**r bitwise or *)
+ | Porc: ireg -> ireg -> ireg -> instruction (**r bitwise or-complement *)
+ | Pori: ireg -> ireg -> constant -> instruction (**r or with immediate *)
+ | Poris: ireg -> ireg -> constant -> instruction (**r or with immediate high *)
+ | Prlwinm: ireg -> ireg -> int -> int -> instruction (**r rotate and mask *)
+ | Pslw: ireg -> ireg -> ireg -> instruction (**r shift left *)
+ | Psraw: ireg -> ireg -> ireg -> instruction (**r shift right signed *)
+ | Psrawi: ireg -> ireg -> int -> instruction (**r shift right signed immediate *)
+ | Psrw: ireg -> ireg -> ireg -> instruction (**r shift right unsigned *)
+ | Pstb: ireg -> constant -> ireg -> instruction (**r store 8-bit int *)
+ | Pstbx: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
+ | Pstfd: freg -> constant -> ireg -> instruction (**r store 64-bit float *)
+ | Pstfdx: freg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
+ | Pstfs: freg -> constant -> ireg -> instruction (**r store 32-bit float *)
+ | Pstfsx: freg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
+ | Psth: ireg -> constant -> ireg -> instruction (**r store 16-bit int *)
+ | Psthx: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
+ | Pstw: ireg -> constant -> ireg -> instruction (**r store 32-bit int *)
+ | Pstwx: ireg -> ireg -> ireg -> instruction (**r same, with 2 index regs *)
+ | Psubfc: ireg -> ireg -> ireg -> instruction (**r reversed integer subtraction *)
+ | Psubfic: ireg -> ireg -> constant -> instruction (**r integer subtraction from immediate *)
+ | Pxor: ireg -> ireg -> ireg -> instruction (**r bitwise xor *)
+ | Pxori: ireg -> ireg -> constant -> instruction (**r bitwise xor with immediate *)
+ | Pxoris: ireg -> ireg -> constant -> instruction (**r bitwise xor with immediate high *)
+ | Plabel: label -> instruction. (**r define a code label *)
+
+(** The pseudo-instructions are the following:
+
+- [Plabel]: define a code label at the current program point
+- [Plfi]: load a floating-point constant in a float register.
+ Expands to a float load [lfd] from an address in the constant data section
+ initialized with the floating-point constant:
+<<
+ addis r2, 0, ha16(lbl)
+ lfd rdst, lo16(lbl)(r2)
+ .const_data
+lbl: .double floatcst
+ .text
+>>
+ Initialized data in the constant data section are not modeled here,
+ which is why we use a pseudo-instruction for this purpose.
+- [Pfcti]: convert a float to a signed integer. This requires a transfer
+ via memory of a 32-bit integer from a float register to an int register,
+ which our memory model cannot express. Expands to:
+<<
+ fctiwz f13, rsrc
+ stfdu f13, -8(r1)
+ lwz rdst, 4(r1)
+ addi r1, r1, 8
+>>
+- [Pfctiu]: convert a float to an unsigned integer. The PowerPC way
+ to do this is to compare the argument against the floating-point
+ constant [2^31], subtract [2^31] if bigger, then convert to a signed
+ integer as above, then add back [2^31] if needed. Expands to:
+<<
+ addis r2, 0, ha16(lbl1)
+ lfd f13, lo16(lbl1)(r2)
+ fcmpu cr7, rsrc, f13
+ cror 30, 29, 30
+ beq cr7, lbl2
+ fctiwz f13, rsrc
+ stfdu f13, -8(r1)
+ lwz rdst, 4(r1)
+ b lbl3
+lbl2: fsub f13, rsrc, f13
+ fctiwz f13, f13
+ stfdu f13, -8(r1)
+ lwz rdst, 4(r1)
+ addis rdst, rdst, 0x8000
+lbl3: addi r1, r1, 8
+ .const_data
+lbl1: .long 0x41e00000, 0x00000000 # 2^31 in double precision
+ .text
+>>
+- [Pictf]: convert a signed integer to a float. This requires complicated
+ bit-level manipulations of IEEE floats through mixed float and integer
+ arithmetic over a memory word, which our memory model and axiomatization
+ of floats cannot express. Expands to:
+<<
+ addis r2, 0, 0x4330
+ stwu r2, -8(r1)
+ addis r2, rsrc, 0x8000
+ stw r2, 4(r1)
+ addis r2, 0, ha16(lbl)
+ lfd f13, lo16(lbl)(r2)
+ lfd rdst, 0(r1)
+ addi r1, r1, 8
+ fsub rdst, rdst, f13
+ .const_data
+lbl: .long 0x43300000, 0x80000000
+ .text
+>>
+ (Don't worry if you do not understand this instruction sequence: intimate
+ knowledge of IEEE float arithmetic is necessary.)
+- [Piuctf]: convert an unsigned integer to a float. The expansion is close
+ to that [Pictf], and equally obscure.
+<<
+ addis r2, 0, 0x4330
+ stwu r2, -8(r1)
+ stw rsrc, 4(r1)
+ addis r2, 0, ha16(lbl)
+ lfd f13, lo16(lbl)(r2)
+ lfd rdst, 0(r1)
+ addi r1, r1, 8
+ fsub rdst, rdst, f13
+ .const_data
+lbl: .long 0x43300000, 0x00000000
+ .text
+>>
+- [Pallocframe lo hi ofs]: in the formal semantics, this pseudo-instruction
+ allocates a memory block with bounds [lo] and [hi], stores the value
+ of register [r1] (the stack pointer, by convention) at offset [ofs]
+ in this block, and sets [r1] to a pointer to the bottom of this
+ block. In the printed PowerPC assembly code, this allocation
+ is just a store-decrement of register [r1], assuming that [ofs = 0]:
+<<
+ stwu r1, (lo - hi)(r1)
+>>
+ This cannot be expressed in our memory model, which does not reflect
+ the fact that stack frames are adjacent and allocated/freed
+ following a stack discipline.
+- [Pfreeframe ofs]: in the formal semantics, this pseudo-instruction
+ reads the word at offset [ofs] in the block pointed by [r1] (the
+ stack pointer), frees this block, and sets [r1] to the value of the
+ word at offset [ofs]. In the printed PowerPC assembly code, this
+ freeing is just a load of register [r1] relative to [r1] itself:
+<<
+ lwz r1, ofs(r1)
+>>
+ Again, our memory model cannot comprehend that this operation
+ frees (logically) the current stack frame.
+- [Pallocheap]: in the formal semantics, this pseudo-instruction
+ allocates a heap block of size the contents of [GPR3], and leaves
+ a pointer to this block in [GPR3]. In the generated assembly code,
+ it is turned into a call to the allocation function of the run-time
+ system.
+*)
+
+Definition code := list instruction.
+Definition fundef := AST.fundef code.
+Definition program := AST.program fundef unit.
+
+(** * Operational semantics *)
+
+(** The PowerPC has a great many registers, some general-purpose, some very
+ specific. We model only the following registers: *)
+
+Inductive preg: Set :=
+ | IR: ireg -> preg (**r integer registers *)
+ | FR: freg -> preg (**r float registers *)
+ | PC: preg (**r program counter *)
+ | LR: preg (**r link register (return address) *)
+ | CTR: preg (**r count register, used for some branches *)
+ | CARRY: preg (**r carry bit of the status register *)
+ | CR0_0: preg (**r bit 0 of the condition register *)
+ | CR0_1: preg (**r bit 1 of the condition register *)
+ | CR0_2: preg (**r bit 2 of the condition register *)
+ | CR0_3: preg. (**r bit 3 of the condition register *)
+
+Coercion IR: ireg >-> preg.
+Coercion FR: freg >-> preg.
+
+Lemma preg_eq: forall (x y: preg), {x=y} + {x<>y}.
+Proof. decide equality. apply ireg_eq. apply freg_eq. Defined.
+
+Module PregEq.
+ Definition t := preg.
+ Definition eq := preg_eq.
+End PregEq.
+
+Module Pregmap := EMap(PregEq).
+
+(** The semantics operates over a single mapping from registers
+ (type [preg]) to values. We maintain (but do not enforce)
+ the convention that integer registers are mapped to values of
+ type [Tint], float registers to values of type [Tfloat],
+ and boolean registers ([CARRY], [CR0_0], etc) to either
+ [Vzero] or [Vone]. *)
+
+Definition regset := Pregmap.t val.
+Definition genv := Genv.t fundef.
+
+Notation "a # b" := (a b) (at level 1, only parsing).
+Notation "a # b <- c" := (Pregmap.set b c a) (at level 1, b at next level).
+
+Section RELSEM.
+
+(** Looking up instructions in a code sequence by position. *)
+
+Fixpoint find_instr (pos: Z) (c: code) {struct c} : option instruction :=
+ match c with
+ | nil => None
+ | i :: il => if zeq pos 0 then Some i else find_instr (pos - 1) il
+ end.
+
+(** Position corresponding to a label *)
+
+Definition is_label (lbl: label) (instr: instruction) : bool :=
+ match instr with
+ | Plabel lbl' => if peq lbl lbl' then true else false
+ | _ => false
+ end.
+
+Lemma is_label_correct:
+ forall lbl instr,
+ if is_label lbl instr then instr = Plabel lbl else instr <> Plabel lbl.
+Proof.
+ intros. destruct instr; simpl; try discriminate.
+ case (peq lbl l); intro; congruence.
+Qed.
+
+Fixpoint label_pos (lbl: label) (pos: Z) (c: code) {struct c} : option Z :=
+ match c with
+ | nil => None
+ | instr :: c' =>
+ if is_label lbl instr then Some (pos + 1) else label_pos lbl (pos + 1) c'
+ end.
+
+(** Some PowerPC instructions treat register GPR0 as the integer literal 0
+ when that register is used in argument position. *)
+
+Definition gpr_or_zero (rs: regset) (r: ireg) :=
+ if ireg_eq r GPR0 then Vzero else rs#r.
+
+Variable ge: genv.
+
+Definition symbol_offset (id: ident) (ofs: int) : val :=
+ match Genv.find_symbol ge id with
+ | Some b => Vptr b ofs
+ | None => Vundef
+ end.
+
+(** The four functions below axiomatize how the linker processes
+ symbolic references [symbol + offset] and splits their
+ actual values into two 16-bit halves. *)
+
+Parameter low_half: val -> val.
+Parameter high_half: val -> val.
+
+(** The fundamental property of these operations is that, when applied
+ to the address of a symbol, their results can be recombined by
+ addition, rebuilding the original address. *)
+
+Axiom low_high_half:
+ forall id ofs,
+ Val.add (low_half (symbol_offset id ofs)) (high_half (symbol_offset id ofs))
+ = symbol_offset id ofs.
+
+(** The other axioms we take is that the results of
+ the [low_half] and [high_half] functions are of type [Tint],
+ i.e. either integers, pointers or undefined values. *)
+
+Axiom low_half_type:
+ forall v, Val.has_type (low_half v) Tint.
+Axiom high_half_type:
+ forall v, Val.has_type (high_half v) Tint.
+
+(** Armed with the [low_half] and [high_half] functions,
+ we can define the evaluation of a symbolic constant.
+ Note that for [const_high], integer constants
+ are shifted left by 16 bits, but not symbol addresses:
+ we assume (as in the [low_high_half] axioms above)
+ that the results of [high_half] are already shifted
+ (their 16 low bits are equal to 0). *)
+
+Definition const_low (c: constant) :=
+ match c with
+ | Cint n => Vint n
+ | Csymbol_low id ofs => low_half (symbol_offset id ofs)
+ | Csymbol_high id ofs => Vundef
+ end.
+
+Definition const_high (c: constant) :=
+ match c with
+ | Cint n => Vint (Int.shl n (Int.repr 16))
+ | Csymbol_low id ofs => Vundef
+ | Csymbol_high id ofs => high_half (symbol_offset id ofs)
+ end.
+
+(** The semantics is purely small-step and defined as a function
+ from the current state (a register set + a memory state)
+ to either [OK rs' m'] where [rs'] and [m'] are the updated register
+ set and memory state after execution of the instruction at [rs#PC],
+ or [Error] if the processor is stuck. *)
+
+Inductive outcome: Set :=
+ | OK: regset -> mem -> outcome
+ | Error: outcome.
+
+(** Manipulations over the [PC] register: continuing with the next
+ instruction ([nextinstr]) or branching to a label ([goto_label]). *)
+
+Definition nextinstr (rs: regset) :=
+ rs#PC <- (Val.add rs#PC Vone).
+
+Definition goto_label (c: code) (lbl: label) (rs: regset) (m: mem) :=
+ match label_pos lbl 0 c with
+ | None => Error
+ | Some pos =>
+ match rs#PC with
+ | Vptr b ofs => OK (rs#PC <- (Vptr b (Int.repr pos))) m
+ | _ => Error
+ end
+ end.
+
+(** Auxiliaries for memory accesses, in two forms: one operand
+ (plus constant offset) or two operands. *)
+
+Definition load1 (chunk: memory_chunk) (rd: preg)
+ (cst: constant) (r1: ireg) (rs: regset) (m: mem) :=
+ match Mem.loadv chunk m (Val.add (gpr_or_zero rs r1) (const_low cst)) with
+ | None => Error
+ | Some v => OK (nextinstr (rs#rd <- v)) m
+ end.
+
+Definition load2 (chunk: memory_chunk) (rd: preg) (r1 r2: ireg)
+ (rs: regset) (m: mem) :=
+ match Mem.loadv chunk m (Val.add rs#r1 rs#r2) with
+ | None => Error
+ | Some v => OK (nextinstr (rs#rd <- v)) m
+ end.
+
+Definition store1 (chunk: memory_chunk) (r: preg)
+ (cst: constant) (r1: ireg) (rs: regset) (m: mem) :=
+ match Mem.storev chunk m (Val.add (gpr_or_zero rs r1) (const_low cst)) (rs#r) with
+ | None => Error
+ | Some m' => OK (nextinstr rs) m'
+ end.
+
+Definition store2 (chunk: memory_chunk) (r: preg) (r1 r2: ireg)
+ (rs: regset) (m: mem) :=
+ match Mem.storev chunk m (Val.add rs#r1 rs#r2) (rs#r) with
+ | None => Error
+ | Some m' => OK (nextinstr rs) m'
+ end.
+
+(** Operations over condition bits. *)
+
+Definition reg_of_crbit (bit: crbit) :=
+ match bit with
+ | CRbit_0 => CR0_0
+ | CRbit_1 => CR0_1
+ | CRbit_2 => CR0_2
+ | CRbit_3 => CR0_3
+ end.
+
+Definition compare_sint (rs: regset) (v1 v2: val) :=
+ rs#CR0_0 <- (Val.cmp Clt v1 v2)
+ #CR0_1 <- (Val.cmp Cgt v1 v2)
+ #CR0_2 <- (Val.cmp Ceq v1 v2)
+ #CR0_3 <- Vundef.
+
+Definition compare_uint (rs: regset) (v1 v2: val) :=
+ rs#CR0_0 <- (Val.cmpu Clt v1 v2)
+ #CR0_1 <- (Val.cmpu Cgt v1 v2)
+ #CR0_2 <- (Val.cmpu Ceq v1 v2)
+ #CR0_3 <- Vundef.
+
+Definition compare_float (rs: regset) (v1 v2: val) :=
+ rs#CR0_0 <- (Val.cmpf Clt v1 v2)
+ #CR0_1 <- (Val.cmpf Cgt v1 v2)
+ #CR0_2 <- (Val.cmpf Ceq v1 v2)
+ #CR0_3 <- Vundef.
+
+Definition val_cond_reg (rs: regset) :=
+ Val.or (Val.shl rs#CR0_0 (Vint (Int.repr 31)))
+ (Val.or (Val.shl rs#CR0_1 (Vint (Int.repr 30)))
+ (Val.or (Val.shl rs#CR0_2 (Vint (Int.repr 29)))
+ (Val.shl rs#CR0_3 (Vint (Int.repr 28))))).
+
+(** Execution of a single instruction [i] in initial state
+ [rs] and [m]. Return updated state. For instructions
+ that correspond to actual PowerPC instructions, the cases are
+ straightforward transliterations of the informal descriptions
+ given in the PowerPC reference manuals. For pseudo-instructions,
+ refer to the informal descriptions given above. Note that
+ we set to [Vundef] the registers used as temporaries by the
+ expansions of the pseudo-instructions, so that the PPC code
+ we generate cannot use those registers to hold values that
+ must survive the execution of the pseudo-instruction.
+*)
+
+Definition exec_instr (c: code) (i: instruction) (rs: regset) (m: mem) : outcome :=
+ match i with
+ | Padd rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.add rs#r1 rs#r2))) m
+ | Paddi rd r1 cst =>
+ OK (nextinstr (rs#rd <- (Val.add (gpr_or_zero rs r1) (const_low cst)))) m
+ | Paddis rd r1 cst =>
+ OK (nextinstr (rs#rd <- (Val.add (gpr_or_zero rs r1) (const_high cst)))) m
+ | Paddze rd r1 =>
+ OK (nextinstr (rs#rd <- (Val.add rs#r1 rs#CARRY))) m
+ | Pallocblock =>
+ match rs#GPR3 with
+ | Vint n =>
+ let (m', b) := Mem.alloc m 0 (Int.signed n) in
+ OK (nextinstr (rs#GPR3 <- (Vptr b Int.zero)
+ #LR <- (Val.add rs#PC Vone))) m'
+ | _ => Error
+ end
+ | Pallocframe lo hi ofs =>
+ let (m1, stk) := Mem.alloc m lo hi in
+ let sp := Vptr stk (Int.repr lo) in
+ match Mem.storev Mint32 m1 (Val.add sp (Vint ofs)) rs#GPR1 with
+ | None => Error
+ | Some m2 => OK (nextinstr (rs#GPR1 <- sp #GPR12 <- Vundef)) m2
+ end
+ | Pand_ rd r1 r2 =>
+ let v := Val.and rs#r1 rs#r2 in
+ OK (nextinstr (compare_sint (rs#rd <- v) v Vzero)) m
+ | Pandc rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.and rs#r1 (Val.notint rs#r2)))) m
+ | Pandi_ rd r1 cst =>
+ let v := Val.and rs#r1 (const_low cst) in
+ OK (nextinstr (compare_sint (rs#rd <- v) v Vzero)) m
+ | Pandis_ rd r1 cst =>
+ let v := Val.and rs#r1 (const_high cst) in
+ OK (nextinstr (compare_sint (rs#rd <- v) v Vzero)) m
+ | Pb lbl =>
+ goto_label c lbl rs m
+ | Pbctr =>
+ OK (rs#PC <- (rs#CTR)) m
+ | Pbctrl =>
+ OK (rs#LR <- (Val.add rs#PC Vone) #PC <- (rs#CTR)) m
+ | Pbf bit lbl =>
+ match rs#(reg_of_crbit bit) with
+ | Vint n => if Int.eq n Int.zero then goto_label c lbl rs m else OK (nextinstr rs) m
+ | _ => Error
+ end
+ | Pbl ident =>
+ OK (rs#LR <- (Val.add rs#PC Vone) #PC <- (symbol_offset ident Int.zero)) m
+ | Pbs ident =>
+ OK (rs#PC <- (symbol_offset ident Int.zero)) m
+ | Pblr =>
+ OK (rs#PC <- (rs#LR)) m
+ | Pbt bit lbl =>
+ match rs#(reg_of_crbit bit) with
+ | Vint n => if Int.eq n Int.zero then OK (nextinstr rs) m else goto_label c lbl rs m
+ | _ => Error
+ end
+ | Pcmplw r1 r2 =>
+ OK (nextinstr (compare_uint rs rs#r1 rs#r2)) m
+ | Pcmplwi r1 cst =>
+ OK (nextinstr (compare_uint rs rs#r1 (const_low cst))) m
+ | Pcmpw r1 r2 =>
+ OK (nextinstr (compare_sint rs rs#r1 rs#r2)) m
+ | Pcmpwi r1 cst =>
+ OK (nextinstr (compare_sint rs rs#r1 (const_low cst))) m
+ | Pcror bd b1 b2 =>
+ OK (nextinstr (rs#(reg_of_crbit bd) <- (Val.or rs#(reg_of_crbit b1) rs#(reg_of_crbit b2)))) m
+ | Pdivw rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.divs rs#r1 rs#r2))) m
+ | Pdivwu rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.divu rs#r1 rs#r2))) m
+ | Peqv rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.notint (Val.xor rs#r1 rs#r2)))) m
+ | Pextsb rd r1 =>
+ OK (nextinstr (rs#rd <- (Val.sign_ext 8 rs#r1))) m
+ | Pextsh rd r1 =>
+ OK (nextinstr (rs#rd <- (Val.sign_ext 16 rs#r1))) m
+ | Pfreeframe ofs =>
+ match Mem.loadv Mint32 m (Val.add rs#GPR1 (Vint ofs)) with
+ | None => Error
+ | Some v =>
+ match rs#GPR1 with
+ | Vptr stk ofs => OK (nextinstr (rs#GPR1 <- v)) (Mem.free m stk)
+ | _ => Error
+ end
+ end
+ | Pfabs rd r1 =>
+ OK (nextinstr (rs#rd <- (Val.absf rs#r1))) m
+ | Pfadd rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.addf rs#r1 rs#r2))) m
+ | Pfcmpu r1 r2 =>
+ OK (nextinstr (compare_float rs rs#r1 rs#r2)) m
+ | Pfcti rd r1 =>
+ OK (nextinstr (rs#rd <- (Val.intoffloat rs#r1) #FPR13 <- Vundef)) m
+ | Pfctiu rd r1 =>
+ OK (nextinstr (rs#rd <- (Val.intuoffloat rs#r1) #FPR13 <- Vundef)) m
+ | Pfdiv rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.divf rs#r1 rs#r2))) m
+ | Pfmadd rd r1 r2 r3 =>
+ OK (nextinstr (rs#rd <- (Val.addf (Val.mulf rs#r1 rs#r2) rs#r3))) m
+ | Pfmr rd r1 =>
+ OK (nextinstr (rs#rd <- (rs#r1))) m
+ | Pfmsub rd r1 r2 r3 =>
+ OK (nextinstr (rs#rd <- (Val.subf (Val.mulf rs#r1 rs#r2) rs#r3))) m
+ | Pfmul rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.mulf rs#r1 rs#r2))) m
+ | Pfneg rd r1 =>
+ OK (nextinstr (rs#rd <- (Val.negf rs#r1))) m
+ | Pfrsp rd r1 =>
+ OK (nextinstr (rs#rd <- (Val.singleoffloat rs#r1))) m
+ | Pfsub rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.subf rs#r1 rs#r2))) m
+ | Pictf rd r1 =>
+ OK (nextinstr (rs#rd <- (Val.floatofint rs#r1) #GPR12 <- Vundef #FPR13 <- Vundef)) m
+ | Piuctf rd r1 =>
+ OK (nextinstr (rs#rd <- (Val.floatofintu rs#r1) #GPR12 <- Vundef #FPR13 <- Vundef)) m
+ | Plbz rd cst r1 =>
+ load1 Mint8unsigned rd cst r1 rs m
+ | Plbzx rd r1 r2 =>
+ load2 Mint8unsigned rd r1 r2 rs m
+ | Plfd rd cst r1 =>
+ load1 Mfloat64 rd cst r1 rs m
+ | Plfdx rd r1 r2 =>
+ load2 Mfloat64 rd r1 r2 rs m
+ | Plfs rd cst r1 =>
+ load1 Mfloat32 rd cst r1 rs m
+ | Plfsx rd r1 r2 =>
+ load2 Mfloat32 rd r1 r2 rs m
+ | Plha rd cst r1 =>
+ load1 Mint16signed rd cst r1 rs m
+ | Plhax rd r1 r2 =>
+ load2 Mint16signed rd r1 r2 rs m
+ | Plhz rd cst r1 =>
+ load1 Mint16unsigned rd cst r1 rs m
+ | Plhzx rd r1 r2 =>
+ load2 Mint16unsigned rd r1 r2 rs m
+ | Plfi rd f =>
+ OK (nextinstr (rs#rd <- (Vfloat f) #GPR12 <- Vundef)) m
+ | Plwz rd cst r1 =>
+ load1 Mint32 rd cst r1 rs m
+ | Plwzx rd r1 r2 =>
+ load2 Mint32 rd r1 r2 rs m
+ | Pmfcrbit rd bit =>
+ OK (nextinstr (rs#rd <- (rs#(reg_of_crbit bit)))) m
+ | Pmflr rd =>
+ OK (nextinstr (rs#rd <- (rs#LR))) m
+ | Pmr rd r1 =>
+ OK (nextinstr (rs#rd <- (rs#r1))) m
+ | Pmtctr r1 =>
+ OK (nextinstr (rs#CTR <- (rs#r1))) m
+ | Pmtlr r1 =>
+ OK (nextinstr (rs#LR <- (rs#r1))) m
+ | Pmulli rd r1 cst =>
+ OK (nextinstr (rs#rd <- (Val.mul rs#r1 (const_low cst)))) m
+ | Pmullw rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.mul rs#r1 rs#r2))) m
+ | Pnand rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.notint (Val.and rs#r1 rs#r2)))) m
+ | Pnor rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.notint (Val.or rs#r1 rs#r2)))) m
+ | Por rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.or rs#r1 rs#r2))) m
+ | Porc rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.or rs#r1 (Val.notint rs#r2)))) m
+ | Pori rd r1 cst =>
+ OK (nextinstr (rs#rd <- (Val.or rs#r1 (const_low cst)))) m
+ | Poris rd r1 cst =>
+ OK (nextinstr (rs#rd <- (Val.or rs#r1 (const_high cst)))) m
+ | Prlwinm rd r1 amount mask =>
+ OK (nextinstr (rs#rd <- (Val.rolm rs#r1 amount mask))) m
+ | Pslw rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.shl rs#r1 rs#r2))) m
+ | Psraw rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.shr rs#r1 rs#r2) #CARRY <- (Val.shr_carry rs#r1 rs#r2))) m
+ | Psrawi rd r1 n =>
+ OK (nextinstr (rs#rd <- (Val.shr rs#r1 (Vint n)) #CARRY <- (Val.shr_carry rs#r1 (Vint n)))) m
+ | Psrw rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.shru rs#r1 rs#r2))) m
+ | Pstb rd cst r1 =>
+ store1 Mint8unsigned rd cst r1 rs m
+ | Pstbx rd r1 r2 =>
+ store2 Mint8unsigned rd r1 r2 rs m
+ | Pstfd rd cst r1 =>
+ store1 Mfloat64 rd cst r1 rs m
+ | Pstfdx rd r1 r2 =>
+ store2 Mfloat64 rd r1 r2 rs m
+ | Pstfs rd cst r1 =>
+ store1 Mfloat32 rd cst r1 rs m
+ | Pstfsx rd r1 r2 =>
+ store2 Mfloat32 rd r1 r2 rs m
+ | Psth rd cst r1 =>
+ store1 Mint16unsigned rd cst r1 rs m
+ | Psthx rd r1 r2 =>
+ store2 Mint16unsigned rd r1 r2 rs m
+ | Pstw rd cst r1 =>
+ store1 Mint32 rd cst r1 rs m
+ | Pstwx rd r1 r2 =>
+ store2 Mint32 rd r1 r2 rs m
+ | Psubfc rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.sub rs#r2 rs#r1) #CARRY <- Vundef)) m
+ | Psubfic rd r1 cst =>
+ OK (nextinstr (rs#rd <- (Val.sub (const_low cst) rs#r1) #CARRY <- Vundef)) m
+ | Pxor rd r1 r2 =>
+ OK (nextinstr (rs#rd <- (Val.xor rs#r1 rs#r2))) m
+ | Pxori rd r1 cst =>
+ OK (nextinstr (rs#rd <- (Val.xor rs#r1 (const_low cst)))) m
+ | Pxoris rd r1 cst =>
+ OK (nextinstr (rs#rd <- (Val.xor rs#r1 (const_high cst)))) m
+ | Plabel lbl =>
+ OK (nextinstr rs) m
+ end.
+
+(** Translation of the LTL/Linear/Mach view of machine registers
+ to the PPC view. PPC has two different types for registers
+ (integer and float) while LTL et al have only one. The
+ [ireg_of] and [freg_of] are therefore partial in principle.
+ To keep things simpler, we make them return nonsensical
+ results when applied to a LTL register of the wrong type.
+ The proof in [Asmgenproof] will show that this never happens.
+
+ Note that no LTL register maps to [GPR12] nor [FPR13].
+ These two registers are reserved as temporaries, to be used
+ by the generated PPC code. *)
+
+Definition ireg_of (r: mreg) : ireg :=
+ match r with
+ | R3 => GPR3 | R4 => GPR4 | R5 => GPR5 | R6 => GPR6
+ | R7 => GPR7 | R8 => GPR8 | R9 => GPR9 | R10 => GPR10
+ | R13 => GPR13 | R14 => GPR14 | R15 => GPR15 | R16 => GPR16
+ | R17 => GPR17 | R18 => GPR18 | R19 => GPR19 | R20 => GPR20
+ | R21 => GPR21 | R22 => GPR22 | R23 => GPR23 | R24 => GPR24
+ | R25 => GPR25 | R26 => GPR26 | R27 => GPR27 | R28 => GPR28
+ | R29 => GPR29 | R30 => GPR30 | R31 => GPR31
+ | IT1 => GPR11 | IT2 => GPR0
+ | _ => GPR0 (* should not happen *)
+ end.
+
+Definition freg_of (r: mreg) : freg :=
+ match r with
+ | F1 => FPR1 | F2 => FPR2 | F3 => FPR3 | F4 => FPR4
+ | F5 => FPR5 | F6 => FPR6 | F7 => FPR7 | F8 => FPR8
+ | F9 => FPR9 | F10 => FPR10 | F14 => FPR14 | F15 => FPR15
+ | F16 => FPR16 | F17 => FPR17 | F18 => FPR18 | F19 => FPR19
+ | F20 => FPR20 | F21 => FPR21 | F22 => FPR22 | F23 => FPR23
+ | F24 => FPR24 | F25 => FPR25 | F26 => FPR26 | F27 => FPR27
+ | F28 => FPR28 | F29 => FPR29 | F30 => FPR30 | F31 => FPR31
+ | FT1 => FPR0 | FT2 => FPR11 | FT3 => FPR12
+ | _ => FPR0 (* should not happen *)
+ end.
+
+Definition preg_of (r: mreg) :=
+ match mreg_type r with
+ | Tint => IR (ireg_of r)
+ | Tfloat => FR (freg_of r)
+ end.
+
+(** Extract the values of the arguments of an external call.
+ We exploit the calling conventions from module [Conventions], except that
+ we use PPC registers instead of locations. *)
+
+Inductive extcall_arg (rs: regset) (m: mem): loc -> val -> Prop :=
+ | extcall_arg_reg: forall r,
+ extcall_arg rs m (R r) (rs (preg_of r))
+ | extcall_arg_int_stack: forall ofs bofs v,
+ bofs = Stacklayout.fe_ofs_arg + 4 * ofs ->
+ Mem.loadv Mint32 m (Val.add (rs (IR GPR1)) (Vint (Int.repr bofs))) = Some v ->
+ extcall_arg rs m (S (Outgoing ofs Tint)) v
+ | extcall_arg_float_stack: forall ofs bofs v,
+ bofs = Stacklayout.fe_ofs_arg + 4 * ofs ->
+ Mem.loadv Mfloat64 m (Val.add (rs (IR GPR1)) (Vint (Int.repr bofs))) = Some v ->
+ extcall_arg rs m (S (Outgoing ofs Tfloat)) v.
+
+Inductive extcall_args (rs: regset) (m: mem): list loc -> list val -> Prop :=
+ | extcall_args_nil:
+ extcall_args rs m nil nil
+ | extcall_args_cons: forall l1 ll v1 vl,
+ extcall_arg rs m l1 v1 -> extcall_args rs m ll vl ->
+ extcall_args rs m (l1 :: ll) (v1 :: vl).
+
+Definition extcall_arguments
+ (rs: regset) (m: mem) (sg: signature) (args: list val) : Prop :=
+ extcall_args rs m (Conventions.loc_arguments sg) args.
+
+Definition loc_external_result (sg: signature) : preg :=
+ preg_of (Conventions.loc_result sg).
+
+(** Execution of the instruction at [rs#PC]. *)
+
+Inductive state: Set :=
+ | State: regset -> mem -> state.
+
+Inductive step: state -> trace -> state -> Prop :=
+ | exec_step_internal:
+ forall b ofs c i rs m rs' m',
+ rs PC = Vptr b ofs ->
+ Genv.find_funct_ptr ge b = Some (Internal c) ->
+ find_instr (Int.unsigned ofs) c = Some i ->
+ exec_instr c i rs m = OK rs' m' ->
+ step (State rs m) E0 (State rs' m')
+ | exec_step_external:
+ forall b ef args res rs m t rs',
+ rs PC = Vptr b Int.zero ->
+ Genv.find_funct_ptr ge b = Some (External ef) ->
+ event_match ef args t res ->
+ extcall_arguments rs m ef.(ef_sig) args ->
+ rs' = (rs#(loc_external_result ef.(ef_sig)) <- res
+ #PC <- (rs LR)) ->
+ step (State rs m) t (State rs' m).
+
+End RELSEM.
+
+(** Execution of whole programs. *)
+
+Inductive initial_state (p: program): state -> Prop :=
+ | initial_state_intro:
+ let ge := Genv.globalenv p in
+ let m0 := Genv.init_mem p in
+ let rs0 :=
+ (Pregmap.init Vundef)
+ # PC <- (symbol_offset ge p.(prog_main) Int.zero)
+ # LR <- Vzero
+ # GPR1 <- (Vptr Mem.nullptr Int.zero) in
+ initial_state p (State rs0 m0).
+
+Inductive final_state: state -> int -> Prop :=
+ | final_state_intro: forall rs m r,
+ rs#PC = Vzero ->
+ rs#GPR3 = Vint r ->
+ final_state (State rs m) r.
+
+Definition exec_program (p: program) (beh: program_behavior) : Prop :=
+ program_behaves step (initial_state p) final_state (Genv.globalenv p) beh.
+
diff --git a/powerpc/Asmgen.v b/powerpc/Asmgen.v
new file mode 100644
index 00000000..2ddaa6d0
--- /dev/null
+++ b/powerpc/Asmgen.v
@@ -0,0 +1,510 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Translation from Mach to PPC. *)
+
+Require Import Coqlib.
+Require Import Maps.
+Require Import Errors.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Mem.
+Require Import Globalenvs.
+Require Import Op.
+Require Import Locations.
+Require Import Mach.
+Require Import Asm.
+
+(** Decomposition of integer constants. As noted in file [Asm],
+ immediate arguments to PowerPC instructions must fit into 16 bits,
+ and are interpreted after zero extension, sign extension, or
+ left shift by 16 bits, depending on the instruction. Integer
+ constants that do not fit must be synthesized using two
+ processor instructions. The following functions decompose
+ arbitrary 32-bit integers into two 16-bit halves (high and low
+ halves). They satisfy the following properties:
+- [low_u n] is an unsigned 16-bit integer;
+- [low_s n] is a signed 16-bit integer;
+- [(high_u n) << 16 | low_u n] equals [n];
+- [(high_s n) << 16 + low_s n] equals [n].
+*)
+
+Definition low_u (n: int) := Int.and n (Int.repr 65535).
+Definition high_u (n: int) := Int.shru n (Int.repr 16).
+Definition low_s (n: int) := Int.sign_ext 16 n.
+Definition high_s (n: int) := Int.shru (Int.sub n (low_s n)) (Int.repr 16).
+
+(** Smart constructors for arithmetic operations involving
+ a 32-bit integer constant. Depending on whether the
+ constant fits in 16 bits or not, one or several instructions
+ are generated as required to perform the operation
+ and prepended to the given instruction sequence [k]. *)
+
+Definition loadimm (r: ireg) (n: int) (k: code) :=
+ if Int.eq (high_s n) Int.zero then
+ Paddi r GPR0 (Cint n) :: k
+ else if Int.eq (low_s n) Int.zero then
+ Paddis r GPR0 (Cint (high_s n)) :: k
+ else
+ Paddis r GPR0 (Cint (high_u n)) ::
+ Pori r r (Cint (low_u n)) :: k.
+
+Definition addimm_1 (r1 r2: ireg) (n: int) (k: code) :=
+ if Int.eq (high_s n) Int.zero then
+ Paddi r1 r2 (Cint n) :: k
+ else if Int.eq (low_s n) Int.zero then
+ Paddis r1 r2 (Cint (high_s n)) :: k
+ else
+ Paddis r1 r2 (Cint (high_s n)) ::
+ Paddi r1 r1 (Cint (low_s n)) :: k.
+
+Definition addimm_2 (r1 r2: ireg) (n: int) (k: code) :=
+ loadimm GPR12 n (Padd r1 r2 GPR12 :: k).
+
+Definition addimm (r1 r2: ireg) (n: int) (k: code) :=
+ if ireg_eq r1 GPR0 then
+ addimm_2 r1 r2 n k
+ else if ireg_eq r2 GPR0 then
+ addimm_2 r1 r2 n k
+ else
+ addimm_1 r1 r2 n k.
+
+Definition andimm (r1 r2: ireg) (n: int) (k: code) :=
+ if Int.eq (high_u n) Int.zero then
+ Pandi_ r1 r2 (Cint n) :: k
+ else if Int.eq (low_u n) Int.zero then
+ Pandis_ r1 r2 (Cint (high_u n)) :: k
+ else
+ loadimm GPR12 n (Pand_ r1 r2 GPR12 :: k).
+
+Definition orimm (r1 r2: ireg) (n: int) (k: code) :=
+ if Int.eq (high_u n) Int.zero then
+ Pori r1 r2 (Cint n) :: k
+ else if Int.eq (low_u n) Int.zero then
+ Poris r1 r2 (Cint (high_u n)) :: k
+ else
+ Poris r1 r2 (Cint (high_u n)) ::
+ Pori r1 r1 (Cint (low_u n)) :: k.
+
+Definition xorimm (r1 r2: ireg) (n: int) (k: code) :=
+ if Int.eq (high_u n) Int.zero then
+ Pxori r1 r2 (Cint n) :: k
+ else if Int.eq (low_u n) Int.zero then
+ Pxoris r1 r2 (Cint (high_u n)) :: k
+ else
+ Pxoris r1 r2 (Cint (high_u n)) ::
+ Pxori r1 r1 (Cint (low_u n)) :: k.
+
+(** Smart constructors for indexed loads and stores,
+ where the address is the contents of a register plus
+ an integer literal. *)
+
+Definition loadind_aux (base: ireg) (ofs: int) (ty: typ) (dst: mreg) :=
+ match ty with
+ | Tint => Plwz (ireg_of dst) (Cint ofs) base
+ | Tfloat => Plfd (freg_of dst) (Cint ofs) base
+ end.
+
+Definition loadind (base: ireg) (ofs: int) (ty: typ) (dst: mreg) (k: code) :=
+ if Int.eq (high_s ofs) Int.zero then
+ loadind_aux base ofs ty dst :: k
+ else
+ Paddis GPR12 base (Cint (high_s ofs)) ::
+ loadind_aux GPR12 (low_s ofs) ty dst :: k.
+
+Definition storeind_aux (src: mreg) (base: ireg) (ofs: int) (ty: typ) :=
+ match ty with
+ | Tint => Pstw (ireg_of src) (Cint ofs) base
+ | Tfloat => Pstfd (freg_of src) (Cint ofs) base
+ end.
+
+Definition storeind (src: mreg) (base: ireg) (ofs: int) (ty: typ) (k: code) :=
+ if Int.eq (high_s ofs) Int.zero then
+ storeind_aux src base ofs ty :: k
+ else
+ Paddis GPR12 base (Cint (high_s ofs)) ::
+ storeind_aux src GPR12 (low_s ofs) ty :: k.
+
+(** Constructor for a floating-point comparison. The PowerPC has
+ a single [fcmpu] instruction to compare floats, which sets
+ bits 0, 1 and 2 of the condition register to reflect ``less'',
+ ``greater'' and ``equal'' conditions, respectively.
+ The ``less or equal'' and ``greater or equal'' conditions must be
+ synthesized by a [cror] instruction that computes the logical ``or''
+ of the corresponding two conditions. *)
+
+Definition floatcomp (cmp: comparison) (r1 r2: freg) (k: code) :=
+ Pfcmpu r1 r2 ::
+ match cmp with
+ | Cle => Pcror CRbit_3 CRbit_2 CRbit_0 :: k
+ | Cge => Pcror CRbit_3 CRbit_2 CRbit_1 :: k
+ | _ => k
+ end.
+
+(** Translation of a condition. Prepends to [k] the instructions
+ that evaluate the condition and leave its boolean result in one of
+ the bits of the condition register. The bit in question is
+ determined by the [crbit_for_cond] function. *)
+
+Definition transl_cond
+ (cond: condition) (args: list mreg) (k: code) :=
+ match cond, args with
+ | Ccomp c, a1 :: a2 :: nil =>
+ Pcmpw (ireg_of a1) (ireg_of a2) :: k
+ | Ccompu c, a1 :: a2 :: nil =>
+ Pcmplw (ireg_of a1) (ireg_of a2) :: k
+ | Ccompimm c n, a1 :: nil =>
+ if Int.eq (high_s n) Int.zero then
+ Pcmpwi (ireg_of a1) (Cint n) :: k
+ else
+ loadimm GPR12 n (Pcmpw (ireg_of a1) GPR12 :: k)
+ | Ccompuimm c n, a1 :: nil =>
+ if Int.eq (high_u n) Int.zero then
+ Pcmplwi (ireg_of a1) (Cint n) :: k
+ else
+ loadimm GPR12 n (Pcmplw (ireg_of a1) GPR12 :: k)
+ | Ccompf cmp, a1 :: a2 :: nil =>
+ floatcomp cmp (freg_of a1) (freg_of a2) k
+ | Cnotcompf cmp, a1 :: a2 :: nil =>
+ floatcomp cmp (freg_of a1) (freg_of a2) k
+ | Cmaskzero n, a1 :: nil =>
+ andimm GPR12 (ireg_of a1) n k
+ | Cmasknotzero n, a1 :: nil =>
+ andimm GPR12 (ireg_of a1) n k
+ | _, _ =>
+ k (**r never happens for well-typed code *)
+ end.
+
+(* CRbit_0 = Less
+ CRbit_1 = Greater
+ CRbit_2 = Equal
+ CRbit_3 = Other *)
+
+Definition crbit_for_icmp (cmp: comparison) :=
+ match cmp with
+ | Ceq => (CRbit_2, true)
+ | Cne => (CRbit_2, false)
+ | Clt => (CRbit_0, true)
+ | Cle => (CRbit_1, false)
+ | Cgt => (CRbit_1, true)
+ | Cge => (CRbit_0, false)
+ end.
+
+Definition crbit_for_fcmp (cmp: comparison) :=
+ match cmp with
+ | Ceq => (CRbit_2, true)
+ | Cne => (CRbit_2, false)
+ | Clt => (CRbit_0, true)
+ | Cle => (CRbit_3, true)
+ | Cgt => (CRbit_1, true)
+ | Cge => (CRbit_3, true)
+ end.
+
+Definition crbit_for_cond (cond: condition) :=
+ match cond with
+ | Ccomp cmp => crbit_for_icmp cmp
+ | Ccompu cmp => crbit_for_icmp cmp
+ | Ccompimm cmp n => crbit_for_icmp cmp
+ | Ccompuimm cmp n => crbit_for_icmp cmp
+ | Ccompf cmp => crbit_for_fcmp cmp
+ | Cnotcompf cmp => let p := crbit_for_fcmp cmp in (fst p, negb (snd p))
+ | Cmaskzero n => (CRbit_2, true)
+ | Cmasknotzero n => (CRbit_2, false)
+ end.
+
+(** Translation of the arithmetic operation [r <- op(args)].
+ The corresponding instructions are prepended to [k]. *)
+
+Definition transl_op
+ (op: operation) (args: list mreg) (r: mreg) (k: code) :=
+ match op, args with
+ | Omove, a1 :: nil =>
+ match mreg_type a1 with
+ | Tint => Pmr (ireg_of r) (ireg_of a1) :: k
+ | Tfloat => Pfmr (freg_of r) (freg_of a1) :: k
+ end
+ | Ointconst n, nil =>
+ loadimm (ireg_of r) n k
+ | Ofloatconst f, nil =>
+ Plfi (freg_of r) f :: k
+ | Oaddrsymbol s ofs, nil =>
+ Paddis GPR12 GPR0 (Csymbol_high s ofs) ::
+ Paddi (ireg_of r) GPR12 (Csymbol_low s ofs) :: k
+ | Oaddrstack n, nil =>
+ addimm (ireg_of r) GPR1 n k
+ | Ocast8signed, a1 :: nil =>
+ Pextsb (ireg_of r) (ireg_of a1) :: k
+ | Ocast8unsigned, a1 :: nil =>
+ Prlwinm (ireg_of r) (ireg_of a1) Int.zero (Int.repr 255) :: k
+ | Ocast16signed, a1 :: nil =>
+ Pextsh (ireg_of r) (ireg_of a1) :: k
+ | Ocast16unsigned, a1 :: nil =>
+ Prlwinm (ireg_of r) (ireg_of a1) Int.zero (Int.repr 65535) :: k
+ | Oadd, a1 :: a2 :: nil =>
+ Padd (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
+ | Oaddimm n, a1 :: nil =>
+ addimm (ireg_of r) (ireg_of a1) n k
+ | Osub, a1 :: a2 :: nil =>
+ Psubfc (ireg_of r) (ireg_of a2) (ireg_of a1) :: k
+ | Osubimm n, a1 :: nil =>
+ if Int.eq (high_s n) Int.zero then
+ Psubfic (ireg_of r) (ireg_of a1) (Cint n) :: k
+ else
+ loadimm GPR12 n (Psubfc (ireg_of r) (ireg_of a1) GPR12 :: k)
+ | Omul, a1 :: a2 :: nil =>
+ Pmullw (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
+ | Omulimm n, a1 :: nil =>
+ if Int.eq (high_s n) Int.zero then
+ Pmulli (ireg_of r) (ireg_of a1) (Cint n) :: k
+ else
+ loadimm GPR12 n (Pmullw (ireg_of r) (ireg_of a1) GPR12 :: k)
+ | Odiv, a1 :: a2 :: nil =>
+ Pdivw (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
+ | Odivu, a1 :: a2 :: nil =>
+ Pdivwu (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
+ | Oand, a1 :: a2 :: nil =>
+ Pand_ (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
+ | Oandimm n, a1 :: nil =>
+ andimm (ireg_of r) (ireg_of a1) n k
+ | Oor, a1 :: a2 :: nil =>
+ Por (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
+ | Oorimm n, a1 :: nil =>
+ orimm (ireg_of r) (ireg_of a1) n k
+ | Oxor, a1 :: a2 :: nil =>
+ Pxor (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
+ | Oxorimm n, a1 :: nil =>
+ xorimm (ireg_of r) (ireg_of a1) n k
+ | Onand, a1 :: a2 :: nil =>
+ Pnand (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
+ | Onor, a1 :: a2 :: nil =>
+ Pnor (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
+ | Onxor, a1 :: a2 :: nil =>
+ Peqv (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
+ | Oshl, a1 :: a2 :: nil =>
+ Pslw (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
+ | Oshr, a1 :: a2 :: nil =>
+ Psraw (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
+ | Oshrimm n, a1 :: nil =>
+ Psrawi (ireg_of r) (ireg_of a1) n :: k
+ | Oshrximm n, a1 :: nil =>
+ Psrawi (ireg_of r) (ireg_of a1) n ::
+ Paddze (ireg_of r) (ireg_of r) :: k
+ | Oshru, a1 :: a2 :: nil =>
+ Psrw (ireg_of r) (ireg_of a1) (ireg_of a2) :: k
+ | Orolm amount mask, a1 :: nil =>
+ Prlwinm (ireg_of r) (ireg_of a1) amount mask :: k
+ | Onegf, a1 :: nil =>
+ Pfneg (freg_of r) (freg_of a1) :: k
+ | Oabsf, a1 :: nil =>
+ Pfabs (freg_of r) (freg_of a1) :: k
+ | Oaddf, a1 :: a2 :: nil =>
+ Pfadd (freg_of r) (freg_of a1) (freg_of a2) :: k
+ | Osubf, a1 :: a2 :: nil =>
+ Pfsub (freg_of r) (freg_of a1) (freg_of a2) :: k
+ | Omulf, a1 :: a2 :: nil =>
+ Pfmul (freg_of r) (freg_of a1) (freg_of a2) :: k
+ | Odivf, a1 :: a2 :: nil =>
+ Pfdiv (freg_of r) (freg_of a1) (freg_of a2) :: k
+ | Omuladdf, a1 :: a2 :: a3 :: nil =>
+ Pfmadd (freg_of r) (freg_of a1) (freg_of a2) (freg_of a3) :: k
+ | Omulsubf, a1 :: a2 :: a3 :: nil =>
+ Pfmsub (freg_of r) (freg_of a1) (freg_of a2) (freg_of a3) :: k
+ | Osingleoffloat, a1 :: nil =>
+ Pfrsp (freg_of r) (freg_of a1) :: k
+ | Ointoffloat, a1 :: nil =>
+ Pfcti (ireg_of r) (freg_of a1) :: k
+ | Ointuoffloat, a1 :: nil =>
+ Pfctiu (ireg_of r) (freg_of a1) :: k
+ | Ofloatofint, a1 :: nil =>
+ Pictf (freg_of r) (ireg_of a1) :: k
+ | Ofloatofintu, a1 :: nil =>
+ Piuctf (freg_of r) (ireg_of a1) :: k
+ | Ocmp cmp, _ =>
+ let p := crbit_for_cond cmp in
+ transl_cond cmp args
+ (Pmfcrbit (ireg_of r) (fst p) ::
+ if snd p
+ then k
+ else Pxori (ireg_of r) (ireg_of r) (Cint Int.one) :: k)
+ | _, _ =>
+ k (**r never happens for well-typed code *)
+ end.
+
+(** Common code to translate [Mload] and [Mstore] instructions. *)
+
+Definition transl_load_store
+ (mk1: constant -> ireg -> instruction)
+ (mk2: ireg -> ireg -> instruction)
+ (addr: addressing) (args: list mreg) (k: code) :=
+ match addr, args with
+ | Aindexed ofs, a1 :: nil =>
+ if ireg_eq (ireg_of a1) GPR0 then
+ Pmr GPR12 (ireg_of a1) ::
+ Paddis GPR12 GPR12 (Cint (high_s ofs)) ::
+ mk1 (Cint (low_s ofs)) GPR12 :: k
+ else if Int.eq (high_s ofs) Int.zero then
+ mk1 (Cint ofs) (ireg_of a1) :: k
+ else
+ Paddis GPR12 (ireg_of a1) (Cint (high_s ofs)) ::
+ mk1 (Cint (low_s ofs)) GPR12 :: k
+ | Aindexed2, a1 :: a2 :: nil =>
+ mk2 (ireg_of a1) (ireg_of a2) :: k
+ | Aglobal symb ofs, nil =>
+ Paddis GPR12 GPR0 (Csymbol_high symb ofs) ::
+ mk1 (Csymbol_low symb ofs) GPR12 :: k
+ | Abased symb ofs, a1 :: nil =>
+ if ireg_eq (ireg_of a1) GPR0 then
+ Pmr GPR12 (ireg_of a1) ::
+ Paddis GPR12 GPR12 (Csymbol_high symb ofs) ::
+ mk1 (Csymbol_low symb ofs) GPR12 :: k
+ else
+ Paddis GPR12 (ireg_of a1) (Csymbol_high symb ofs) ::
+ mk1 (Csymbol_low symb ofs) GPR12 :: k
+ | Ainstack ofs, nil =>
+ if Int.eq (high_s ofs) Int.zero then
+ mk1 (Cint ofs) GPR1 :: k
+ else
+ Paddis GPR12 GPR1 (Cint (high_s ofs)) ::
+ mk1 (Cint (low_s ofs)) GPR12 :: k
+ | _, _ =>
+ (* should not happen *) k
+ end.
+
+(** Translation of a Mach instruction. *)
+
+Definition transl_instr (f: Mach.function) (i: Mach.instruction) (k: code) :=
+ match i with
+ | Mgetstack ofs ty dst =>
+ loadind GPR1 ofs ty dst k
+ | Msetstack src ofs ty =>
+ storeind src GPR1 ofs ty k
+ | Mgetparam ofs ty dst =>
+ Plwz GPR12 (Cint f.(fn_link_ofs)) GPR1 :: loadind GPR12 ofs ty dst k
+ | Mop op args res =>
+ transl_op op args res k
+ | Mload chunk addr args dst =>
+ match chunk with
+ | Mint8signed =>
+ transl_load_store
+ (Plbz (ireg_of dst)) (Plbzx (ireg_of dst)) addr args
+ (Pextsb (ireg_of dst) (ireg_of dst) :: k)
+ | Mint8unsigned =>
+ transl_load_store
+ (Plbz (ireg_of dst)) (Plbzx (ireg_of dst)) addr args k
+ | Mint16signed =>
+ transl_load_store
+ (Plha (ireg_of dst)) (Plhax (ireg_of dst)) addr args k
+ | Mint16unsigned =>
+ transl_load_store
+ (Plhz (ireg_of dst)) (Plhzx (ireg_of dst)) addr args k
+ | Mint32 =>
+ transl_load_store
+ (Plwz (ireg_of dst)) (Plwzx (ireg_of dst)) addr args k
+ | Mfloat32 =>
+ transl_load_store
+ (Plfs (freg_of dst)) (Plfsx (freg_of dst)) addr args k
+ | Mfloat64 =>
+ transl_load_store
+ (Plfd (freg_of dst)) (Plfdx (freg_of dst)) addr args k
+ end
+ | Mstore chunk addr args src =>
+ match chunk with
+ | Mint8signed =>
+ transl_load_store
+ (Pstb (ireg_of src)) (Pstbx (ireg_of src)) addr args k
+ | Mint8unsigned =>
+ transl_load_store
+ (Pstb (ireg_of src)) (Pstbx (ireg_of src)) addr args k
+ | Mint16signed =>
+ transl_load_store
+ (Psth (ireg_of src)) (Psthx (ireg_of src)) addr args k
+ | Mint16unsigned =>
+ transl_load_store
+ (Psth (ireg_of src)) (Psthx (ireg_of src)) addr args k
+ | Mint32 =>
+ transl_load_store
+ (Pstw (ireg_of src)) (Pstwx (ireg_of src)) addr args k
+ | Mfloat32 =>
+ transl_load_store
+ (Pstfs (freg_of src)) (Pstfsx (freg_of src)) addr args k
+ | Mfloat64 =>
+ transl_load_store
+ (Pstfd (freg_of src)) (Pstfdx (freg_of src)) addr args k
+ end
+ | Mcall sig (inl r) =>
+ Pmtctr (ireg_of r) :: Pbctrl :: k
+ | Mcall sig (inr symb) =>
+ Pbl symb :: k
+ | Mtailcall sig (inl r) =>
+ Pmtctr (ireg_of r) ::
+ Plwz GPR12 (Cint f.(fn_retaddr_ofs)) GPR1 ::
+ Pmtlr GPR12 ::
+ Pfreeframe f.(fn_link_ofs) ::
+ Pbctr :: k
+ | Mtailcall sig (inr symb) =>
+ Plwz GPR12 (Cint f.(fn_retaddr_ofs)) GPR1 ::
+ Pmtlr GPR12 ::
+ Pfreeframe f.(fn_link_ofs) ::
+ Pbs symb :: k
+ | Malloc =>
+ Pallocblock :: k
+ | Mlabel lbl =>
+ Plabel lbl :: k
+ | Mgoto lbl =>
+ Pb lbl :: k
+ | Mcond cond args lbl =>
+ let p := crbit_for_cond cond in
+ transl_cond cond args
+ (if (snd p) then Pbt (fst p) lbl :: k else Pbf (fst p) lbl :: k)
+ | Mreturn =>
+ Plwz GPR12 (Cint f.(fn_retaddr_ofs)) GPR1 ::
+ Pmtlr GPR12 ::
+ Pfreeframe f.(fn_link_ofs) ::
+ Pblr :: k
+ end.
+
+Definition transl_code (f: Mach.function) (il: list Mach.instruction) :=
+ List.fold_right (transl_instr f) nil il.
+
+(** Translation of a whole function. Note that we must check
+ that the generated code contains less than [2^32] instructions,
+ otherwise the offset part of the [PC] code pointer could wrap
+ around, leading to incorrect executions. *)
+
+Definition transl_function (f: Mach.function) :=
+ Pallocframe (- f.(fn_framesize)) f.(fn_stacksize) f.(fn_link_ofs) ::
+ Pmflr GPR12 ::
+ Pstw GPR12 (Cint f.(fn_retaddr_ofs)) GPR1 ::
+ transl_code f f.(fn_code).
+
+Fixpoint code_size (c: code) : Z :=
+ match c with
+ | nil => 0
+ | instr :: c' => code_size c' + 1
+ end.
+
+Open Local Scope string_scope.
+
+Definition transf_function (f: Mach.function) : res Asm.code :=
+ let c := transl_function f in
+ if zlt Int.max_unsigned (code_size c)
+ then Errors.Error (msg "code size exceeded")
+ else Errors.OK c.
+
+Definition transf_fundef (f: Mach.fundef) : res Asm.fundef :=
+ transf_partial_fundef transf_function f.
+
+Definition transf_program (p: Mach.program) : res Asm.program :=
+ transform_partial_program transf_fundef p.
+
diff --git a/powerpc/Asmgenproof.v b/powerpc/Asmgenproof.v
new file mode 100644
index 00000000..980925bd
--- /dev/null
+++ b/powerpc/Asmgenproof.v
@@ -0,0 +1,1394 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Correctness proof for PPC generation: main proof. *)
+
+Require Import Coqlib.
+Require Import Maps.
+Require Import Errors.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Mem.
+Require Import Events.
+Require Import Globalenvs.
+Require Import Smallstep.
+Require Import Op.
+Require Import Locations.
+Require Import Mach.
+Require Import Machconcr.
+Require Import Machtyping.
+Require Import Asm.
+Require Import Asmgen.
+Require Import Asmgenretaddr.
+Require Import Asmgenproof1.
+
+Section PRESERVATION.
+
+Variable prog: Mach.program.
+Variable tprog: Asm.program.
+Hypothesis TRANSF: transf_program prog = Errors.OK tprog.
+
+Let ge := Genv.globalenv prog.
+Let tge := Genv.globalenv tprog.
+
+Lemma symbols_preserved:
+ forall id, Genv.find_symbol tge id = Genv.find_symbol ge id.
+Proof.
+ intros. unfold ge, tge.
+ apply Genv.find_symbol_transf_partial with transf_fundef.
+ exact TRANSF.
+Qed.
+
+Lemma functions_translated:
+ forall b f,
+ Genv.find_funct_ptr ge b = Some f ->
+ exists tf, Genv.find_funct_ptr tge b = Some tf /\ transf_fundef f = Errors.OK tf.
+Proof
+ (Genv.find_funct_ptr_transf_partial transf_fundef TRANSF).
+
+Lemma functions_transl:
+ forall f b,
+ Genv.find_funct_ptr ge b = Some (Internal f) ->
+ Genv.find_funct_ptr tge b = Some (Internal (transl_function f)).
+Proof.
+ intros.
+ destruct (functions_translated _ _ H) as [tf [A B]].
+ rewrite A. generalize B. unfold transf_fundef, transf_partial_fundef, transf_function.
+ case (zlt Int.max_unsigned (code_size (transl_function f))); simpl; intro.
+ congruence. intro. inv B0. auto.
+Qed.
+
+Lemma functions_transl_no_overflow:
+ forall b f,
+ Genv.find_funct_ptr ge b = Some (Internal f) ->
+ code_size (transl_function f) <= Int.max_unsigned.
+Proof.
+ intros.
+ destruct (functions_translated _ _ H) as [tf [A B]].
+ generalize B. unfold transf_fundef, transf_partial_fundef, transf_function.
+ case (zlt Int.max_unsigned (code_size (transl_function f))); simpl; intro.
+ congruence. intro; omega.
+Qed.
+
+(** * Properties of control flow *)
+
+Lemma find_instr_in:
+ forall c pos i,
+ find_instr pos c = Some i -> In i c.
+Proof.
+ induction c; simpl. intros; discriminate.
+ intros until i. case (zeq pos 0); intros.
+ left; congruence. right; eauto.
+Qed.
+
+Lemma find_instr_tail:
+ forall c1 i c2 pos,
+ code_tail pos c1 (i :: c2) ->
+ find_instr pos c1 = Some i.
+Proof.
+ induction c1; simpl; intros.
+ inv H.
+ destruct (zeq pos 0). subst pos.
+ inv H. auto. generalize (code_tail_pos _ _ _ H4). intro. omegaContradiction.
+ inv H. congruence. replace (pos0 + 1 - 1) with pos0 by omega.
+ eauto.
+Qed.
+
+Remark code_size_pos:
+ forall fn, code_size fn >= 0.
+Proof.
+ induction fn; simpl; omega.
+Qed.
+
+Remark code_tail_bounds:
+ forall fn ofs i c,
+ code_tail ofs fn (i :: c) -> 0 <= ofs < code_size fn.
+Proof.
+ assert (forall ofs fn c, code_tail ofs fn c ->
+ forall i c', c = i :: c' -> 0 <= ofs < code_size fn).
+ induction 1; intros; simpl.
+ rewrite H. simpl. generalize (code_size_pos c'). omega.
+ generalize (IHcode_tail _ _ H0). omega.
+ eauto.
+Qed.
+
+Lemma code_tail_next:
+ forall fn ofs i c,
+ code_tail ofs fn (i :: c) ->
+ code_tail (ofs + 1) fn c.
+Proof.
+ assert (forall ofs fn c, code_tail ofs fn c ->
+ forall i c', c = i :: c' -> code_tail (ofs + 1) fn c').
+ induction 1; intros.
+ subst c. constructor. constructor.
+ constructor. eauto.
+ eauto.
+Qed.
+
+Lemma code_tail_next_int:
+ forall fn ofs i c,
+ code_size fn <= Int.max_unsigned ->
+ code_tail (Int.unsigned ofs) fn (i :: c) ->
+ code_tail (Int.unsigned (Int.add ofs Int.one)) fn c.
+Proof.
+ intros. rewrite Int.add_unsigned.
+ change (Int.unsigned Int.one) with 1.
+ rewrite Int.unsigned_repr. apply code_tail_next with i; auto.
+ generalize (code_tail_bounds _ _ _ _ H0). omega.
+Qed.
+
+(** [transl_code_at_pc pc fn c] holds if the code pointer [pc] points
+ within the PPC code generated by translating Mach function [fn],
+ and [c] is the tail of the generated code at the position corresponding
+ to the code pointer [pc]. *)
+
+Inductive transl_code_at_pc: val -> block -> Mach.function -> Mach.code -> Prop :=
+ transl_code_at_pc_intro:
+ forall b ofs f c,
+ Genv.find_funct_ptr ge b = Some (Internal f) ->
+ code_tail (Int.unsigned ofs) (transl_function f) (transl_code f c) ->
+ transl_code_at_pc (Vptr b ofs) b f c.
+
+(** The following lemmas show that straight-line executions
+ (predicate [exec_straight]) correspond to correct PPC executions
+ (predicate [exec_steps]) under adequate [transl_code_at_pc] hypotheses. *)
+
+Lemma exec_straight_steps_1:
+ forall fn c rs m c' rs' m',
+ exec_straight tge fn c rs m c' rs' m' ->
+ code_size fn <= Int.max_unsigned ->
+ forall b ofs,
+ rs#PC = Vptr b ofs ->
+ Genv.find_funct_ptr tge b = Some (Internal fn) ->
+ code_tail (Int.unsigned ofs) fn c ->
+ plus step tge (State rs m) E0 (State rs' m').
+Proof.
+ induction 1; intros.
+ apply plus_one.
+ econstructor; eauto.
+ eapply find_instr_tail. eauto.
+ eapply plus_left'.
+ econstructor; eauto.
+ eapply find_instr_tail. eauto.
+ apply IHexec_straight with b (Int.add ofs Int.one).
+ auto. rewrite H0. rewrite H3. reflexivity.
+ auto.
+ apply code_tail_next_int with i; auto.
+ traceEq.
+Qed.
+
+Lemma exec_straight_steps_2:
+ forall fn c rs m c' rs' m',
+ exec_straight tge fn c rs m c' rs' m' ->
+ code_size fn <= Int.max_unsigned ->
+ forall b ofs,
+ rs#PC = Vptr b ofs ->
+ Genv.find_funct_ptr tge b = Some (Internal fn) ->
+ code_tail (Int.unsigned ofs) fn c ->
+ exists ofs',
+ rs'#PC = Vptr b ofs'
+ /\ code_tail (Int.unsigned ofs') fn c'.
+Proof.
+ induction 1; intros.
+ exists (Int.add ofs Int.one). split.
+ rewrite H0. rewrite H2. auto.
+ apply code_tail_next_int with i1; auto.
+ apply IHexec_straight with (Int.add ofs Int.one).
+ auto. rewrite H0. rewrite H3. reflexivity. auto.
+ apply code_tail_next_int with i; auto.
+Qed.
+
+Lemma exec_straight_exec:
+ forall fb f c c' rs m rs' m',
+ transl_code_at_pc (rs PC) fb f c ->
+ exec_straight tge (transl_function f)
+ (transl_code f c) rs m c' rs' m' ->
+ plus step tge (State rs m) E0 (State rs' m').
+Proof.
+ intros. inversion H. subst.
+ eapply exec_straight_steps_1; eauto.
+ eapply functions_transl_no_overflow; eauto.
+ eapply functions_transl; eauto.
+Qed.
+
+Lemma exec_straight_at:
+ forall fb f c c' rs m rs' m',
+ transl_code_at_pc (rs PC) fb f c ->
+ exec_straight tge (transl_function f)
+ (transl_code f c) rs m (transl_code f c') rs' m' ->
+ transl_code_at_pc (rs' PC) fb f c'.
+Proof.
+ intros. inversion H. subst.
+ generalize (functions_transl_no_overflow _ _ H2). intro.
+ generalize (functions_transl _ _ H2). intro.
+ generalize (exec_straight_steps_2 _ _ _ _ _ _ _
+ H0 H4 _ _ (sym_equal H1) H5 H3).
+ intros [ofs' [PC' CT']].
+ rewrite PC'. constructor; auto.
+Qed.
+
+(** Correctness of the return addresses predicted by
+ [PPCgen.return_address_offset]. *)
+
+Remark code_tail_no_bigger:
+ forall pos c1 c2, code_tail pos c1 c2 -> (length c2 <= length c1)%nat.
+Proof.
+ induction 1; simpl; omega.
+Qed.
+
+Remark code_tail_unique:
+ forall fn c pos pos',
+ code_tail pos fn c -> code_tail pos' fn c -> pos = pos'.
+Proof.
+ induction fn; intros until pos'; intros ITA CT; inv ITA; inv CT; auto.
+ generalize (code_tail_no_bigger _ _ _ H3); simpl; intro; omega.
+ generalize (code_tail_no_bigger _ _ _ H3); simpl; intro; omega.
+ f_equal. eauto.
+Qed.
+
+Lemma return_address_offset_correct:
+ forall b ofs fb f c ofs',
+ transl_code_at_pc (Vptr b ofs) fb f c ->
+ return_address_offset f c ofs' ->
+ ofs' = ofs.
+Proof.
+ intros. inv H0. inv H.
+ generalize (code_tail_unique _ _ _ _ H1 H7). intro. rewrite H.
+ apply Int.repr_unsigned.
+Qed.
+
+(** The [find_label] function returns the code tail starting at the
+ given label. A connection with [code_tail] is then established. *)
+
+Fixpoint find_label (lbl: label) (c: code) {struct c} : option code :=
+ match c with
+ | nil => None
+ | instr :: c' =>
+ if is_label lbl instr then Some c' else find_label lbl c'
+ end.
+
+Lemma label_pos_code_tail:
+ forall lbl c pos c',
+ find_label lbl c = Some c' ->
+ exists pos',
+ label_pos lbl pos c = Some pos'
+ /\ code_tail (pos' - pos) c c'
+ /\ pos < pos' <= pos + code_size c.
+Proof.
+ induction c.
+ simpl; intros. discriminate.
+ simpl; intros until c'.
+ case (is_label lbl a).
+ intro EQ; injection EQ; intro; subst c'.
+ exists (pos + 1). split. auto. split.
+ replace (pos + 1 - pos) with (0 + 1) by omega. constructor. constructor.
+ generalize (code_size_pos c). omega.
+ intros. generalize (IHc (pos + 1) c' H). intros [pos' [A [B C]]].
+ exists pos'. split. auto. split.
+ replace (pos' - pos) with ((pos' - (pos + 1)) + 1) by omega.
+ constructor. auto.
+ omega.
+Qed.
+
+(** The following lemmas show that the translation from Mach to PPC
+ preserves labels, in the sense that the following diagram commutes:
+<<
+ translation
+ Mach code ------------------------ PPC instr sequence
+ | |
+ | Mach.find_label lbl find_label lbl |
+ | |
+ v v
+ Mach code tail ------------------- PPC instr seq tail
+ translation
+>>
+ The proof demands many boring lemmas showing that PPC constructor
+ functions do not introduce new labels.
+*)
+
+Section TRANSL_LABEL.
+
+Variable lbl: label.
+
+Remark loadimm_label:
+ forall r n k, find_label lbl (loadimm r n k) = find_label lbl k.
+Proof.
+ intros. unfold loadimm.
+ case (Int.eq (high_s n) Int.zero). reflexivity.
+ case (Int.eq (low_s n) Int.zero). reflexivity.
+ reflexivity.
+Qed.
+Hint Rewrite loadimm_label: labels.
+
+Remark addimm_1_label:
+ forall r1 r2 n k, find_label lbl (addimm_1 r1 r2 n k) = find_label lbl k.
+Proof.
+ intros; unfold addimm_1.
+ case (Int.eq (high_s n) Int.zero). reflexivity.
+ case (Int.eq (low_s n) Int.zero). reflexivity. reflexivity.
+Qed.
+Remark addimm_2_label:
+ forall r1 r2 n k, find_label lbl (addimm_2 r1 r2 n k) = find_label lbl k.
+Proof.
+ intros; unfold addimm_2. autorewrite with labels. reflexivity.
+Qed.
+Remark addimm_label:
+ forall r1 r2 n k, find_label lbl (addimm r1 r2 n k) = find_label lbl k.
+Proof.
+ intros; unfold addimm.
+ case (ireg_eq r1 GPR0); intro. apply addimm_2_label.
+ case (ireg_eq r2 GPR0); intro. apply addimm_2_label.
+ apply addimm_1_label.
+Qed.
+Hint Rewrite addimm_label: labels.
+
+Remark andimm_label:
+ forall r1 r2 n k, find_label lbl (andimm r1 r2 n k) = find_label lbl k.
+Proof.
+ intros; unfold andimm.
+ case (Int.eq (high_u n) Int.zero). reflexivity.
+ case (Int.eq (low_u n) Int.zero). reflexivity.
+ autorewrite with labels. reflexivity.
+Qed.
+Hint Rewrite andimm_label: labels.
+
+Remark orimm_label:
+ forall r1 r2 n k, find_label lbl (orimm r1 r2 n k) = find_label lbl k.
+Proof.
+ intros; unfold orimm.
+ case (Int.eq (high_u n) Int.zero). reflexivity.
+ case (Int.eq (low_u n) Int.zero). reflexivity. reflexivity.
+Qed.
+Hint Rewrite orimm_label: labels.
+
+Remark xorimm_label:
+ forall r1 r2 n k, find_label lbl (xorimm r1 r2 n k) = find_label lbl k.
+Proof.
+ intros; unfold xorimm.
+ case (Int.eq (high_u n) Int.zero). reflexivity.
+ case (Int.eq (low_u n) Int.zero). reflexivity. reflexivity.
+Qed.
+Hint Rewrite xorimm_label: labels.
+
+Remark loadind_aux_label:
+ forall base ofs ty dst k, find_label lbl (loadind_aux base ofs ty dst :: k) = find_label lbl k.
+Proof.
+ intros; unfold loadind_aux.
+ case ty; reflexivity.
+Qed.
+Remark loadind_label:
+ forall base ofs ty dst k, find_label lbl (loadind base ofs ty dst k) = find_label lbl k.
+Proof.
+ intros; unfold loadind.
+ case (Int.eq (high_s ofs) Int.zero). apply loadind_aux_label.
+ transitivity (find_label lbl (loadind_aux GPR12 (low_s ofs) ty dst :: k)).
+ reflexivity. apply loadind_aux_label.
+Qed.
+Hint Rewrite loadind_label: labels.
+Remark storeind_aux_label:
+ forall base ofs ty dst k, find_label lbl (storeind_aux base ofs ty dst :: k) = find_label lbl k.
+Proof.
+ intros; unfold storeind_aux.
+ case dst; reflexivity.
+Qed.
+Remark storeind_label:
+ forall base ofs ty src k, find_label lbl (storeind base src ofs ty k) = find_label lbl k.
+Proof.
+ intros; unfold storeind.
+ case (Int.eq (high_s ofs) Int.zero). apply storeind_aux_label.
+ transitivity (find_label lbl (storeind_aux base GPR12 (low_s ofs) ty :: k)).
+ reflexivity. apply storeind_aux_label.
+Qed.
+Hint Rewrite storeind_label: labels.
+Remark floatcomp_label:
+ forall cmp r1 r2 k, find_label lbl (floatcomp cmp r1 r2 k) = find_label lbl k.
+Proof.
+ intros; unfold floatcomp. destruct cmp; reflexivity.
+Qed.
+
+Remark transl_cond_label:
+ forall cond args k, find_label lbl (transl_cond cond args k) = find_label lbl k.
+Proof.
+ intros; unfold transl_cond.
+ destruct cond; (destruct args;
+ [try reflexivity | destruct args;
+ [try reflexivity | destruct args; try reflexivity]]).
+ case (Int.eq (high_s i) Int.zero). reflexivity.
+ autorewrite with labels; reflexivity.
+ case (Int.eq (high_u i) Int.zero). reflexivity.
+ autorewrite with labels; reflexivity.
+ apply floatcomp_label. apply floatcomp_label.
+ apply andimm_label. apply andimm_label.
+Qed.
+Hint Rewrite transl_cond_label: labels.
+Remark transl_op_label:
+ forall op args r k, find_label lbl (transl_op op args r k) = find_label lbl k.
+Proof.
+ intros; unfold transl_op;
+ destruct op; destruct args; try (destruct args); try (destruct args); try (destruct args);
+ try reflexivity; autorewrite with labels; try reflexivity.
+ case (mreg_type m); reflexivity.
+ case (Int.eq (high_s i) Int.zero); autorewrite with labels; reflexivity.
+ case (Int.eq (high_s i) Int.zero); autorewrite with labels; reflexivity.
+ case (snd (crbit_for_cond c)); reflexivity.
+ case (snd (crbit_for_cond c)); reflexivity.
+ case (snd (crbit_for_cond c)); reflexivity.
+ case (snd (crbit_for_cond c)); reflexivity.
+ case (snd (crbit_for_cond c)); reflexivity.
+Qed.
+Hint Rewrite transl_op_label: labels.
+
+Remark transl_load_store_label:
+ forall (mk1: constant -> ireg -> instruction) (mk2: ireg -> ireg -> instruction)
+ addr args k,
+ (forall c r, is_label lbl (mk1 c r) = false) ->
+ (forall r1 r2, is_label lbl (mk2 r1 r2) = false) ->
+ find_label lbl (transl_load_store mk1 mk2 addr args k) = find_label lbl k.
+Proof.
+ intros; unfold transl_load_store.
+ destruct addr; destruct args; try (destruct args); try (destruct args);
+ try reflexivity.
+ case (ireg_eq (ireg_of m) GPR0); intro.
+ simpl. rewrite H. auto.
+ case (Int.eq (high_s i) Int.zero). simpl; rewrite H; auto.
+ simpl; rewrite H; auto.
+ simpl; rewrite H0; auto.
+ simpl; rewrite H; auto.
+ case (ireg_eq (ireg_of m) GPR0); intro; simpl; rewrite H; auto.
+ case (Int.eq (high_s i) Int.zero); simpl; rewrite H; auto.
+Qed.
+Hint Rewrite transl_load_store_label: labels.
+
+Lemma transl_instr_label:
+ forall f i k,
+ find_label lbl (transl_instr f i k) =
+ if Mach.is_label lbl i then Some k else find_label lbl k.
+Proof.
+ intros. generalize (Mach.is_label_correct lbl i).
+ case (Mach.is_label lbl i); intro.
+ subst i. simpl. rewrite peq_true. auto.
+ destruct i; simpl; autorewrite with labels; try reflexivity.
+ destruct m; rewrite transl_load_store_label; intros; reflexivity.
+ destruct m; rewrite transl_load_store_label; intros; reflexivity.
+ destruct s0; reflexivity.
+ destruct s0; reflexivity.
+ rewrite peq_false. auto. congruence.
+ case (snd (crbit_for_cond c)); reflexivity.
+Qed.
+
+Lemma transl_code_label:
+ forall f c,
+ find_label lbl (transl_code f c) =
+ option_map (transl_code f) (Mach.find_label lbl c).
+Proof.
+ induction c; simpl; intros.
+ auto. rewrite transl_instr_label.
+ case (Mach.is_label lbl a). reflexivity.
+ auto.
+Qed.
+
+Lemma transl_find_label:
+ forall f,
+ find_label lbl (transl_function f) =
+ option_map (transl_code f) (Mach.find_label lbl f.(fn_code)).
+Proof.
+ intros. unfold transl_function. simpl. apply transl_code_label.
+Qed.
+
+End TRANSL_LABEL.
+
+(** A valid branch in a piece of Mach code translates to a valid ``go to''
+ transition in the generated PPC code. *)
+
+Lemma find_label_goto_label:
+ forall f lbl rs m c' b ofs,
+ Genv.find_funct_ptr ge b = Some (Internal f) ->
+ rs PC = Vptr b ofs ->
+ Mach.find_label lbl f.(fn_code) = Some c' ->
+ exists rs',
+ goto_label (transl_function f) lbl rs m = OK rs' m
+ /\ transl_code_at_pc (rs' PC) b f c'
+ /\ forall r, r <> PC -> rs'#r = rs#r.
+Proof.
+ intros.
+ generalize (transl_find_label lbl f).
+ rewrite H1; simpl. intro.
+ generalize (label_pos_code_tail lbl (transl_function f) 0
+ (transl_code f c') H2).
+ intros [pos' [A [B C]]].
+ exists (rs#PC <- (Vptr b (Int.repr pos'))).
+ split. unfold goto_label. rewrite A. rewrite H0. auto.
+ split. rewrite Pregmap.gss. constructor; auto.
+ rewrite Int.unsigned_repr. replace (pos' - 0) with pos' in B.
+ auto. omega.
+ generalize (functions_transl_no_overflow _ _ H).
+ omega.
+ intros. apply Pregmap.gso; auto.
+Qed.
+
+(** * Memory properties *)
+
+(** The PowerPC has no instruction for ``load 8-bit signed integer''.
+ We show that it can be synthesized as a ``load 8-bit unsigned integer''
+ followed by a sign extension. *)
+
+Remark valid_access_equiv:
+ forall chunk1 chunk2 m b ofs,
+ size_chunk chunk1 = size_chunk chunk2 ->
+ valid_access m chunk1 b ofs ->
+ valid_access m chunk2 b ofs.
+Proof.
+ intros. inv H0. rewrite H in H3. constructor; auto.
+Qed.
+
+Remark in_bounds_equiv:
+ forall chunk1 chunk2 m b ofs (A: Set) (a1 a2: A),
+ size_chunk chunk1 = size_chunk chunk2 ->
+ (if in_bounds m chunk1 b ofs then a1 else a2) =
+ (if in_bounds m chunk2 b ofs then a1 else a2).
+Proof.
+ intros. destruct (in_bounds m chunk1 b ofs).
+ rewrite in_bounds_true. auto. eapply valid_access_equiv; eauto.
+ destruct (in_bounds m chunk2 b ofs); auto.
+ elim n. eapply valid_access_equiv with (chunk1 := chunk2); eauto.
+Qed.
+
+Lemma loadv_8_signed_unsigned:
+ forall m a,
+ Mem.loadv Mint8signed m a =
+ option_map (Val.sign_ext 8) (Mem.loadv Mint8unsigned m a).
+Proof.
+ intros. unfold Mem.loadv. destruct a; try reflexivity.
+ unfold load. rewrite (in_bounds_equiv Mint8signed Mint8unsigned).
+ destruct (in_bounds m Mint8unsigned b (Int.signed i)); auto.
+ simpl.
+ destruct (getN 0 (Int.signed i) (contents (blocks m b))); auto.
+ simpl. rewrite Int.sign_ext_zero_ext. auto. compute; auto.
+ auto.
+Qed.
+
+(** Similarly, we show that signed 8- and 16-bit stores can be performed
+ like unsigned stores. *)
+
+Lemma storev_8_signed_unsigned:
+ forall m a v,
+ Mem.storev Mint8signed m a v = Mem.storev Mint8unsigned m a v.
+Proof.
+ intros. unfold storev. destruct a; auto.
+ unfold store. rewrite (in_bounds_equiv Mint8signed Mint8unsigned).
+ auto. auto.
+Qed.
+
+Lemma storev_16_signed_unsigned:
+ forall m a v,
+ Mem.storev Mint16signed m a v = Mem.storev Mint16unsigned m a v.
+Proof.
+ intros. unfold storev. destruct a; auto.
+ unfold store. rewrite (in_bounds_equiv Mint16signed Mint16unsigned).
+ auto. auto.
+Qed.
+
+(** * Proof of semantic preservation *)
+
+(** Semantic preservation is proved using simulation diagrams
+ of the following form.
+<<
+ st1 --------------- st2
+ | |
+ t| *|t
+ | |
+ v v
+ st1'--------------- st2'
+>>
+ The invariant is the [match_states] predicate below, which includes:
+- The PPC code pointed by the PC register is the translation of
+ the current Mach code sequence.
+- Mach register values and PPC register values agree.
+*)
+
+Inductive match_stack: list Machconcr.stackframe -> Prop :=
+ | match_stack_nil:
+ match_stack nil
+ | match_stack_cons: forall fb sp ra c s f,
+ Genv.find_funct_ptr ge fb = Some (Internal f) ->
+ wt_function f ->
+ incl c f.(fn_code) ->
+ transl_code_at_pc ra fb f c ->
+ match_stack s ->
+ match_stack (Stackframe fb sp ra c :: s).
+
+Inductive match_states: Machconcr.state -> Asm.state -> Prop :=
+ | match_states_intro:
+ forall s fb sp c ms m rs f
+ (STACKS: match_stack s)
+ (FIND: Genv.find_funct_ptr ge fb = Some (Internal f))
+ (WTF: wt_function f)
+ (INCL: incl c f.(fn_code))
+ (AT: transl_code_at_pc (rs PC) fb f c)
+ (AG: agree ms sp rs),
+ match_states (Machconcr.State s fb sp c ms m)
+ (Asm.State rs m)
+ | match_states_call:
+ forall s fb ms m rs
+ (STACKS: match_stack s)
+ (AG: agree ms (parent_sp s) rs)
+ (ATPC: rs PC = Vptr fb Int.zero)
+ (ATLR: rs LR = parent_ra s),
+ match_states (Machconcr.Callstate s fb ms m)
+ (Asm.State rs m)
+ | match_states_return:
+ forall s ms m rs
+ (STACKS: match_stack s)
+ (AG: agree ms (parent_sp s) rs)
+ (ATPC: rs PC = parent_ra s),
+ match_states (Machconcr.Returnstate s ms m)
+ (Asm.State rs m).
+
+Lemma exec_straight_steps:
+ forall s fb sp m1 f c1 rs1 c2 m2 ms2,
+ match_stack s ->
+ Genv.find_funct_ptr ge fb = Some (Internal f) ->
+ wt_function f ->
+ incl c2 f.(fn_code) ->
+ transl_code_at_pc (rs1 PC) fb f c1 ->
+ (exists rs2,
+ exec_straight tge (transl_function f) (transl_code f c1) rs1 m1 (transl_code f c2) rs2 m2
+ /\ agree ms2 sp rs2) ->
+ exists st',
+ plus step tge (State rs1 m1) E0 st' /\
+ match_states (Machconcr.State s fb sp c2 ms2 m2) st'.
+Proof.
+ intros. destruct H4 as [rs2 [A B]].
+ exists (State rs2 m2); split.
+ eapply exec_straight_exec; eauto.
+ econstructor; eauto. eapply exec_straight_at; eauto.
+Qed.
+
+(** We need to show that, in the simulation diagram, we cannot
+ take infinitely many Mach transitions that correspond to zero
+ transitions on the PPC side. Actually, all Mach transitions
+ correspond to at least one PPC transition, except the
+ transition from [Machconcr.Returnstate] to [Machconcr.State].
+ So, the following integer measure will suffice to rule out
+ the unwanted behaviour. *)
+
+Definition measure (s: Machconcr.state) : nat :=
+ match s with
+ | Machconcr.State _ _ _ _ _ _ => 0%nat
+ | Machconcr.Callstate _ _ _ _ => 0%nat
+ | Machconcr.Returnstate _ _ _ => 1%nat
+ end.
+
+(** We show the simulation diagram by case analysis on the Mach transition
+ on the left. Since the proof is large, we break it into one lemma
+ per transition. *)
+
+Definition exec_instr_prop (s1: Machconcr.state) (t: trace) (s2: Machconcr.state) : Prop :=
+ forall s1' (MS: match_states s1 s1'),
+ (exists s2', plus step tge s1' t s2' /\ match_states s2 s2')
+ \/ (measure s2 < measure s1 /\ t = E0 /\ match_states s2 s1')%nat.
+
+
+Lemma exec_Mlabel_prop:
+ forall (s : list stackframe) (fb : block) (sp : val)
+ (lbl : Mach.label) (c : list Mach.instruction) (ms : Mach.regset)
+ (m : mem),
+ exec_instr_prop (Machconcr.State s fb sp (Mlabel lbl :: c) ms m) E0
+ (Machconcr.State s fb sp c ms m).
+Proof.
+ intros; red; intros; inv MS.
+ left; eapply exec_straight_steps; eauto with coqlib.
+ exists (nextinstr rs); split.
+ simpl. apply exec_straight_one. reflexivity. reflexivity.
+ apply agree_nextinstr; auto.
+Qed.
+
+Lemma exec_Mgetstack_prop:
+ forall (s : list stackframe) (fb : block) (sp : val) (ofs : int)
+ (ty : typ) (dst : mreg) (c : list Mach.instruction)
+ (ms : Mach.regset) (m : mem) (v : val),
+ load_stack m sp ty ofs = Some v ->
+ exec_instr_prop (Machconcr.State s fb sp (Mgetstack ofs ty dst :: c) ms m) E0
+ (Machconcr.State s fb sp c (Regmap.set dst v ms) m).
+Proof.
+ intros; red; intros; inv MS.
+ unfold load_stack in H.
+ generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
+ intro WTI. inversion WTI.
+ rewrite (sp_val _ _ _ AG) in H.
+ assert (NOTE: GPR1 <> GPR0). congruence.
+ generalize (loadind_correct tge (transl_function f) GPR1 ofs ty
+ dst (transl_code f c) rs m v H H1 NOTE).
+ intros [rs2 [EX [RES OTH]]].
+ left; eapply exec_straight_steps; eauto with coqlib.
+ simpl. exists rs2; split. auto.
+ apply agree_exten_2 with (rs#(preg_of dst) <- v).
+ auto with ppcgen.
+ intros. case (preg_eq r0 (preg_of dst)); intro.
+ subst r0. rewrite Pregmap.gss. auto.
+ rewrite Pregmap.gso; auto.
+Qed.
+
+Lemma exec_Msetstack_prop:
+ forall (s : list stackframe) (fb : block) (sp : val) (src : mreg)
+ (ofs : int) (ty : typ) (c : list Mach.instruction)
+ (ms : mreg -> val) (m m' : mem),
+ store_stack m sp ty ofs (ms src) = Some m' ->
+ exec_instr_prop (Machconcr.State s fb sp (Msetstack src ofs ty :: c) ms m) E0
+ (Machconcr.State s fb sp c ms m').
+Proof.
+ intros; red; intros; inv MS.
+ unfold store_stack in H.
+ generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
+ intro WTI. inversion WTI.
+ rewrite (sp_val _ _ _ AG) in H.
+ rewrite (preg_val ms sp rs) in H; auto.
+ assert (NOTE: GPR1 <> GPR0). congruence.
+ generalize (storeind_correct tge (transl_function f) GPR1 ofs ty
+ src (transl_code f c) rs m m' H H1 NOTE).
+ intros [rs2 [EX OTH]].
+ left; eapply exec_straight_steps; eauto with coqlib.
+ exists rs2; split; auto.
+ apply agree_exten_2 with rs; auto.
+Qed.
+
+Lemma exec_Mgetparam_prop:
+ forall (s : list stackframe) (fb : block) (f: Mach.function) (sp parent : val)
+ (ofs : int) (ty : typ) (dst : mreg) (c : list Mach.instruction)
+ (ms : Mach.regset) (m : mem) (v : val),
+ Genv.find_funct_ptr ge fb = Some (Internal f) ->
+ load_stack m sp Tint f.(fn_link_ofs) = Some parent ->
+ load_stack m parent ty ofs = Some v ->
+ exec_instr_prop (Machconcr.State s fb sp (Mgetparam ofs ty dst :: c) ms m) E0
+ (Machconcr.State s fb sp c (Regmap.set dst v ms) m).
+Proof.
+ intros; red; intros; inv MS.
+ assert (f0 = f) by congruence. subst f0.
+ set (rs2 := nextinstr (rs#GPR12 <- parent)).
+ assert (EX1: exec_straight tge (transl_function f)
+ (transl_code f (Mgetparam ofs ty dst :: c)) rs m
+ (loadind GPR12 ofs ty dst (transl_code f c)) rs2 m).
+ simpl. apply exec_straight_one.
+ simpl. unfold load1. rewrite gpr_or_zero_not_zero; auto with ppcgen.
+ unfold const_low. rewrite <- (sp_val ms sp rs); auto.
+ unfold load_stack in H0. simpl chunk_of_type in H0.
+ rewrite H0. reflexivity. reflexivity.
+ generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
+ intro WTI. inversion WTI.
+ unfold load_stack in H1. change parent with rs2#GPR12 in H1.
+ assert (NOTE: GPR12 <> GPR0). congruence.
+ generalize (loadind_correct tge (transl_function f) GPR12 ofs ty
+ dst (transl_code f c) rs2 m v H1 H3 NOTE).
+ intros [rs3 [EX2 [RES OTH]]].
+ left; eapply exec_straight_steps; eauto with coqlib.
+ exists rs3; split; simpl.
+ eapply exec_straight_trans; eauto.
+ apply agree_exten_2 with (rs2#(preg_of dst) <- v).
+ unfold rs2; auto with ppcgen.
+ intros. case (preg_eq r0 (preg_of dst)); intro.
+ subst r0. rewrite Pregmap.gss. auto.
+ rewrite Pregmap.gso; auto.
+Qed.
+
+Lemma exec_Mop_prop:
+ forall (s : list stackframe) (fb : block) (sp : val) (op : operation)
+ (args : list mreg) (res : mreg) (c : list Mach.instruction)
+ (ms : mreg -> val) (m : mem) (v : val),
+ eval_operation ge sp op ms ## args m = Some v ->
+ exec_instr_prop (Machconcr.State s fb sp (Mop op args res :: c) ms m) E0
+ (Machconcr.State s fb sp c (Regmap.set res v ms) m).
+Proof.
+ intros; red; intros; inv MS.
+ generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
+ intro WTI.
+ left; eapply exec_straight_steps; eauto with coqlib.
+ simpl. eapply transl_op_correct; auto.
+ rewrite <- H. apply eval_operation_preserved. exact symbols_preserved.
+Qed.
+
+Lemma exec_Mload_prop:
+ forall (s : list stackframe) (fb : block) (sp : val)
+ (chunk : memory_chunk) (addr : addressing) (args : list mreg)
+ (dst : mreg) (c : list Mach.instruction) (ms : mreg -> val)
+ (m : mem) (a v : val),
+ eval_addressing ge sp addr ms ## args = Some a ->
+ loadv chunk m a = Some v ->
+ exec_instr_prop (Machconcr.State s fb sp (Mload chunk addr args dst :: c) ms m)
+ E0 (Machconcr.State s fb sp c (Regmap.set dst v ms) m).
+Proof.
+ intros; red; intros; inv MS.
+ generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
+ intro WTI; inversion WTI.
+ assert (eval_addressing tge sp addr ms##args = Some a).
+ rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved.
+ left; eapply exec_straight_steps; eauto with coqlib;
+ destruct chunk; simpl; simpl in H6;
+ (* all cases but Mint8signed *)
+ try (eapply transl_load_correct; eauto;
+ intros; simpl; unfold preg_of; rewrite H6; auto).
+ (* Mint8signed *)
+ generalize (loadv_8_signed_unsigned m a).
+ rewrite H0.
+ caseEq (loadv Mint8unsigned m a);
+ [idtac | simpl;intros;discriminate].
+ intros v' LOAD' EQ. simpl in EQ. injection EQ. intro EQ1. clear EQ.
+ assert (X1: forall (cst : constant) (r1 : ireg) (rs1 : regset),
+ exec_instr tge (transl_function f) (Plbz (ireg_of dst) cst r1) rs1 m =
+ load1 tge Mint8unsigned (preg_of dst) cst r1 rs1 m).
+ intros. unfold preg_of; rewrite H6. reflexivity.
+ assert (X2: forall (r1 r2 : ireg) (rs1 : regset),
+ exec_instr tge (transl_function f) (Plbzx (ireg_of dst) r1 r2) rs1 m =
+ load2 Mint8unsigned (preg_of dst) r1 r2 rs1 m).
+ intros. unfold preg_of; rewrite H6. reflexivity.
+ generalize (transl_load_correct tge (transl_function f)
+ (Plbz (ireg_of dst)) (Plbzx (ireg_of dst))
+ Mint8unsigned addr args
+ (Pextsb (ireg_of dst) (ireg_of dst) :: transl_code f c)
+ ms sp rs m dst a v'
+ X1 X2 AG H3 H7 LOAD').
+ intros [rs2 [EX1 AG1]].
+ exists (nextinstr (rs2#(ireg_of dst) <- v)).
+ split. eapply exec_straight_trans. eexact EX1.
+ apply exec_straight_one. simpl.
+ rewrite <- (ireg_val _ _ _ dst AG1);auto. rewrite Regmap.gss.
+ rewrite EQ1. reflexivity. reflexivity.
+ eauto with ppcgen.
+Qed.
+
+Lemma exec_Mstore_prop:
+ forall (s : list stackframe) (fb : block) (sp : val)
+ (chunk : memory_chunk) (addr : addressing) (args : list mreg)
+ (src : mreg) (c : list Mach.instruction) (ms : mreg -> val)
+ (m m' : mem) (a : val),
+ eval_addressing ge sp addr ms ## args = Some a ->
+ storev chunk m a (ms src) = Some m' ->
+ exec_instr_prop (Machconcr.State s fb sp (Mstore chunk addr args src :: c) ms m) E0
+ (Machconcr.State s fb sp c ms m').
+Proof.
+ intros; red; intros; inv MS.
+ generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
+ intro WTI; inversion WTI.
+ rewrite <- (eval_addressing_preserved symbols_preserved) in H.
+ left; eapply exec_straight_steps; eauto with coqlib.
+ destruct chunk; simpl; simpl in H6;
+ try (rewrite storev_8_signed_unsigned in H0);
+ try (rewrite storev_16_signed_unsigned in H0);
+ simpl; eapply transl_store_correct; eauto;
+ intros; unfold preg_of; rewrite H6; reflexivity.
+Qed.
+
+Lemma exec_Mcall_prop:
+ forall (s : list stackframe) (fb : block) (sp : val)
+ (sig : signature) (ros : mreg + ident) (c : Mach.code)
+ (ms : Mach.regset) (m : mem) (f : function) (f' : block)
+ (ra : int),
+ find_function_ptr ge ros ms = Some f' ->
+ Genv.find_funct_ptr ge fb = Some (Internal f) ->
+ return_address_offset f c ra ->
+ exec_instr_prop (Machconcr.State s fb sp (Mcall sig ros :: c) ms m) E0
+ (Callstate (Stackframe fb sp (Vptr fb ra) c :: s) f' ms m).
+Proof.
+ intros; red; intros; inv MS.
+ assert (f0 = f) by congruence. subst f0.
+ generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
+ intro WTI. inversion WTI.
+ inv AT.
+ assert (NOOV: code_size (transl_function f) <= Int.max_unsigned).
+ eapply functions_transl_no_overflow; eauto.
+ destruct ros; simpl in H; simpl transl_code in H7.
+ (* Indirect call *)
+ generalize (code_tail_next_int _ _ _ _ NOOV H7). intro CT1.
+ generalize (code_tail_next_int _ _ _ _ NOOV CT1). intro CT2.
+ set (rs2 := nextinstr (rs#CTR <- (ms m0))).
+ set (rs3 := rs2 #LR <- (Val.add rs2#PC Vone) #PC <- (ms m0)).
+ assert (ATPC: rs3 PC = Vptr f' Int.zero).
+ change (rs3 PC) with (ms m0).
+ destruct (ms m0); try discriminate.
+ generalize H; predSpec Int.eq Int.eq_spec i Int.zero; intros; congruence.
+ exploit return_address_offset_correct; eauto. constructor; eauto.
+ intro RA_EQ.
+ assert (ATLR: rs3 LR = Vptr fb ra).
+ rewrite RA_EQ.
+ change (rs3 LR) with (Val.add (Val.add (rs PC) Vone) Vone).
+ rewrite <- H5. reflexivity.
+ assert (AG3: agree ms sp rs3).
+ unfold rs3, rs2; auto 8 with ppcgen.
+ left; exists (State rs3 m); split.
+ apply plus_left with E0 (State rs2 m) E0.
+ econstructor. eauto. apply functions_transl. eexact H0.
+ eapply find_instr_tail. eauto.
+ simpl. rewrite <- (ireg_val ms sp rs); auto.
+ apply star_one. econstructor.
+ change (rs2 PC) with (Val.add (rs PC) Vone). rewrite <- H5.
+ simpl. auto.
+ apply functions_transl. eexact H0.
+ eapply find_instr_tail. eauto.
+ simpl. reflexivity.
+ traceEq.
+ econstructor; eauto.
+ econstructor; eauto with coqlib.
+ rewrite RA_EQ. econstructor; eauto.
+ (* Direct call *)
+ generalize (code_tail_next_int _ _ _ _ NOOV H7). intro CT1.
+ set (rs2 := rs #LR <- (Val.add rs#PC Vone) #PC <- (symbol_offset tge i Int.zero)).
+ assert (ATPC: rs2 PC = Vptr f' Int.zero).
+ change (rs2 PC) with (symbol_offset tge i Int.zero).
+ unfold symbol_offset. rewrite symbols_preserved. rewrite H. auto.
+ exploit return_address_offset_correct; eauto. constructor; eauto.
+ intro RA_EQ.
+ assert (ATLR: rs2 LR = Vptr fb ra).
+ rewrite RA_EQ.
+ change (rs2 LR) with (Val.add (rs PC) Vone).
+ rewrite <- H5. reflexivity.
+ assert (AG2: agree ms sp rs2).
+ unfold rs2; auto 8 with ppcgen.
+ left; exists (State rs2 m); split.
+ apply plus_one. econstructor.
+ eauto.
+ apply functions_transl. eexact H0.
+ eapply find_instr_tail. eauto.
+ simpl. reflexivity.
+ econstructor; eauto with coqlib.
+ econstructor; eauto with coqlib.
+ rewrite RA_EQ. econstructor; eauto.
+Qed.
+
+Lemma exec_Mtailcall_prop:
+ forall (s : list stackframe) (fb stk : block) (soff : int)
+ (sig : signature) (ros : mreg + ident) (c : list Mach.instruction)
+ (ms : Mach.regset) (m : mem) (f: Mach.function) (f' : block),
+ find_function_ptr ge ros ms = Some f' ->
+ Genv.find_funct_ptr ge fb = Some (Internal f) ->
+ load_stack m (Vptr stk soff) Tint f.(fn_link_ofs) = Some (parent_sp s) ->
+ load_stack m (Vptr stk soff) Tint f.(fn_retaddr_ofs) = Some (parent_ra s) ->
+ exec_instr_prop
+ (Machconcr.State s fb (Vptr stk soff) (Mtailcall sig ros :: c) ms m) E0
+ (Callstate s f' ms (free m stk)).
+Proof.
+ intros; red; intros; inv MS.
+ assert (f0 = f) by congruence. subst f0.
+ generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
+ intro WTI. inversion WTI.
+ inversion AT. subst b f0 c0.
+ assert (NOOV: code_size (transl_function f) <= Int.max_unsigned).
+ eapply functions_transl_no_overflow; eauto.
+ destruct ros; simpl in H; simpl in H9.
+ (* Indirect call *)
+ set (rs2 := nextinstr (rs#CTR <- (ms m0))).
+ set (rs3 := nextinstr (rs2#GPR12 <- (parent_ra s))).
+ set (rs4 := nextinstr (rs3#LR <- (parent_ra s))).
+ set (rs5 := nextinstr (rs4#GPR1 <- (parent_sp s))).
+ set (rs6 := rs5#PC <- (rs5 CTR)).
+ assert (exec_straight tge (transl_function f)
+ (transl_code f (Mtailcall sig (inl ident m0) :: c)) rs m
+ (Pbctr :: transl_code f c) rs5 (free m stk)).
+ simpl. apply exec_straight_step with rs2 m.
+ simpl. rewrite <- (ireg_val _ _ _ _ AG H6). reflexivity. reflexivity.
+ apply exec_straight_step with rs3 m.
+ simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low.
+ change (rs2 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
+ simpl. unfold load_stack in H2. simpl in H2. rewrite H2.
+ reflexivity. discriminate. reflexivity.
+ apply exec_straight_step with rs4 m.
+ simpl. reflexivity. reflexivity.
+ apply exec_straight_one.
+ simpl. change (rs4 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
+ unfold load_stack in H1; simpl in H1.
+ simpl. rewrite H1. reflexivity. reflexivity.
+ left; exists (State rs6 (free m stk)); split.
+ (* execution *)
+ eapply plus_right'. eapply exec_straight_exec; eauto.
+ econstructor.
+ change (rs5 PC) with (Val.add (Val.add (Val.add (Val.add (rs PC) Vone) Vone) Vone) Vone).
+ rewrite <- H7; simpl. eauto.
+ eapply functions_transl; eauto.
+ eapply find_instr_tail.
+ repeat (eapply code_tail_next_int; auto). eauto.
+ simpl. reflexivity. traceEq.
+ (* match states *)
+ econstructor; eauto.
+ assert (AG4: agree ms (Vptr stk soff) rs4).
+ unfold rs4, rs3, rs2; auto 10 with ppcgen.
+ assert (AG5: agree ms (parent_sp s) rs5).
+ unfold rs5. apply agree_nextinstr.
+ split. reflexivity. intros. inv AG4. rewrite H12.
+ rewrite Pregmap.gso; auto with ppcgen.
+ unfold rs6; auto with ppcgen.
+ change (rs6 PC) with (ms m0).
+ generalize H. destruct (ms m0); try congruence.
+ predSpec Int.eq Int.eq_spec i Int.zero; intros; congruence.
+ (* direct call *)
+ set (rs2 := nextinstr (rs#GPR12 <- (parent_ra s))).
+ set (rs3 := nextinstr (rs2#LR <- (parent_ra s))).
+ set (rs4 := nextinstr (rs3#GPR1 <- (parent_sp s))).
+ set (rs5 := rs4#PC <- (Vptr f' Int.zero)).
+ assert (exec_straight tge (transl_function f)
+ (transl_code f (Mtailcall sig (inr mreg i) :: c)) rs m
+ (Pbs i :: transl_code f c) rs4 (free m stk)).
+ simpl. apply exec_straight_step with rs2 m.
+ simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low.
+ rewrite <- (sp_val _ _ _ AG).
+ simpl. unfold load_stack in H2. simpl in H2. rewrite H2.
+ reflexivity. discriminate. reflexivity.
+ apply exec_straight_step with rs3 m.
+ simpl. reflexivity. reflexivity.
+ apply exec_straight_one.
+ simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
+ unfold load_stack in H1; simpl in H1.
+ simpl. rewrite H1. reflexivity. reflexivity.
+ left; exists (State rs5 (free m stk)); split.
+ (* execution *)
+ eapply plus_right'. eapply exec_straight_exec; eauto.
+ econstructor.
+ change (rs4 PC) with (Val.add (Val.add (Val.add (rs PC) Vone) Vone) Vone).
+ rewrite <- H7; simpl. eauto.
+ eapply functions_transl; eauto.
+ eapply find_instr_tail.
+ repeat (eapply code_tail_next_int; auto). eauto.
+ simpl. unfold symbol_offset. rewrite symbols_preserved. rewrite H.
+ reflexivity. traceEq.
+ (* match states *)
+ econstructor; eauto.
+ assert (AG3: agree ms (Vptr stk soff) rs3).
+ unfold rs3, rs2; auto 10 with ppcgen.
+ assert (AG4: agree ms (parent_sp s) rs4).
+ unfold rs4. apply agree_nextinstr.
+ split. reflexivity. intros. inv AG3. rewrite H12.
+ rewrite Pregmap.gso; auto with ppcgen.
+ unfold rs5; auto with ppcgen.
+Qed.
+
+Lemma exec_Malloc_prop:
+ forall (s : list stackframe) (fb : block) (sp : val)
+ (c : list Mach.instruction) (ms : mreg -> val) (m : mem) (sz : int)
+ (m' : mem) (blk : block),
+ ms Conventions.loc_alloc_argument = Vint sz ->
+ alloc m 0 (Int.signed sz) = (m', blk) ->
+ exec_instr_prop (Machconcr.State s fb sp (Malloc :: c) ms m) E0
+ (Machconcr.State s fb sp c
+ (Regmap.set (Conventions.loc_alloc_result) (Vptr blk Int.zero) ms) m').
+Proof.
+ intros; red; intros; inv MS.
+ left; eapply exec_straight_steps; eauto with coqlib.
+ simpl. eapply transl_alloc_correct; eauto.
+Qed.
+
+Lemma exec_Mgoto_prop:
+ forall (s : list stackframe) (fb : block) (f : function) (sp : val)
+ (lbl : Mach.label) (c : list Mach.instruction) (ms : Mach.regset)
+ (m : mem) (c' : Mach.code),
+ Genv.find_funct_ptr ge fb = Some (Internal f) ->
+ Mach.find_label lbl (fn_code f) = Some c' ->
+ exec_instr_prop (Machconcr.State s fb sp (Mgoto lbl :: c) ms m) E0
+ (Machconcr.State s fb sp c' ms m).
+Proof.
+ intros; red; intros; inv MS.
+ assert (f0 = f) by congruence. subst f0.
+ inv AT. simpl in H3.
+ generalize (find_label_goto_label f lbl rs m _ _ _ FIND (sym_equal H1) H0).
+ intros [rs2 [GOTO [AT2 INV]]].
+ left; exists (State rs2 m); split.
+ apply plus_one. econstructor; eauto.
+ apply functions_transl; eauto.
+ eapply find_instr_tail; eauto.
+ simpl; auto.
+ econstructor; eauto.
+ eapply Mach.find_label_incl; eauto.
+ apply agree_exten_2 with rs; auto.
+Qed.
+
+Lemma exec_Mcond_true_prop:
+ forall (s : list stackframe) (fb : block) (f : function) (sp : val)
+ (cond : condition) (args : list mreg) (lbl : Mach.label)
+ (c : list Mach.instruction) (ms : mreg -> val) (m : mem)
+ (c' : Mach.code),
+ eval_condition cond ms ## args m = Some true ->
+ Genv.find_funct_ptr ge fb = Some (Internal f) ->
+ Mach.find_label lbl (fn_code f) = Some c' ->
+ exec_instr_prop (Machconcr.State s fb sp (Mcond cond args lbl :: c) ms m) E0
+ (Machconcr.State s fb sp c' ms m).
+Proof.
+ intros; red; intros; inv MS. assert (f0 = f) by congruence. subst f0.
+ generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
+ intro WTI. inv WTI.
+ pose (k1 :=
+ if snd (crbit_for_cond cond)
+ then Pbt (fst (crbit_for_cond cond)) lbl :: transl_code f c
+ else Pbf (fst (crbit_for_cond cond)) lbl :: transl_code f c).
+ generalize (transl_cond_correct tge (transl_function f)
+ cond args k1 ms sp rs m true H3 AG H).
+ simpl. intros [rs2 [EX [RES AG2]]].
+ inv AT. simpl in H5.
+ generalize (functions_transl _ _ H4); intro FN.
+ generalize (functions_transl_no_overflow _ _ H4); intro NOOV.
+ exploit exec_straight_steps_2; eauto.
+ intros [ofs' [PC2 CT2]].
+ generalize (find_label_goto_label f lbl rs2 m _ _ _ FIND PC2 H1).
+ intros [rs3 [GOTO [AT3 INV3]]].
+ left; exists (State rs3 m); split.
+ eapply plus_right'.
+ eapply exec_straight_steps_1; eauto.
+ caseEq (snd (crbit_for_cond cond)); intro ISSET; rewrite ISSET in RES.
+ econstructor; eauto.
+ eapply find_instr_tail. unfold k1 in CT2; rewrite ISSET in CT2. eauto.
+ simpl. rewrite RES. simpl. auto.
+ econstructor; eauto.
+ eapply find_instr_tail. unfold k1 in CT2; rewrite ISSET in CT2. eauto.
+ simpl. rewrite RES. simpl. auto.
+ traceEq.
+ econstructor; eauto.
+ eapply Mach.find_label_incl; eauto.
+ apply agree_exten_2 with rs2; auto.
+Qed.
+
+Lemma exec_Mcond_false_prop:
+ forall (s : list stackframe) (fb : block) (sp : val)
+ (cond : condition) (args : list mreg) (lbl : Mach.label)
+ (c : list Mach.instruction) (ms : mreg -> val) (m : mem),
+ eval_condition cond ms ## args m = Some false ->
+ exec_instr_prop (Machconcr.State s fb sp (Mcond cond args lbl :: c) ms m) E0
+ (Machconcr.State s fb sp c ms m).
+Proof.
+ intros; red; intros; inv MS.
+ generalize (wt_function_instrs _ WTF _ (INCL _ (in_eq _ _))).
+ intro WTI. inversion WTI.
+ pose (k1 :=
+ if snd (crbit_for_cond cond)
+ then Pbt (fst (crbit_for_cond cond)) lbl :: transl_code f c
+ else Pbf (fst (crbit_for_cond cond)) lbl :: transl_code f c).
+ generalize (transl_cond_correct tge (transl_function f)
+ cond args k1 ms sp rs m false H1 AG H).
+ simpl. intros [rs2 [EX [RES AG2]]].
+ left; eapply exec_straight_steps; eauto with coqlib.
+ exists (nextinstr rs2); split.
+ simpl. eapply exec_straight_trans. eexact EX.
+ caseEq (snd (crbit_for_cond cond)); intro ISSET; rewrite ISSET in RES.
+ unfold k1; rewrite ISSET; apply exec_straight_one.
+ simpl. rewrite RES. reflexivity.
+ reflexivity.
+ unfold k1; rewrite ISSET; apply exec_straight_one.
+ simpl. rewrite RES. reflexivity.
+ reflexivity.
+ auto with ppcgen.
+Qed.
+
+Lemma exec_Mreturn_prop:
+ forall (s : list stackframe) (fb stk : block) (soff : int)
+ (c : list Mach.instruction) (ms : Mach.regset) (m : mem) (f: Mach.function),
+ Genv.find_funct_ptr ge fb = Some (Internal f) ->
+ load_stack m (Vptr stk soff) Tint f.(fn_link_ofs) = Some (parent_sp s) ->
+ load_stack m (Vptr stk soff) Tint f.(fn_retaddr_ofs) = Some (parent_ra s) ->
+ exec_instr_prop (Machconcr.State s fb (Vptr stk soff) (Mreturn :: c) ms m) E0
+ (Returnstate s ms (free m stk)).
+Proof.
+ intros; red; intros; inv MS.
+ assert (f0 = f) by congruence. subst f0.
+ set (rs2 := nextinstr (rs#GPR12 <- (parent_ra s))).
+ set (rs3 := nextinstr (rs2#LR <- (parent_ra s))).
+ set (rs4 := nextinstr (rs3#GPR1 <- (parent_sp s))).
+ set (rs5 := rs4#PC <- (parent_ra s)).
+ assert (exec_straight tge (transl_function f)
+ (transl_code f (Mreturn :: c)) rs m
+ (Pblr :: transl_code f c) rs4 (free m stk)).
+ simpl. apply exec_straight_three with rs2 m rs3 m.
+ simpl. unfold load1. rewrite gpr_or_zero_not_zero. unfold const_low.
+ unfold load_stack in H1. simpl in H1.
+ rewrite <- (sp_val _ _ _ AG). simpl. rewrite H1.
+ reflexivity. discriminate.
+ unfold rs3. change (parent_ra s) with rs2#GPR12. reflexivity.
+ simpl. change (rs3 GPR1) with (rs GPR1). rewrite <- (sp_val _ _ _ AG).
+ simpl.
+ unfold load_stack in H0. simpl in H0.
+ rewrite H0. reflexivity.
+ reflexivity. reflexivity. reflexivity.
+ left; exists (State rs5 (free m stk)); split.
+ (* execution *)
+ apply plus_right' with E0 (State rs4 (free m stk)) E0.
+ eapply exec_straight_exec; eauto.
+ inv AT. econstructor.
+ change (rs4 PC) with (Val.add (Val.add (Val.add (rs PC) Vone) Vone) Vone).
+ rewrite <- H3. simpl. eauto.
+ apply functions_transl; eauto.
+ generalize (functions_transl_no_overflow _ _ H4); intro NOOV.
+ simpl in H5. eapply find_instr_tail.
+ eapply code_tail_next_int; auto.
+ eapply code_tail_next_int; auto.
+ eapply code_tail_next_int; eauto.
+ reflexivity. traceEq.
+ (* match states *)
+ econstructor; eauto.
+ assert (AG3: agree ms (Vptr stk soff) rs3).
+ unfold rs3, rs2; auto 10 with ppcgen.
+ assert (AG4: agree ms (parent_sp s) rs4).
+ split. reflexivity. intros. unfold rs4.
+ rewrite nextinstr_inv. rewrite Pregmap.gso.
+ elim AG3; auto. auto with ppcgen. auto with ppcgen.
+ unfold rs5; auto with ppcgen.
+Qed.
+
+Hypothesis wt_prog: wt_program prog.
+
+Lemma exec_function_internal_prop:
+ forall (s : list stackframe) (fb : block) (ms : Mach.regset)
+ (m : mem) (f : function) (m1 m2 m3 : mem) (stk : block),
+ Genv.find_funct_ptr ge fb = Some (Internal f) ->
+ alloc m (- fn_framesize f) (fn_stacksize f) = (m1, stk) ->
+ let sp := Vptr stk (Int.repr (- fn_framesize f)) in
+ store_stack m1 sp Tint f.(fn_link_ofs) (parent_sp s) = Some m2 ->
+ store_stack m2 sp Tint f.(fn_retaddr_ofs) (parent_ra s) = Some m3 ->
+ exec_instr_prop (Machconcr.Callstate s fb ms m) E0
+ (Machconcr.State s fb sp (fn_code f) ms m3).
+Proof.
+ intros; red; intros; inv MS.
+ assert (WTF: wt_function f).
+ generalize (Genv.find_funct_ptr_prop wt_fundef wt_prog H); intro TY.
+ inversion TY; auto.
+ exploit functions_transl; eauto. intro TFIND.
+ generalize (functions_transl_no_overflow _ _ H); intro NOOV.
+ set (rs2 := nextinstr (rs#GPR1 <- sp #GPR12 <- Vundef)).
+ set (rs3 := nextinstr (rs2#GPR12 <- (parent_ra s))).
+ set (rs4 := nextinstr rs3).
+ (* Execution of function prologue *)
+ assert (EXEC_PROLOGUE:
+ exec_straight tge (transl_function f)
+ (transl_function f) rs m
+ (transl_code f (fn_code f)) rs4 m3).
+ unfold transl_function at 2.
+ apply exec_straight_three with rs2 m2 rs3 m2.
+ unfold exec_instr. rewrite H0. fold sp.
+ unfold store_stack in H1. simpl chunk_of_type in H1.
+ rewrite <- (sp_val _ _ _ AG). rewrite H1. reflexivity.
+ simpl. change (rs2 LR) with (rs LR). rewrite ATLR. reflexivity.
+ simpl. unfold store1. rewrite gpr_or_zero_not_zero.
+ unfold const_low. change (rs3 GPR1) with sp. change (rs3 GPR12) with (parent_ra s).
+ unfold store_stack in H2. simpl chunk_of_type in H2. rewrite H2. reflexivity.
+ discriminate. reflexivity. reflexivity. reflexivity.
+ (* Agreement at end of prologue *)
+ assert (AT4: transl_code_at_pc rs4#PC fb f f.(fn_code)).
+ change (rs4 PC) with (Val.add (Val.add (Val.add (rs PC) Vone) Vone) Vone).
+ rewrite ATPC. simpl. constructor. auto.
+ eapply code_tail_next_int; auto.
+ eapply code_tail_next_int; auto.
+ eapply code_tail_next_int; auto.
+ change (Int.unsigned Int.zero) with 0.
+ unfold transl_function. constructor.
+ assert (AG2: agree ms sp rs2).
+ split. reflexivity.
+ intros. unfold rs2. rewrite nextinstr_inv.
+ repeat (rewrite Pregmap.gso). elim AG; auto.
+ auto with ppcgen. auto with ppcgen. auto with ppcgen.
+ assert (AG4: agree ms sp rs4).
+ unfold rs4, rs3; auto with ppcgen.
+ left; exists (State rs4 m3); split.
+ (* execution *)
+ eapply exec_straight_steps_1; eauto.
+ change (Int.unsigned Int.zero) with 0. constructor.
+ (* match states *)
+ econstructor; eauto with coqlib.
+Qed.
+
+Lemma exec_function_external_prop:
+ forall (s : list stackframe) (fb : block) (ms : Mach.regset)
+ (m : mem) (t0 : trace) (ms' : RegEq.t -> val)
+ (ef : external_function) (args : list val) (res : val),
+ Genv.find_funct_ptr ge fb = Some (External ef) ->
+ event_match ef args t0 res ->
+ Machconcr.extcall_arguments ms m (parent_sp s) (ef_sig ef) args ->
+ ms' = Regmap.set (Conventions.loc_result (ef_sig ef)) res ms ->
+ exec_instr_prop (Machconcr.Callstate s fb ms m)
+ t0 (Machconcr.Returnstate s ms' m).
+Proof.
+ intros; red; intros; inv MS.
+ exploit functions_translated; eauto.
+ intros [tf [A B]]. simpl in B. inv B.
+ left; exists (State (rs#(loc_external_result (ef_sig ef)) <- res #PC <- (rs LR))
+ m); split.
+ apply plus_one. eapply exec_step_external; eauto.
+ eapply extcall_arguments_match; eauto.
+ econstructor; eauto.
+ unfold loc_external_result. auto with ppcgen.
+Qed.
+
+Lemma exec_return_prop:
+ forall (s : list stackframe) (fb : block) (sp ra : val)
+ (c : Mach.code) (ms : Mach.regset) (m : mem),
+ exec_instr_prop (Machconcr.Returnstate (Stackframe fb sp ra c :: s) ms m) E0
+ (Machconcr.State s fb sp c ms m).
+Proof.
+ intros; red; intros; inv MS. inv STACKS. simpl in *.
+ right. split. omega. split. auto.
+ econstructor; eauto. rewrite ATPC; auto.
+Qed.
+
+Theorem transf_instr_correct:
+ forall s1 t s2, Machconcr.step ge s1 t s2 ->
+ exec_instr_prop s1 t s2.
+Proof
+ (Machconcr.step_ind ge exec_instr_prop
+ exec_Mlabel_prop
+ exec_Mgetstack_prop
+ exec_Msetstack_prop
+ exec_Mgetparam_prop
+ exec_Mop_prop
+ exec_Mload_prop
+ exec_Mstore_prop
+ exec_Mcall_prop
+ exec_Mtailcall_prop
+ exec_Malloc_prop
+ exec_Mgoto_prop
+ exec_Mcond_true_prop
+ exec_Mcond_false_prop
+ exec_Mreturn_prop
+ exec_function_internal_prop
+ exec_function_external_prop
+ exec_return_prop).
+
+Lemma transf_initial_states:
+ forall st1, Machconcr.initial_state prog st1 ->
+ exists st2, Asm.initial_state tprog st2 /\ match_states st1 st2.
+Proof.
+ intros. inversion H. unfold ge0 in *.
+ econstructor; split.
+ econstructor.
+ replace (symbol_offset (Genv.globalenv tprog) (prog_main tprog) Int.zero)
+ with (Vptr fb Int.zero).
+ rewrite (Genv.init_mem_transf_partial _ _ TRANSF).
+ econstructor; eauto. constructor.
+ split. auto. intros. repeat rewrite Pregmap.gso; auto with ppcgen.
+ unfold symbol_offset.
+ rewrite (transform_partial_program_main _ _ TRANSF).
+ rewrite symbols_preserved. unfold ge; rewrite H0. auto.
+Qed.
+
+Lemma transf_final_states:
+ forall st1 st2 r,
+ match_states st1 st2 -> Machconcr.final_state st1 r -> Asm.final_state st2 r.
+Proof.
+ intros. inv H0. inv H. constructor. auto.
+ compute in H1.
+ rewrite (ireg_val _ _ _ R3 AG) in H1. auto. auto.
+Qed.
+
+Theorem transf_program_correct:
+ forall (beh: program_behavior),
+ Machconcr.exec_program prog beh -> Asm.exec_program tprog beh.
+Proof.
+ unfold Machconcr.exec_program, Asm.exec_program; intros.
+ eapply simulation_star_preservation with (measure := measure); eauto.
+ eexact transf_initial_states.
+ eexact transf_final_states.
+ exact transf_instr_correct.
+Qed.
+
+End PRESERVATION.
diff --git a/powerpc/Asmgenproof1.v b/powerpc/Asmgenproof1.v
new file mode 100644
index 00000000..c17cb737
--- /dev/null
+++ b/powerpc/Asmgenproof1.v
@@ -0,0 +1,1632 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Correctness proof for PPC generation: auxiliary results. *)
+
+Require Import Coqlib.
+Require Import Maps.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Mem.
+Require Import Globalenvs.
+Require Import Op.
+Require Import Locations.
+Require Import Mach.
+Require Import Machconcr.
+Require Import Machtyping.
+Require Import Asm.
+Require Import Asmgen.
+Require Conventions.
+
+(** * Properties of low half/high half decomposition *)
+
+Lemma high_half_zero:
+ forall v, Val.add (high_half v) Vzero = high_half v.
+Proof.
+ intros. generalize (high_half_type v).
+ rewrite Val.add_commut.
+ case (high_half v); simpl; intros; try contradiction.
+ auto.
+ rewrite Int.add_commut; rewrite Int.add_zero; auto.
+ rewrite Int.add_zero; auto.
+Qed.
+
+Lemma low_high_u:
+ forall n, Int.or (Int.shl (high_u n) (Int.repr 16)) (low_u n) = n.
+Proof.
+ intros. unfold high_u, low_u.
+ rewrite Int.shl_rolm. rewrite Int.shru_rolm.
+ rewrite Int.rolm_rolm.
+ change (Int.modu (Int.add (Int.sub (Int.repr (Z_of_nat wordsize)) (Int.repr 16))
+ (Int.repr 16))
+ (Int.repr (Z_of_nat wordsize)))
+ with (Int.zero).
+ rewrite Int.rolm_zero. rewrite <- Int.and_or_distrib.
+ exact (Int.and_mone n).
+ reflexivity. reflexivity.
+Qed.
+
+Lemma low_high_u_xor:
+ forall n, Int.xor (Int.shl (high_u n) (Int.repr 16)) (low_u n) = n.
+Proof.
+ intros. unfold high_u, low_u.
+ rewrite Int.shl_rolm. rewrite Int.shru_rolm.
+ rewrite Int.rolm_rolm.
+ change (Int.modu (Int.add (Int.sub (Int.repr (Z_of_nat wordsize)) (Int.repr 16))
+ (Int.repr 16))
+ (Int.repr (Z_of_nat wordsize)))
+ with (Int.zero).
+ rewrite Int.rolm_zero. rewrite <- Int.and_xor_distrib.
+ exact (Int.and_mone n).
+ reflexivity. reflexivity.
+Qed.
+
+Lemma low_high_s:
+ forall n, Int.add (Int.shl (high_s n) (Int.repr 16)) (low_s n) = n.
+Proof.
+ intros. rewrite Int.shl_mul_two_p.
+ unfold high_s.
+ rewrite <- (Int.divu_pow2 (Int.sub n (low_s n)) (Int.repr 65536) (Int.repr 16)).
+ change (two_p (Int.unsigned (Int.repr 16))) with 65536.
+
+ assert (forall x y, y > 0 -> (x - x mod y) mod y = 0).
+ intros. apply Zmod_unique with (x / y).
+ generalize (Z_div_mod_eq x y H). intro. rewrite Zmult_comm. omega.
+ omega.
+
+ assert (Int.modu (Int.sub n (low_s n)) (Int.repr 65536) = Int.zero).
+ unfold Int.modu, Int.zero. decEq.
+ change (Int.unsigned (Int.repr 65536)) with 65536.
+ unfold Int.sub.
+ assert (forall a b, Int.eqm a b -> b mod 65536 = 0 -> a mod 65536 = 0).
+ intros a b [k EQ] H1. rewrite EQ.
+ change modulus with (65536 * 65536).
+ rewrite Zmult_assoc. rewrite Zplus_comm. rewrite Z_mod_plus. auto.
+ omega.
+ eapply H0. apply Int.eqm_sym. apply Int.eqm_unsigned_repr.
+ unfold low_s. unfold Int.sign_ext.
+ change (two_p 16) with 65536. change (two_p (16-1)) with 32768.
+ set (N := Int.unsigned n).
+ case (zlt (N mod 65536) 32768); intro.
+ apply H0 with (N - N mod 65536). auto with ints.
+ apply H. omega.
+ apply H0 with (N - (N mod 65536 - 65536)). auto with ints.
+ replace (N - (N mod 65536 - 65536))
+ with ((N - N mod 65536) + 1 * 65536).
+ rewrite Z_mod_plus. apply H. omega. omega. ring.
+
+ assert (Int.repr 65536 <> Int.zero). compute. congruence.
+ generalize (Int.modu_divu_Euclid (Int.sub n (low_s n)) (Int.repr 65536) H1).
+ rewrite H0. rewrite Int.add_zero. intro. rewrite <- H2.
+ rewrite Int.sub_add_opp. rewrite Int.add_assoc.
+ replace (Int.add (Int.neg (low_s n)) (low_s n)) with Int.zero.
+ apply Int.add_zero. symmetry. rewrite Int.add_commut.
+ rewrite <- Int.sub_add_opp. apply Int.sub_idem.
+
+ reflexivity.
+Qed.
+
+(** * Correspondence between Mach registers and PPC registers *)
+
+Hint Extern 2 (_ <> _) => discriminate: ppcgen.
+
+(** Mapping from Mach registers to PPC registers. *)
+
+Lemma preg_of_injective:
+ forall r1 r2, preg_of r1 = preg_of r2 -> r1 = r2.
+Proof.
+ destruct r1; destruct r2; simpl; intros; reflexivity || discriminate.
+Qed.
+
+(** Characterization of PPC registers that correspond to Mach registers. *)
+
+Definition is_data_reg (r: preg) : Prop :=
+ match r with
+ | IR GPR12 => False
+ | FR FPR13 => False
+ | PC => False | LR => False | CTR => False
+ | CR0_0 => False | CR0_1 => False | CR0_2 => False | CR0_3 => False
+ | CARRY => False
+ | _ => True
+ end.
+
+Lemma ireg_of_is_data_reg:
+ forall (r: mreg), is_data_reg (ireg_of r).
+Proof.
+ destruct r; exact I.
+Qed.
+
+Lemma freg_of_is_data_reg:
+ forall (r: mreg), is_data_reg (ireg_of r).
+Proof.
+ destruct r; exact I.
+Qed.
+
+Lemma preg_of_is_data_reg:
+ forall (r: mreg), is_data_reg (preg_of r).
+Proof.
+ destruct r; exact I.
+Qed.
+
+Lemma ireg_of_not_GPR1:
+ forall r, ireg_of r <> GPR1.
+Proof.
+ intro. case r; discriminate.
+Qed.
+Lemma ireg_of_not_GPR12:
+ forall r, ireg_of r <> GPR12.
+Proof.
+ intro. case r; discriminate.
+Qed.
+Lemma freg_of_not_FPR13:
+ forall r, freg_of r <> FPR13.
+Proof.
+ intro. case r; discriminate.
+Qed.
+Hint Resolve ireg_of_not_GPR1 ireg_of_not_GPR12 freg_of_not_FPR13: ppcgen.
+
+Lemma preg_of_not:
+ forall r1 r2, ~(is_data_reg r2) -> preg_of r1 <> r2.
+Proof.
+ intros; red; intro. subst r2. elim H. apply preg_of_is_data_reg.
+Qed.
+Hint Resolve preg_of_not: ppcgen.
+
+Lemma preg_of_not_GPR1:
+ forall r, preg_of r <> GPR1.
+Proof.
+ intro. case r; discriminate.
+Qed.
+Hint Resolve preg_of_not_GPR1: ppcgen.
+
+(** Agreement between Mach register sets and PPC register sets. *)
+
+Definition agree (ms: Mach.regset) (sp: val) (rs: Asm.regset) :=
+ rs#GPR1 = sp /\ forall r: mreg, ms r = rs#(preg_of r).
+
+Lemma preg_val:
+ forall ms sp rs r,
+ agree ms sp rs -> ms r = rs#(preg_of r).
+Proof.
+ intros. elim H. auto.
+Qed.
+
+Lemma ireg_val:
+ forall ms sp rs r,
+ agree ms sp rs ->
+ mreg_type r = Tint ->
+ ms r = rs#(ireg_of r).
+Proof.
+ intros. elim H; intros.
+ generalize (H2 r). unfold preg_of. rewrite H0. auto.
+Qed.
+
+Lemma freg_val:
+ forall ms sp rs r,
+ agree ms sp rs ->
+ mreg_type r = Tfloat ->
+ ms r = rs#(freg_of r).
+Proof.
+ intros. elim H; intros.
+ generalize (H2 r). unfold preg_of. rewrite H0. auto.
+Qed.
+
+Lemma sp_val:
+ forall ms sp rs,
+ agree ms sp rs ->
+ sp = rs#GPR1.
+Proof.
+ intros. elim H; auto.
+Qed.
+
+Lemma agree_exten_1:
+ forall ms sp rs rs',
+ agree ms sp rs ->
+ (forall r, is_data_reg r -> rs'#r = rs#r) ->
+ agree ms sp rs'.
+Proof.
+ unfold agree; intros. elim H; intros.
+ split. rewrite H0. auto. exact I.
+ intros. rewrite H0. auto. apply preg_of_is_data_reg.
+Qed.
+
+Lemma agree_exten_2:
+ forall ms sp rs rs',
+ agree ms sp rs ->
+ (forall r,
+ r <> IR GPR12 -> r <> FR FPR13 ->
+ r <> PC -> r <> LR -> r <> CTR ->
+ r <> CR0_0 -> r <> CR0_1 -> r <> CR0_2 -> r <> CR0_3 ->
+ r <> CARRY ->
+ rs'#r = rs#r) ->
+ agree ms sp rs'.
+Proof.
+ intros. apply agree_exten_1 with rs. auto.
+ intros. apply H0; (red; intro; subst r; elim H1).
+Qed.
+
+(** Preservation of register agreement under various assignments. *)
+
+Lemma agree_set_mreg:
+ forall ms sp rs r v,
+ agree ms sp rs ->
+ agree (Regmap.set r v ms) sp (rs#(preg_of r) <- v).
+Proof.
+ unfold agree; intros. elim H; intros; clear H.
+ split. rewrite Pregmap.gso. auto. apply sym_not_eq. apply preg_of_not_GPR1.
+ intros. unfold Regmap.set. case (RegEq.eq r0 r); intro.
+ subst r0. rewrite Pregmap.gss. auto.
+ rewrite Pregmap.gso. auto. red; intro.
+ elim n. apply preg_of_injective; auto.
+Qed.
+Hint Resolve agree_set_mreg: ppcgen.
+
+Lemma agree_set_mireg:
+ forall ms sp rs r v,
+ agree ms sp (rs#(preg_of r) <- v) ->
+ mreg_type r = Tint ->
+ agree ms sp (rs#(ireg_of r) <- v).
+Proof.
+ intros. unfold preg_of in H. rewrite H0 in H. auto.
+Qed.
+Hint Resolve agree_set_mireg: ppcgen.
+
+Lemma agree_set_mfreg:
+ forall ms sp rs r v,
+ agree ms sp (rs#(preg_of r) <- v) ->
+ mreg_type r = Tfloat ->
+ agree ms sp (rs#(freg_of r) <- v).
+Proof.
+ intros. unfold preg_of in H. rewrite H0 in H. auto.
+Qed.
+Hint Resolve agree_set_mfreg: ppcgen.
+
+Lemma agree_set_other:
+ forall ms sp rs r v,
+ agree ms sp rs ->
+ ~(is_data_reg r) ->
+ agree ms sp (rs#r <- v).
+Proof.
+ intros. apply agree_exten_1 with rs.
+ auto. intros. apply Pregmap.gso. red; intro; subst r0; contradiction.
+Qed.
+Hint Resolve agree_set_other: ppcgen.
+
+Lemma agree_nextinstr:
+ forall ms sp rs,
+ agree ms sp rs -> agree ms sp (nextinstr rs).
+Proof.
+ intros. unfold nextinstr. apply agree_set_other. auto. auto.
+Qed.
+Hint Resolve agree_nextinstr: ppcgen.
+
+Lemma agree_set_mireg_twice:
+ forall ms sp rs r v v',
+ agree ms sp rs ->
+ mreg_type r = Tint ->
+ agree (Regmap.set r v ms) sp (rs #(ireg_of r) <- v' #(ireg_of r) <- v).
+Proof.
+ intros. replace (IR (ireg_of r)) with (preg_of r). elim H; intros.
+ split. repeat (rewrite Pregmap.gso; auto with ppcgen).
+ intros. case (mreg_eq r r0); intro.
+ subst r0. rewrite Regmap.gss. rewrite Pregmap.gss. auto.
+ assert (preg_of r <> preg_of r0).
+ red; intro. elim n. apply preg_of_injective. auto.
+ rewrite Regmap.gso; auto.
+ repeat (rewrite Pregmap.gso; auto).
+ unfold preg_of. rewrite H0. auto.
+Qed.
+Hint Resolve agree_set_mireg_twice: ppcgen.
+
+Lemma agree_set_twice_mireg:
+ forall ms sp rs r v v',
+ agree (Regmap.set r v' ms) sp rs ->
+ mreg_type r = Tint ->
+ agree (Regmap.set r v ms) sp (rs#(ireg_of r) <- v).
+Proof.
+ intros. elim H; intros.
+ split. rewrite Pregmap.gso. auto.
+ generalize (ireg_of_not_GPR1 r); congruence.
+ intros. generalize (H2 r0).
+ case (mreg_eq r0 r); intro.
+ subst r0. repeat rewrite Regmap.gss. unfold preg_of; rewrite H0.
+ rewrite Pregmap.gss. auto.
+ repeat rewrite Regmap.gso; auto.
+ rewrite Pregmap.gso. auto.
+ replace (IR (ireg_of r)) with (preg_of r).
+ red; intros. elim n. apply preg_of_injective; auto.
+ unfold preg_of. rewrite H0. auto.
+Qed.
+Hint Resolve agree_set_twice_mireg: ppcgen.
+
+Lemma agree_set_commut:
+ forall ms sp rs r1 r2 v1 v2,
+ r1 <> r2 ->
+ agree ms sp ((rs#r2 <- v2)#r1 <- v1) ->
+ agree ms sp ((rs#r1 <- v1)#r2 <- v2).
+Proof.
+ intros. apply agree_exten_1 with ((rs#r2 <- v2)#r1 <- v1). auto.
+ intros.
+ case (preg_eq r r1); intro.
+ subst r1. rewrite Pregmap.gss. rewrite Pregmap.gso. rewrite Pregmap.gss.
+ auto. auto.
+ case (preg_eq r r2); intro.
+ subst r2. rewrite Pregmap.gss. rewrite Pregmap.gso. rewrite Pregmap.gss.
+ auto. auto.
+ repeat (rewrite Pregmap.gso; auto).
+Qed.
+Hint Resolve agree_set_commut: ppcgen.
+
+Lemma agree_nextinstr_commut:
+ forall ms sp rs r v,
+ agree ms sp (rs#r <- v) ->
+ r <> PC ->
+ agree ms sp ((nextinstr rs)#r <- v).
+Proof.
+ intros. unfold nextinstr. apply agree_set_commut. auto.
+ apply agree_set_other. auto. auto.
+Qed.
+Hint Resolve agree_nextinstr_commut: ppcgen.
+
+Lemma agree_set_mireg_exten:
+ forall ms sp rs r v (rs': regset),
+ agree ms sp rs ->
+ mreg_type r = Tint ->
+ rs'#(ireg_of r) = v ->
+ (forall r',
+ r' <> IR GPR12 -> r' <> FR FPR13 ->
+ r' <> PC -> r' <> LR -> r' <> CTR ->
+ r' <> CR0_0 -> r' <> CR0_1 -> r' <> CR0_2 -> r' <> CR0_3 ->
+ r' <> CARRY ->
+ r' <> IR (ireg_of r) -> rs'#r' = rs#r') ->
+ agree (Regmap.set r v ms) sp rs'.
+Proof.
+ intros. apply agree_exten_2 with (rs#(ireg_of r) <- v).
+ auto with ppcgen.
+ intros. unfold Pregmap.set. case (PregEq.eq r0 (ireg_of r)); intro.
+ subst r0. auto. apply H2; auto.
+Qed.
+
+(** Useful properties of the PC and GPR0 registers. *)
+
+Lemma nextinstr_inv:
+ forall r rs, r <> PC -> (nextinstr rs)#r = rs#r.
+Proof.
+ intros. unfold nextinstr. apply Pregmap.gso. auto.
+Qed.
+Hint Resolve nextinstr_inv: ppcgen.
+
+Lemma nextinstr_set_preg:
+ forall rs m v,
+ (nextinstr (rs#(preg_of m) <- v))#PC = Val.add rs#PC Vone.
+Proof.
+ intros. unfold nextinstr. rewrite Pregmap.gss.
+ rewrite Pregmap.gso. auto. apply sym_not_eq. auto with ppcgen.
+Qed.
+Hint Resolve nextinstr_set_preg: ppcgen.
+
+Lemma gpr_or_zero_not_zero:
+ forall rs r, r <> GPR0 -> gpr_or_zero rs r = rs#r.
+Proof.
+ intros. unfold gpr_or_zero. case (ireg_eq r GPR0); tauto.
+Qed.
+Lemma gpr_or_zero_zero:
+ forall rs, gpr_or_zero rs GPR0 = Vzero.
+Proof.
+ intros. reflexivity.
+Qed.
+Hint Resolve gpr_or_zero_not_zero gpr_or_zero_zero: ppcgen.
+
+(** Connection between Mach and Asm calling conventions for external
+ functions. *)
+
+Lemma extcall_arg_match:
+ forall ms sp rs m l v,
+ agree ms sp rs ->
+ Machconcr.extcall_arg ms m sp l v ->
+ Asm.extcall_arg rs m l v.
+Proof.
+ intros. inv H0.
+ rewrite (preg_val _ _ _ r H). constructor.
+ rewrite (sp_val _ _ _ H) in H1.
+ destruct ty; unfold load_stack in H1.
+ econstructor. reflexivity. assumption.
+ econstructor. reflexivity. assumption.
+Qed.
+
+Lemma extcall_args_match:
+ forall ms sp rs m, agree ms sp rs ->
+ forall ll vl,
+ Machconcr.extcall_args ms m sp ll vl ->
+ Asm.extcall_args rs m ll vl.
+Proof.
+ induction 2; constructor; auto. eapply extcall_arg_match; eauto.
+Qed.
+
+Lemma extcall_arguments_match:
+ forall ms m sp rs sg args,
+ agree ms sp rs ->
+ Machconcr.extcall_arguments ms m sp sg args ->
+ Asm.extcall_arguments rs m sg args.
+Proof.
+ unfold Machconcr.extcall_arguments, Asm.extcall_arguments; intros.
+ eapply extcall_args_match; eauto.
+Qed.
+
+(** * Execution of straight-line code *)
+
+Section STRAIGHTLINE.
+
+Variable ge: genv.
+Variable fn: code.
+
+(** Straight-line code is composed of PPC instructions that execute
+ in sequence (no branches, no function calls and returns).
+ The following inductive predicate relates the machine states
+ before and after executing a straight-line sequence of instructions.
+ Instructions are taken from the first list instead of being fetched
+ from memory. *)
+
+Inductive exec_straight: code -> regset -> mem ->
+ code -> regset -> mem -> Prop :=
+ | exec_straight_one:
+ forall i1 c rs1 m1 rs2 m2,
+ exec_instr ge fn i1 rs1 m1 = OK rs2 m2 ->
+ rs2#PC = Val.add rs1#PC Vone ->
+ exec_straight (i1 :: c) rs1 m1 c rs2 m2
+ | exec_straight_step:
+ forall i c rs1 m1 rs2 m2 c' rs3 m3,
+ exec_instr ge fn i rs1 m1 = OK rs2 m2 ->
+ rs2#PC = Val.add rs1#PC Vone ->
+ exec_straight c rs2 m2 c' rs3 m3 ->
+ exec_straight (i :: c) rs1 m1 c' rs3 m3.
+
+Lemma exec_straight_trans:
+ forall c1 rs1 m1 c2 rs2 m2 c3 rs3 m3,
+ exec_straight c1 rs1 m1 c2 rs2 m2 ->
+ exec_straight c2 rs2 m2 c3 rs3 m3 ->
+ exec_straight c1 rs1 m1 c3 rs3 m3.
+Proof.
+ induction 1; intros.
+ apply exec_straight_step with rs2 m2; auto.
+ apply exec_straight_step with rs2 m2; auto.
+Qed.
+
+Lemma exec_straight_two:
+ forall i1 i2 c rs1 m1 rs2 m2 rs3 m3,
+ exec_instr ge fn i1 rs1 m1 = OK rs2 m2 ->
+ exec_instr ge fn i2 rs2 m2 = OK rs3 m3 ->
+ rs2#PC = Val.add rs1#PC Vone ->
+ rs3#PC = Val.add rs2#PC Vone ->
+ exec_straight (i1 :: i2 :: c) rs1 m1 c rs3 m3.
+Proof.
+ intros. apply exec_straight_step with rs2 m2; auto.
+ apply exec_straight_one; auto.
+Qed.
+
+Lemma exec_straight_three:
+ forall i1 i2 i3 c rs1 m1 rs2 m2 rs3 m3 rs4 m4,
+ exec_instr ge fn i1 rs1 m1 = OK rs2 m2 ->
+ exec_instr ge fn i2 rs2 m2 = OK rs3 m3 ->
+ exec_instr ge fn i3 rs3 m3 = OK rs4 m4 ->
+ rs2#PC = Val.add rs1#PC Vone ->
+ rs3#PC = Val.add rs2#PC Vone ->
+ rs4#PC = Val.add rs3#PC Vone ->
+ exec_straight (i1 :: i2 :: i3 :: c) rs1 m1 c rs4 m4.
+Proof.
+ intros. apply exec_straight_step with rs2 m2; auto.
+ eapply exec_straight_two; eauto.
+Qed.
+
+(** * Correctness of PowerPC constructor functions *)
+
+(** Properties of comparisons. *)
+
+Lemma compare_float_spec:
+ forall rs v1 v2,
+ let rs1 := nextinstr (compare_float rs v1 v2) in
+ rs1#CR0_0 = Val.cmpf Clt v1 v2
+ /\ rs1#CR0_1 = Val.cmpf Cgt v1 v2
+ /\ rs1#CR0_2 = Val.cmpf Ceq v1 v2
+ /\ forall r', r' <> PC -> r' <> CR0_0 -> r' <> CR0_1 ->
+ r' <> CR0_2 -> r' <> CR0_3 -> rs1#r' = rs#r'.
+Proof.
+ intros. unfold rs1.
+ split. reflexivity.
+ split. reflexivity.
+ split. reflexivity.
+ intros. rewrite nextinstr_inv; auto.
+ unfold compare_float. repeat (rewrite Pregmap.gso; auto).
+Qed.
+
+Lemma compare_sint_spec:
+ forall rs v1 v2,
+ let rs1 := nextinstr (compare_sint rs v1 v2) in
+ rs1#CR0_0 = Val.cmp Clt v1 v2
+ /\ rs1#CR0_1 = Val.cmp Cgt v1 v2
+ /\ rs1#CR0_2 = Val.cmp Ceq v1 v2
+ /\ forall r', r' <> PC -> r' <> CR0_0 -> r' <> CR0_1 ->
+ r' <> CR0_2 -> r' <> CR0_3 -> rs1#r' = rs#r'.
+Proof.
+ intros. unfold rs1.
+ split. reflexivity.
+ split. reflexivity.
+ split. reflexivity.
+ intros. rewrite nextinstr_inv; auto.
+ unfold compare_sint. repeat (rewrite Pregmap.gso; auto).
+Qed.
+
+Lemma compare_uint_spec:
+ forall rs v1 v2,
+ let rs1 := nextinstr (compare_uint rs v1 v2) in
+ rs1#CR0_0 = Val.cmpu Clt v1 v2
+ /\ rs1#CR0_1 = Val.cmpu Cgt v1 v2
+ /\ rs1#CR0_2 = Val.cmpu Ceq v1 v2
+ /\ forall r', r' <> PC -> r' <> CR0_0 -> r' <> CR0_1 ->
+ r' <> CR0_2 -> r' <> CR0_3 -> rs1#r' = rs#r'.
+Proof.
+ intros. unfold rs1.
+ split. reflexivity.
+ split. reflexivity.
+ split. reflexivity.
+ intros. rewrite nextinstr_inv; auto.
+ unfold compare_uint. repeat (rewrite Pregmap.gso; auto).
+Qed.
+
+(** Loading a constant. *)
+
+Lemma loadimm_correct:
+ forall r n k rs m,
+ exists rs',
+ exec_straight (loadimm r n k) rs m k rs' m
+ /\ rs'#r = Vint n
+ /\ forall r': preg, r' <> r -> r' <> PC -> rs'#r' = rs#r'.
+Proof.
+ intros. unfold loadimm.
+ case (Int.eq (high_s n) Int.zero).
+ (* addi *)
+ exists (nextinstr (rs#r <- (Vint n))).
+ split. apply exec_straight_one.
+ simpl. rewrite Int.add_commut. rewrite Int.add_zero. reflexivity.
+ reflexivity.
+ split. rewrite nextinstr_inv; auto with ppcgen.
+ apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
+ (* addis *)
+ generalize (Int.eq_spec (low_s n) Int.zero); case (Int.eq (low_s n) Int.zero); intro.
+ exists (nextinstr (rs#r <- (Vint n))).
+ split. apply exec_straight_one.
+ simpl. rewrite Int.add_commut.
+ rewrite <- H. rewrite low_high_s. reflexivity.
+ reflexivity.
+ split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
+ (* addis + ori *)
+ pose (rs1 := nextinstr (rs#r <- (Vint (Int.shl (high_u n) (Int.repr 16))))).
+ exists (nextinstr (rs1#r <- (Vint n))).
+ split. eapply exec_straight_two.
+ simpl. rewrite Int.add_commut. rewrite Int.add_zero. reflexivity.
+ simpl. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss.
+ unfold Val.or. rewrite low_high_u. reflexivity.
+ reflexivity. reflexivity.
+ split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
+ unfold rs1. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
+Qed.
+
+(** Add integer immediate. *)
+
+Lemma addimm_1_correct:
+ forall r1 r2 n k rs m,
+ r1 <> GPR0 ->
+ r2 <> GPR0 ->
+ exists rs',
+ exec_straight (addimm_1 r1 r2 n k) rs m k rs' m
+ /\ rs'#r1 = Val.add rs#r2 (Vint n)
+ /\ forall r': preg, r' <> r1 -> r' <> PC -> rs'#r' = rs#r'.
+Proof.
+ intros. unfold addimm_1.
+ (* addi *)
+ case (Int.eq (high_s n) Int.zero).
+ exists (nextinstr (rs#r1 <- (Val.add rs#r2 (Vint n)))).
+ split. apply exec_straight_one.
+ simpl. rewrite gpr_or_zero_not_zero; auto.
+ reflexivity.
+ split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
+ (* addis *)
+ generalize (Int.eq_spec (low_s n) Int.zero); case (Int.eq (low_s n) Int.zero); intro.
+ exists (nextinstr (rs#r1 <- (Val.add rs#r2 (Vint n)))).
+ split. apply exec_straight_one.
+ simpl. rewrite gpr_or_zero_not_zero; auto.
+ generalize (low_high_s n). rewrite H1. rewrite Int.add_zero. intro.
+ rewrite H2. auto.
+ reflexivity.
+ split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
+ (* addis + addi *)
+ pose (rs1 := nextinstr (rs#r1 <- (Val.add rs#r2 (Vint (Int.shl (high_s n) (Int.repr 16)))))).
+ exists (nextinstr (rs1#r1 <- (Val.add rs#r2 (Vint n)))).
+ split. apply exec_straight_two with rs1 m.
+ simpl. rewrite gpr_or_zero_not_zero; auto.
+ simpl. rewrite gpr_or_zero_not_zero; auto.
+ unfold rs1 at 1. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss.
+ rewrite Val.add_assoc. simpl. rewrite low_high_s. auto.
+ reflexivity. reflexivity.
+ split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
+ unfold rs1. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
+Qed.
+
+Lemma addimm_2_correct:
+ forall r1 r2 n k rs m,
+ r2 <> GPR12 ->
+ exists rs',
+ exec_straight (addimm_2 r1 r2 n k) rs m k rs' m
+ /\ rs'#r1 = Val.add rs#r2 (Vint n)
+ /\ forall r': preg, r' <> r1 -> r' <> GPR12 -> r' <> PC -> rs'#r' = rs#r'.
+Proof.
+ intros. unfold addimm_2.
+ generalize (loadimm_correct GPR12 n (Padd r1 r2 GPR12 :: k) rs m).
+ intros [rs1 [EX [RES OTHER]]].
+ exists (nextinstr (rs1#r1 <- (Val.add rs#r2 (Vint n)))).
+ split. eapply exec_straight_trans. eexact EX.
+ apply exec_straight_one. simpl. rewrite RES. rewrite OTHER.
+ auto. congruence. discriminate.
+ reflexivity.
+ split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
+Qed.
+
+Lemma addimm_correct:
+ forall r1 r2 n k rs m,
+ r2 <> GPR12 ->
+ exists rs',
+ exec_straight (addimm r1 r2 n k) rs m k rs' m
+ /\ rs'#r1 = Val.add rs#r2 (Vint n)
+ /\ forall r': preg, r' <> r1 -> r' <> GPR12 -> r' <> PC -> rs'#r' = rs#r'.
+Proof.
+ intros. unfold addimm.
+ case (ireg_eq r1 GPR0); intro.
+ apply addimm_2_correct; auto.
+ case (ireg_eq r2 GPR0); intro.
+ apply addimm_2_correct; auto.
+ generalize (addimm_1_correct r1 r2 n k rs m n0 n1).
+ intros [rs' [EX [RES OTH]]]. exists rs'. intuition.
+Qed.
+
+(** And integer immediate. *)
+
+Lemma andimm_correct:
+ forall r1 r2 n k (rs : regset) m,
+ r2 <> GPR12 ->
+ let v := Val.and rs#r2 (Vint n) in
+ exists rs',
+ exec_straight (andimm r1 r2 n k) rs m k rs' m
+ /\ rs'#r1 = v
+ /\ rs'#CR0_2 = Val.cmp Ceq v Vzero
+ /\ forall r': preg,
+ r' <> r1 -> r' <> GPR12 -> r' <> PC ->
+ r' <> CR0_0 -> r' <> CR0_1 -> r' <> CR0_2 -> r' <> CR0_3 ->
+ rs'#r' = rs#r'.
+Proof.
+ intros. unfold andimm.
+ case (Int.eq (high_u n) Int.zero).
+ (* andi *)
+ exists (nextinstr (compare_sint (rs#r1 <- v) v Vzero)).
+ generalize (compare_sint_spec (rs#r1 <- v) v Vzero).
+ intros [A [B [C D]]].
+ split. apply exec_straight_one. reflexivity. reflexivity.
+ split. rewrite D; try discriminate. apply Pregmap.gss.
+ split. auto.
+ intros. rewrite D; auto. apply Pregmap.gso; auto.
+ (* andis *)
+ generalize (Int.eq_spec (low_u n) Int.zero);
+ case (Int.eq (low_u n) Int.zero); intro.
+ exists (nextinstr (compare_sint (rs#r1 <- v) v Vzero)).
+ generalize (compare_sint_spec (rs#r1 <- v) v Vzero).
+ intros [A [B [C D]]].
+ split. apply exec_straight_one. simpl.
+ generalize (low_high_u n). rewrite H0. rewrite Int.or_zero.
+ intro. rewrite H1. reflexivity. reflexivity.
+ split. rewrite D; try discriminate. apply Pregmap.gss.
+ split. auto.
+ intros. rewrite D; auto. apply Pregmap.gso; auto.
+ (* loadimm + and *)
+ generalize (loadimm_correct GPR12 n (Pand_ r1 r2 GPR12 :: k) rs m).
+ intros [rs1 [EX1 [RES1 OTHER1]]].
+ exists (nextinstr (compare_sint (rs1#r1 <- v) v Vzero)).
+ generalize (compare_sint_spec (rs1#r1 <- v) v Vzero).
+ intros [A [B [C D]]].
+ split. eapply exec_straight_trans. eexact EX1.
+ apply exec_straight_one. simpl. rewrite RES1.
+ rewrite (OTHER1 r2). reflexivity. congruence. congruence.
+ reflexivity.
+ split. rewrite D; try discriminate. apply Pregmap.gss.
+ split. auto.
+ intros. rewrite D; auto. rewrite Pregmap.gso; auto.
+Qed.
+
+(** Or integer immediate. *)
+
+Lemma orimm_correct:
+ forall r1 (r2: ireg) n k (rs : regset) m,
+ let v := Val.or rs#r2 (Vint n) in
+ exists rs',
+ exec_straight (orimm r1 r2 n k) rs m k rs' m
+ /\ rs'#r1 = v
+ /\ forall r': preg, r' <> r1 -> r' <> PC -> rs'#r' = rs#r'.
+Proof.
+ intros. unfold orimm.
+ case (Int.eq (high_u n) Int.zero).
+ (* ori *)
+ exists (nextinstr (rs#r1 <- v)).
+ split. apply exec_straight_one. reflexivity. reflexivity.
+ split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
+ (* oris *)
+ generalize (Int.eq_spec (low_u n) Int.zero);
+ case (Int.eq (low_u n) Int.zero); intro.
+ exists (nextinstr (rs#r1 <- v)).
+ split. apply exec_straight_one. simpl.
+ generalize (low_high_u n). rewrite H. rewrite Int.or_zero.
+ intro. rewrite H0. reflexivity. reflexivity.
+ split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
+ (* oris + ori *)
+ pose (rs1 := nextinstr (rs#r1 <- (Val.or rs#r2 (Vint (Int.shl (high_u n) (Int.repr 16)))))).
+ exists (nextinstr (rs1#r1 <- v)).
+ split. apply exec_straight_two with rs1 m.
+ reflexivity. simpl. unfold rs1 at 1.
+ rewrite nextinstr_inv; auto with ppcgen.
+ rewrite Pregmap.gss. rewrite Val.or_assoc. simpl.
+ rewrite low_high_u. reflexivity. reflexivity. reflexivity.
+ split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
+ unfold rs1. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
+Qed.
+
+(** Xor integer immediate. *)
+
+Lemma xorimm_correct:
+ forall r1 (r2: ireg) n k (rs : regset) m,
+ let v := Val.xor rs#r2 (Vint n) in
+ exists rs',
+ exec_straight (xorimm r1 r2 n k) rs m k rs' m
+ /\ rs'#r1 = v
+ /\ forall r': preg, r' <> r1 -> r' <> PC -> rs'#r' = rs#r'.
+Proof.
+ intros. unfold xorimm.
+ case (Int.eq (high_u n) Int.zero).
+ (* xori *)
+ exists (nextinstr (rs#r1 <- v)).
+ split. apply exec_straight_one. reflexivity. reflexivity.
+ split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
+ (* xoris *)
+ generalize (Int.eq_spec (low_u n) Int.zero);
+ case (Int.eq (low_u n) Int.zero); intro.
+ exists (nextinstr (rs#r1 <- v)).
+ split. apply exec_straight_one. simpl.
+ generalize (low_high_u_xor n). rewrite H. rewrite Int.xor_zero.
+ intro. rewrite H0. reflexivity. reflexivity.
+ split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
+ (* xoris + xori *)
+ pose (rs1 := nextinstr (rs#r1 <- (Val.xor rs#r2 (Vint (Int.shl (high_u n) (Int.repr 16)))))).
+ exists (nextinstr (rs1#r1 <- v)).
+ split. apply exec_straight_two with rs1 m.
+ reflexivity. simpl. unfold rs1 at 1.
+ rewrite nextinstr_inv; try discriminate.
+ rewrite Pregmap.gss. rewrite Val.xor_assoc. simpl.
+ rewrite low_high_u_xor. reflexivity. reflexivity. reflexivity.
+ split. rewrite nextinstr_inv; auto with ppcgen.
+ apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
+ unfold rs1. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
+Qed.
+
+(** Indexed memory loads. *)
+
+Lemma loadind_aux_correct:
+ forall (base: ireg) ofs ty dst (rs: regset) m v,
+ Mem.loadv (chunk_of_type ty) m (Val.add rs#base (Vint ofs)) = Some v ->
+ mreg_type dst = ty ->
+ base <> GPR0 ->
+ exec_instr ge fn (loadind_aux base ofs ty dst) rs m =
+ OK (nextinstr (rs#(preg_of dst) <- v)) m.
+Proof.
+ intros. unfold loadind_aux. unfold preg_of. rewrite H0. destruct ty.
+ simpl. unfold load1. rewrite gpr_or_zero_not_zero; auto.
+ unfold const_low. simpl in H. rewrite H. auto.
+ simpl. unfold load1. rewrite gpr_or_zero_not_zero; auto.
+ unfold const_low. simpl in H. rewrite H. auto.
+Qed.
+
+Lemma loadind_correct:
+ forall (base: ireg) ofs ty dst k (rs: regset) m v,
+ Mem.loadv (chunk_of_type ty) m (Val.add rs#base (Vint ofs)) = Some v ->
+ mreg_type dst = ty ->
+ base <> GPR0 ->
+ exists rs',
+ exec_straight (loadind base ofs ty dst k) rs m k rs' m
+ /\ rs'#(preg_of dst) = v
+ /\ forall r, r <> PC -> r <> GPR12 -> r <> preg_of dst -> rs'#r = rs#r.
+Proof.
+ intros. unfold loadind.
+ assert (preg_of dst <> PC).
+ unfold preg_of. case (mreg_type dst); discriminate.
+ (* short offset *)
+ case (Int.eq (high_s ofs) Int.zero).
+ exists (nextinstr (rs#(preg_of dst) <- v)).
+ split. apply exec_straight_one. apply loadind_aux_correct; auto.
+ unfold nextinstr. rewrite Pregmap.gss. rewrite Pregmap.gso. auto. auto.
+ split. rewrite nextinstr_inv; auto. apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
+ (* long offset *)
+ pose (rs1 := nextinstr (rs#GPR12 <- (Val.add rs#base (Vint (Int.shl (high_s ofs) (Int.repr 16)))))).
+ exists (nextinstr (rs1#(preg_of dst) <- v)).
+ split. apply exec_straight_two with rs1 m.
+ simpl. rewrite gpr_or_zero_not_zero; auto.
+ apply loadind_aux_correct.
+ unfold rs1. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss.
+ rewrite Val.add_assoc. simpl. rewrite low_high_s. assumption.
+ auto. discriminate. reflexivity.
+ unfold nextinstr. rewrite Pregmap.gss. rewrite Pregmap.gso. auto. auto.
+ split. rewrite nextinstr_inv; auto. apply Pregmap.gss.
+ intros. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
+ unfold rs1. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
+Qed.
+
+(** Indexed memory stores. *)
+
+Lemma storeind_aux_correct:
+ forall (base: ireg) ofs ty src (rs: regset) m m',
+ Mem.storev (chunk_of_type ty) m (Val.add rs#base (Vint ofs)) (rs#(preg_of src)) = Some m' ->
+ mreg_type src = ty ->
+ base <> GPR0 ->
+ exec_instr ge fn (storeind_aux src base ofs ty) rs m =
+ OK (nextinstr rs) m'.
+Proof.
+ intros. unfold storeind_aux. unfold preg_of in H. rewrite H0 in H. destruct ty.
+ simpl. unfold store1. rewrite gpr_or_zero_not_zero; auto.
+ unfold const_low. simpl in H. rewrite H. auto.
+ simpl. unfold store1. rewrite gpr_or_zero_not_zero; auto.
+ unfold const_low. simpl in H. rewrite H. auto.
+Qed.
+
+Lemma storeind_correct:
+ forall (base: ireg) ofs ty src k (rs: regset) m m',
+ Mem.storev (chunk_of_type ty) m (Val.add rs#base (Vint ofs)) (rs#(preg_of src)) = Some m' ->
+ mreg_type src = ty ->
+ base <> GPR0 ->
+ exists rs',
+ exec_straight (storeind src base ofs ty k) rs m k rs' m'
+ /\ forall r, r <> PC -> r <> GPR12 -> rs'#r = rs#r.
+Proof.
+ intros. unfold storeind.
+ (* short offset *)
+ case (Int.eq (high_s ofs) Int.zero).
+ exists (nextinstr rs).
+ split. apply exec_straight_one. apply storeind_aux_correct; auto.
+ reflexivity.
+ intros. rewrite nextinstr_inv; auto.
+ (* long offset *)
+ pose (rs1 := nextinstr (rs#GPR12 <- (Val.add rs#base (Vint (Int.shl (high_s ofs) (Int.repr 16)))))).
+ exists (nextinstr rs1).
+ split. apply exec_straight_two with rs1 m.
+ simpl. rewrite gpr_or_zero_not_zero; auto.
+ apply storeind_aux_correct; auto with ppcgen.
+ unfold rs1. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss.
+ rewrite nextinstr_inv; auto with ppcgen.
+ rewrite Pregmap.gso; auto with ppcgen.
+ rewrite Val.add_assoc. simpl. rewrite low_high_s. assumption.
+ reflexivity. reflexivity.
+ intros. rewrite nextinstr_inv; auto.
+ unfold rs1. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
+Qed.
+
+(** Float comparisons. *)
+
+Lemma floatcomp_correct:
+ forall cmp (r1 r2: freg) k rs m,
+ exists rs',
+ exec_straight (floatcomp cmp r1 r2 k) rs m k rs' m
+ /\ rs'#(reg_of_crbit (fst (crbit_for_fcmp cmp))) =
+ (if snd (crbit_for_fcmp cmp)
+ then Val.cmpf cmp rs#r1 rs#r2
+ else Val.notbool (Val.cmpf cmp rs#r1 rs#r2))
+ /\ forall r',
+ r' <> PC -> r' <> CR0_0 -> r' <> CR0_1 ->
+ r' <> CR0_2 -> r' <> CR0_3 -> rs'#r' = rs#r'.
+Proof.
+ intros.
+ generalize (compare_float_spec rs rs#r1 rs#r2).
+ intros [A [B [C D]]].
+ set (rs1 := nextinstr (compare_float rs rs#r1 rs#r2)) in *.
+ assert ((cmp = Ceq \/ cmp = Cne \/ cmp = Clt \/ cmp = Cgt)
+ \/ (cmp = Cle \/ cmp = Cge)).
+ case cmp; tauto.
+ unfold floatcomp. elim H; intro; clear H.
+ exists rs1.
+ split. generalize H0; intros [EQ|[EQ|[EQ|EQ]]]; subst cmp;
+ apply exec_straight_one; reflexivity.
+ split.
+ generalize H0; intros [EQ|[EQ|[EQ|EQ]]]; subst cmp; simpl; auto.
+ rewrite Val.negate_cmpf_eq. auto.
+ auto.
+ (* two instrs *)
+ exists (nextinstr (rs1#CR0_3 <- (Val.cmpf cmp rs#r1 rs#r2))).
+ split. elim H0; intro; subst cmp.
+ apply exec_straight_two with rs1 m.
+ reflexivity. simpl.
+ rewrite C; rewrite A. rewrite Val.or_commut. rewrite <- Val.cmpf_le.
+ reflexivity. reflexivity. reflexivity.
+ apply exec_straight_two with rs1 m.
+ reflexivity. simpl.
+ rewrite C; rewrite B. rewrite Val.or_commut. rewrite <- Val.cmpf_ge.
+ reflexivity. reflexivity. reflexivity.
+ split. elim H0; intro; subst cmp; simpl.
+ reflexivity.
+ reflexivity.
+ intros. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
+Qed.
+
+Ltac TypeInv :=
+ match goal with
+ | H: (List.map ?f ?x = nil) |- _ =>
+ destruct x; [clear H | simpl in H; discriminate]
+ | H: (List.map ?f ?x = ?hd :: ?tl) |- _ =>
+ destruct x; simpl in H;
+ [ discriminate |
+ injection H; clear H; let T := fresh "T" in (
+ intros H T; TypeInv) ]
+ | _ => idtac
+ end.
+
+(** Translation of conditions. *)
+
+Lemma transl_cond_correct_aux:
+ forall cond args k ms sp rs m,
+ map mreg_type args = type_of_condition cond ->
+ agree ms sp rs ->
+ exists rs',
+ exec_straight (transl_cond cond args k) rs m k rs' m
+ /\ rs'#(reg_of_crbit (fst (crbit_for_cond cond))) =
+ (if snd (crbit_for_cond cond)
+ then eval_condition_total cond (map ms args)
+ else Val.notbool (eval_condition_total cond (map ms args)))
+ /\ agree ms sp rs'.
+Proof.
+ intros. destruct cond; simpl in H; TypeInv.
+ (* Ccomp *)
+ simpl.
+ generalize (compare_sint_spec rs ms#m0 ms#m1).
+ intros [A [B [C D]]].
+ exists (nextinstr (compare_sint rs ms#m0 ms#m1)).
+ split. apply exec_straight_one. simpl.
+ repeat (rewrite <- (ireg_val ms sp rs); auto).
+ reflexivity.
+ split.
+ case c; simpl; auto; rewrite <- Val.negate_cmp; simpl; auto.
+ apply agree_exten_2 with rs; auto.
+ (* Ccompu *)
+ simpl.
+ generalize (compare_uint_spec rs ms#m0 ms#m1).
+ intros [A [B [C D]]].
+ exists (nextinstr (compare_uint rs ms#m0 ms#m1)).
+ split. apply exec_straight_one. simpl.
+ repeat (rewrite <- (ireg_val ms sp rs); auto).
+ reflexivity.
+ split.
+ case c; simpl; auto; rewrite <- Val.negate_cmpu; simpl; auto.
+ apply agree_exten_2 with rs; auto.
+ (* Ccompimm *)
+ simpl.
+ case (Int.eq (high_s i) Int.zero).
+ generalize (compare_sint_spec rs ms#m0 (Vint i)).
+ intros [A [B [C D]]].
+ exists (nextinstr (compare_sint rs ms#m0 (Vint i))).
+ split. apply exec_straight_one. simpl.
+ repeat (rewrite <- (ireg_val ms sp rs); auto).
+ reflexivity.
+ split.
+ case c; simpl; auto; rewrite <- Val.negate_cmp; simpl; auto.
+ apply agree_exten_2 with rs; auto.
+ generalize (loadimm_correct GPR12 i (Pcmpw (ireg_of m0) GPR12 :: k) rs m).
+ intros [rs1 [EX1 [RES1 OTH1]]].
+ assert (agree ms sp rs1). apply agree_exten_2 with rs; auto.
+ generalize (compare_sint_spec rs1 ms#m0 (Vint i)).
+ intros [A [B [C D]]].
+ exists (nextinstr (compare_sint rs1 ms#m0 (Vint i))).
+ split. eapply exec_straight_trans. eexact EX1.
+ apply exec_straight_one. simpl.
+ repeat (rewrite <- (ireg_val ms sp rs1); auto). rewrite RES1.
+ reflexivity. reflexivity.
+ split.
+ case c; simpl; auto; rewrite <- Val.negate_cmp; simpl; auto.
+ apply agree_exten_2 with rs1; auto.
+ (* Ccompuimm *)
+ simpl.
+ case (Int.eq (high_u i) Int.zero).
+ generalize (compare_uint_spec rs ms#m0 (Vint i)).
+ intros [A [B [C D]]].
+ exists (nextinstr (compare_uint rs ms#m0 (Vint i))).
+ split. apply exec_straight_one. simpl.
+ repeat (rewrite <- (ireg_val ms sp rs); auto).
+ reflexivity.
+ split.
+ case c; simpl; auto; rewrite <- Val.negate_cmpu; simpl; auto.
+ apply agree_exten_2 with rs; auto.
+ generalize (loadimm_correct GPR12 i (Pcmplw (ireg_of m0) GPR12 :: k) rs m).
+ intros [rs1 [EX1 [RES1 OTH1]]].
+ assert (agree ms sp rs1). apply agree_exten_2 with rs; auto.
+ generalize (compare_uint_spec rs1 ms#m0 (Vint i)).
+ intros [A [B [C D]]].
+ exists (nextinstr (compare_uint rs1 ms#m0 (Vint i))).
+ split. eapply exec_straight_trans. eexact EX1.
+ apply exec_straight_one. simpl.
+ repeat (rewrite <- (ireg_val ms sp rs1); auto). rewrite RES1.
+ reflexivity. reflexivity.
+ split.
+ case c; simpl; auto; rewrite <- Val.negate_cmpu; simpl; auto.
+ apply agree_exten_2 with rs1; auto.
+ (* Ccompf *)
+ simpl.
+ generalize (floatcomp_correct c (freg_of m0) (freg_of m1) k rs m).
+ intros [rs' [EX [RES OTH]]].
+ exists rs'. split. auto.
+ split. rewrite RES. repeat (rewrite <- (freg_val ms sp rs); auto).
+ apply agree_exten_2 with rs; auto.
+ (* Cnotcompf *)
+ simpl.
+ generalize (floatcomp_correct c (freg_of m0) (freg_of m1) k rs m).
+ intros [rs' [EX [RES OTH]]].
+ exists rs'. split. auto.
+ split. rewrite RES. repeat (rewrite <- (freg_val ms sp rs); auto).
+ assert (forall v1 v2, Val.notbool (Val.notbool (Val.cmpf c v1 v2)) = Val.cmpf c v1 v2).
+ intros v1 v2; unfold Val.cmpf; destruct v1; destruct v2; auto.
+ apply Val.notbool_idem2.
+ rewrite H.
+ generalize RES. case (snd (crbit_for_fcmp c)); simpl; auto.
+ apply agree_exten_2 with rs; auto.
+ (* Cmaskzero *)
+ simpl.
+ generalize (andimm_correct GPR12 (ireg_of m0) i k rs m (ireg_of_not_GPR12 m0)).
+ intros [rs' [A [B [C D]]]].
+ exists rs'. split. assumption.
+ split. rewrite C. rewrite <- (ireg_val ms sp rs); auto.
+ apply agree_exten_2 with rs; auto.
+ (* Cmasknotzero *)
+ simpl.
+ generalize (andimm_correct GPR12 (ireg_of m0) i k rs m (ireg_of_not_GPR12 m0)).
+ intros [rs' [A [B [C D]]]].
+ exists rs'. split. assumption.
+ split. rewrite C. rewrite <- (ireg_val ms sp rs); auto.
+ rewrite Val.notbool_idem3. reflexivity.
+ apply agree_exten_2 with rs; auto.
+Qed.
+
+Lemma transl_cond_correct:
+ forall cond args k ms sp rs m b,
+ map mreg_type args = type_of_condition cond ->
+ agree ms sp rs ->
+ eval_condition cond (map ms args) m = Some b ->
+ exists rs',
+ exec_straight (transl_cond cond args k) rs m k rs' m
+ /\ rs'#(reg_of_crbit (fst (crbit_for_cond cond))) =
+ (if snd (crbit_for_cond cond)
+ then Val.of_bool b
+ else Val.notbool (Val.of_bool b))
+ /\ agree ms sp rs'.
+Proof.
+ intros. rewrite <- (eval_condition_weaken _ _ _ H1).
+ apply transl_cond_correct_aux; auto.
+Qed.
+
+(** Translation of arithmetic operations. *)
+
+Ltac TranslOpSimpl :=
+ match goal with
+ | |- exists rs' : regset,
+ exec_straight ?c ?rs ?m ?k rs' ?m /\
+ agree (Regmap.set ?res ?v ?ms) ?sp rs' =>
+ (exists (nextinstr (rs#(ireg_of res) <- v));
+ split;
+ [ apply exec_straight_one;
+ [ repeat (rewrite (ireg_val ms sp rs); auto); reflexivity
+ | reflexivity ]
+ | auto with ppcgen ])
+ ||
+ (exists (nextinstr (rs#(freg_of res) <- v));
+ split;
+ [ apply exec_straight_one;
+ [ repeat (rewrite (freg_val ms sp rs); auto); reflexivity
+ | reflexivity ]
+ | auto with ppcgen ])
+ end.
+
+Lemma transl_op_correct:
+ forall op args res k ms sp rs m v,
+ wt_instr (Mop op args res) ->
+ agree ms sp rs ->
+ eval_operation ge sp op (map ms args) m = Some v ->
+ exists rs',
+ exec_straight (transl_op op args res k) rs m k rs' m
+ /\ agree (Regmap.set res v ms) sp rs'.
+Proof.
+ intros. rewrite <- (eval_operation_weaken _ _ _ _ _ H1). clear H1; clear v.
+ inversion H.
+ (* Omove *)
+ simpl. exists (nextinstr (rs#(preg_of res) <- (ms r1))).
+ split. caseEq (mreg_type r1); intro.
+ apply exec_straight_one. simpl. rewrite (ireg_val ms sp rs); auto.
+ simpl. unfold preg_of. rewrite <- H2. rewrite H5. reflexivity.
+ auto with ppcgen.
+ apply exec_straight_one. simpl. rewrite (freg_val ms sp rs); auto.
+ simpl. unfold preg_of. rewrite <- H2. rewrite H5. reflexivity.
+ auto with ppcgen.
+ auto with ppcgen.
+ (* Other instructions *)
+ clear H1; clear H2; clear H4.
+ destruct op; simpl in H5; injection H5; clear H5; intros;
+ TypeInv; simpl; try (TranslOpSimpl).
+ (* Omove again *)
+ congruence.
+ (* Ointconst *)
+ generalize (loadimm_correct (ireg_of res) i k rs m).
+ intros [rs' [A [B C]]].
+ exists rs'. split. auto.
+ apply agree_set_mireg_exten with rs; auto.
+ (* Ofloatconst *)
+ exists (nextinstr (rs#(freg_of res) <- (Vfloat f) #GPR12 <- Vundef)).
+ split. apply exec_straight_one. reflexivity. reflexivity.
+ auto with ppcgen.
+ (* Oaddrsymbol *)
+ change (find_symbol_offset ge i i0) with (symbol_offset ge i i0).
+ set (v := symbol_offset ge i i0).
+ pose (rs1 := nextinstr (rs#GPR12 <- (high_half v))).
+ exists (nextinstr (rs1#(ireg_of res) <- v)).
+ split. apply exec_straight_two with rs1 m.
+ unfold exec_instr. rewrite gpr_or_zero_zero.
+ unfold const_high. rewrite Val.add_commut.
+ rewrite high_half_zero. reflexivity.
+ simpl. rewrite gpr_or_zero_not_zero. 2: congruence.
+ unfold rs1 at 1. rewrite nextinstr_inv; auto with ppcgen.
+ rewrite Pregmap.gss.
+ fold v. rewrite Val.add_commut. unfold v. rewrite low_high_half.
+ reflexivity. reflexivity. reflexivity.
+ unfold rs1. apply agree_nextinstr. apply agree_set_mireg; auto.
+ apply agree_set_mreg. apply agree_nextinstr.
+ apply agree_set_other. auto. simpl. tauto.
+ (* Oaddrstack *)
+ assert (GPR1 <> GPR12). discriminate.
+ generalize (addimm_correct (ireg_of res) GPR1 i k rs m H2).
+ intros [rs' [EX [RES OTH]]].
+ exists rs'. split. auto.
+ apply agree_set_mireg_exten with rs; auto.
+ rewrite (sp_val ms sp rs). auto. auto.
+ (* Ocast8unsigned *)
+ exists (nextinstr (rs#(ireg_of res) <- (Val.rolm (ms m0) Int.zero (Int.repr 255)))).
+ split. apply exec_straight_one. repeat (rewrite (ireg_val ms sp rs)); auto. reflexivity.
+ replace (Val.zero_ext 8 (ms m0))
+ with (Val.rolm (ms m0) Int.zero (Int.repr 255)).
+ auto with ppcgen.
+ unfold Val.rolm, Val.zero_ext. destruct (ms m0); auto.
+ rewrite Int.rolm_zero. rewrite Int.zero_ext_and. auto. compute; auto.
+ (* Ocast16unsigned *)
+ exists (nextinstr (rs#(ireg_of res) <- (Val.rolm (ms m0) Int.zero (Int.repr 65535)))).
+ split. apply exec_straight_one. repeat (rewrite (ireg_val ms sp rs)); auto. reflexivity.
+ replace (Val.zero_ext 16 (ms m0))
+ with (Val.rolm (ms m0) Int.zero (Int.repr 65535)).
+ auto with ppcgen.
+ unfold Val.rolm, Val.zero_ext. destruct (ms m0); auto.
+ rewrite Int.rolm_zero. rewrite Int.zero_ext_and. auto. compute; auto.
+ (* Oaddimm *)
+ generalize (addimm_correct (ireg_of res) (ireg_of m0) i k rs m
+ (ireg_of_not_GPR12 m0)).
+ intros [rs' [A [B C]]].
+ exists rs'. split. auto.
+ apply agree_set_mireg_exten with rs; auto.
+ rewrite (ireg_val ms sp rs); auto.
+ (* Osub *)
+ exists (nextinstr (rs#(ireg_of res) <- (Val.sub (ms m0) (ms m1)) #CARRY <- Vundef)).
+ split. apply exec_straight_one. repeat (rewrite (ireg_val ms sp rs); auto).
+ simpl. reflexivity. auto with ppcgen.
+ (* Osubimm *)
+ case (Int.eq (high_s i) Int.zero).
+ exists (nextinstr (rs#(ireg_of res) <- (Val.sub (Vint i) (ms m0)) #CARRY <- Vundef)).
+ split. apply exec_straight_one. rewrite (ireg_val ms sp rs); auto.
+ reflexivity. simpl. auto with ppcgen.
+ generalize (loadimm_correct GPR12 i (Psubfc (ireg_of res) (ireg_of m0) GPR12 :: k) rs m).
+ intros [rs1 [EX [RES OTH]]].
+ assert (agree ms sp rs1). apply agree_exten_2 with rs; auto.
+ exists (nextinstr (rs1#(ireg_of res) <- (Val.sub (Vint i) (ms m0)) #CARRY <- Vundef)).
+ split. eapply exec_straight_trans. eexact EX.
+ apply exec_straight_one. repeat (rewrite (ireg_val ms sp rs); auto).
+ simpl. rewrite RES. rewrite OTH. reflexivity.
+ generalize (ireg_of_not_GPR12 m0); congruence.
+ discriminate.
+ reflexivity. simpl; auto with ppcgen.
+ (* Omulimm *)
+ case (Int.eq (high_s i) Int.zero).
+ exists (nextinstr (rs#(ireg_of res) <- (Val.mul (ms m0) (Vint i)))).
+ split. apply exec_straight_one. rewrite (ireg_val ms sp rs); auto.
+ reflexivity. auto with ppcgen.
+ generalize (loadimm_correct GPR12 i (Pmullw (ireg_of res) (ireg_of m0) GPR12 :: k) rs m).
+ intros [rs1 [EX [RES OTH]]].
+ assert (agree ms sp rs1). apply agree_exten_2 with rs; auto.
+ exists (nextinstr (rs1#(ireg_of res) <- (Val.mul (ms m0) (Vint i)))).
+ split. eapply exec_straight_trans. eexact EX.
+ apply exec_straight_one. repeat (rewrite (ireg_val ms sp rs); auto).
+ simpl. rewrite RES. rewrite OTH. reflexivity.
+ generalize (ireg_of_not_GPR12 m0); congruence.
+ discriminate.
+ reflexivity. simpl; auto with ppcgen.
+ (* Oand *)
+ pose (v := Val.and (ms m0) (ms m1)).
+ pose (rs1 := rs#(ireg_of res) <- v).
+ generalize (compare_sint_spec rs1 v Vzero).
+ intros [A [B [C D]]].
+ exists (nextinstr (compare_sint rs1 v Vzero)).
+ split. apply exec_straight_one.
+ unfold rs1, v. repeat (rewrite (ireg_val ms sp rs); auto).
+ reflexivity.
+ apply agree_exten_2 with rs1. unfold rs1, v; auto with ppcgen.
+ auto.
+ (* Oandimm *)
+ generalize (andimm_correct (ireg_of res) (ireg_of m0) i k rs m
+ (ireg_of_not_GPR12 m0)).
+ intros [rs' [A [B [C D]]]].
+ exists rs'. split. auto. apply agree_set_mireg_exten with rs; auto.
+ rewrite (ireg_val ms sp rs); auto.
+ (* Oorimm *)
+ generalize (orimm_correct (ireg_of res) (ireg_of m0) i k rs m).
+ intros [rs' [A [B C]]].
+ exists rs'. split. auto. apply agree_set_mireg_exten with rs; auto.
+ rewrite (ireg_val ms sp rs); auto.
+ (* Oxorimm *)
+ generalize (xorimm_correct (ireg_of res) (ireg_of m0) i k rs m).
+ intros [rs' [A [B C]]].
+ exists rs'. split. auto. apply agree_set_mireg_exten with rs; auto.
+ rewrite (ireg_val ms sp rs); auto.
+ (* Oshr *)
+ exists (nextinstr (rs#(ireg_of res) <- (Val.shr (ms m0) (ms m1)) #CARRY <- (Val.shr_carry (ms m0) (ms m1)))).
+ split. apply exec_straight_one. repeat (rewrite (ireg_val ms sp rs); auto).
+ reflexivity. auto with ppcgen.
+ (* Oshrimm *)
+ exists (nextinstr (rs#(ireg_of res) <- (Val.shr (ms m0) (Vint i)) #CARRY <- (Val.shr_carry (ms m0) (Vint i)))).
+ split. apply exec_straight_one. repeat (rewrite (ireg_val ms sp rs); auto).
+ reflexivity. auto with ppcgen.
+ (* Oxhrximm *)
+ pose (rs1 := nextinstr (rs#(ireg_of res) <- (Val.shr (ms m0) (Vint i)) #CARRY <- (Val.shr_carry (ms m0) (Vint i)))).
+ exists (nextinstr (rs1#(ireg_of res) <- (Val.shrx (ms m0) (Vint i)))).
+ split. apply exec_straight_two with rs1 m.
+ unfold rs1; rewrite (ireg_val ms sp rs); auto.
+ simpl; unfold rs1; repeat rewrite <- (ireg_val ms sp rs); auto.
+ repeat (rewrite nextinstr_inv; try discriminate).
+ repeat rewrite Pregmap.gss. decEq. decEq.
+ apply (f_equal3 (@Pregmap.set val)); auto.
+ rewrite Pregmap.gso. rewrite Pregmap.gss. apply Val.shrx_carry.
+ discriminate. reflexivity. reflexivity.
+ apply agree_exten_2 with (rs#(ireg_of res) <- (Val.shrx (ms m0) (Vint i))).
+ auto with ppcgen.
+ intros. rewrite nextinstr_inv; auto.
+ case (preg_eq (ireg_of res) r); intro.
+ subst r. repeat rewrite Pregmap.gss. auto.
+ repeat rewrite Pregmap.gso; auto.
+ unfold rs1. rewrite nextinstr_inv; auto.
+ repeat rewrite Pregmap.gso; auto.
+ (* Ointoffloat *)
+ exists (nextinstr (rs#(ireg_of res) <- (Val.intoffloat (ms m0)) #FPR13 <- Vundef)).
+ split. apply exec_straight_one.
+ repeat (rewrite (freg_val ms sp rs); auto).
+ reflexivity. auto with ppcgen.
+ (* Ointuoffloat *)
+ exists (nextinstr (rs#(ireg_of res) <- (Val.intuoffloat (ms m0)) #FPR13 <- Vundef)).
+ split. apply exec_straight_one.
+ repeat (rewrite (freg_val ms sp rs); auto).
+ reflexivity. auto with ppcgen.
+ (* Ofloatofint *)
+ exists (nextinstr (rs#(freg_of res) <- (Val.floatofint (ms m0)) #GPR12 <- Vundef #FPR13 <- Vundef)).
+ split. apply exec_straight_one.
+ repeat (rewrite (ireg_val ms sp rs); auto).
+ reflexivity. auto 10 with ppcgen.
+ (* Ofloatofintu *)
+ exists (nextinstr (rs#(freg_of res) <- (Val.floatofintu (ms m0)) #GPR12 <- Vundef #FPR13 <- Vundef)).
+ split. apply exec_straight_one.
+ repeat (rewrite (ireg_val ms sp rs); auto).
+ reflexivity. auto 10 with ppcgen.
+ (* Ocmp *)
+ set (bit := fst (crbit_for_cond c)).
+ set (isset := snd (crbit_for_cond c)).
+ set (k1 :=
+ Pmfcrbit (ireg_of res) bit ::
+ (if isset
+ then k
+ else Pxori (ireg_of res) (ireg_of res) (Cint Int.one) :: k)).
+ generalize (transl_cond_correct_aux c args k1 ms sp rs m H2 H0).
+ fold bit; fold isset.
+ intros [rs1 [EX1 [RES1 AG1]]].
+ set (rs2 := nextinstr (rs1#(ireg_of res) <- (rs1#(reg_of_crbit bit)))).
+ destruct isset.
+ exists rs2.
+ split. apply exec_straight_trans with k1 rs1 m. assumption.
+ unfold k1. apply exec_straight_one.
+ reflexivity. reflexivity.
+ unfold rs2. rewrite RES1. auto with ppcgen.
+ exists (nextinstr (rs2#(ireg_of res) <- (eval_condition_total c ms##args))).
+ split. apply exec_straight_trans with k1 rs1 m. assumption.
+ unfold k1. apply exec_straight_two with rs2 m.
+ reflexivity. simpl.
+ replace (Val.xor (rs2 (ireg_of res)) (Vint Int.one))
+ with (eval_condition_total c ms##args).
+ reflexivity.
+ unfold rs2. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss.
+ rewrite RES1. apply Val.notbool_xor. apply eval_condition_total_is_bool.
+ reflexivity. reflexivity.
+ unfold rs2. auto with ppcgen.
+Qed.
+
+Lemma transl_load_store_correct:
+ forall (mk1: constant -> ireg -> instruction) (mk2: ireg -> ireg -> instruction)
+ addr args k ms sp rs m ms' m',
+ (forall cst (r1: ireg) (rs1: regset) k,
+ eval_addressing_total ge sp addr (map ms args) = Val.add rs1#r1 (const_low ge cst) ->
+ agree ms sp rs1 ->
+ r1 <> GPR0 ->
+ exists rs',
+ exec_straight (mk1 cst r1 :: k) rs1 m k rs' m' /\
+ agree ms' sp rs') ->
+ (forall (r1 r2: ireg) (rs1: regset) k,
+ eval_addressing_total ge sp addr (map ms args) = Val.add rs1#r1 rs1#r2 ->
+ agree ms sp rs1 ->
+ exists rs',
+ exec_straight (mk2 r1 r2 :: k) rs1 m k rs' m' /\
+ agree ms' sp rs') ->
+ agree ms sp rs ->
+ map mreg_type args = type_of_addressing addr ->
+ exists rs',
+ exec_straight (transl_load_store mk1 mk2 addr args k) rs m
+ k rs' m'
+ /\ agree ms' sp rs'.
+Proof.
+ intros. destruct addr; simpl in H2; TypeInv; simpl.
+ (* Aindexed *)
+ case (ireg_eq (ireg_of t) GPR0); intro.
+ (* Aindexed from GPR0 *)
+ set (rs1 := nextinstr (rs#GPR12 <- (ms t))).
+ set (rs2 := nextinstr (rs1#GPR12 <- (Val.add (ms t) (Vint (Int.shl (high_s i) (Int.repr 16)))))).
+ assert (ADDR: eval_addressing_total ge sp (Aindexed i) ms##(t :: nil) =
+ Val.add rs2#GPR12 (const_low ge (Cint (low_s i)))).
+ simpl. unfold rs2. rewrite nextinstr_inv. rewrite Pregmap.gss.
+ rewrite Val.add_assoc. simpl. rewrite low_high_s. auto.
+ discriminate.
+ assert (AG: agree ms sp rs2). unfold rs2, rs1; auto 6 with ppcgen.
+ assert (NOT0: GPR12 <> GPR0). discriminate.
+ generalize (H _ _ _ k ADDR AG NOT0).
+ intros [rs' [EX' AG']].
+ exists rs'. split.
+ apply exec_straight_trans with (mk1 (Cint (low_s i)) GPR12 :: k) rs2 m.
+ apply exec_straight_two with rs1 m.
+ unfold rs1. rewrite (ireg_val ms sp rs); auto.
+ unfold rs2. replace (ms t) with (rs1#GPR12). auto.
+ unfold rs1. rewrite nextinstr_inv. apply Pregmap.gss. discriminate.
+ reflexivity. reflexivity.
+ assumption. assumption.
+ (* Aindexed short *)
+ case (Int.eq (high_s i) Int.zero).
+ assert (ADDR: eval_addressing_total ge sp (Aindexed i) ms##(t :: nil) =
+ Val.add rs#(ireg_of t) (const_low ge (Cint i))).
+ simpl. rewrite (ireg_val ms sp rs); auto.
+ generalize (H _ _ _ k ADDR H1 n). intros [rs' [EX' AG']].
+ exists rs'. split. auto. auto.
+ (* Aindexed long *)
+ set (rs1 := nextinstr (rs#GPR12 <- (Val.add (ms t) (Vint (Int.shl (high_s i) (Int.repr 16)))))).
+ assert (ADDR: eval_addressing_total ge sp (Aindexed i) ms##(t :: nil) =
+ Val.add rs1#GPR12 (const_low ge (Cint (low_s i)))).
+ simpl. unfold rs1. rewrite nextinstr_inv. rewrite Pregmap.gss.
+ rewrite Val.add_assoc. simpl. rewrite low_high_s. auto.
+ discriminate.
+ assert (AG: agree ms sp rs1). unfold rs1; auto with ppcgen.
+ assert (NOT0: GPR12 <> GPR0). discriminate.
+ generalize (H _ _ _ k ADDR AG NOT0). intros [rs' [EX' AG']].
+ exists rs'. split. apply exec_straight_step with rs1 m.
+ simpl. rewrite gpr_or_zero_not_zero; auto.
+ rewrite <- (ireg_val ms sp rs); auto. reflexivity.
+ assumption. assumption.
+ (* Aindexed2 *)
+ apply H0.
+ simpl. repeat (rewrite (ireg_val ms sp rs); auto). auto.
+ (* Aglobal *)
+ set (rs1 := nextinstr (rs#GPR12 <- (const_high ge (Csymbol_high i i0)))).
+ assert (ADDR: eval_addressing_total ge sp (Aglobal i i0) ms##nil =
+ Val.add rs1#GPR12 (const_low ge (Csymbol_low i i0))).
+ simpl. unfold rs1. rewrite nextinstr_inv. rewrite Pregmap.gss.
+ unfold const_high, const_low.
+ set (v := symbol_offset ge i i0).
+ symmetry. rewrite Val.add_commut. unfold v. apply low_high_half.
+ discriminate.
+ assert (AG: agree ms sp rs1). unfold rs1; auto with ppcgen.
+ assert (NOT0: GPR12 <> GPR0). discriminate.
+ generalize (H _ _ _ k ADDR AG NOT0). intros [rs' [EX' AG']].
+ exists rs'. split. apply exec_straight_step with rs1 m.
+ unfold exec_instr. rewrite gpr_or_zero_zero.
+ rewrite Val.add_commut. unfold const_high.
+ rewrite high_half_zero.
+ reflexivity. reflexivity.
+ assumption. assumption.
+ (* Abased *)
+ assert (COMMON:
+ forall (rs1: regset) r,
+ r <> GPR0 ->
+ ms t = rs1#r ->
+ agree ms sp rs1 ->
+ exists rs',
+ exec_straight
+ (Paddis GPR12 r (Csymbol_high i i0)
+ :: mk1 (Csymbol_low i i0) GPR12 :: k) rs1 m k rs' m'
+ /\ agree ms' sp rs').
+ intros.
+ set (rs2 := nextinstr (rs1#GPR12 <- (Val.add (ms t) (const_high ge (Csymbol_high i i0))))).
+ assert (ADDR: eval_addressing_total ge sp (Abased i i0) ms##(t::nil) =
+ Val.add rs2#GPR12 (const_low ge (Csymbol_low i i0))).
+ simpl. unfold rs2. rewrite nextinstr_inv. rewrite Pregmap.gss.
+ unfold const_high.
+ set (v := symbol_offset ge i i0).
+ rewrite Val.add_assoc.
+ rewrite (Val.add_commut (high_half v)).
+ unfold v. rewrite low_high_half. apply Val.add_commut.
+ discriminate.
+ assert (AG: agree ms sp rs2). unfold rs2; auto with ppcgen.
+ assert (NOT0: GPR12 <> GPR0). discriminate.
+ generalize (H _ _ _ k ADDR AG NOT0). intros [rs' [EX' AG']].
+ exists rs'. split. apply exec_straight_step with rs2 m.
+ unfold exec_instr. rewrite gpr_or_zero_not_zero; auto.
+ rewrite <- H3. reflexivity. reflexivity.
+ assumption. assumption.
+ case (ireg_eq (ireg_of t) GPR0); intro.
+ set (rs1 := nextinstr (rs#GPR12 <- (ms t))).
+ assert (R1: GPR12 <> GPR0). discriminate.
+ assert (R2: ms t = rs1 GPR12).
+ unfold rs1. rewrite nextinstr_inv. rewrite Pregmap.gss; auto.
+ discriminate.
+ assert (R3: agree ms sp rs1). unfold rs1; auto with ppcgen.
+ generalize (COMMON rs1 GPR12 R1 R2 R3). intros [rs' [EX' AG']].
+ exists rs'. split.
+ apply exec_straight_step with rs1 m.
+ unfold rs1. rewrite (ireg_val ms sp rs); auto. reflexivity.
+ assumption. assumption.
+ apply COMMON; auto. eapply ireg_val; eauto.
+ (* Ainstack *)
+ case (Int.eq (high_s i) Int.zero).
+ apply H. simpl. rewrite (sp_val ms sp rs); auto. auto.
+ discriminate.
+ set (rs1 := nextinstr (rs#GPR12 <- (Val.add sp (Vint (Int.shl (high_s i) (Int.repr 16)))))).
+ assert (ADDR: eval_addressing_total ge sp (Ainstack i) ms##nil =
+ Val.add rs1#GPR12 (const_low ge (Cint (low_s i)))).
+ simpl. unfold rs1. rewrite nextinstr_inv. rewrite Pregmap.gss.
+ rewrite Val.add_assoc. decEq. simpl. rewrite low_high_s. auto.
+ discriminate.
+ assert (AG: agree ms sp rs1). unfold rs1; auto with ppcgen.
+ assert (NOT0: GPR12 <> GPR0). discriminate.
+ generalize (H _ _ _ k ADDR AG NOT0). intros [rs' [EX' AG']].
+ exists rs'. split. apply exec_straight_step with rs1 m.
+ simpl. rewrite gpr_or_zero_not_zero.
+ unfold rs1. rewrite (sp_val ms sp rs). reflexivity.
+ auto. discriminate. reflexivity. assumption. assumption.
+Qed.
+
+(** Translation of memory loads. *)
+
+Lemma transl_load_correct:
+ forall (mk1: constant -> ireg -> instruction) (mk2: ireg -> ireg -> instruction)
+ chunk addr args k ms sp rs m dst a v,
+ (forall cst (r1: ireg) (rs1: regset),
+ exec_instr ge fn (mk1 cst r1) rs1 m =
+ load1 ge chunk (preg_of dst) cst r1 rs1 m) ->
+ (forall (r1 r2: ireg) (rs1: regset),
+ exec_instr ge fn (mk2 r1 r2) rs1 m =
+ load2 chunk (preg_of dst) r1 r2 rs1 m) ->
+ agree ms sp rs ->
+ map mreg_type args = type_of_addressing addr ->
+ eval_addressing ge sp addr (map ms args) = Some a ->
+ Mem.loadv chunk m a = Some v ->
+ exists rs',
+ exec_straight (transl_load_store mk1 mk2 addr args k) rs m
+ k rs' m
+ /\ agree (Regmap.set dst v ms) sp rs'.
+Proof.
+ intros. apply transl_load_store_correct with ms.
+ intros. exists (nextinstr (rs1#(preg_of dst) <- v)).
+ split. apply exec_straight_one. rewrite H.
+ unfold load1. rewrite gpr_or_zero_not_zero; auto.
+ rewrite <- (eval_addressing_weaken _ _ _ _ H3) in H4.
+ rewrite H5 in H4. rewrite H4. auto.
+ auto with ppcgen. auto with ppcgen.
+ intros. exists (nextinstr (rs1#(preg_of dst) <- v)).
+ split. apply exec_straight_one. rewrite H0.
+ unfold load2.
+ rewrite <- (eval_addressing_weaken _ _ _ _ H3) in H4.
+ rewrite H5 in H4. rewrite H4. auto.
+ auto with ppcgen. auto with ppcgen.
+ auto. auto.
+Qed.
+
+(** Translation of memory stores. *)
+
+Lemma transl_store_correct:
+ forall (mk1: constant -> ireg -> instruction) (mk2: ireg -> ireg -> instruction)
+ chunk addr args k ms sp rs m src a m',
+ (forall cst (r1: ireg) (rs1: regset),
+ exec_instr ge fn (mk1 cst r1) rs1 m =
+ store1 ge chunk (preg_of src) cst r1 rs1 m) ->
+ (forall (r1 r2: ireg) (rs1: regset),
+ exec_instr ge fn (mk2 r1 r2) rs1 m =
+ store2 chunk (preg_of src) r1 r2 rs1 m) ->
+ agree ms sp rs ->
+ map mreg_type args = type_of_addressing addr ->
+ eval_addressing ge sp addr (map ms args) = Some a ->
+ Mem.storev chunk m a (ms src) = Some m' ->
+ exists rs',
+ exec_straight (transl_load_store mk1 mk2 addr args k) rs m
+ k rs' m'
+ /\ agree ms sp rs'.
+Proof.
+ intros. apply transl_load_store_correct with ms.
+ intros. exists (nextinstr rs1).
+ split. apply exec_straight_one. rewrite H.
+ unfold store1. rewrite gpr_or_zero_not_zero; auto.
+ rewrite <- (eval_addressing_weaken _ _ _ _ H3) in H4.
+ rewrite H5 in H4. elim H6; intros. rewrite H9 in H4.
+ rewrite H4. auto.
+ auto with ppcgen. auto with ppcgen.
+ intros. exists (nextinstr rs1).
+ split. apply exec_straight_one. rewrite H0.
+ unfold store2.
+ rewrite <- (eval_addressing_weaken _ _ _ _ H3) in H4.
+ rewrite H5 in H4. elim H6; intros. rewrite H8 in H4.
+ rewrite H4. auto.
+ auto with ppcgen. auto with ppcgen.
+ auto. auto.
+Qed.
+
+(** Translation of allocations *)
+
+Lemma transl_alloc_correct:
+ forall ms sp rs sz m m' blk k,
+ agree ms sp rs ->
+ ms Conventions.loc_alloc_argument = Vint sz ->
+ Mem.alloc m 0 (Int.signed sz) = (m', blk) ->
+ let ms' := Regmap.set Conventions.loc_alloc_result (Vptr blk Int.zero) ms in
+ exists rs',
+ exec_straight (Pallocblock :: k) rs m k rs' m'
+ /\ agree ms' sp rs'.
+Proof.
+ intros.
+ pose (rs' := nextinstr (rs#GPR3 <- (Vptr blk Int.zero) #LR <- (Val.add rs#PC Vone))).
+ exists rs'; split.
+ apply exec_straight_one. unfold exec_instr.
+ generalize (preg_val _ _ _ Conventions.loc_alloc_argument H).
+ unfold preg_of; intro. simpl in H2. rewrite <- H2. rewrite H0.
+ rewrite H1. reflexivity.
+ reflexivity.
+ unfold ms', rs'. apply agree_nextinstr. apply agree_set_other.
+ change (IR GPR3) with (preg_of Conventions.loc_alloc_result).
+ apply agree_set_mreg. auto.
+ simpl. tauto.
+Qed.
+
+End STRAIGHTLINE.
+
diff --git a/powerpc/Asmgenretaddr.v b/powerpc/Asmgenretaddr.v
new file mode 100644
index 00000000..23bd186e
--- /dev/null
+++ b/powerpc/Asmgenretaddr.v
@@ -0,0 +1,188 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Predictor for return addresses in generated PPC code.
+
+ The [return_address_offset] predicate defined here is used in the
+ concrete semantics for Mach (module [Machconcr]) to determine the
+ return addresses that are stored in activation records. *)
+
+Require Import Coqlib.
+Require Import Maps.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Mem.
+Require Import Globalenvs.
+Require Import Op.
+Require Import Locations.
+Require Import Mach.
+Require Import Asm.
+Require Import Asmgen.
+
+(** The ``code tail'' of an instruction list [c] is the list of instructions
+ starting at PC [pos]. *)
+
+Inductive code_tail: Z -> code -> code -> Prop :=
+ | code_tail_0: forall c,
+ code_tail 0 c c
+ | code_tail_S: forall pos i c1 c2,
+ code_tail pos c1 c2 ->
+ code_tail (pos + 1) (i :: c1) c2.
+
+Lemma code_tail_pos:
+ forall pos c1 c2, code_tail pos c1 c2 -> pos >= 0.
+Proof.
+ induction 1. omega. omega.
+Qed.
+
+(** Consider a Mach function [f] and a sequence [c] of Mach instructions
+ representing the Mach code that remains to be executed after a
+ function call returns. The predicate [return_address_offset f c ofs]
+ holds if [ofs] is the integer offset of the PPC instruction
+ following the call in the PPC code obtained by translating the
+ code of [f]. Graphically:
+<<
+ Mach function f |--------- Mcall ---------|
+ Mach code c | |--------|
+ | \ \
+ | \ \
+ | \ \
+ PPC code | |--------|
+ PPC function |--------------- Pbl ---------|
+
+ <-------- ofs ------->
+>>
+*)
+
+Inductive return_address_offset: Mach.function -> Mach.code -> int -> Prop :=
+ | return_address_offset_intro:
+ forall c f ofs,
+ code_tail ofs (transl_function f) (transl_code f c) ->
+ return_address_offset f c (Int.repr ofs).
+
+(** We now show that such an offset always exists if the Mach code [c]
+ is a suffix of [f.(fn_code)]. This holds because the translation
+ from Mach to PPC is compositional: each Mach instruction becomes
+ zero, one or several PPC instructions, but the order of instructions
+ is preserved. *)
+
+Lemma is_tail_code_tail:
+ forall c1 c2, is_tail c1 c2 -> exists ofs, code_tail ofs c2 c1.
+Proof.
+ induction 1. exists 0; constructor.
+ destruct IHis_tail as [ofs CT]. exists (ofs + 1); constructor; auto.
+Qed.
+
+Hint Resolve is_tail_refl: ppcretaddr.
+
+Ltac IsTail :=
+ auto with ppcretaddr;
+ match goal with
+ | [ |- is_tail _ (_ :: _) ] => constructor; IsTail
+ | [ |- is_tail _ (match ?x with true => _ | false => _ end) ] => destruct x; IsTail
+ | [ |- is_tail _ (match ?x with left _ => _ | right _ => _ end) ] => destruct x; IsTail
+ | [ |- is_tail _ (match ?x with nil => _ | _ :: _ => _ end) ] => destruct x; IsTail
+ | [ |- is_tail _ (match ?x with Tint => _ | Tfloat => _ end) ] => destruct x; IsTail
+ | [ |- is_tail _ (?f _ _ _ _ _ _ ?k) ] => apply is_tail_trans with k; IsTail
+ | [ |- is_tail _ (?f _ _ _ _ _ ?k) ] => apply is_tail_trans with k; IsTail
+ | [ |- is_tail _ (?f _ _ _ _ ?k) ] => apply is_tail_trans with k; IsTail
+ | [ |- is_tail _ (?f _ _ _ ?k) ] => apply is_tail_trans with k; IsTail
+ | [ |- is_tail _ (?f _ _ ?k) ] => apply is_tail_trans with k; IsTail
+ | _ => idtac
+ end.
+
+Lemma loadimm_tail:
+ forall r n k, is_tail k (loadimm r n k).
+Proof. unfold loadimm; intros; IsTail. Qed.
+Hint Resolve loadimm_tail: ppcretaddr.
+
+Lemma addimm_tail:
+ forall r1 r2 n k, is_tail k (addimm r1 r2 n k).
+Proof. unfold addimm, addimm_1, addimm_2; intros; IsTail. Qed.
+Hint Resolve addimm_tail: ppcretaddr.
+
+Lemma andimm_tail:
+ forall r1 r2 n k, is_tail k (andimm r1 r2 n k).
+Proof. unfold andimm; intros; IsTail. Qed.
+Hint Resolve andimm_tail: ppcretaddr.
+
+Lemma orimm_tail:
+ forall r1 r2 n k, is_tail k (orimm r1 r2 n k).
+Proof. unfold orimm; intros; IsTail. Qed.
+Hint Resolve orimm_tail: ppcretaddr.
+
+Lemma xorimm_tail:
+ forall r1 r2 n k, is_tail k (xorimm r1 r2 n k).
+Proof. unfold xorimm; intros; IsTail. Qed.
+Hint Resolve xorimm_tail: ppcretaddr.
+
+Lemma loadind_tail:
+ forall base ofs ty dst k, is_tail k (loadind base ofs ty dst k).
+Proof. unfold loadind; intros; IsTail. Qed.
+Hint Resolve loadind_tail: ppcretaddr.
+
+Lemma storeind_tail:
+ forall src base ofs ty k, is_tail k (storeind src base ofs ty k).
+Proof. unfold storeind; intros; IsTail. Qed.
+Hint Resolve storeind_tail: ppcretaddr.
+
+Lemma floatcomp_tail:
+ forall cmp r1 r2 k, is_tail k (floatcomp cmp r1 r2 k).
+Proof. unfold floatcomp; intros; destruct cmp; IsTail. Qed.
+Hint Resolve floatcomp_tail: ppcretaddr.
+
+Lemma transl_cond_tail:
+ forall cond args k, is_tail k (transl_cond cond args k).
+Proof. unfold transl_cond; intros; destruct cond; IsTail. Qed.
+Hint Resolve transl_cond_tail: ppcretaddr.
+
+Lemma transl_op_tail:
+ forall op args r k, is_tail k (transl_op op args r k).
+Proof. unfold transl_op; intros; destruct op; IsTail. Qed.
+Hint Resolve transl_op_tail: ppcretaddr.
+
+Lemma transl_load_store_tail:
+ forall mk1 mk2 addr args k,
+ is_tail k (transl_load_store mk1 mk2 addr args k).
+Proof. unfold transl_load_store; intros; destruct addr; IsTail. Qed.
+Hint Resolve transl_load_store_tail: ppcretaddr.
+
+Lemma transl_instr_tail:
+ forall f i k, is_tail k (transl_instr f i k).
+Proof.
+ unfold transl_instr; intros; destruct i; IsTail.
+ destruct m; IsTail.
+ destruct m; IsTail.
+ destruct s0; IsTail.
+ destruct s0; IsTail.
+Qed.
+Hint Resolve transl_instr_tail: ppcretaddr.
+
+Lemma transl_code_tail:
+ forall f c1 c2, is_tail c1 c2 -> is_tail (transl_code f c1) (transl_code f c2).
+Proof.
+ induction 1; simpl. constructor. eapply is_tail_trans; eauto with ppcretaddr.
+Qed.
+
+Lemma return_address_exists:
+ forall f c, is_tail c f.(fn_code) ->
+ exists ra, return_address_offset f c ra.
+Proof.
+ intros. assert (is_tail (transl_code f c) (transl_function f)).
+ unfold transl_function. IsTail. apply transl_code_tail; auto.
+ destruct (is_tail_code_tail _ _ H0) as [ofs A].
+ exists (Int.repr ofs). constructor. auto.
+Qed.
+
+
diff --git a/powerpc/Constprop.v b/powerpc/Constprop.v
new file mode 100644
index 00000000..75fb1486
--- /dev/null
+++ b/powerpc/Constprop.v
@@ -0,0 +1,1093 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Constant propagation over RTL. This is the first of the two
+ optimizations performed at RTL level. It proceeds by a standard
+ dataflow analysis and the corresponding code transformation. *)
+
+Require Import Coqlib.
+Require Import Maps.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Globalenvs.
+Require Import Op.
+Require Import Registers.
+Require Import RTL.
+Require Import Lattice.
+Require Import Kildall.
+
+(** * Static analysis *)
+
+(** To each pseudo-register at each program point, the static analysis
+ associates a compile-time approximation taken from the following set. *)
+
+Inductive approx : Set :=
+ | Novalue: approx (** No value possible, code is unreachable. *)
+ | Unknown: approx (** All values are possible,
+ no compile-time information is available. *)
+ | I: int -> approx (** A known integer value. *)
+ | F: float -> approx (** A known floating-point value. *)
+ | S: ident -> int -> approx.
+ (** The value is the address of the given global
+ symbol plus the given integer offset. *)
+
+(** We equip this set of approximations with a semi-lattice structure.
+ The ordering is inclusion between the sets of values denoted by
+ the approximations. *)
+
+Module Approx <: SEMILATTICE_WITH_TOP.
+ Definition t := approx.
+ Definition eq (x y: t) := (x = y).
+ Definition eq_refl: forall x, eq x x := (@refl_equal t).
+ Definition eq_sym: forall x y, eq x y -> eq y x := (@sym_equal t).
+ Definition eq_trans: forall x y z, eq x y -> eq y z -> eq x z := (@trans_equal t).
+ Lemma eq_dec: forall (x y: t), {x=y} + {x<>y}.
+ Proof.
+ decide equality.
+ apply Int.eq_dec.
+ apply Float.eq_dec.
+ apply Int.eq_dec.
+ apply ident_eq.
+ Qed.
+ Definition beq (x y: t) := if eq_dec x y then true else false.
+ Lemma beq_correct: forall x y, beq x y = true -> x = y.
+ Proof.
+ unfold beq; intros. destruct (eq_dec x y). auto. congruence.
+ Qed.
+ Definition ge (x y: t) : Prop :=
+ x = Unknown \/ y = Novalue \/ x = y.
+ Lemma ge_refl: forall x y, eq x y -> ge x y.
+ Proof.
+ unfold eq, ge; tauto.
+ Qed.
+ Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
+ Proof.
+ unfold ge; intuition congruence.
+ Qed.
+ Lemma ge_compat: forall x x' y y', eq x x' -> eq y y' -> ge x y -> ge x' y'.
+ Proof.
+ unfold eq, ge; intros; congruence.
+ Qed.
+ Definition bot := Novalue.
+ Definition top := Unknown.
+ Lemma ge_bot: forall x, ge x bot.
+ Proof.
+ unfold ge, bot; tauto.
+ Qed.
+ Lemma ge_top: forall x, ge top x.
+ Proof.
+ unfold ge, bot; tauto.
+ Qed.
+ Definition lub (x y: t) : t :=
+ if eq_dec x y then x else
+ match x, y with
+ | Novalue, _ => y
+ | _, Novalue => x
+ | _, _ => Unknown
+ end.
+ Lemma lub_commut: forall x y, eq (lub x y) (lub y x).
+ Proof.
+ unfold lub, eq; intros.
+ case (eq_dec x y); case (eq_dec y x); intros; try congruence.
+ destruct x; destruct y; auto.
+ Qed.
+ Lemma ge_lub_left: forall x y, ge (lub x y) x.
+ Proof.
+ unfold lub; intros.
+ case (eq_dec x y); intro.
+ apply ge_refl. apply eq_refl.
+ destruct x; destruct y; unfold ge; tauto.
+ Qed.
+End Approx.
+
+Module D := LPMap Approx.
+
+(** We now define the abstract interpretations of conditions and operators
+ over this set of approximations. For instance, the abstract interpretation
+ of the operator [Oaddf] applied to two expressions [a] and [b] is
+ [F(Float.add f g)] if [a] and [b] have static approximations [Vfloat f]
+ and [Vfloat g] respectively, and [Unknown] otherwise.
+
+ The static approximations are defined by large pattern-matchings over
+ the approximations of the results. We write these matchings in the
+ indirect style described in file [Cmconstr] to avoid excessive
+ duplication of cases in proofs. *)
+
+(*
+Definition eval_static_condition (cond: condition) (vl: list approx) :=
+ match cond, vl with
+ | Ccomp c, I n1 :: I n2 :: nil => Some(Int.cmp c n1 n2)
+ | Ccompu c, I n1 :: I n2 :: nil => Some(Int.cmpu c n1 n2)
+ | Ccompimm c n, I n1 :: nil => Some(Int.cmp c n1 n)
+ | Ccompuimm c n, I n1 :: nil => Some(Int.cmpu c n1 n)
+ | Ccompf c, F n1 :: F n2 :: nil => Some(Float.cmp c n1 n2)
+ | Cnotcompf c, F n1 :: F n2 :: nil => Some(negb(Float.cmp c n1 n2))
+ | Cmaskzero n, I n1 :: nil => Some(Int.eq (Int.and n1 n) Int.zero)
+ | Cmasknotzero n, n1::nil => Some(negb(Int.eq (Int.and n1 n) Int.zero))
+ | _, _ => None
+ end.
+*)
+
+Inductive eval_static_condition_cases: forall (cond: condition) (vl: list approx), Set :=
+ | eval_static_condition_case1:
+ forall c n1 n2,
+ eval_static_condition_cases (Ccomp c) (I n1 :: I n2 :: nil)
+ | eval_static_condition_case2:
+ forall c n1 n2,
+ eval_static_condition_cases (Ccompu c) (I n1 :: I n2 :: nil)
+ | eval_static_condition_case3:
+ forall c n n1,
+ eval_static_condition_cases (Ccompimm c n) (I n1 :: nil)
+ | eval_static_condition_case4:
+ forall c n n1,
+ eval_static_condition_cases (Ccompuimm c n) (I n1 :: nil)
+ | eval_static_condition_case5:
+ forall c n1 n2,
+ eval_static_condition_cases (Ccompf c) (F n1 :: F n2 :: nil)
+ | eval_static_condition_case6:
+ forall c n1 n2,
+ eval_static_condition_cases (Cnotcompf c) (F n1 :: F n2 :: nil)
+ | eval_static_condition_case7:
+ forall n n1,
+ eval_static_condition_cases (Cmaskzero n) (I n1 :: nil)
+ | eval_static_condition_case8:
+ forall n n1,
+ eval_static_condition_cases (Cmasknotzero n) (I n1 :: nil)
+ | eval_static_condition_default:
+ forall (cond: condition) (vl: list approx),
+ eval_static_condition_cases cond vl.
+
+Definition eval_static_condition_match (cond: condition) (vl: list approx) :=
+ match cond as z1, vl as z2 return eval_static_condition_cases z1 z2 with
+ | Ccomp c, I n1 :: I n2 :: nil =>
+ eval_static_condition_case1 c n1 n2
+ | Ccompu c, I n1 :: I n2 :: nil =>
+ eval_static_condition_case2 c n1 n2
+ | Ccompimm c n, I n1 :: nil =>
+ eval_static_condition_case3 c n n1
+ | Ccompuimm c n, I n1 :: nil =>
+ eval_static_condition_case4 c n n1
+ | Ccompf c, F n1 :: F n2 :: nil =>
+ eval_static_condition_case5 c n1 n2
+ | Cnotcompf c, F n1 :: F n2 :: nil =>
+ eval_static_condition_case6 c n1 n2
+ | Cmaskzero n, I n1 :: nil =>
+ eval_static_condition_case7 n n1
+ | Cmasknotzero n, I n1 :: nil =>
+ eval_static_condition_case8 n n1
+ | cond, vl =>
+ eval_static_condition_default cond vl
+ end.
+
+Definition eval_static_condition (cond: condition) (vl: list approx) :=
+ match eval_static_condition_match cond vl with
+ | eval_static_condition_case1 c n1 n2 =>
+ Some(Int.cmp c n1 n2)
+ | eval_static_condition_case2 c n1 n2 =>
+ Some(Int.cmpu c n1 n2)
+ | eval_static_condition_case3 c n n1 =>
+ Some(Int.cmp c n1 n)
+ | eval_static_condition_case4 c n n1 =>
+ Some(Int.cmpu c n1 n)
+ | eval_static_condition_case5 c n1 n2 =>
+ Some(Float.cmp c n1 n2)
+ | eval_static_condition_case6 c n1 n2 =>
+ Some(negb(Float.cmp c n1 n2))
+ | eval_static_condition_case7 n n1 =>
+ Some(Int.eq (Int.and n1 n) Int.zero)
+ | eval_static_condition_case8 n n1 =>
+ Some(negb(Int.eq (Int.and n1 n) Int.zero))
+ | eval_static_condition_default cond vl =>
+ None
+ end.
+
+(*
+Definition eval_static_operation (op: operation) (vl: list approx) :=
+ match op, vl with
+ | Omove, v1::nil => v1
+ | Ointconst n, nil => I n
+ | Ofloatconst n, nil => F n
+ | Oaddrsymbol s n, nil => S s n
+ | Ocast8signed, I n1 :: nil => I(Int.sign_ext 8 n)
+ | Ocast8unsigned, I n1 :: nil => I(Int.zero_ext 8 n)
+ | Ocast16signed, I n1 :: nil => I(Int.sign_ext 16 n)
+ | Ocast16unsigned, I n1 :: nil => I(Int.zero_ext 16 n)
+ | Oadd, I n1 :: I n2 :: nil => I(Int.add n1 n2)
+ | Oadd, S s1 n1 :: I n2 :: nil => S s1 (Int.add n1 n2)
+ | Oaddimm n, I n1 :: nil => I (Int.add n1 n)
+ | Oaddimm n, S s1 n1 :: nil => S s1 (Int.add n1 n)
+ | Osub, I n1 :: I n2 :: nil => I(Int.sub n1 n2)
+ | Osub, S s1 n1 :: I n2 :: nil => S s1 (Int.sub n1 n2)
+ | Osubimm n, I n1 :: nil => I (Int.sub n n1)
+ | Omul, I n1 :: I n2 :: nil => I(Int.mul n1 n2)
+ | Omulimm n, I n1 :: nil => I(Int.mul n1 n)
+ | Odiv, I n1 :: I n2 :: nil => if Int.eq n2 Int.zero then Unknown else I(Int.divs n1 n2)
+ | Odivu, I n1 :: I n2 :: nil => if Int.eq n2 Int.zero then Unknown else I(Int.divu n1 n2)
+ | Oand, I n1 :: I n2 :: nil => I(Int.and n1 n2)
+ | Oandimm n, I n1 :: nil => I(Int.and n1 n)
+ | Oor, I n1 :: I n2 :: nil => I(Int.or n1 n2)
+ | Oorimm n, I n1 :: nil => I(Int.or n1 n)
+ | Oxor, I n1 :: I n2 :: nil => I(Int.xor n1 n2)
+ | Oxorimm n, I n1 :: nil => I(Int.xor n1 n)
+ | Onand, I n1 :: I n2 :: nil => I(Int.xor (Int.and n1 n2) Int.mone)
+ | Onor, I n1 :: I n2 :: nil => I(Int.xor (Int.or n1 n2) Int.mone)
+ | Onxor, I n1 :: I n2 :: nil => I(Int.xor (Int.xor n1 n2) Int.mone)
+ | Oshl, I n1 :: I n2 :: nil => if Int.ltu n2 (Int.repr 32) then I(Int.shl n1 n2) else Unknown
+ | Oshr, I n1 :: I n2 :: nil => if Int.ltu n2 (Int.repr 32) then I(Int.shr n1 n2) else Unknown
+ | Oshrimm n, I n1 :: nil => if Int.ltu n (Int.repr 32) then I(Int.shr n1 n) else Unknown
+ | Oshrximm n, I n1 :: nil => if Int.ltu n (Int.repr 32) then I(Int.shrx n1 n) else Unknown
+ | Oshru, I n1 :: I n2 :: nil => if Int.ltu n2 (Int.repr 32) then I(Int.shru n1 n2) else Unknown
+ | Orolm amount mask, I n1 :: nil => I(Int.rolm n1 amount mask)
+ | Onegf, F n1 :: nil => F(Float.neg n1)
+ | Oabsf, F n1 :: nil => F(Float.abs n1)
+ | Oaddf, F n1 :: F n2 :: nil => F(Float.add n1 n2)
+ | Osubf, F n1 :: F n2 :: nil => F(Float.sub n1 n2)
+ | Omulf, F n1 :: F n2 :: nil => F(Float.mul n1 n2)
+ | Odivf, F n1 :: F n2 :: nil => F(Float.div n1 n2)
+ | Omuladdf, F n1 :: F n2 :: F n3 :: nil => F(Float.add (Float.mul n1 n2) n3)
+ | Omulsubf, F n1 :: F n2 :: F n3 :: nil => F(Float.sub (Float.mul n1 n2) n3)
+ | Osingleoffloat, F n1 :: nil => F(Float.singleoffloat n1)
+ | Ointoffloat, F n1 :: nil => I(Float.intoffloat n1)
+ | Ointuoffloat, F n1 :: nil => I(Float.intuoffloat n1)
+ | Ofloatofint, I n1 :: nil => F(Float.floatofint n1)
+ | Ofloatofintu, I n1 :: nil => F(Float.floatofintu n1)
+ | Ocmp c, vl =>
+ match eval_static_condition c vl with
+ | None => Unknown
+ | Some b => I(if b then Int.one else Int.zero)
+ end
+ | _, _ => Unknown
+ end.
+*)
+
+Inductive eval_static_operation_cases: forall (op: operation) (vl: list approx), Set :=
+ | eval_static_operation_case1:
+ forall v1,
+ eval_static_operation_cases (Omove) (v1::nil)
+ | eval_static_operation_case2:
+ forall n,
+ eval_static_operation_cases (Ointconst n) (nil)
+ | eval_static_operation_case3:
+ forall n,
+ eval_static_operation_cases (Ofloatconst n) (nil)
+ | eval_static_operation_case4:
+ forall s n,
+ eval_static_operation_cases (Oaddrsymbol s n) (nil)
+ | eval_static_operation_case6:
+ forall n1,
+ eval_static_operation_cases (Ocast8signed) (I n1 :: nil)
+ | eval_static_operation_case7:
+ forall n1,
+ eval_static_operation_cases (Ocast16signed) (I n1 :: nil)
+ | eval_static_operation_case8:
+ forall n1 n2,
+ eval_static_operation_cases (Oadd) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case9:
+ forall s1 n1 n2,
+ eval_static_operation_cases (Oadd) (S s1 n1 :: I n2 :: nil)
+ | eval_static_operation_case11:
+ forall n n1,
+ eval_static_operation_cases (Oaddimm n) (I n1 :: nil)
+ | eval_static_operation_case12:
+ forall n s1 n1,
+ eval_static_operation_cases (Oaddimm n) (S s1 n1 :: nil)
+ | eval_static_operation_case13:
+ forall n1 n2,
+ eval_static_operation_cases (Osub) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case14:
+ forall s1 n1 n2,
+ eval_static_operation_cases (Osub) (S s1 n1 :: I n2 :: nil)
+ | eval_static_operation_case15:
+ forall n n1,
+ eval_static_operation_cases (Osubimm n) (I n1 :: nil)
+ | eval_static_operation_case16:
+ forall n1 n2,
+ eval_static_operation_cases (Omul) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case17:
+ forall n n1,
+ eval_static_operation_cases (Omulimm n) (I n1 :: nil)
+ | eval_static_operation_case18:
+ forall n1 n2,
+ eval_static_operation_cases (Odiv) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case19:
+ forall n1 n2,
+ eval_static_operation_cases (Odivu) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case20:
+ forall n1 n2,
+ eval_static_operation_cases (Oand) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case21:
+ forall n n1,
+ eval_static_operation_cases (Oandimm n) (I n1 :: nil)
+ | eval_static_operation_case22:
+ forall n1 n2,
+ eval_static_operation_cases (Oor) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case23:
+ forall n n1,
+ eval_static_operation_cases (Oorimm n) (I n1 :: nil)
+ | eval_static_operation_case24:
+ forall n1 n2,
+ eval_static_operation_cases (Oxor) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case25:
+ forall n n1,
+ eval_static_operation_cases (Oxorimm n) (I n1 :: nil)
+ | eval_static_operation_case26:
+ forall n1 n2,
+ eval_static_operation_cases (Onand) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case27:
+ forall n1 n2,
+ eval_static_operation_cases (Onor) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case28:
+ forall n1 n2,
+ eval_static_operation_cases (Onxor) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case29:
+ forall n1 n2,
+ eval_static_operation_cases (Oshl) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case30:
+ forall n1 n2,
+ eval_static_operation_cases (Oshr) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case31:
+ forall n n1,
+ eval_static_operation_cases (Oshrimm n) (I n1 :: nil)
+ | eval_static_operation_case32:
+ forall n n1,
+ eval_static_operation_cases (Oshrximm n) (I n1 :: nil)
+ | eval_static_operation_case33:
+ forall n1 n2,
+ eval_static_operation_cases (Oshru) (I n1 :: I n2 :: nil)
+ | eval_static_operation_case34:
+ forall amount mask n1,
+ eval_static_operation_cases (Orolm amount mask) (I n1 :: nil)
+ | eval_static_operation_case35:
+ forall n1,
+ eval_static_operation_cases (Onegf) (F n1 :: nil)
+ | eval_static_operation_case36:
+ forall n1,
+ eval_static_operation_cases (Oabsf) (F n1 :: nil)
+ | eval_static_operation_case37:
+ forall n1 n2,
+ eval_static_operation_cases (Oaddf) (F n1 :: F n2 :: nil)
+ | eval_static_operation_case38:
+ forall n1 n2,
+ eval_static_operation_cases (Osubf) (F n1 :: F n2 :: nil)
+ | eval_static_operation_case39:
+ forall n1 n2,
+ eval_static_operation_cases (Omulf) (F n1 :: F n2 :: nil)
+ | eval_static_operation_case40:
+ forall n1 n2,
+ eval_static_operation_cases (Odivf) (F n1 :: F n2 :: nil)
+ | eval_static_operation_case41:
+ forall n1 n2 n3,
+ eval_static_operation_cases (Omuladdf) (F n1 :: F n2 :: F n3 :: nil)
+ | eval_static_operation_case42:
+ forall n1 n2 n3,
+ eval_static_operation_cases (Omulsubf) (F n1 :: F n2 :: F n3 :: nil)
+ | eval_static_operation_case43:
+ forall n1,
+ eval_static_operation_cases (Osingleoffloat) (F n1 :: nil)
+ | eval_static_operation_case44:
+ forall n1,
+ eval_static_operation_cases (Ointoffloat) (F n1 :: nil)
+ | eval_static_operation_case45:
+ forall n1,
+ eval_static_operation_cases (Ofloatofint) (I n1 :: nil)
+ | eval_static_operation_case46:
+ forall n1,
+ eval_static_operation_cases (Ofloatofintu) (I n1 :: nil)
+ | eval_static_operation_case47:
+ forall c vl,
+ eval_static_operation_cases (Ocmp c) (vl)
+ | eval_static_operation_case48:
+ forall n1,
+ eval_static_operation_cases (Ocast8unsigned) (I n1 :: nil)
+ | eval_static_operation_case49:
+ forall n1,
+ eval_static_operation_cases (Ocast16unsigned) (I n1 :: nil)
+ | eval_static_operation_case50:
+ forall n1,
+ eval_static_operation_cases (Ointuoffloat) (F n1 :: nil)
+ | eval_static_operation_default:
+ forall (op: operation) (vl: list approx),
+ eval_static_operation_cases op vl.
+
+Definition eval_static_operation_match (op: operation) (vl: list approx) :=
+ match op as z1, vl as z2 return eval_static_operation_cases z1 z2 with
+ | Omove, v1::nil =>
+ eval_static_operation_case1 v1
+ | Ointconst n, nil =>
+ eval_static_operation_case2 n
+ | Ofloatconst n, nil =>
+ eval_static_operation_case3 n
+ | Oaddrsymbol s n, nil =>
+ eval_static_operation_case4 s n
+ | Ocast8signed, I n1 :: nil =>
+ eval_static_operation_case6 n1
+ | Ocast16signed, I n1 :: nil =>
+ eval_static_operation_case7 n1
+ | Oadd, I n1 :: I n2 :: nil =>
+ eval_static_operation_case8 n1 n2
+ | Oadd, S s1 n1 :: I n2 :: nil =>
+ eval_static_operation_case9 s1 n1 n2
+ | Oaddimm n, I n1 :: nil =>
+ eval_static_operation_case11 n n1
+ | Oaddimm n, S s1 n1 :: nil =>
+ eval_static_operation_case12 n s1 n1
+ | Osub, I n1 :: I n2 :: nil =>
+ eval_static_operation_case13 n1 n2
+ | Osub, S s1 n1 :: I n2 :: nil =>
+ eval_static_operation_case14 s1 n1 n2
+ | Osubimm n, I n1 :: nil =>
+ eval_static_operation_case15 n n1
+ | Omul, I n1 :: I n2 :: nil =>
+ eval_static_operation_case16 n1 n2
+ | Omulimm n, I n1 :: nil =>
+ eval_static_operation_case17 n n1
+ | Odiv, I n1 :: I n2 :: nil =>
+ eval_static_operation_case18 n1 n2
+ | Odivu, I n1 :: I n2 :: nil =>
+ eval_static_operation_case19 n1 n2
+ | Oand, I n1 :: I n2 :: nil =>
+ eval_static_operation_case20 n1 n2
+ | Oandimm n, I n1 :: nil =>
+ eval_static_operation_case21 n n1
+ | Oor, I n1 :: I n2 :: nil =>
+ eval_static_operation_case22 n1 n2
+ | Oorimm n, I n1 :: nil =>
+ eval_static_operation_case23 n n1
+ | Oxor, I n1 :: I n2 :: nil =>
+ eval_static_operation_case24 n1 n2
+ | Oxorimm n, I n1 :: nil =>
+ eval_static_operation_case25 n n1
+ | Onand, I n1 :: I n2 :: nil =>
+ eval_static_operation_case26 n1 n2
+ | Onor, I n1 :: I n2 :: nil =>
+ eval_static_operation_case27 n1 n2
+ | Onxor, I n1 :: I n2 :: nil =>
+ eval_static_operation_case28 n1 n2
+ | Oshl, I n1 :: I n2 :: nil =>
+ eval_static_operation_case29 n1 n2
+ | Oshr, I n1 :: I n2 :: nil =>
+ eval_static_operation_case30 n1 n2
+ | Oshrimm n, I n1 :: nil =>
+ eval_static_operation_case31 n n1
+ | Oshrximm n, I n1 :: nil =>
+ eval_static_operation_case32 n n1
+ | Oshru, I n1 :: I n2 :: nil =>
+ eval_static_operation_case33 n1 n2
+ | Orolm amount mask, I n1 :: nil =>
+ eval_static_operation_case34 amount mask n1
+ | Onegf, F n1 :: nil =>
+ eval_static_operation_case35 n1
+ | Oabsf, F n1 :: nil =>
+ eval_static_operation_case36 n1
+ | Oaddf, F n1 :: F n2 :: nil =>
+ eval_static_operation_case37 n1 n2
+ | Osubf, F n1 :: F n2 :: nil =>
+ eval_static_operation_case38 n1 n2
+ | Omulf, F n1 :: F n2 :: nil =>
+ eval_static_operation_case39 n1 n2
+ | Odivf, F n1 :: F n2 :: nil =>
+ eval_static_operation_case40 n1 n2
+ | Omuladdf, F n1 :: F n2 :: F n3 :: nil =>
+ eval_static_operation_case41 n1 n2 n3
+ | Omulsubf, F n1 :: F n2 :: F n3 :: nil =>
+ eval_static_operation_case42 n1 n2 n3
+ | Osingleoffloat, F n1 :: nil =>
+ eval_static_operation_case43 n1
+ | Ointoffloat, F n1 :: nil =>
+ eval_static_operation_case44 n1
+ | Ofloatofint, I n1 :: nil =>
+ eval_static_operation_case45 n1
+ | Ofloatofintu, I n1 :: nil =>
+ eval_static_operation_case46 n1
+ | Ocmp c, vl =>
+ eval_static_operation_case47 c vl
+ | Ocast8unsigned, I n1 :: nil =>
+ eval_static_operation_case48 n1
+ | Ocast16unsigned, I n1 :: nil =>
+ eval_static_operation_case49 n1
+ | Ointuoffloat, F n1 :: nil =>
+ eval_static_operation_case50 n1
+ | op, vl =>
+ eval_static_operation_default op vl
+ end.
+
+Definition eval_static_operation (op: operation) (vl: list approx) :=
+ match eval_static_operation_match op vl with
+ | eval_static_operation_case1 v1 =>
+ v1
+ | eval_static_operation_case2 n =>
+ I n
+ | eval_static_operation_case3 n =>
+ F n
+ | eval_static_operation_case4 s n =>
+ S s n
+ | eval_static_operation_case6 n1 =>
+ I(Int.sign_ext 8 n1)
+ | eval_static_operation_case7 n1 =>
+ I(Int.sign_ext 16 n1)
+ | eval_static_operation_case8 n1 n2 =>
+ I(Int.add n1 n2)
+ | eval_static_operation_case9 s1 n1 n2 =>
+ S s1 (Int.add n1 n2)
+ | eval_static_operation_case11 n n1 =>
+ I (Int.add n1 n)
+ | eval_static_operation_case12 n s1 n1 =>
+ S s1 (Int.add n1 n)
+ | eval_static_operation_case13 n1 n2 =>
+ I(Int.sub n1 n2)
+ | eval_static_operation_case14 s1 n1 n2 =>
+ S s1 (Int.sub n1 n2)
+ | eval_static_operation_case15 n n1 =>
+ I (Int.sub n n1)
+ | eval_static_operation_case16 n1 n2 =>
+ I(Int.mul n1 n2)
+ | eval_static_operation_case17 n n1 =>
+ I(Int.mul n1 n)
+ | eval_static_operation_case18 n1 n2 =>
+ if Int.eq n2 Int.zero then Unknown else I(Int.divs n1 n2)
+ | eval_static_operation_case19 n1 n2 =>
+ if Int.eq n2 Int.zero then Unknown else I(Int.divu n1 n2)
+ | eval_static_operation_case20 n1 n2 =>
+ I(Int.and n1 n2)
+ | eval_static_operation_case21 n n1 =>
+ I(Int.and n1 n)
+ | eval_static_operation_case22 n1 n2 =>
+ I(Int.or n1 n2)
+ | eval_static_operation_case23 n n1 =>
+ I(Int.or n1 n)
+ | eval_static_operation_case24 n1 n2 =>
+ I(Int.xor n1 n2)
+ | eval_static_operation_case25 n n1 =>
+ I(Int.xor n1 n)
+ | eval_static_operation_case26 n1 n2 =>
+ I(Int.xor (Int.and n1 n2) Int.mone)
+ | eval_static_operation_case27 n1 n2 =>
+ I(Int.xor (Int.or n1 n2) Int.mone)
+ | eval_static_operation_case28 n1 n2 =>
+ I(Int.xor (Int.xor n1 n2) Int.mone)
+ | eval_static_operation_case29 n1 n2 =>
+ if Int.ltu n2 (Int.repr 32) then I(Int.shl n1 n2) else Unknown
+ | eval_static_operation_case30 n1 n2 =>
+ if Int.ltu n2 (Int.repr 32) then I(Int.shr n1 n2) else Unknown
+ | eval_static_operation_case31 n n1 =>
+ if Int.ltu n (Int.repr 32) then I(Int.shr n1 n) else Unknown
+ | eval_static_operation_case32 n n1 =>
+ if Int.ltu n (Int.repr 32) then I(Int.shrx n1 n) else Unknown
+ | eval_static_operation_case33 n1 n2 =>
+ if Int.ltu n2 (Int.repr 32) then I(Int.shru n1 n2) else Unknown
+ | eval_static_operation_case34 amount mask n1 =>
+ I(Int.rolm n1 amount mask)
+ | eval_static_operation_case35 n1 =>
+ F(Float.neg n1)
+ | eval_static_operation_case36 n1 =>
+ F(Float.abs n1)
+ | eval_static_operation_case37 n1 n2 =>
+ F(Float.add n1 n2)
+ | eval_static_operation_case38 n1 n2 =>
+ F(Float.sub n1 n2)
+ | eval_static_operation_case39 n1 n2 =>
+ F(Float.mul n1 n2)
+ | eval_static_operation_case40 n1 n2 =>
+ F(Float.div n1 n2)
+ | eval_static_operation_case41 n1 n2 n3 =>
+ F(Float.add (Float.mul n1 n2) n3)
+ | eval_static_operation_case42 n1 n2 n3 =>
+ F(Float.sub (Float.mul n1 n2) n3)
+ | eval_static_operation_case43 n1 =>
+ F(Float.singleoffloat n1)
+ | eval_static_operation_case44 n1 =>
+ I(Float.intoffloat n1)
+ | eval_static_operation_case45 n1 =>
+ F(Float.floatofint n1)
+ | eval_static_operation_case46 n1 =>
+ F(Float.floatofintu n1)
+ | eval_static_operation_case47 c vl =>
+ match eval_static_condition c vl with
+ | None => Unknown
+ | Some b => I(if b then Int.one else Int.zero)
+ end
+ | eval_static_operation_case48 n1 =>
+ I(Int.zero_ext 8 n1)
+ | eval_static_operation_case49 n1 =>
+ I(Int.zero_ext 16 n1)
+ | eval_static_operation_case50 n1 =>
+ I(Float.intuoffloat n1)
+ | eval_static_operation_default op vl =>
+ Unknown
+ end.
+
+(** The transfer function for the dataflow analysis is straightforward:
+ for [Iop] instructions, we set the approximation of the destination
+ register to the result of executing abstractly the operation;
+ for [Iload] and [Icall], we set the approximation of the destination
+ to [Unknown]. *)
+
+Definition approx_regs (rl: list reg) (approx: D.t) :=
+ List.map (fun r => D.get r approx) rl.
+
+Definition transfer (f: function) (pc: node) (before: D.t) :=
+ match f.(fn_code)!pc with
+ | None => before
+ | Some i =>
+ match i with
+ | Inop s =>
+ before
+ | Iop op args res s =>
+ let a := eval_static_operation op (approx_regs args before) in
+ D.set res a before
+ | Iload chunk addr args dst s =>
+ D.set dst Unknown before
+ | Istore chunk addr args src s =>
+ before
+ | Icall sig ros args res s =>
+ D.set res Unknown before
+ | Itailcall sig ros args =>
+ before
+ | Ialloc arg res s =>
+ D.set res Unknown before
+ | Icond cond args ifso ifnot =>
+ before
+ | Ireturn optarg =>
+ before
+ end
+ end.
+
+(** The static analysis itself is then an instantiation of Kildall's
+ generic solver for forward dataflow inequations. [analyze f]
+ returns a mapping from program points to mappings of pseudo-registers
+ to approximations. It can fail to reach a fixpoint in a reasonable
+ number of iterations, in which case [None] is returned. *)
+
+Module DS := Dataflow_Solver(D)(NodeSetForward).
+
+Definition analyze (f: RTL.function): PMap.t D.t :=
+ match DS.fixpoint (successors f) f.(fn_nextpc) (transfer f)
+ ((f.(fn_entrypoint), D.top) :: nil) with
+ | None => PMap.init D.top
+ | Some res => res
+ end.
+
+(** * Code transformation *)
+
+(** ** Operator strength reduction *)
+
+(** We now define auxiliary functions for strength reduction of
+ operators and addressing modes: replacing an operator with a cheaper
+ one if some of its arguments are statically known. These are again
+ large pattern-matchings expressed in indirect style. *)
+
+Section STRENGTH_REDUCTION.
+
+Variable approx: D.t.
+
+Definition intval (r: reg) : option int :=
+ match D.get r approx with I n => Some n | _ => None end.
+
+Inductive cond_strength_reduction_cases: condition -> list reg -> Set :=
+ | csr_case1:
+ forall c r1 r2,
+ cond_strength_reduction_cases (Ccomp c) (r1 :: r2 :: nil)
+ | csr_case2:
+ forall c r1 r2,
+ cond_strength_reduction_cases (Ccompu c) (r1 :: r2 :: nil)
+ | csr_default:
+ forall c rl,
+ cond_strength_reduction_cases c rl.
+
+Definition cond_strength_reduction_match (cond: condition) (rl: list reg) :=
+ match cond as x, rl as y return cond_strength_reduction_cases x y with
+ | Ccomp c, r1 :: r2 :: nil =>
+ csr_case1 c r1 r2
+ | Ccompu c, r1 :: r2 :: nil =>
+ csr_case2 c r1 r2
+ | cond, rl =>
+ csr_default cond rl
+ end.
+
+Definition cond_strength_reduction
+ (cond: condition) (args: list reg) : condition * list reg :=
+ match cond_strength_reduction_match cond args with
+ | csr_case1 c r1 r2 =>
+ match intval r1, intval r2 with
+ | Some n, _ =>
+ (Ccompimm (swap_comparison c) n, r2 :: nil)
+ | _, Some n =>
+ (Ccompimm c n, r1 :: nil)
+ | _, _ =>
+ (cond, args)
+ end
+ | csr_case2 c r1 r2 =>
+ match intval r1, intval r2 with
+ | Some n, _ =>
+ (Ccompuimm (swap_comparison c) n, r2 :: nil)
+ | _, Some n =>
+ (Ccompuimm c n, r1 :: nil)
+ | _, _ =>
+ (cond, args)
+ end
+ | csr_default cond args =>
+ (cond, args)
+ end.
+
+Definition make_addimm (n: int) (r: reg) :=
+ if Int.eq n Int.zero
+ then (Omove, r :: nil)
+ else (Oaddimm n, r :: nil).
+
+Definition make_shlimm (n: int) (r: reg) :=
+ if Int.eq n Int.zero
+ then (Omove, r :: nil)
+ else (Orolm n (Int.shl Int.mone n), r :: nil).
+
+Definition make_shrimm (n: int) (r: reg) :=
+ if Int.eq n Int.zero
+ then (Omove, r :: nil)
+ else (Oshrimm n, r :: nil).
+
+Definition make_shruimm (n: int) (r: reg) :=
+ if Int.eq n Int.zero
+ then (Omove, r :: nil)
+ else (Orolm (Int.sub (Int.repr 32) n) (Int.shru Int.mone n), r :: nil).
+
+Definition make_mulimm (n: int) (r: reg) :=
+ if Int.eq n Int.zero then
+ (Ointconst Int.zero, nil)
+ else if Int.eq n Int.one then
+ (Omove, r :: nil)
+ else
+ match Int.is_power2 n with
+ | Some l => make_shlimm l r
+ | None => (Omulimm n, r :: nil)
+ end.
+
+Definition make_andimm (n: int) (r: reg) :=
+ if Int.eq n Int.zero
+ then (Ointconst Int.zero, nil)
+ else if Int.eq n Int.mone then (Omove, r :: nil)
+ else (Oandimm n, r :: nil).
+
+Definition make_orimm (n: int) (r: reg) :=
+ if Int.eq n Int.zero then (Omove, r :: nil)
+ else if Int.eq n Int.mone then (Ointconst Int.mone, nil)
+ else (Oorimm n, r :: nil).
+
+Definition make_xorimm (n: int) (r: reg) :=
+ if Int.eq n Int.zero
+ then (Omove, r :: nil)
+ else (Oxorimm n, r :: nil).
+
+Inductive op_strength_reduction_cases: operation -> list reg -> Set :=
+ | op_strength_reduction_case1:
+ forall (r1: reg) (r2: reg),
+ op_strength_reduction_cases Oadd (r1 :: r2 :: nil)
+ | op_strength_reduction_case2:
+ forall (r1: reg) (r2: reg),
+ op_strength_reduction_cases Osub (r1 :: r2 :: nil)
+ | op_strength_reduction_case3:
+ forall (r1: reg) (r2: reg),
+ op_strength_reduction_cases Omul (r1 :: r2 :: nil)
+ | op_strength_reduction_case4:
+ forall (r1: reg) (r2: reg),
+ op_strength_reduction_cases Odiv (r1 :: r2 :: nil)
+ | op_strength_reduction_case5:
+ forall (r1: reg) (r2: reg),
+ op_strength_reduction_cases Odivu (r1 :: r2 :: nil)
+ | op_strength_reduction_case6:
+ forall (r1: reg) (r2: reg),
+ op_strength_reduction_cases Oand (r1 :: r2 :: nil)
+ | op_strength_reduction_case7:
+ forall (r1: reg) (r2: reg),
+ op_strength_reduction_cases Oor (r1 :: r2 :: nil)
+ | op_strength_reduction_case8:
+ forall (r1: reg) (r2: reg),
+ op_strength_reduction_cases Oxor (r1 :: r2 :: nil)
+ | op_strength_reduction_case9:
+ forall (r1: reg) (r2: reg),
+ op_strength_reduction_cases Oshl (r1 :: r2 :: nil)
+ | op_strength_reduction_case10:
+ forall (r1: reg) (r2: reg),
+ op_strength_reduction_cases Oshr (r1 :: r2 :: nil)
+ | op_strength_reduction_case11:
+ forall (r1: reg) (r2: reg),
+ op_strength_reduction_cases Oshru (r1 :: r2 :: nil)
+ | op_strength_reduction_case12:
+ forall (c: condition) (rl: list reg),
+ op_strength_reduction_cases (Ocmp c) rl
+ | op_strength_reduction_default:
+ forall (op: operation) (args: list reg),
+ op_strength_reduction_cases op args.
+
+Definition op_strength_reduction_match (op: operation) (args: list reg) :=
+ match op as z1, args as z2 return op_strength_reduction_cases z1 z2 with
+ | Oadd, r1 :: r2 :: nil =>
+ op_strength_reduction_case1 r1 r2
+ | Osub, r1 :: r2 :: nil =>
+ op_strength_reduction_case2 r1 r2
+ | Omul, r1 :: r2 :: nil =>
+ op_strength_reduction_case3 r1 r2
+ | Odiv, r1 :: r2 :: nil =>
+ op_strength_reduction_case4 r1 r2
+ | Odivu, r1 :: r2 :: nil =>
+ op_strength_reduction_case5 r1 r2
+ | Oand, r1 :: r2 :: nil =>
+ op_strength_reduction_case6 r1 r2
+ | Oor, r1 :: r2 :: nil =>
+ op_strength_reduction_case7 r1 r2
+ | Oxor, r1 :: r2 :: nil =>
+ op_strength_reduction_case8 r1 r2
+ | Oshl, r1 :: r2 :: nil =>
+ op_strength_reduction_case9 r1 r2
+ | Oshr, r1 :: r2 :: nil =>
+ op_strength_reduction_case10 r1 r2
+ | Oshru, r1 :: r2 :: nil =>
+ op_strength_reduction_case11 r1 r2
+ | Ocmp c, rl =>
+ op_strength_reduction_case12 c rl
+ | op, args =>
+ op_strength_reduction_default op args
+ end.
+
+Definition op_strength_reduction (op: operation) (args: list reg) :=
+ match op_strength_reduction_match op args with
+ | op_strength_reduction_case1 r1 r2 => (* Oadd *)
+ match intval r1, intval r2 with
+ | Some n, _ => make_addimm n r2
+ | _, Some n => make_addimm n r1
+ | _, _ => (op, args)
+ end
+ | op_strength_reduction_case2 r1 r2 => (* Osub *)
+ match intval r1, intval r2 with
+ | Some n, _ => (Osubimm n, r2 :: nil)
+ | _, Some n => make_addimm (Int.neg n) r1
+ | _, _ => (op, args)
+ end
+ | op_strength_reduction_case3 r1 r2 => (* Omul *)
+ match intval r1, intval r2 with
+ | Some n, _ => make_mulimm n r2
+ | _, Some n => make_mulimm n r1
+ | _, _ => (op, args)
+ end
+ | op_strength_reduction_case4 r1 r2 => (* Odiv *)
+ match intval r2 with
+ | Some n =>
+ match Int.is_power2 n with
+ | Some l => (Oshrximm l, r1 :: nil)
+ | None => (op, args)
+ end
+ | None =>
+ (op, args)
+ end
+ | op_strength_reduction_case5 r1 r2 => (* Odivu *)
+ match intval r2 with
+ | Some n =>
+ match Int.is_power2 n with
+ | Some l => make_shruimm l r1
+ | None => (op, args)
+ end
+ | None =>
+ (op, args)
+ end
+ | op_strength_reduction_case6 r1 r2 => (* Oand *)
+ match intval r1, intval r2 with
+ | Some n, _ => make_andimm n r2
+ | _, Some n => make_andimm n r1
+ | _, _ => (op, args)
+ end
+ | op_strength_reduction_case7 r1 r2 => (* Oor *)
+ match intval r1, intval r2 with
+ | Some n, _ => make_orimm n r2
+ | _, Some n => make_orimm n r1
+ | _, _ => (op, args)
+ end
+ | op_strength_reduction_case8 r1 r2 => (* Oxor *)
+ match intval r1, intval r2 with
+ | Some n, _ => make_xorimm n r2
+ | _, Some n => make_xorimm n r1
+ | _, _ => (op, args)
+ end
+ | op_strength_reduction_case9 r1 r2 => (* Oshl *)
+ match intval r2 with
+ | Some n =>
+ if Int.ltu n (Int.repr 32)
+ then make_shlimm n r1
+ else (op, args)
+ | _ => (op, args)
+ end
+ | op_strength_reduction_case10 r1 r2 => (* Oshr *)
+ match intval r2 with
+ | Some n =>
+ if Int.ltu n (Int.repr 32)
+ then make_shrimm n r1
+ else (op, args)
+ | _ => (op, args)
+ end
+ | op_strength_reduction_case11 r1 r2 => (* Oshru *)
+ match intval r2 with
+ | Some n =>
+ if Int.ltu n (Int.repr 32)
+ then make_shruimm n r1
+ else (op, args)
+ | _ => (op, args)
+ end
+ | op_strength_reduction_case12 c args => (* Ocmp *)
+ let (c', args') := cond_strength_reduction c args in
+ (Ocmp c', args')
+ | op_strength_reduction_default op args => (* default *)
+ (op, args)
+ end.
+
+Inductive addr_strength_reduction_cases: forall (addr: addressing) (args: list reg), Set :=
+ | addr_strength_reduction_case1:
+ forall (r1: reg) (r2: reg),
+ addr_strength_reduction_cases (Aindexed2) (r1 :: r2 :: nil)
+ | addr_strength_reduction_case2:
+ forall (symb: ident) (ofs: int) (r1: reg),
+ addr_strength_reduction_cases (Abased symb ofs) (r1 :: nil)
+ | addr_strength_reduction_case3:
+ forall n r1,
+ addr_strength_reduction_cases (Aindexed n) (r1 :: nil)
+ | addr_strength_reduction_default:
+ forall (addr: addressing) (args: list reg),
+ addr_strength_reduction_cases addr args.
+
+Definition addr_strength_reduction_match (addr: addressing) (args: list reg) :=
+ match addr as z1, args as z2 return addr_strength_reduction_cases z1 z2 with
+ | Aindexed2, r1 :: r2 :: nil =>
+ addr_strength_reduction_case1 r1 r2
+ | Abased symb ofs, r1 :: nil =>
+ addr_strength_reduction_case2 symb ofs r1
+ | Aindexed n, r1 :: nil =>
+ addr_strength_reduction_case3 n r1
+ | addr, args =>
+ addr_strength_reduction_default addr args
+ end.
+
+Definition addr_strength_reduction (addr: addressing) (args: list reg) :=
+ match addr_strength_reduction_match addr args with
+ | addr_strength_reduction_case1 r1 r2 => (* Aindexed2 *)
+ match D.get r1 approx, D.get r2 approx with
+ | S symb n1, I n2 => (Aglobal symb (Int.add n1 n2), nil)
+ | S symb n1, _ => (Abased symb n1, r2 :: nil)
+ | I n1, S symb n2 => (Aglobal symb (Int.add n1 n2), nil)
+ | I n1, _ => (Aindexed n1, r2 :: nil)
+ | _, S symb n2 => (Abased symb n2, r1 :: nil)
+ | _, I n2 => (Aindexed n2, r1 :: nil)
+ | _, _ => (addr, args)
+ end
+ | addr_strength_reduction_case2 symb ofs r1 => (* Abased *)
+ match intval r1 with
+ | Some n => (Aglobal symb (Int.add ofs n), nil)
+ | _ => (addr, args)
+ end
+ | addr_strength_reduction_case3 n r1 => (* Aindexed *)
+ match D.get r1 approx with
+ | S symb ofs => (Aglobal symb (Int.add ofs n), nil)
+ | _ => (addr, args)
+ end
+ | addr_strength_reduction_default addr args => (* default *)
+ (addr, args)
+ end.
+
+End STRENGTH_REDUCTION.
+
+(** ** Code transformation *)
+
+(** The code transformation proceeds instruction by instruction.
+ Operators whose arguments are all statically known are turned
+ into ``load integer constant'', ``load float constant'' or
+ ``load symbol address'' operations. Operators for which some
+ but not all arguments are known are subject to strength reduction,
+ and similarly for the addressing modes of load and store instructions.
+ Other instructions are unchanged. *)
+
+Definition transf_ros (approx: D.t) (ros: reg + ident) : reg + ident :=
+ match ros with
+ | inl r =>
+ match D.get r approx with
+ | S symb ofs => if Int.eq ofs Int.zero then inr _ symb else ros
+ | _ => ros
+ end
+ | inr s => ros
+ end.
+
+Definition transf_instr (approx: D.t) (instr: instruction) :=
+ match instr with
+ | Iop op args res s =>
+ match eval_static_operation op (approx_regs args approx) with
+ | I n =>
+ Iop (Ointconst n) nil res s
+ | F n =>
+ Iop (Ofloatconst n) nil res s
+ | S symb ofs =>
+ Iop (Oaddrsymbol symb ofs) nil res s
+ | _ =>
+ let (op', args') := op_strength_reduction approx op args in
+ Iop op' args' res s
+ end
+ | Iload chunk addr args dst s =>
+ let (addr', args') := addr_strength_reduction approx addr args in
+ Iload chunk addr' args' dst s
+ | Istore chunk addr args src s =>
+ let (addr', args') := addr_strength_reduction approx addr args in
+ Istore chunk addr' args' src s
+ | Icall sig ros args res s =>
+ Icall sig (transf_ros approx ros) args res s
+ | Itailcall sig ros args =>
+ Itailcall sig (transf_ros approx ros) args
+ | Ialloc arg res s =>
+ Ialloc arg res s
+ | Icond cond args s1 s2 =>
+ match eval_static_condition cond (approx_regs args approx) with
+ | Some b =>
+ if b then Inop s1 else Inop s2
+ | None =>
+ let (cond', args') := cond_strength_reduction approx cond args in
+ Icond cond' args' s1 s2
+ end
+ | _ =>
+ instr
+ end.
+
+Definition transf_code (approxs: PMap.t D.t) (instrs: code) : code :=
+ PTree.map (fun pc instr => transf_instr approxs!!pc instr) instrs.
+
+Lemma transf_code_wf:
+ forall f approxs,
+ (forall pc, Plt pc f.(fn_nextpc) \/ f.(fn_code)!pc = None) ->
+ (forall pc, Plt pc f.(fn_nextpc)
+ \/ (transf_code approxs f.(fn_code))!pc = None).
+Proof.
+ intros.
+ elim (H pc); intro.
+ left; auto.
+ right. unfold transf_code. rewrite PTree.gmap.
+ unfold option_map; rewrite H0. reflexivity.
+Qed.
+
+Definition transf_function (f: function) : function :=
+ let approxs := analyze f in
+ mkfunction
+ f.(fn_sig)
+ f.(fn_params)
+ f.(fn_stacksize)
+ (transf_code approxs f.(fn_code))
+ f.(fn_entrypoint)
+ f.(fn_nextpc)
+ (transf_code_wf f approxs f.(fn_code_wf)).
+
+Definition transf_fundef (fd: fundef) : fundef :=
+ AST.transf_fundef transf_function fd.
+
+Definition transf_program (p: program) : program :=
+ transform_program transf_fundef p.
diff --git a/powerpc/Constpropproof.v b/powerpc/Constpropproof.v
new file mode 100644
index 00000000..e16f322e
--- /dev/null
+++ b/powerpc/Constpropproof.v
@@ -0,0 +1,954 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Correctness proof for constant propagation. *)
+
+Require Import Coqlib.
+Require Import Maps.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Events.
+Require Import Mem.
+Require Import Globalenvs.
+Require Import Smallstep.
+Require Import Op.
+Require Import Registers.
+Require Import RTL.
+Require Import Lattice.
+Require Import Kildall.
+Require Import Constprop.
+
+(** * Correctness of the static analysis *)
+
+Section ANALYSIS.
+
+Variable ge: genv.
+
+(** We first show that the dataflow analysis is correct with respect
+ to the dynamic semantics: the approximations (sets of values)
+ of a register at a program point predicted by the static analysis
+ are a superset of the values actually encountered during concrete
+ executions. We formalize this correspondence between run-time values and
+ compile-time approximations by the following predicate. *)
+
+Definition val_match_approx (a: approx) (v: val) : Prop :=
+ match a with
+ | Unknown => True
+ | I p => v = Vint p
+ | F p => v = Vfloat p
+ | S symb ofs => exists b, Genv.find_symbol ge symb = Some b /\ v = Vptr b ofs
+ | _ => False
+ end.
+
+Definition regs_match_approx (a: D.t) (rs: regset) : Prop :=
+ forall r, val_match_approx (D.get r a) rs#r.
+
+Lemma regs_match_approx_top:
+ forall rs, regs_match_approx D.top rs.
+Proof.
+ intros. red; intros. simpl. rewrite PTree.gempty.
+ unfold Approx.top, val_match_approx. auto.
+Qed.
+
+Lemma val_match_approx_increasing:
+ forall a1 a2 v,
+ Approx.ge a1 a2 -> val_match_approx a2 v -> val_match_approx a1 v.
+Proof.
+ intros until v.
+ intros [A|[B|C]].
+ subst a1. simpl. auto.
+ subst a2. simpl. tauto.
+ subst a2. auto.
+Qed.
+
+Lemma regs_match_approx_increasing:
+ forall a1 a2 rs,
+ D.ge a1 a2 -> regs_match_approx a2 rs -> regs_match_approx a1 rs.
+Proof.
+ unfold D.ge, regs_match_approx. intros.
+ apply val_match_approx_increasing with (D.get r a2); auto.
+Qed.
+
+Lemma regs_match_approx_update:
+ forall ra rs a v r,
+ val_match_approx a v ->
+ regs_match_approx ra rs ->
+ regs_match_approx (D.set r a ra) (rs#r <- v).
+Proof.
+ intros; red; intros. rewrite Regmap.gsspec.
+ case (peq r0 r); intro.
+ subst r0. rewrite D.gss. auto.
+ rewrite D.gso; auto.
+Qed.
+
+Inductive val_list_match_approx: list approx -> list val -> Prop :=
+ | vlma_nil:
+ val_list_match_approx nil nil
+ | vlma_cons:
+ forall a al v vl,
+ val_match_approx a v ->
+ val_list_match_approx al vl ->
+ val_list_match_approx (a :: al) (v :: vl).
+
+Lemma approx_regs_val_list:
+ forall ra rs rl,
+ regs_match_approx ra rs ->
+ val_list_match_approx (approx_regs rl ra) rs##rl.
+Proof.
+ induction rl; simpl; intros.
+ constructor.
+ constructor. apply H. auto.
+Qed.
+
+Ltac SimplVMA :=
+ match goal with
+ | H: (val_match_approx (I _) ?v) |- _ =>
+ simpl in H; (try subst v); SimplVMA
+ | H: (val_match_approx (F _) ?v) |- _ =>
+ simpl in H; (try subst v); SimplVMA
+ | H: (val_match_approx (S _ _) ?v) |- _ =>
+ simpl in H;
+ (try (elim H;
+ let b := fresh "b" in let A := fresh in let B := fresh in
+ (intros b [A B]; subst v; clear H)));
+ SimplVMA
+ | _ =>
+ idtac
+ end.
+
+Ltac InvVLMA :=
+ match goal with
+ | H: (val_list_match_approx nil ?vl) |- _ =>
+ inversion H
+ | H: (val_list_match_approx (?a :: ?al) ?vl) |- _ =>
+ inversion H; SimplVMA; InvVLMA
+ | _ =>
+ idtac
+ end.
+
+(** We then show that [eval_static_operation] is a correct abstract
+ interpretations of [eval_operation]: if the concrete arguments match
+ the given approximations, the concrete results match the
+ approximations returned by [eval_static_operation]. *)
+
+Lemma eval_static_condition_correct:
+ forall cond al vl m b,
+ val_list_match_approx al vl ->
+ eval_static_condition cond al = Some b ->
+ eval_condition cond vl m = Some b.
+Proof.
+ intros until b.
+ unfold eval_static_condition.
+ case (eval_static_condition_match cond al); intros;
+ InvVLMA; simpl; congruence.
+Qed.
+
+Lemma eval_static_operation_correct:
+ forall op sp al vl m v,
+ val_list_match_approx al vl ->
+ eval_operation ge sp op vl m = Some v ->
+ val_match_approx (eval_static_operation op al) v.
+Proof.
+ intros until v.
+ unfold eval_static_operation.
+ case (eval_static_operation_match op al); intros;
+ InvVLMA; simpl in *; FuncInv; try congruence.
+
+ destruct (Genv.find_symbol ge s). exists b. intuition congruence.
+ congruence.
+
+ rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
+ rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
+
+ exists b. split. auto. congruence.
+ exists b. split. auto. congruence.
+ exists b. split. auto. congruence.
+
+ replace n2 with i0. destruct (Int.eq i0 Int.zero).
+ discriminate. injection H0; intro; subst v. simpl. congruence. congruence.
+
+ replace n2 with i0. destruct (Int.eq i0 Int.zero).
+ discriminate. injection H0; intro; subst v. simpl. congruence. congruence.
+
+ subst v. unfold Int.not. congruence.
+ subst v. unfold Int.not. congruence.
+ subst v. unfold Int.not. congruence.
+
+ replace n2 with i0. destruct (Int.ltu i0 (Int.repr 32)).
+ injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
+
+ replace n2 with i0. destruct (Int.ltu i0 (Int.repr 32)).
+ injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
+
+ destruct (Int.ltu n (Int.repr 32)).
+ injection H0; intro; subst v. simpl. congruence. discriminate.
+
+ destruct (Int.ltu n (Int.repr 32)).
+ injection H0; intro; subst v. simpl. congruence. discriminate.
+
+ replace n2 with i0. destruct (Int.ltu i0 (Int.repr 32)).
+ injection H0; intro; subst v. simpl. congruence. discriminate. congruence.
+
+ rewrite <- H3. replace v0 with (Vfloat n1). reflexivity. congruence.
+
+ caseEq (eval_static_condition c vl0).
+ intros. generalize (eval_static_condition_correct _ _ _ m _ H H1).
+ intro. rewrite H2 in H0.
+ destruct b; injection H0; intro; subst v; simpl; auto.
+ intros; simpl; auto.
+
+ rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
+ rewrite <- H3. replace v0 with (Vint n1). reflexivity. congruence.
+
+ auto.
+Qed.
+
+(** The correctness of the static analysis follows from the results
+ above and the fact that the result of the static analysis is
+ a solution of the forward dataflow inequations. *)
+
+Lemma analyze_correct_1:
+ forall f pc rs pc',
+ In pc' (successors f pc) ->
+ regs_match_approx (transfer f pc (analyze f)!!pc) rs ->
+ regs_match_approx (analyze f)!!pc' rs.
+Proof.
+ intros until pc'. unfold analyze.
+ caseEq (DS.fixpoint (successors f) (fn_nextpc f) (transfer f)
+ ((fn_entrypoint f, D.top) :: nil)).
+ intros approxs; intros.
+ apply regs_match_approx_increasing with (transfer f pc approxs!!pc).
+ eapply DS.fixpoint_solution; eauto.
+ elim (fn_code_wf f pc); intro. auto.
+ unfold successors in H0; rewrite H2 in H0; simpl; contradiction.
+ auto.
+ intros. rewrite PMap.gi. apply regs_match_approx_top.
+Qed.
+
+Lemma analyze_correct_3:
+ forall f rs,
+ regs_match_approx (analyze f)!!(f.(fn_entrypoint)) rs.
+Proof.
+ intros. unfold analyze.
+ caseEq (DS.fixpoint (successors f) (fn_nextpc f) (transfer f)
+ ((fn_entrypoint f, D.top) :: nil)).
+ intros approxs; intros.
+ apply regs_match_approx_increasing with D.top.
+ eapply DS.fixpoint_entry; eauto. auto with coqlib.
+ apply regs_match_approx_top.
+ intros. rewrite PMap.gi. apply regs_match_approx_top.
+Qed.
+
+(** * Correctness of strength reduction *)
+
+(** We now show that strength reduction over operators and addressing
+ modes preserve semantics: the strength-reduced operations and
+ addressings evaluate to the same values as the original ones if the
+ actual arguments match the static approximations used for strength
+ reduction. *)
+
+Section STRENGTH_REDUCTION.
+
+Variable approx: D.t.
+Variable sp: val.
+Variable rs: regset.
+Hypothesis MATCH: regs_match_approx approx rs.
+
+Lemma intval_correct:
+ forall r n,
+ intval approx r = Some n -> rs#r = Vint n.
+Proof.
+ intros until n.
+ unfold intval. caseEq (D.get r approx); intros; try discriminate.
+ generalize (MATCH r). unfold val_match_approx. rewrite H.
+ congruence.
+Qed.
+
+Lemma cond_strength_reduction_correct:
+ forall cond args m,
+ let (cond', args') := cond_strength_reduction approx cond args in
+ eval_condition cond' rs##args' m = eval_condition cond rs##args m.
+Proof.
+ intros. unfold cond_strength_reduction.
+ case (cond_strength_reduction_match cond args); intros.
+ caseEq (intval approx r1); intros.
+ simpl. rewrite (intval_correct _ _ H).
+ destruct (rs#r2); auto. rewrite Int.swap_cmp. auto.
+ destruct c; reflexivity.
+ caseEq (intval approx r2); intros.
+ simpl. rewrite (intval_correct _ _ H0). auto.
+ auto.
+ caseEq (intval approx r1); intros.
+ simpl. rewrite (intval_correct _ _ H).
+ destruct (rs#r2); auto. rewrite Int.swap_cmpu. auto.
+ caseEq (intval approx r2); intros.
+ simpl. rewrite (intval_correct _ _ H0). auto.
+ auto.
+ auto.
+Qed.
+
+Lemma make_addimm_correct:
+ forall n r m v,
+ let (op, args) := make_addimm n r in
+ eval_operation ge sp Oadd (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_addimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.add_zero in H. congruence.
+ rewrite Int.add_zero in H. congruence.
+ exact H0.
+Qed.
+
+Lemma make_shlimm_correct:
+ forall n r m v,
+ let (op, args) := make_shlimm n r in
+ eval_operation ge sp Oshl (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_shlimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.shl_zero in H. congruence.
+ simpl in *. FuncInv. caseEq (Int.ltu n (Int.repr 32)); intros.
+ rewrite H1 in H0. rewrite Int.shl_rolm in H0. auto. exact H1.
+ rewrite H1 in H0. discriminate.
+Qed.
+
+Lemma make_shrimm_correct:
+ forall n r m v,
+ let (op, args) := make_shrimm n r in
+ eval_operation ge sp Oshr (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_shrimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.shr_zero in H. congruence.
+ assumption.
+Qed.
+
+Lemma make_shruimm_correct:
+ forall n r m v,
+ let (op, args) := make_shruimm n r in
+ eval_operation ge sp Oshru (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_shruimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.shru_zero in H. congruence.
+ simpl in *. FuncInv. caseEq (Int.ltu n (Int.repr 32)); intros.
+ rewrite H1 in H0. rewrite Int.shru_rolm in H0. auto. exact H1.
+ rewrite H1 in H0. discriminate.
+Qed.
+
+Lemma make_mulimm_correct:
+ forall n r m v,
+ let (op, args) := make_mulimm n r in
+ eval_operation ge sp Omul (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_mulimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in H0. FuncInv. rewrite Int.mul_zero in H. simpl. congruence.
+ generalize (Int.eq_spec n Int.one); case (Int.eq n Int.one); intros.
+ subst n. simpl in H1. simpl. FuncInv. rewrite Int.mul_one in H0. congruence.
+ caseEq (Int.is_power2 n); intros.
+ replace (eval_operation ge sp Omul (rs # r :: Vint n :: nil) m)
+ with (eval_operation ge sp Oshl (rs # r :: Vint i :: nil) m).
+ apply make_shlimm_correct.
+ simpl. generalize (Int.is_power2_range _ _ H1).
+ change (Z_of_nat wordsize) with 32. intro. rewrite H2.
+ destruct rs#r; auto. rewrite (Int.mul_pow2 i0 _ _ H1). auto.
+ exact H2.
+Qed.
+
+Lemma make_andimm_correct:
+ forall n r m v,
+ let (op, args) := make_andimm n r in
+ eval_operation ge sp Oand (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_andimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.and_zero in H. congruence.
+ generalize (Int.eq_spec n Int.mone); case (Int.eq n Int.mone); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.and_mone in H0. congruence.
+ exact H1.
+Qed.
+
+Lemma make_orimm_correct:
+ forall n r m v,
+ let (op, args) := make_orimm n r in
+ eval_operation ge sp Oor (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_orimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.or_zero in H. congruence.
+ generalize (Int.eq_spec n Int.mone); case (Int.eq n Int.mone); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.or_mone in H0. congruence.
+ exact H1.
+Qed.
+
+Lemma make_xorimm_correct:
+ forall n r m v,
+ let (op, args) := make_xorimm n r in
+ eval_operation ge sp Oxor (rs#r :: Vint n :: nil) m = Some v ->
+ eval_operation ge sp op rs##args m = Some v.
+Proof.
+ intros; unfold make_xorimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intros.
+ subst n. simpl in *. FuncInv. rewrite Int.xor_zero in H. congruence.
+ exact H0.
+Qed.
+
+Lemma op_strength_reduction_correct:
+ forall op args m v,
+ let (op', args') := op_strength_reduction approx op args in
+ eval_operation ge sp op rs##args m = Some v ->
+ eval_operation ge sp op' rs##args' m = Some v.
+Proof.
+ intros; unfold op_strength_reduction;
+ case (op_strength_reduction_match op args); intros; simpl List.map.
+ (* Oadd *)
+ caseEq (intval approx r1); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp Oadd (Vint i :: rs # r2 :: nil) m)
+ with (eval_operation ge sp Oadd (rs # r2 :: Vint i :: nil) m).
+ apply make_addimm_correct.
+ simpl. destruct rs#r2; auto. rewrite Int.add_commut; auto.
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H0). apply make_addimm_correct.
+ assumption.
+ (* Osub *)
+ caseEq (intval approx r1); intros.
+ rewrite (intval_correct _ _ H) in H0. assumption.
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H0).
+ replace (eval_operation ge sp Osub (rs # r1 :: Vint i :: nil) m)
+ with (eval_operation ge sp Oadd (rs # r1 :: Vint (Int.neg i) :: nil) m).
+ apply make_addimm_correct.
+ simpl. destruct rs#r1; auto; rewrite Int.sub_add_opp; auto.
+ assumption.
+ (* Omul *)
+ caseEq (intval approx r1); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp Omul (Vint i :: rs # r2 :: nil) m)
+ with (eval_operation ge sp Omul (rs # r2 :: Vint i :: nil) m).
+ apply make_mulimm_correct.
+ simpl. destruct rs#r2; auto. rewrite Int.mul_commut; auto.
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H0). apply make_mulimm_correct.
+ assumption.
+ (* Odiv *)
+ caseEq (intval approx r2); intros.
+ caseEq (Int.is_power2 i); intros.
+ rewrite (intval_correct _ _ H) in H1.
+ simpl in *; FuncInv. destruct (Int.eq i Int.zero). congruence.
+ change 32 with (Z_of_nat wordsize).
+ rewrite (Int.is_power2_range _ _ H0).
+ rewrite (Int.divs_pow2 i1 _ _ H0) in H1. auto.
+ assumption.
+ assumption.
+ (* Odivu *)
+ caseEq (intval approx r2); intros.
+ caseEq (Int.is_power2 i); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp Odivu (rs # r1 :: Vint i :: nil) m)
+ with (eval_operation ge sp Oshru (rs # r1 :: Vint i0 :: nil) m).
+ apply make_shruimm_correct.
+ simpl. destruct rs#r1; auto.
+ change 32 with (Z_of_nat wordsize).
+ rewrite (Int.is_power2_range _ _ H0).
+ generalize (Int.eq_spec i Int.zero); case (Int.eq i Int.zero); intros.
+ subst i. discriminate.
+ rewrite (Int.divu_pow2 i1 _ _ H0). auto.
+ assumption.
+ assumption.
+ (* Oand *)
+ caseEq (intval approx r1); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp Oand (Vint i :: rs # r2 :: nil) m)
+ with (eval_operation ge sp Oand (rs # r2 :: Vint i :: nil) m).
+ apply make_andimm_correct.
+ simpl. destruct rs#r2; auto. rewrite Int.and_commut; auto.
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H0). apply make_andimm_correct.
+ assumption.
+ (* Oor *)
+ caseEq (intval approx r1); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp Oor (Vint i :: rs # r2 :: nil) m)
+ with (eval_operation ge sp Oor (rs # r2 :: Vint i :: nil) m).
+ apply make_orimm_correct.
+ simpl. destruct rs#r2; auto. rewrite Int.or_commut; auto.
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H0). apply make_orimm_correct.
+ assumption.
+ (* Oxor *)
+ caseEq (intval approx r1); intros.
+ rewrite (intval_correct _ _ H).
+ replace (eval_operation ge sp Oxor (Vint i :: rs # r2 :: nil) m)
+ with (eval_operation ge sp Oxor (rs # r2 :: Vint i :: nil) m).
+ apply make_xorimm_correct.
+ simpl. destruct rs#r2; auto. rewrite Int.xor_commut; auto.
+ caseEq (intval approx r2); intros.
+ rewrite (intval_correct _ _ H0). apply make_xorimm_correct.
+ assumption.
+ (* Oshl *)
+ caseEq (intval approx r2); intros.
+ caseEq (Int.ltu i (Int.repr 32)); intros.
+ rewrite (intval_correct _ _ H). apply make_shlimm_correct.
+ assumption.
+ assumption.
+ (* Oshr *)
+ caseEq (intval approx r2); intros.
+ caseEq (Int.ltu i (Int.repr 32)); intros.
+ rewrite (intval_correct _ _ H). apply make_shrimm_correct.
+ assumption.
+ assumption.
+ (* Oshru *)
+ caseEq (intval approx r2); intros.
+ caseEq (Int.ltu i (Int.repr 32)); intros.
+ rewrite (intval_correct _ _ H). apply make_shruimm_correct.
+ assumption.
+ assumption.
+ (* Ocmp *)
+ generalize (cond_strength_reduction_correct c rl).
+ destruct (cond_strength_reduction approx c rl).
+ simpl. intro. rewrite H. auto.
+ (* default *)
+ assumption.
+Qed.
+
+Ltac KnownApprox :=
+ match goal with
+ | MATCH: (regs_match_approx ?approx ?rs),
+ H: (D.get ?r ?approx = ?a) |- _ =>
+ generalize (MATCH r); rewrite H; intro; clear H; KnownApprox
+ | _ => idtac
+ end.
+
+Lemma addr_strength_reduction_correct:
+ forall addr args,
+ let (addr', args') := addr_strength_reduction approx addr args in
+ eval_addressing ge sp addr' rs##args' = eval_addressing ge sp addr rs##args.
+Proof.
+ intros.
+
+ (* Useful lemmas *)
+ assert (A0: forall r1 r2,
+ eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil)) =
+ eval_addressing ge sp Aindexed2 (rs ## (r2 :: r1 :: nil))).
+ intros. simpl. destruct (rs#r1); destruct (rs#r2); auto;
+ rewrite Int.add_commut; auto.
+
+ assert (A1: forall r1 r2 n,
+ val_match_approx (I n) rs#r2 ->
+ eval_addressing ge sp (Aindexed n) (rs ## (r1 :: nil)) =
+ eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
+ intros; simpl in *. rewrite H. auto.
+
+ assert (A2: forall r1 r2 n,
+ val_match_approx (I n) rs#r1 ->
+ eval_addressing ge sp (Aindexed n) (rs ## (r2 :: nil)) =
+ eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
+ intros. rewrite A0. apply A1. auto.
+
+ assert (A3: forall r1 r2 id ofs,
+ val_match_approx (S id ofs) rs#r1 ->
+ eval_addressing ge sp (Abased id ofs) (rs ## (r2 :: nil)) =
+ eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
+ intros. elim H. intros b [A B]. simpl. rewrite A; rewrite B. auto.
+
+ assert (A4: forall r1 r2 id ofs,
+ val_match_approx (S id ofs) rs#r2 ->
+ eval_addressing ge sp (Abased id ofs) (rs ## (r1 :: nil)) =
+ eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
+ intros. rewrite A0. apply A3. auto.
+
+ assert (A5: forall r1 r2 id ofs n,
+ val_match_approx (S id ofs) rs#r1 ->
+ val_match_approx (I n) rs#r2 ->
+ eval_addressing ge sp (Aglobal id (Int.add ofs n)) nil =
+ eval_addressing ge sp Aindexed2 (rs ## (r1 :: r2 :: nil))).
+ intros. elim H. intros b [A B]. simpl. rewrite A; rewrite B.
+ simpl in H0. rewrite H0. auto.
+
+ unfold addr_strength_reduction;
+ case (addr_strength_reduction_match addr args); intros.
+
+ (* Aindexed2 *)
+ caseEq (D.get r1 approx); intros;
+ caseEq (D.get r2 approx); intros;
+ try reflexivity; KnownApprox; auto.
+ rewrite A0. rewrite Int.add_commut. apply A5; auto.
+
+ (* Abased *)
+ caseEq (intval approx r1); intros.
+ simpl; rewrite (intval_correct _ _ H). auto.
+ auto.
+
+ (* Aindexed *)
+ caseEq (D.get r1 approx); intros; auto.
+ simpl; KnownApprox.
+ elim H0. intros b [A B]. rewrite A; rewrite B. auto.
+
+ (* default *)
+ reflexivity.
+Qed.
+
+End STRENGTH_REDUCTION.
+
+End ANALYSIS.
+
+(** * Correctness of the code transformation *)
+
+(** We now show that the transformed code after constant propagation
+ has the same semantics as the original code. *)
+
+Section PRESERVATION.
+
+Variable prog: program.
+Let tprog := transf_program prog.
+Let ge := Genv.globalenv prog.
+Let tge := Genv.globalenv tprog.
+
+Lemma symbols_preserved:
+ forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
+Proof.
+ intros; unfold ge, tge, tprog, transf_program.
+ apply Genv.find_symbol_transf.
+Qed.
+
+Lemma functions_translated:
+ forall (v: val) (f: fundef),
+ Genv.find_funct ge v = Some f ->
+ Genv.find_funct tge v = Some (transf_fundef f).
+Proof.
+ intros.
+ exact (Genv.find_funct_transf transf_fundef H).
+Qed.
+
+Lemma function_ptr_translated:
+ forall (b: block) (f: fundef),
+ Genv.find_funct_ptr ge b = Some f ->
+ Genv.find_funct_ptr tge b = Some (transf_fundef f).
+Proof.
+ intros.
+ exact (Genv.find_funct_ptr_transf transf_fundef H).
+Qed.
+
+Lemma sig_function_translated:
+ forall f,
+ funsig (transf_fundef f) = funsig f.
+Proof.
+ intros. destruct f; reflexivity.
+Qed.
+
+Lemma transf_ros_correct:
+ forall ros rs f approx,
+ regs_match_approx ge approx rs ->
+ find_function ge ros rs = Some f ->
+ find_function tge (transf_ros approx ros) rs = Some (transf_fundef f).
+Proof.
+ intros until approx; intro MATCH.
+ destruct ros; simpl.
+ intro.
+ exploit functions_translated; eauto. intro FIND.
+ caseEq (D.get r approx); intros; auto.
+ generalize (Int.eq_spec i0 Int.zero); case (Int.eq i0 Int.zero); intros; auto.
+ generalize (MATCH r). rewrite H0. intros [b [A B]].
+ rewrite <- symbols_preserved in A.
+ rewrite B in FIND. rewrite H1 in FIND.
+ rewrite Genv.find_funct_find_funct_ptr in FIND.
+ simpl. rewrite A. auto.
+ rewrite symbols_preserved. destruct (Genv.find_symbol ge i).
+ intro. apply function_ptr_translated. auto.
+ congruence.
+Qed.
+
+(** The proof of semantic preservation is a simulation argument
+ based on diagrams of the following form:
+<<
+ st1 --------------- st2
+ | |
+ t| |t
+ | |
+ v v
+ st1'--------------- st2'
+>>
+ The left vertical arrow represents a transition in the
+ original RTL code. The top horizontal bar is the [match_states]
+ invariant between the initial state [st1] in the original RTL code
+ and an initial state [st2] in the transformed code.
+ This invariant expresses that all code fragments appearing in [st2]
+ are obtained by [transf_code] transformation of the corresponding
+ fragments in [st1]. Moreover, the values of registers in [st1]
+ must match their compile-time approximations at the current program
+ point.
+ These two parts of the diagram are the hypotheses. In conclusions,
+ we want to prove the other two parts: the right vertical arrow,
+ which is a transition in the transformed RTL code, and the bottom
+ horizontal bar, which means that the [match_state] predicate holds
+ between the final states [st1'] and [st2']. *)
+
+Inductive match_stackframes: stackframe -> stackframe -> Prop :=
+ match_stackframe_intro:
+ forall res c sp pc rs f,
+ c = f.(RTL.fn_code) ->
+ (forall v, regs_match_approx ge (analyze f)!!pc (rs#res <- v)) ->
+ match_stackframes
+ (Stackframe res c sp pc rs)
+ (Stackframe res (transf_code (analyze f) c) sp pc rs).
+
+Inductive match_states: state -> state -> Prop :=
+ | match_states_intro:
+ forall s c sp pc rs m f s'
+ (CF: c = f.(RTL.fn_code))
+ (MATCH: regs_match_approx ge (analyze f)!!pc rs)
+ (STACKS: list_forall2 match_stackframes s s'),
+ match_states (State s c sp pc rs m)
+ (State s' (transf_code (analyze f) c) sp pc rs m)
+ | match_states_call:
+ forall s f args m s',
+ list_forall2 match_stackframes s s' ->
+ match_states (Callstate s f args m)
+ (Callstate s' (transf_fundef f) args m)
+ | match_states_return:
+ forall s s' v m,
+ list_forall2 match_stackframes s s' ->
+ match_states (Returnstate s v m)
+ (Returnstate s' v m).
+
+Ltac TransfInstr :=
+ match goal with
+ | H1: (PTree.get ?pc ?c = Some ?instr), f: function |- _ =>
+ cut ((transf_code (analyze f) c)!pc = Some(transf_instr (analyze f)!!pc instr));
+ [ simpl
+ | unfold transf_code; rewrite PTree.gmap;
+ unfold option_map; rewrite H1; reflexivity ]
+ end.
+
+(** The proof of simulation proceeds by case analysis on the transition
+ taken in the source code. *)
+
+Lemma transf_step_correct:
+ forall s1 t s2,
+ step ge s1 t s2 ->
+ forall s1' (MS: match_states s1 s1'),
+ exists s2', step tge s1' t s2' /\ match_states s2 s2'.
+Proof.
+ induction 1; intros; inv MS.
+
+ (* Inop *)
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' rs m); split.
+ TransfInstr; intro. eapply exec_Inop; eauto.
+ econstructor; eauto.
+ eapply analyze_correct_1 with (pc := pc); eauto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H. auto.
+
+ (* Iop *)
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' (rs#res <- v) m); split.
+ TransfInstr. caseEq (op_strength_reduction (analyze f)!!pc op args);
+ intros op' args' OSR.
+ assert (eval_operation tge sp op' rs##args' m = Some v).
+ rewrite (eval_operation_preserved symbols_preserved).
+ generalize (op_strength_reduction_correct ge (analyze f)!!pc sp rs
+ MATCH op args m v).
+ rewrite OSR; simpl. auto.
+ generalize (eval_static_operation_correct ge op sp
+ (approx_regs args (analyze f)!!pc) rs##args m v
+ (approx_regs_val_list _ _ _ args MATCH) H0).
+ case (eval_static_operation op (approx_regs args (analyze f)!!pc)); intros;
+ simpl in H2;
+ eapply exec_Iop; eauto; simpl.
+ congruence.
+ congruence.
+ elim H2; intros b [A B]. rewrite symbols_preserved.
+ rewrite A; rewrite B; auto.
+ econstructor; eauto.
+ eapply analyze_correct_1 with (pc := pc); eauto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H.
+ apply regs_match_approx_update; auto.
+ eapply eval_static_operation_correct; eauto.
+ apply approx_regs_val_list; auto.
+
+ (* Iload *)
+ caseEq (addr_strength_reduction (analyze f)!!pc addr args);
+ intros addr' args' ASR.
+ assert (eval_addressing tge sp addr' rs##args' = Some a).
+ rewrite (eval_addressing_preserved symbols_preserved).
+ generalize (addr_strength_reduction_correct ge (analyze f)!!pc sp rs
+ MATCH addr args).
+ rewrite ASR; simpl. congruence.
+ TransfInstr. rewrite ASR. intro.
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' (rs#dst <- v) m); split.
+ eapply exec_Iload; eauto.
+ econstructor; eauto.
+ apply analyze_correct_1 with pc; auto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H.
+ apply regs_match_approx_update; auto. simpl; auto.
+
+ (* Istore *)
+ caseEq (addr_strength_reduction (analyze f)!!pc addr args);
+ intros addr' args' ASR.
+ assert (eval_addressing tge sp addr' rs##args' = Some a).
+ rewrite (eval_addressing_preserved symbols_preserved).
+ generalize (addr_strength_reduction_correct ge (analyze f)!!pc sp rs
+ MATCH addr args).
+ rewrite ASR; simpl. congruence.
+ TransfInstr. rewrite ASR. intro.
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' rs m'); split.
+ eapply exec_Istore; eauto.
+ econstructor; eauto.
+ apply analyze_correct_1 with pc; auto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H. auto.
+
+ (* Icall *)
+ exploit transf_ros_correct; eauto. intro FIND'.
+ TransfInstr; intro.
+ econstructor; split.
+ eapply exec_Icall; eauto. apply sig_function_translated; auto.
+ constructor; auto. constructor; auto.
+ econstructor; eauto.
+ intros. apply analyze_correct_1 with pc; auto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H.
+ apply regs_match_approx_update; auto. simpl. auto.
+
+ (* Itailcall *)
+ exploit transf_ros_correct; eauto. intros FIND'.
+ TransfInstr; intro.
+ econstructor; split.
+ eapply exec_Itailcall; eauto. apply sig_function_translated; auto.
+ constructor; auto.
+
+ (* Ialloc *)
+ TransfInstr; intro.
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp pc' (rs#res <- (Vptr b Int.zero)) m'); split.
+ eapply exec_Ialloc; eauto.
+ econstructor; eauto.
+ apply analyze_correct_1 with pc; auto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H.
+ apply regs_match_approx_update; auto. simpl; auto.
+
+ (* Icond, true *)
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp ifso rs m); split.
+ caseEq (cond_strength_reduction (analyze f)!!pc cond args);
+ intros cond' args' CSR.
+ assert (eval_condition cond' rs##args' m = Some true).
+ generalize (cond_strength_reduction_correct
+ ge (analyze f)!!pc rs MATCH cond args m).
+ rewrite CSR. intro. congruence.
+ TransfInstr. rewrite CSR.
+ caseEq (eval_static_condition cond (approx_regs args (analyze f)!!pc)).
+ intros b ESC.
+ generalize (eval_static_condition_correct ge cond _ _ m _
+ (approx_regs_val_list _ _ _ args MATCH) ESC); intro.
+ replace b with true. intro; eapply exec_Inop; eauto. congruence.
+ intros. eapply exec_Icond_true; eauto.
+ econstructor; eauto.
+ apply analyze_correct_1 with pc; auto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H; auto.
+
+ (* Icond, false *)
+ exists (State s' (transf_code (analyze f) (fn_code f)) sp ifnot rs m); split.
+ caseEq (cond_strength_reduction (analyze f)!!pc cond args);
+ intros cond' args' CSR.
+ assert (eval_condition cond' rs##args' m = Some false).
+ generalize (cond_strength_reduction_correct
+ ge (analyze f)!!pc rs MATCH cond args m).
+ rewrite CSR. intro. congruence.
+ TransfInstr. rewrite CSR.
+ caseEq (eval_static_condition cond (approx_regs args (analyze f)!!pc)).
+ intros b ESC.
+ generalize (eval_static_condition_correct ge cond _ _ m _
+ (approx_regs_val_list _ _ _ args MATCH) ESC); intro.
+ replace b with false. intro; eapply exec_Inop; eauto. congruence.
+ intros. eapply exec_Icond_false; eauto.
+ econstructor; eauto.
+ apply analyze_correct_1 with pc; auto.
+ unfold successors; rewrite H; auto with coqlib.
+ unfold transfer; rewrite H; auto.
+
+ (* Ireturn *)
+ exists (Returnstate s' (regmap_optget or Vundef rs) (free m stk)); split.
+ eapply exec_Ireturn; eauto. TransfInstr; auto.
+ constructor; auto.
+
+ (* internal function *)
+ simpl. unfold transf_function.
+ econstructor; split.
+ eapply exec_function_internal; simpl; eauto.
+ simpl. econstructor; eauto.
+ apply analyze_correct_3; auto.
+
+ (* external function *)
+ simpl. econstructor; split.
+ eapply exec_function_external; eauto.
+ constructor; auto.
+
+ (* return *)
+ inv H3. inv H1.
+ econstructor; split.
+ eapply exec_return; eauto.
+ econstructor; eauto.
+Qed.
+
+Lemma transf_initial_states:
+ forall st1, initial_state prog st1 ->
+ exists st2, initial_state tprog st2 /\ match_states st1 st2.
+Proof.
+ intros. inversion H.
+ exploit function_ptr_translated; eauto. intro FIND.
+ exists (Callstate nil (transf_fundef f) nil (Genv.init_mem tprog)); split.
+ econstructor; eauto.
+ replace (prog_main tprog) with (prog_main prog).
+ rewrite symbols_preserved. eauto.
+ reflexivity.
+ rewrite <- H2. apply sig_function_translated.
+ replace (Genv.init_mem tprog) with (Genv.init_mem prog).
+ constructor. constructor. auto.
+ symmetry. unfold tprog, transf_program. apply Genv.init_mem_transf.
+Qed.
+
+Lemma transf_final_states:
+ forall st1 st2 r,
+ match_states st1 st2 -> final_state st1 r -> final_state st2 r.
+Proof.
+ intros. inv H0. inv H. inv H4. constructor.
+Qed.
+
+(** The preservation of the observable behavior of the program then
+ follows, using the generic preservation theorem
+ [Smallstep.simulation_step_preservation]. *)
+
+Theorem transf_program_correct:
+ forall (beh: program_behavior),
+ exec_program prog beh -> exec_program tprog beh.
+Proof.
+ unfold exec_program; intros.
+ eapply simulation_step_preservation; eauto.
+ eexact transf_initial_states.
+ eexact transf_final_states.
+ exact transf_step_correct.
+Qed.
+
+End PRESERVATION.
diff --git a/powerpc/Machregs.v b/powerpc/Machregs.v
new file mode 100644
index 00000000..260a0e85
--- /dev/null
+++ b/powerpc/Machregs.v
@@ -0,0 +1,107 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+Require Import Coqlib.
+Require Import Maps.
+Require Import AST.
+
+(** ** Machine registers *)
+
+(** The following type defines the machine registers that can be referenced
+ as locations. These include:
+- Integer registers that can be allocated to RTL pseudo-registers ([Rxx]).
+- Floating-point registers that can be allocated to RTL pseudo-registers
+ ([Fxx]).
+- Two integer registers, not allocatable, reserved as temporaries for
+ spilling and reloading ([IT1, IT2]).
+- Two float registers, not allocatable, reserved as temporaries for
+ spilling and reloading ([FT1, FT2]).
+
+ The type [mreg] does not include special-purpose machine registers
+ such as the stack pointer and the condition codes. *)
+
+Inductive mreg: Set :=
+ (** Allocatable integer regs *)
+ | R3: mreg | R4: mreg | R5: mreg | R6: mreg
+ | R7: mreg | R8: mreg | R9: mreg | R10: mreg
+ | R13: mreg | R14: mreg | R15: mreg | R16: mreg
+ | R17: mreg | R18: mreg | R19: mreg | R20: mreg
+ | R21: mreg | R22: mreg | R23: mreg | R24: mreg
+ | R25: mreg | R26: mreg | R27: mreg | R28: mreg
+ | R29: mreg | R30: mreg | R31: mreg
+ (** Allocatable float regs *)
+ | F1: mreg | F2: mreg | F3: mreg | F4: mreg
+ | F5: mreg | F6: mreg | F7: mreg | F8: mreg
+ | F9: mreg | F10: mreg | F14: mreg | F15: mreg
+ | F16: mreg | F17: mreg | F18: mreg | F19: mreg
+ | F20: mreg | F21: mreg | F22: mreg | F23: mreg
+ | F24: mreg | F25: mreg | F26: mreg | F27: mreg
+ | F28: mreg | F29: mreg | F30: mreg | F31: mreg
+ (** Integer temporaries *)
+ | IT1: mreg (* R11 *) | IT2: mreg (* R0 *)
+ (** Float temporaries *)
+ | FT1: mreg (* F11 *) | FT2: mreg (* F12 *) | FT3: mreg (* F0 *).
+
+Lemma mreg_eq: forall (r1 r2: mreg), {r1 = r2} + {r1 <> r2}.
+Proof. decide equality. Qed.
+
+Definition mreg_type (r: mreg): typ :=
+ match r with
+ | R3 => Tint | R4 => Tint | R5 => Tint | R6 => Tint
+ | R7 => Tint | R8 => Tint | R9 => Tint | R10 => Tint
+ | R13 => Tint | R14 => Tint | R15 => Tint | R16 => Tint
+ | R17 => Tint | R18 => Tint | R19 => Tint | R20 => Tint
+ | R21 => Tint | R22 => Tint | R23 => Tint | R24 => Tint
+ | R25 => Tint | R26 => Tint | R27 => Tint | R28 => Tint
+ | R29 => Tint | R30 => Tint | R31 => Tint
+ | F1 => Tfloat | F2 => Tfloat | F3 => Tfloat | F4 => Tfloat
+ | F5 => Tfloat | F6 => Tfloat | F7 => Tfloat | F8 => Tfloat
+ | F9 => Tfloat | F10 => Tfloat | F14 => Tfloat | F15 => Tfloat
+ | F16 => Tfloat | F17 => Tfloat | F18 => Tfloat | F19 => Tfloat
+ | F20 => Tfloat | F21 => Tfloat | F22 => Tfloat | F23 => Tfloat
+ | F24 => Tfloat | F25 => Tfloat | F26 => Tfloat | F27 => Tfloat
+ | F28 => Tfloat | F29 => Tfloat | F30 => Tfloat | F31 => Tfloat
+ | IT1 => Tint | IT2 => Tint
+ | FT1 => Tfloat | FT2 => Tfloat | FT3 => Tfloat
+ end.
+
+Open Scope positive_scope.
+
+Module IndexedMreg <: INDEXED_TYPE.
+ Definition t := mreg.
+ Definition eq := mreg_eq.
+ Definition index (r: mreg): positive :=
+ match r with
+ | R3 => 1 | R4 => 2 | R5 => 3 | R6 => 4
+ | R7 => 5 | R8 => 6 | R9 => 7 | R10 => 8
+ | R13 => 9 | R14 => 10 | R15 => 11 | R16 => 12
+ | R17 => 13 | R18 => 14 | R19 => 15 | R20 => 16
+ | R21 => 17 | R22 => 18 | R23 => 19 | R24 => 20
+ | R25 => 21 | R26 => 22 | R27 => 23 | R28 => 24
+ | R29 => 25 | R30 => 26 | R31 => 27
+ | F1 => 28 | F2 => 29 | F3 => 30 | F4 => 31
+ | F5 => 32 | F6 => 33 | F7 => 34 | F8 => 35
+ | F9 => 36 | F10 => 37 | F14 => 38 | F15 => 39
+ | F16 => 40 | F17 => 41 | F18 => 42 | F19 => 43
+ | F20 => 44 | F21 => 45 | F22 => 46 | F23 => 47
+ | F24 => 48 | F25 => 49 | F26 => 50 | F27 => 51
+ | F28 => 52 | F29 => 53 | F30 => 54 | F31 => 55
+ | IT1 => 56 | IT2 => 57
+ | FT1 => 58 | FT2 => 59 | FT3 => 60
+ end.
+ Lemma index_inj:
+ forall r1 r2, index r1 = index r2 -> r1 = r2.
+ Proof.
+ destruct r1; destruct r2; simpl; intro; discriminate || reflexivity.
+ Qed.
+End IndexedMreg.
+
diff --git a/powerpc/Op.v b/powerpc/Op.v
new file mode 100644
index 00000000..20ebf705
--- /dev/null
+++ b/powerpc/Op.v
@@ -0,0 +1,925 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Operators and addressing modes. The abstract syntax and dynamic
+ semantics for the CminorSel, RTL, LTL and Mach languages depend on the
+ following types, defined in this library:
+- [condition]: boolean conditions for conditional branches;
+- [operation]: arithmetic and logical operations;
+- [addressing]: addressing modes for load and store operations.
+
+ These types are PowerPC-specific and correspond roughly to what the
+ processor can compute in one instruction. In other terms, these
+ types reflect the state of the program after instruction selection.
+ For a processor-independent set of operations, see the abstract
+ syntax and dynamic semantics of the Cminor language.
+*)
+
+Require Import Coqlib.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Mem.
+Require Import Globalenvs.
+
+Set Implicit Arguments.
+
+(** Conditions (boolean-valued operators). *)
+
+Inductive condition : Set :=
+ | Ccomp: comparison -> condition (**r signed integer comparison *)
+ | Ccompu: comparison -> condition (**r unsigned integer comparison *)
+ | Ccompimm: comparison -> int -> condition (**r signed integer comparison with a constant *)
+ | Ccompuimm: comparison -> int -> condition (**r unsigned integer comparison with a constant *)
+ | Ccompf: comparison -> condition (**r floating-point comparison *)
+ | Cnotcompf: comparison -> condition (**r negation of a floating-point comparison *)
+ | Cmaskzero: int -> condition (**r test [(arg & constant) == 0] *)
+ | Cmasknotzero: int -> condition. (**r test [(arg & constant) != 0] *)
+
+(** Arithmetic and logical operations. In the descriptions, [rd] is the
+ result of the operation and [r1], [r2], etc, are the arguments. *)
+
+Inductive operation : Set :=
+ | Omove: operation (**r [rd = r1] *)
+ | Ointconst: int -> operation (**r [rd] is set to the given integer constant *)
+ | Ofloatconst: float -> operation (**r [rd] is set to the given float constant *)
+ | Oaddrsymbol: ident -> int -> operation (**r [rd] is set to the the address of the symbol plus the offset *)
+ | Oaddrstack: int -> operation (**r [rd] is set to the stack pointer plus the given offset *)
+(*c Integer arithmetic: *)
+ | Ocast8signed: operation (**r [rd] is 8-bit sign extension of [r1] *)
+ | Ocast8unsigned: operation (**r [rd] is 8-bit zero extension of [r1] *)
+ | Ocast16signed: operation (**r [rd] is 16-bit sign extension of [r1] *)
+ | Ocast16unsigned: operation (**r [rd] is 16-bit zero extension of [r1] *)
+ | Oadd: operation (**r [rd = r1 + r2] *)
+ | Oaddimm: int -> operation (**r [rd = r1 + n] *)
+ | Osub: operation (**r [rd = r1 - r2] *)
+ | Osubimm: int -> operation (**r [rd = n - r1] *)
+ | Omul: operation (**r [rd = r1 * r2] *)
+ | Omulimm: int -> operation (**r [rd = r1 * n] *)
+ | Odiv: operation (**r [rd = r1 / r2] (signed) *)
+ | Odivu: operation (**r [rd = r1 / r2] (unsigned) *)
+ | Oand: operation (**r [rd = r1 & r2] *)
+ | Oandimm: int -> operation (**r [rd = r1 & n] *)
+ | Oor: operation (**r [rd = r1 | r2] *)
+ | Oorimm: int -> operation (**r [rd = r1 | n] *)
+ | Oxor: operation (**r [rd = r1 ^ r2] *)
+ | Oxorimm: int -> operation (**r [rd = r1 ^ n] *)
+ | Onand: operation (**r [rd = ~(r1 & r2)] *)
+ | Onor: operation (**r [rd = ~(r1 | r2)] *)
+ | Onxor: operation (**r [rd = ~(r1 ^ r2)] *)
+ | Oshl: operation (**r [rd = r1 << r2] *)
+ | Oshr: operation (**r [rd = r1 >> r2] (signed) *)
+ | Oshrimm: int -> operation (**r [rd = r1 >> n] (signed) *)
+ | Oshrximm: int -> operation (**r [rd = r1 / 2^n] (signed) *)
+ | Oshru: operation (**r [rd = r1 >> r2] (unsigned) *)
+ | Orolm: int -> int -> operation (**r rotate left and mask *)
+(*c Floating-point arithmetic: *)
+ | Onegf: operation (**r [rd = - r1] *)
+ | Oabsf: operation (**r [rd = abs(r1)] *)
+ | Oaddf: operation (**r [rd = r1 + r2] *)
+ | Osubf: operation (**r [rd = r1 - r2] *)
+ | Omulf: operation (**r [rd = r1 * r2] *)
+ | Odivf: operation (**r [rd = r1 / r2] *)
+ | Omuladdf: operation (**r [rd = r1 * r2 + r3] *)
+ | Omulsubf: operation (**r [rd = r1 * r2 - r3] *)
+ | Osingleoffloat: operation (**r [rd] is [r1] truncated to single-precision float *)
+(*c Conversions between int and float: *)
+ | Ointoffloat: operation (**r [rd = signed_int_of_float(r1)] *)
+ | Ointuoffloat: operation (**r [rd = unsigned_int_of_float(r1)] *)
+ | Ofloatofint: operation (**r [rd = float_of_signed_int(r1)] *)
+ | Ofloatofintu: operation (**r [rd = float_of_unsigned_int(r1)] *)
+(*c Boolean tests: *)
+ | Ocmp: condition -> operation. (**r [rd = 1] if condition holds, [rd = 0] otherwise. *)
+
+(** Addressing modes. [r1], [r2], etc, are the arguments to the
+ addressing. *)
+
+Inductive addressing: Set :=
+ | Aindexed: int -> addressing (**r Address is [r1 + offset] *)
+ | Aindexed2: addressing (**r Address is [r1 + r2] *)
+ | Aglobal: ident -> int -> addressing (**r Address is [symbol + offset] *)
+ | Abased: ident -> int -> addressing (**r Address is [symbol + offset + r1] *)
+ | Ainstack: int -> addressing. (**r Address is [stack_pointer + offset] *)
+
+(** Comparison functions (used in module [CSE]). *)
+
+Definition eq_operation (x y: operation): {x=y} + {x<>y}.
+Proof.
+ generalize Int.eq_dec; intro.
+ generalize Float.eq_dec; intro.
+ assert (forall (x y: ident), {x=y}+{x<>y}). exact peq.
+ assert (forall (x y: comparison), {x=y}+{x<>y}). decide equality.
+ assert (forall (x y: condition), {x=y}+{x<>y}). decide equality.
+ decide equality.
+Qed.
+
+Definition eq_addressing (x y: addressing) : {x=y} + {x<>y}.
+Proof.
+ generalize Int.eq_dec; intro.
+ assert (forall (x y: ident), {x=y}+{x<>y}). exact peq.
+ decide equality.
+Qed.
+
+(** Evaluation of conditions, operators and addressing modes applied
+ to lists of values. Return [None] when the computation is undefined:
+ wrong number of arguments, arguments of the wrong types, undefined
+ operations such as division by zero. [eval_condition] returns a boolean,
+ [eval_operation] and [eval_addressing] return a value. *)
+
+Definition eval_compare_mismatch (c: comparison) : option bool :=
+ match c with Ceq => Some false | Cne => Some true | _ => None end.
+
+Definition eval_condition (cond: condition) (vl: list val) (m: mem):
+ option bool :=
+ match cond, vl with
+ | Ccomp c, Vint n1 :: Vint n2 :: nil =>
+ Some (Int.cmp c n1 n2)
+ | Ccomp c, Vptr b1 n1 :: Vptr b2 n2 :: nil =>
+ if valid_pointer m b1 (Int.signed n1)
+ && valid_pointer m b2 (Int.signed n2) then
+ if eq_block b1 b2
+ then Some (Int.cmp c n1 n2)
+ else eval_compare_mismatch c
+ else None
+ | Ccomp c, Vptr b1 n1 :: Vint n2 :: nil =>
+ if Int.eq n2 Int.zero then eval_compare_mismatch c else None
+ | Ccomp c, Vint n1 :: Vptr b2 n2 :: nil =>
+ if Int.eq n1 Int.zero then eval_compare_mismatch c else None
+ | Ccompu c, Vint n1 :: Vint n2 :: nil =>
+ Some (Int.cmpu c n1 n2)
+ | Ccompimm c n, Vint n1 :: nil =>
+ Some (Int.cmp c n1 n)
+ | Ccompimm c n, Vptr b1 n1 :: nil =>
+ if Int.eq n Int.zero then eval_compare_mismatch c else None
+ | Ccompuimm c n, Vint n1 :: nil =>
+ Some (Int.cmpu c n1 n)
+ | Ccompf c, Vfloat f1 :: Vfloat f2 :: nil =>
+ Some (Float.cmp c f1 f2)
+ | Cnotcompf c, Vfloat f1 :: Vfloat f2 :: nil =>
+ Some (negb (Float.cmp c f1 f2))
+ | Cmaskzero n, Vint n1 :: nil =>
+ Some (Int.eq (Int.and n1 n) Int.zero)
+ | Cmasknotzero n, Vint n1 :: nil =>
+ Some (negb (Int.eq (Int.and n1 n) Int.zero))
+ | _, _ =>
+ None
+ end.
+
+Definition offset_sp (sp: val) (delta: int) : option val :=
+ match sp with
+ | Vptr b n => Some (Vptr b (Int.add n delta))
+ | _ => None
+ end.
+
+Definition eval_operation
+ (F: Set) (genv: Genv.t F) (sp: val)
+ (op: operation) (vl: list val) (m: mem): option val :=
+ match op, vl with
+ | Omove, v1::nil => Some v1
+ | Ointconst n, nil => Some (Vint n)
+ | Ofloatconst n, nil => Some (Vfloat n)
+ | Oaddrsymbol s ofs, nil =>
+ match Genv.find_symbol genv s with
+ | None => None
+ | Some b => Some (Vptr b ofs)
+ end
+ | Oaddrstack ofs, nil => offset_sp sp ofs
+ | Ocast8signed, v1 :: nil => Some (Val.sign_ext 8 v1)
+ | Ocast8unsigned, v1 :: nil => Some (Val.zero_ext 8 v1)
+ | Ocast16signed, v1 :: nil => Some (Val.sign_ext 16 v1)
+ | Ocast16unsigned, v1 :: nil => Some (Val.zero_ext 16 v1)
+ | Oadd, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.add n1 n2))
+ | Oadd, Vint n1 :: Vptr b2 n2 :: nil => Some (Vptr b2 (Int.add n2 n1))
+ | Oadd, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.add n1 n2))
+ | Oaddimm n, Vint n1 :: nil => Some (Vint (Int.add n1 n))
+ | Oaddimm n, Vptr b1 n1 :: nil => Some (Vptr b1 (Int.add n1 n))
+ | Osub, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.sub n1 n2))
+ | Osub, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.sub n1 n2))
+ | Osub, Vptr b1 n1 :: Vptr b2 n2 :: nil =>
+ if eq_block b1 b2 then Some (Vint (Int.sub n1 n2)) else None
+ | Osubimm n, Vint n1 :: nil => Some (Vint (Int.sub n n1))
+ | Omul, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.mul n1 n2))
+ | Omulimm n, Vint n1 :: nil => Some (Vint (Int.mul n1 n))
+ | Odiv, Vint n1 :: Vint n2 :: nil =>
+ if Int.eq n2 Int.zero then None else Some (Vint (Int.divs n1 n2))
+ | Odivu, Vint n1 :: Vint n2 :: nil =>
+ if Int.eq n2 Int.zero then None else Some (Vint (Int.divu n1 n2))
+ | Oand, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.and n1 n2))
+ | Oandimm n, Vint n1 :: nil => Some (Vint (Int.and n1 n))
+ | Oor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.or n1 n2))
+ | Oorimm n, Vint n1 :: nil => Some (Vint (Int.or n1 n))
+ | Oxor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.xor n1 n2))
+ | Oxorimm n, Vint n1 :: nil => Some (Vint (Int.xor n1 n))
+ | Onand, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.not (Int.and n1 n2)))
+ | Onor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.not (Int.or n1 n2)))
+ | Onxor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.not (Int.xor n1 n2)))
+ | Oshl, Vint n1 :: Vint n2 :: nil =>
+ if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shl n1 n2)) else None
+ | Oshr, Vint n1 :: Vint n2 :: nil =>
+ if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shr n1 n2)) else None
+ | Oshrimm n, Vint n1 :: nil =>
+ if Int.ltu n (Int.repr 32) then Some (Vint (Int.shr n1 n)) else None
+ | Oshrximm n, Vint n1 :: nil =>
+ if Int.ltu n (Int.repr 32) then Some (Vint (Int.shrx n1 n)) else None
+ | Oshru, Vint n1 :: Vint n2 :: nil =>
+ if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shru n1 n2)) else None
+ | Orolm amount mask, Vint n1 :: nil =>
+ Some (Vint (Int.rolm n1 amount mask))
+ | Onegf, Vfloat f1 :: nil => Some (Vfloat (Float.neg f1))
+ | Oabsf, Vfloat f1 :: nil => Some (Vfloat (Float.abs f1))
+ | Oaddf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.add f1 f2))
+ | Osubf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.sub f1 f2))
+ | Omulf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.mul f1 f2))
+ | Odivf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.div f1 f2))
+ | Omuladdf, Vfloat f1 :: Vfloat f2 :: Vfloat f3 :: nil =>
+ Some (Vfloat (Float.add (Float.mul f1 f2) f3))
+ | Omulsubf, Vfloat f1 :: Vfloat f2 :: Vfloat f3 :: nil =>
+ Some (Vfloat (Float.sub (Float.mul f1 f2) f3))
+ | Osingleoffloat, v1 :: nil =>
+ Some (Val.singleoffloat v1)
+ | Ointoffloat, Vfloat f1 :: nil =>
+ Some (Vint (Float.intoffloat f1))
+ | Ointuoffloat, Vfloat f1 :: nil =>
+ Some (Vint (Float.intuoffloat f1))
+ | Ofloatofint, Vint n1 :: nil =>
+ Some (Vfloat (Float.floatofint n1))
+ | Ofloatofintu, Vint n1 :: nil =>
+ Some (Vfloat (Float.floatofintu n1))
+ | Ocmp c, _ =>
+ match eval_condition c vl m with
+ | None => None
+ | Some false => Some Vfalse
+ | Some true => Some Vtrue
+ end
+ | _, _ => None
+ end.
+
+Definition eval_addressing
+ (F: Set) (genv: Genv.t F) (sp: val)
+ (addr: addressing) (vl: list val) : option val :=
+ match addr, vl with
+ | Aindexed n, Vptr b1 n1 :: nil =>
+ Some (Vptr b1 (Int.add n1 n))
+ | Aindexed2, Vptr b1 n1 :: Vint n2 :: nil =>
+ Some (Vptr b1 (Int.add n1 n2))
+ | Aindexed2, Vint n1 :: Vptr b2 n2 :: nil =>
+ Some (Vptr b2 (Int.add n2 n1))
+ | Aglobal s ofs, nil =>
+ match Genv.find_symbol genv s with
+ | None => None
+ | Some b => Some (Vptr b ofs)
+ end
+ | Abased s ofs, Vint n1 :: nil =>
+ match Genv.find_symbol genv s with
+ | None => None
+ | Some b => Some (Vptr b (Int.add ofs n1))
+ end
+ | Ainstack ofs, nil =>
+ offset_sp sp ofs
+ | _, _ => None
+ end.
+
+Definition negate_condition (cond: condition): condition :=
+ match cond with
+ | Ccomp c => Ccomp(negate_comparison c)
+ | Ccompu c => Ccompu(negate_comparison c)
+ | Ccompimm c n => Ccompimm (negate_comparison c) n
+ | Ccompuimm c n => Ccompuimm (negate_comparison c) n
+ | Ccompf c => Cnotcompf c
+ | Cnotcompf c => Ccompf c
+ | Cmaskzero n => Cmasknotzero n
+ | Cmasknotzero n => Cmaskzero n
+ end.
+
+Ltac FuncInv :=
+ match goal with
+ | H: (match ?x with nil => _ | _ :: _ => _ end = Some _) |- _ =>
+ destruct x; simpl in H; try discriminate; FuncInv
+ | H: (match ?v with Vundef => _ | Vint _ => _ | Vfloat _ => _ | Vptr _ _ => _ end = Some _) |- _ =>
+ destruct v; simpl in H; try discriminate; FuncInv
+ | H: (Some _ = Some _) |- _ =>
+ injection H; intros; clear H; FuncInv
+ | _ =>
+ idtac
+ end.
+
+Remark eval_negate_compare_mismatch:
+ forall c b,
+ eval_compare_mismatch c = Some b ->
+ eval_compare_mismatch (negate_comparison c) = Some (negb b).
+Proof.
+ intros until b. unfold eval_compare_mismatch.
+ destruct c; intro EQ; inv EQ; auto.
+Qed.
+
+Lemma eval_negate_condition:
+ forall (cond: condition) (vl: list val) (b: bool) (m: mem),
+ eval_condition cond vl m = Some b ->
+ eval_condition (negate_condition cond) vl m = Some (negb b).
+Proof.
+ intros.
+ destruct cond; simpl in H; FuncInv; try subst b; simpl.
+ rewrite Int.negate_cmp. auto.
+ destruct (Int.eq i Int.zero). apply eval_negate_compare_mismatch; auto. discriminate.
+ destruct (Int.eq i0 Int.zero). apply eval_negate_compare_mismatch; auto. discriminate.
+ destruct (valid_pointer m b0 (Int.signed i) &&
+ valid_pointer m b1 (Int.signed i0)).
+ destruct (eq_block b0 b1). rewrite Int.negate_cmp. congruence.
+ apply eval_negate_compare_mismatch; auto.
+ discriminate.
+ rewrite Int.negate_cmpu. auto.
+ rewrite Int.negate_cmp. auto.
+ destruct (Int.eq i Int.zero). apply eval_negate_compare_mismatch; auto. discriminate.
+ rewrite Int.negate_cmpu. auto.
+ auto.
+ rewrite negb_elim. auto.
+ auto.
+ rewrite negb_elim. auto.
+Qed.
+
+(** [eval_operation] and [eval_addressing] depend on a global environment
+ for resolving references to global symbols. We show that they give
+ the same results if a global environment is replaced by another that
+ assigns the same addresses to the same symbols. *)
+
+Section GENV_TRANSF.
+
+Variable F1 F2: Set.
+Variable ge1: Genv.t F1.
+Variable ge2: Genv.t F2.
+Hypothesis agree_on_symbols:
+ forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s.
+
+Lemma eval_operation_preserved:
+ forall sp op vl m,
+ eval_operation ge2 sp op vl m = eval_operation ge1 sp op vl m.
+Proof.
+ intros.
+ unfold eval_operation; destruct op; try rewrite agree_on_symbols;
+ reflexivity.
+Qed.
+
+Lemma eval_addressing_preserved:
+ forall sp addr vl,
+ eval_addressing ge2 sp addr vl = eval_addressing ge1 sp addr vl.
+Proof.
+ intros.
+ unfold eval_addressing; destruct addr; try rewrite agree_on_symbols;
+ reflexivity.
+Qed.
+
+End GENV_TRANSF.
+
+(** [eval_condition] and [eval_operation] depend on a memory store
+ (to check pointer validity in pointer comparisons).
+ We show that their results are preserved by a change of
+ memory if this change preserves pointer validity.
+ In particular, this holds in case of a memory allocation
+ or a memory store. *)
+
+Lemma eval_condition_change_mem:
+ forall m m' c args b,
+ (forall b ofs, valid_pointer m b ofs = true -> valid_pointer m' b ofs = true) ->
+ eval_condition c args m = Some b -> eval_condition c args m' = Some b.
+Proof.
+ intros until b. intro INV. destruct c; simpl; auto.
+ destruct args; auto. destruct v; auto. destruct args; auto.
+ destruct v; auto. destruct args; auto.
+ caseEq (valid_pointer m b0 (Int.signed i)); intro.
+ caseEq (valid_pointer m b1 (Int.signed i0)); intro.
+ simpl. rewrite (INV _ _ H). rewrite (INV _ _ H0). auto.
+ simpl; congruence. simpl; congruence.
+Qed.
+
+Lemma eval_operation_change_mem:
+ forall (F: Set) m m' (ge: Genv.t F) sp op args v,
+ (forall b ofs, valid_pointer m b ofs = true -> valid_pointer m' b ofs = true) ->
+ eval_operation ge sp op args m = Some v -> eval_operation ge sp op args m' = Some v.
+Proof.
+ intros until v; intro INV. destruct op; simpl; auto.
+ caseEq (eval_condition c args m); intros.
+ rewrite (eval_condition_change_mem _ _ _ _ INV H). auto.
+ discriminate.
+Qed.
+
+Lemma eval_condition_alloc:
+ forall m lo hi m' b c args v,
+ Mem.alloc m lo hi = (m', b) ->
+ eval_condition c args m = Some v -> eval_condition c args m' = Some v.
+Proof.
+ intros. apply eval_condition_change_mem with m; auto.
+ intros. eapply valid_pointer_alloc; eauto.
+Qed.
+
+Lemma eval_operation_alloc:
+ forall (F: Set) m lo hi m' b (ge: Genv.t F) sp op args v,
+ Mem.alloc m lo hi = (m', b) ->
+ eval_operation ge sp op args m = Some v -> eval_operation ge sp op args m' = Some v.
+Proof.
+ intros. apply eval_operation_change_mem with m; auto.
+ intros. eapply valid_pointer_alloc; eauto.
+Qed.
+
+Lemma eval_condition_store:
+ forall chunk m b ofs v' m' c args v,
+ Mem.store chunk m b ofs v' = Some m' ->
+ eval_condition c args m = Some v -> eval_condition c args m' = Some v.
+Proof.
+ intros. apply eval_condition_change_mem with m; auto.
+ intros. eapply valid_pointer_store; eauto.
+Qed.
+
+Lemma eval_operation_store:
+ forall (F: Set) chunk m b ofs v' m' (ge: Genv.t F) sp op args v,
+ Mem.store chunk m b ofs v' = Some m' ->
+ eval_operation ge sp op args m = Some v -> eval_operation ge sp op args m' = Some v.
+Proof.
+ intros. apply eval_operation_change_mem with m; auto.
+ intros. eapply valid_pointer_store; eauto.
+Qed.
+
+(** Recognition of move operations. *)
+
+Definition is_move_operation
+ (A: Set) (op: operation) (args: list A) : option A :=
+ match op, args with
+ | Omove, arg :: nil => Some arg
+ | _, _ => None
+ end.
+
+Lemma is_move_operation_correct:
+ forall (A: Set) (op: operation) (args: list A) (a: A),
+ is_move_operation op args = Some a ->
+ op = Omove /\ args = a :: nil.
+Proof.
+ intros until a. unfold is_move_operation; destruct op;
+ try (intros; discriminate).
+ destruct args. intros; discriminate.
+ destruct args. intros. intuition congruence.
+ intros; discriminate.
+Qed.
+
+(** Static typing of conditions, operators and addressing modes. *)
+
+Definition type_of_condition (c: condition) : list typ :=
+ match c with
+ | Ccomp _ => Tint :: Tint :: nil
+ | Ccompu _ => Tint :: Tint :: nil
+ | Ccompimm _ _ => Tint :: nil
+ | Ccompuimm _ _ => Tint :: nil
+ | Ccompf _ => Tfloat :: Tfloat :: nil
+ | Cnotcompf _ => Tfloat :: Tfloat :: nil
+ | Cmaskzero _ => Tint :: nil
+ | Cmasknotzero _ => Tint :: nil
+ end.
+
+Definition type_of_operation (op: operation) : list typ * typ :=
+ match op with
+ | Omove => (nil, Tint) (* treated specially *)
+ | Ointconst _ => (nil, Tint)
+ | Ofloatconst _ => (nil, Tfloat)
+ | Oaddrsymbol _ _ => (nil, Tint)
+ | Oaddrstack _ => (nil, Tint)
+ | Ocast8signed => (Tint :: nil, Tint)
+ | Ocast8unsigned => (Tint :: nil, Tint)
+ | Ocast16signed => (Tint :: nil, Tint)
+ | Ocast16unsigned => (Tint :: nil, Tint)
+ | Oadd => (Tint :: Tint :: nil, Tint)
+ | Oaddimm _ => (Tint :: nil, Tint)
+ | Osub => (Tint :: Tint :: nil, Tint)
+ | Osubimm _ => (Tint :: nil, Tint)
+ | Omul => (Tint :: Tint :: nil, Tint)
+ | Omulimm _ => (Tint :: nil, Tint)
+ | Odiv => (Tint :: Tint :: nil, Tint)
+ | Odivu => (Tint :: Tint :: nil, Tint)
+ | Oand => (Tint :: Tint :: nil, Tint)
+ | Oandimm _ => (Tint :: nil, Tint)
+ | Oor => (Tint :: Tint :: nil, Tint)
+ | Oorimm _ => (Tint :: nil, Tint)
+ | Oxor => (Tint :: Tint :: nil, Tint)
+ | Oxorimm _ => (Tint :: nil, Tint)
+ | Onand => (Tint :: Tint :: nil, Tint)
+ | Onor => (Tint :: Tint :: nil, Tint)
+ | Onxor => (Tint :: Tint :: nil, Tint)
+ | Oshl => (Tint :: Tint :: nil, Tint)
+ | Oshr => (Tint :: Tint :: nil, Tint)
+ | Oshrimm _ => (Tint :: nil, Tint)
+ | Oshrximm _ => (Tint :: nil, Tint)
+ | Oshru => (Tint :: Tint :: nil, Tint)
+ | Orolm _ _ => (Tint :: nil, Tint)
+ | Onegf => (Tfloat :: nil, Tfloat)
+ | Oabsf => (Tfloat :: nil, Tfloat)
+ | Oaddf => (Tfloat :: Tfloat :: nil, Tfloat)
+ | Osubf => (Tfloat :: Tfloat :: nil, Tfloat)
+ | Omulf => (Tfloat :: Tfloat :: nil, Tfloat)
+ | Odivf => (Tfloat :: Tfloat :: nil, Tfloat)
+ | Omuladdf => (Tfloat :: Tfloat :: Tfloat :: nil, Tfloat)
+ | Omulsubf => (Tfloat :: Tfloat :: Tfloat :: nil, Tfloat)
+ | Osingleoffloat => (Tfloat :: nil, Tfloat)
+ | Ointoffloat => (Tfloat :: nil, Tint)
+ | Ointuoffloat => (Tfloat :: nil, Tint)
+ | Ofloatofint => (Tint :: nil, Tfloat)
+ | Ofloatofintu => (Tint :: nil, Tfloat)
+ | Ocmp c => (type_of_condition c, Tint)
+ end.
+
+Definition type_of_addressing (addr: addressing) : list typ :=
+ match addr with
+ | Aindexed _ => Tint :: nil
+ | Aindexed2 => Tint :: Tint :: nil
+ | Aglobal _ _ => nil
+ | Abased _ _ => Tint :: nil
+ | Ainstack _ => nil
+ end.
+
+Definition type_of_chunk (c: memory_chunk) : typ :=
+ match c with
+ | Mint8signed => Tint
+ | Mint8unsigned => Tint
+ | Mint16signed => Tint
+ | Mint16unsigned => Tint
+ | Mint32 => Tint
+ | Mfloat32 => Tfloat
+ | Mfloat64 => Tfloat
+ end.
+
+(** Weak type soundness results for [eval_operation]:
+ the result values, when defined, are always of the type predicted
+ by [type_of_operation]. *)
+
+Section SOUNDNESS.
+
+Variable A: Set.
+Variable genv: Genv.t A.
+
+Lemma type_of_operation_sound:
+ forall op vl sp v m,
+ op <> Omove ->
+ eval_operation genv sp op vl m = Some v ->
+ Val.has_type v (snd (type_of_operation op)).
+Proof.
+ intros.
+ destruct op; simpl in H0; FuncInv; try subst v; try exact I.
+ congruence.
+ destruct (Genv.find_symbol genv i); simplify_eq H0; intro; subst v; exact I.
+ simpl. unfold offset_sp in H0. destruct sp; try discriminate.
+ inversion H0. exact I.
+ destruct v0; exact I.
+ destruct v0; exact I.
+ destruct v0; exact I.
+ destruct v0; exact I.
+ destruct (eq_block b b0). injection H0; intro; subst v; exact I.
+ discriminate.
+ destruct (Int.eq i0 Int.zero). discriminate.
+ injection H0; intro; subst v; exact I.
+ destruct (Int.eq i0 Int.zero). discriminate.
+ injection H0; intro; subst v; exact I.
+ destruct (Int.ltu i0 (Int.repr 32)).
+ injection H0; intro; subst v; exact I. discriminate.
+ destruct (Int.ltu i0 (Int.repr 32)).
+ injection H0; intro; subst v; exact I. discriminate.
+ destruct (Int.ltu i (Int.repr 32)).
+ injection H0; intro; subst v; exact I. discriminate.
+ destruct (Int.ltu i (Int.repr 32)).
+ injection H0; intro; subst v; exact I. discriminate.
+ destruct (Int.ltu i0 (Int.repr 32)).
+ injection H0; intro; subst v; exact I. discriminate.
+ destruct v0; exact I.
+ destruct (eval_condition c vl).
+ destruct b; injection H0; intro; subst v; exact I.
+ discriminate.
+Qed.
+
+Lemma type_of_chunk_correct:
+ forall chunk m addr v,
+ Mem.loadv chunk m addr = Some v ->
+ Val.has_type v (type_of_chunk chunk).
+Proof.
+ intro chunk.
+ assert (forall v, Val.has_type (Val.load_result chunk v) (type_of_chunk chunk)).
+ destruct v; destruct chunk; exact I.
+ intros until v. unfold Mem.loadv.
+ destruct addr; intros; try discriminate.
+ generalize (Mem.load_inv _ _ _ _ _ H0).
+ intros [X Y]. subst v. apply H.
+Qed.
+
+End SOUNDNESS.
+
+(** Alternate definition of [eval_condition], [eval_op], [eval_addressing]
+ as total functions that return [Vundef] when not applicable
+ (instead of [None]). Used in the proof of [PPCgen]. *)
+
+Section EVAL_OP_TOTAL.
+
+Variable F: Set.
+Variable genv: Genv.t F.
+
+Definition find_symbol_offset (id: ident) (ofs: int) : val :=
+ match Genv.find_symbol genv id with
+ | Some b => Vptr b ofs
+ | None => Vundef
+ end.
+
+Definition eval_condition_total (cond: condition) (vl: list val) : val :=
+ match cond, vl with
+ | Ccomp c, v1::v2::nil => Val.cmp c v1 v2
+ | Ccompu c, v1::v2::nil => Val.cmpu c v1 v2
+ | Ccompimm c n, v1::nil => Val.cmp c v1 (Vint n)
+ | Ccompuimm c n, v1::nil => Val.cmpu c v1 (Vint n)
+ | Ccompf c, v1::v2::nil => Val.cmpf c v1 v2
+ | Cnotcompf c, v1::v2::nil => Val.notbool(Val.cmpf c v1 v2)
+ | Cmaskzero n, v1::nil => Val.notbool (Val.and v1 (Vint n))
+ | Cmasknotzero n, v1::nil => Val.notbool(Val.notbool (Val.and v1 (Vint n)))
+ | _, _ => Vundef
+ end.
+
+Definition eval_operation_total (sp: val) (op: operation) (vl: list val) : val :=
+ match op, vl with
+ | Omove, v1::nil => v1
+ | Ointconst n, nil => Vint n
+ | Ofloatconst n, nil => Vfloat n
+ | Oaddrsymbol s ofs, nil => find_symbol_offset s ofs
+ | Oaddrstack ofs, nil => Val.add sp (Vint ofs)
+ | Ocast8signed, v1::nil => Val.sign_ext 8 v1
+ | Ocast8unsigned, v1::nil => Val.zero_ext 8 v1
+ | Ocast16signed, v1::nil => Val.sign_ext 16 v1
+ | Ocast16unsigned, v1::nil => Val.zero_ext 16 v1
+ | Oadd, v1::v2::nil => Val.add v1 v2
+ | Oaddimm n, v1::nil => Val.add v1 (Vint n)
+ | Osub, v1::v2::nil => Val.sub v1 v2
+ | Osubimm n, v1::nil => Val.sub (Vint n) v1
+ | Omul, v1::v2::nil => Val.mul v1 v2
+ | Omulimm n, v1::nil => Val.mul v1 (Vint n)
+ | Odiv, v1::v2::nil => Val.divs v1 v2
+ | Odivu, v1::v2::nil => Val.divu v1 v2
+ | Oand, v1::v2::nil => Val.and v1 v2
+ | Oandimm n, v1::nil => Val.and v1 (Vint n)
+ | Oor, v1::v2::nil => Val.or v1 v2
+ | Oorimm n, v1::nil => Val.or v1 (Vint n)
+ | Oxor, v1::v2::nil => Val.xor v1 v2
+ | Oxorimm n, v1::nil => Val.xor v1 (Vint n)
+ | Onand, v1::v2::nil => Val.notint(Val.and v1 v2)
+ | Onor, v1::v2::nil => Val.notint(Val.or v1 v2)
+ | Onxor, v1::v2::nil => Val.notint(Val.xor v1 v2)
+ | Oshl, v1::v2::nil => Val.shl v1 v2
+ | Oshr, v1::v2::nil => Val.shr v1 v2
+ | Oshrimm n, v1::nil => Val.shr v1 (Vint n)
+ | Oshrximm n, v1::nil => Val.shrx v1 (Vint n)
+ | Oshru, v1::v2::nil => Val.shru v1 v2
+ | Orolm amount mask, v1::nil => Val.rolm v1 amount mask
+ | Onegf, v1::nil => Val.negf v1
+ | Oabsf, v1::nil => Val.absf v1
+ | Oaddf, v1::v2::nil => Val.addf v1 v2
+ | Osubf, v1::v2::nil => Val.subf v1 v2
+ | Omulf, v1::v2::nil => Val.mulf v1 v2
+ | Odivf, v1::v2::nil => Val.divf v1 v2
+ | Omuladdf, v1::v2::v3::nil => Val.addf (Val.mulf v1 v2) v3
+ | Omulsubf, v1::v2::v3::nil => Val.subf (Val.mulf v1 v2) v3
+ | Osingleoffloat, v1::nil => Val.singleoffloat v1
+ | Ointoffloat, v1::nil => Val.intoffloat v1
+ | Ointuoffloat, v1::nil => Val.intuoffloat v1
+ | Ofloatofint, v1::nil => Val.floatofint v1
+ | Ofloatofintu, v1::nil => Val.floatofintu v1
+ | Ocmp c, _ => eval_condition_total c vl
+ | _, _ => Vundef
+ end.
+
+Definition eval_addressing_total
+ (sp: val) (addr: addressing) (vl: list val) : val :=
+ match addr, vl with
+ | Aindexed n, v1::nil => Val.add v1 (Vint n)
+ | Aindexed2, v1::v2::nil => Val.add v1 v2
+ | Aglobal s ofs, nil => find_symbol_offset s ofs
+ | Abased s ofs, v1::nil => Val.add (find_symbol_offset s ofs) v1
+ | Ainstack ofs, nil => Val.add sp (Vint ofs)
+ | _, _ => Vundef
+ end.
+
+Lemma eval_compare_mismatch_weaken:
+ forall c b,
+ eval_compare_mismatch c = Some b ->
+ Val.cmp_mismatch c = Val.of_bool b.
+Proof.
+ unfold eval_compare_mismatch. intros. destruct c; inv H; auto.
+Qed.
+
+Lemma eval_compare_null_weaken:
+ forall n c b,
+ (if Int.eq n Int.zero then eval_compare_mismatch c else None) = Some b ->
+ (if Int.eq n Int.zero then Val.cmp_mismatch c else Vundef) = Val.of_bool b.
+Proof.
+ intros. destruct (Int.eq n Int.zero). apply eval_compare_mismatch_weaken. auto.
+ discriminate.
+Qed.
+
+Lemma eval_condition_weaken:
+ forall c vl m b,
+ eval_condition c vl m = Some b ->
+ eval_condition_total c vl = Val.of_bool b.
+Proof.
+ intros.
+ unfold eval_condition in H; destruct c; FuncInv;
+ try subst b; try reflexivity; simpl;
+ try (apply eval_compare_null_weaken; auto).
+ destruct (valid_pointer m b0 (Int.signed i) &&
+ valid_pointer m b1 (Int.signed i0)).
+ unfold eq_block in H. destruct (zeq b0 b1).
+ congruence.
+ apply eval_compare_mismatch_weaken; auto.
+ discriminate.
+ symmetry. apply Val.notbool_negb_1.
+ symmetry. apply Val.notbool_negb_1.
+Qed.
+
+Lemma eval_operation_weaken:
+ forall sp op vl m v,
+ eval_operation genv sp op vl m = Some v ->
+ eval_operation_total sp op vl = v.
+Proof.
+ intros.
+ unfold eval_operation in H; destruct op; FuncInv;
+ try subst v; try reflexivity; simpl.
+ unfold find_symbol_offset.
+ destruct (Genv.find_symbol genv i); try discriminate.
+ congruence.
+ unfold offset_sp in H.
+ destruct sp; try discriminate. simpl. congruence.
+ unfold eq_block in H. destruct (zeq b b0); congruence.
+ destruct (Int.eq i0 Int.zero); congruence.
+ destruct (Int.eq i0 Int.zero); congruence.
+ destruct (Int.ltu i0 (Int.repr 32)); congruence.
+ destruct (Int.ltu i0 (Int.repr 32)); congruence.
+ destruct (Int.ltu i (Int.repr 32)); congruence.
+ destruct (Int.ltu i (Int.repr 32)); congruence.
+ destruct (Int.ltu i0 (Int.repr 32)); congruence.
+ caseEq (eval_condition c vl m); intros; rewrite H0 in H.
+ replace v with (Val.of_bool b).
+ eapply eval_condition_weaken; eauto.
+ destruct b; simpl; congruence.
+ discriminate.
+Qed.
+
+Lemma eval_addressing_weaken:
+ forall sp addr vl v,
+ eval_addressing genv sp addr vl = Some v ->
+ eval_addressing_total sp addr vl = v.
+Proof.
+ intros.
+ unfold eval_addressing in H; destruct addr; FuncInv;
+ try subst v; simpl; try reflexivity.
+ unfold find_symbol_offset.
+ destruct (Genv.find_symbol genv i); congruence.
+ unfold find_symbol_offset.
+ destruct (Genv.find_symbol genv i); try congruence.
+ inversion H. reflexivity.
+ unfold offset_sp in H. destruct sp; simpl; congruence.
+Qed.
+
+Lemma eval_condition_total_is_bool:
+ forall cond vl, Val.is_bool (eval_condition_total cond vl).
+Proof.
+ intros; destruct cond;
+ destruct vl; try apply Val.undef_is_bool;
+ destruct vl; try apply Val.undef_is_bool;
+ try (destruct vl; try apply Val.undef_is_bool); simpl.
+ apply Val.cmp_is_bool.
+ apply Val.cmpu_is_bool.
+ apply Val.cmp_is_bool.
+ apply Val.cmpu_is_bool.
+ apply Val.cmpf_is_bool.
+ apply Val.notbool_is_bool.
+ apply Val.notbool_is_bool.
+ apply Val.notbool_is_bool.
+Qed.
+
+End EVAL_OP_TOTAL.
+
+(** Compatibility of the evaluation functions with the
+ ``is less defined'' relation over values and memory states. *)
+
+Section EVAL_LESSDEF.
+
+Variable F: Set.
+Variable genv: Genv.t F.
+Variables m1 m2: mem.
+Hypothesis MEM: Mem.lessdef m1 m2.
+
+Ltac InvLessdef :=
+ match goal with
+ | [ H: Val.lessdef (Vint _) _ |- _ ] =>
+ inv H; InvLessdef
+ | [ H: Val.lessdef (Vfloat _) _ |- _ ] =>
+ inv H; InvLessdef
+ | [ H: Val.lessdef (Vptr _ _) _ |- _ ] =>
+ inv H; InvLessdef
+ | [ H: Val.lessdef_list nil _ |- _ ] =>
+ inv H; InvLessdef
+ | [ H: Val.lessdef_list (_ :: _) _ |- _ ] =>
+ inv H; InvLessdef
+ | _ => idtac
+ end.
+
+Lemma eval_condition_lessdef:
+ forall cond vl1 vl2 b,
+ Val.lessdef_list vl1 vl2 ->
+ eval_condition cond vl1 m1 = Some b ->
+ eval_condition cond vl2 m2 = Some b.
+Proof.
+ intros. destruct cond; simpl in *; FuncInv; InvLessdef; auto.
+ generalize H0.
+ caseEq (valid_pointer m1 b0 (Int.signed i)); intro; simpl; try congruence.
+ caseEq (valid_pointer m1 b1 (Int.signed i0)); intro; simpl; try congruence.
+ rewrite (Mem.valid_pointer_lessdef _ _ _ _ MEM H1).
+ rewrite (Mem.valid_pointer_lessdef _ _ _ _ MEM H). simpl.
+ auto.
+Qed.
+
+Ltac TrivialExists :=
+ match goal with
+ | [ |- exists v2, Some ?v1 = Some v2 /\ Val.lessdef ?v1 v2 ] =>
+ exists v1; split; [auto | constructor]
+ | _ => idtac
+ end.
+
+Lemma eval_operation_lessdef:
+ forall sp op vl1 vl2 v1,
+ Val.lessdef_list vl1 vl2 ->
+ eval_operation genv sp op vl1 m1 = Some v1 ->
+ exists v2, eval_operation genv sp op vl2 m2 = Some v2 /\ Val.lessdef v1 v2.
+Proof.
+ intros. destruct op; simpl in *; FuncInv; InvLessdef; TrivialExists.
+ exists v2; auto.
+ destruct (Genv.find_symbol genv i); inv H0. TrivialExists.
+ exists v1; auto.
+ exists (Val.sign_ext 8 v2); split. auto. apply Val.sign_ext_lessdef; auto.
+ exists (Val.zero_ext 8 v2); split. auto. apply Val.zero_ext_lessdef; auto.
+ exists (Val.sign_ext 16 v2); split. auto. apply Val.sign_ext_lessdef; auto.
+ exists (Val.zero_ext 16 v2); split. auto. apply Val.zero_ext_lessdef; auto.
+ destruct (eq_block b b0); inv H0. TrivialExists.
+ destruct (Int.eq i0 Int.zero); inv H0; TrivialExists.
+ destruct (Int.eq i0 Int.zero); inv H0; TrivialExists.
+ destruct (Int.ltu i0 (Int.repr 32)); inv H0; TrivialExists.
+ destruct (Int.ltu i0 (Int.repr 32)); inv H0; TrivialExists.
+ destruct (Int.ltu i (Int.repr 32)); inv H0; TrivialExists.
+ destruct (Int.ltu i (Int.repr 32)); inv H0; TrivialExists.
+ destruct (Int.ltu i0 (Int.repr 32)); inv H0; TrivialExists.
+ exists (Val.singleoffloat v2); split. auto. apply Val.singleoffloat_lessdef; auto.
+ caseEq (eval_condition c vl1 m1); intros. rewrite H1 in H0.
+ rewrite (eval_condition_lessdef c H H1).
+ destruct b; inv H0; TrivialExists.
+ rewrite H1 in H0. discriminate.
+Qed.
+
+Lemma eval_addressing_lessdef:
+ forall sp addr vl1 vl2 v1,
+ Val.lessdef_list vl1 vl2 ->
+ eval_addressing genv sp addr vl1 = Some v1 ->
+ exists v2, eval_addressing genv sp addr vl2 = Some v2 /\ Val.lessdef v1 v2.
+Proof.
+ intros. destruct addr; simpl in *; FuncInv; InvLessdef; TrivialExists.
+ destruct (Genv.find_symbol genv i); inv H0. TrivialExists.
+ destruct (Genv.find_symbol genv i); inv H0. TrivialExists.
+ exists v1; auto.
+Qed.
+
+End EVAL_LESSDEF.
+
+(** Transformation of addressing modes with two operands or more
+ into an equivalent arithmetic operation. This is used in the [Reload]
+ pass when a store instruction cannot be reloaded directly because
+ it runs out of temporary registers. *)
+
+(** For the PowerPC, there is only one binary addressing mode: [Aindexed2].
+ The corresponding operation is [Oadd]. *)
+
+Definition op_for_binary_addressing (addr: addressing) : operation := Oadd.
+
+Lemma eval_op_for_binary_addressing:
+ forall (F: Set) (ge: Genv.t F) sp addr args m v,
+ (length args >= 2)%nat ->
+ eval_addressing ge sp addr args = Some v ->
+ eval_operation ge sp (op_for_binary_addressing addr) args m = Some v.
+Proof.
+ intros.
+ unfold eval_addressing in H0; destruct addr; FuncInv; simpl in H; try omegaContradiction;
+ simpl; congruence.
+Qed.
+
+Lemma type_op_for_binary_addressing:
+ forall addr,
+ (length (type_of_addressing addr) >= 2)%nat ->
+ type_of_operation (op_for_binary_addressing addr) = (type_of_addressing addr, Tint).
+Proof.
+ intros. destruct addr; simpl in H; reflexivity || omegaContradiction.
+Qed.
diff --git a/powerpc/PrintAsm.ml b/powerpc/PrintAsm.ml
new file mode 100644
index 00000000..0e45c848
--- /dev/null
+++ b/powerpc/PrintAsm.ml
@@ -0,0 +1,532 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(* Printing PPC assembly code in asm syntax *)
+
+open Printf
+open Datatypes
+open CList
+open Camlcoq
+open AST
+open Asm
+
+(* On-the-fly label renaming *)
+
+let next_label = ref 100
+
+let new_label() =
+ let lbl = !next_label in incr next_label; lbl
+
+let current_function_labels = (Hashtbl.create 39 : (label, int) Hashtbl.t)
+
+let label_for_label lbl =
+ try
+ Hashtbl.find current_function_labels lbl
+ with Not_found ->
+ let lbl' = new_label() in
+ Hashtbl.add current_function_labels lbl lbl';
+ lbl'
+
+(* Record identifiers of external functions *)
+
+module IdentSet = Set.Make(struct type t = ident let compare = compare end)
+
+let extfuns = ref IdentSet.empty
+
+let record_extfun (Coq_pair(name, defn)) =
+ match defn with
+ | Internal _ -> ()
+ | External _ -> extfuns := IdentSet.add name !extfuns
+
+(* Basic printing functions *)
+
+let print_symb oc symb =
+ if IdentSet.mem symb !extfuns
+ then fprintf oc "L%s$stub" (extern_atom symb)
+ else fprintf oc "_%s" (extern_atom symb)
+
+let print_label oc lbl =
+ fprintf oc "L%d" (label_for_label lbl)
+
+let print_symb_ofs oc (symb, ofs) =
+ print_symb oc symb;
+ if ofs <> 0l then fprintf oc " + %ld" ofs
+
+let print_constant oc = function
+ | Cint n ->
+ fprintf oc "%ld" (camlint_of_coqint n)
+ | Csymbol_low(s, n) ->
+ fprintf oc "lo16(%a)" print_symb_ofs (s, camlint_of_coqint n)
+ | Csymbol_high(s, n) ->
+ fprintf oc "ha16(%a)" print_symb_ofs (s, camlint_of_coqint n)
+
+let num_crbit = function
+ | CRbit_0 -> 0
+ | CRbit_1 -> 1
+ | CRbit_2 -> 2
+ | CRbit_3 -> 3
+
+let print_crbit oc bit =
+ fprintf oc "%d" (num_crbit bit)
+
+let print_coqint oc n =
+ fprintf oc "%ld" (camlint_of_coqint n)
+
+let int_reg_name = function
+ | GPR0 -> "r0" | GPR1 -> "r1" | GPR2 -> "r2" | GPR3 -> "r3"
+ | GPR4 -> "r4" | GPR5 -> "r5" | GPR6 -> "r6" | GPR7 -> "r7"
+ | GPR8 -> "r8" | GPR9 -> "r9" | GPR10 -> "r10" | GPR11 -> "r11"
+ | GPR12 -> "r12" | GPR13 -> "r13" | GPR14 -> "r14" | GPR15 -> "r15"
+ | GPR16 -> "r16" | GPR17 -> "r17" | GPR18 -> "r18" | GPR19 -> "r19"
+ | GPR20 -> "r20" | GPR21 -> "r21" | GPR22 -> "r22" | GPR23 -> "r23"
+ | GPR24 -> "r24" | GPR25 -> "r25" | GPR26 -> "r26" | GPR27 -> "r27"
+ | GPR28 -> "r28" | GPR29 -> "r29" | GPR30 -> "r30" | GPR31 -> "r31"
+
+let float_reg_name = function
+ | FPR0 -> "f0" | FPR1 -> "f1" | FPR2 -> "f2" | FPR3 -> "f3"
+ | FPR4 -> "f4" | FPR5 -> "f5" | FPR6 -> "f6" | FPR7 -> "f7"
+ | FPR8 -> "f8" | FPR9 -> "f9" | FPR10 -> "f10" | FPR11 -> "f11"
+ | FPR12 -> "f12" | FPR13 -> "f13" | FPR14 -> "f14" | FPR15 -> "f15"
+ | FPR16 -> "f16" | FPR17 -> "f17" | FPR18 -> "f18" | FPR19 -> "f19"
+ | FPR20 -> "f20" | FPR21 -> "f21" | FPR22 -> "f22" | FPR23 -> "f23"
+ | FPR24 -> "f24" | FPR25 -> "f25" | FPR26 -> "f26" | FPR27 -> "f27"
+ | FPR28 -> "f28" | FPR29 -> "f29" | FPR30 -> "f30" | FPR31 -> "f31"
+
+let ireg oc r = output_string oc (int_reg_name r)
+let ireg_or_zero oc r = if r = GPR0 then output_string oc "0" else ireg oc r
+let freg oc r = output_string oc (float_reg_name r)
+
+(* Printing of instructions *)
+
+module Labelset = Set.Make(struct type t = label let compare = compare end)
+
+let print_instruction oc labels = function
+ | Padd(r1, r2, r3) ->
+ fprintf oc " add %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Paddi(r1, r2, c) ->
+ fprintf oc " addi %a, %a, %a\n" ireg r1 ireg_or_zero r2 print_constant c
+ | Paddis(r1, r2, c) ->
+ fprintf oc " addis %a, %a, %a\n" ireg r1 ireg_or_zero r2 print_constant c
+ | Paddze(r1, r2) ->
+ fprintf oc " addze %a, %a\n" ireg r1 ireg r2
+ | Pallocblock ->
+ fprintf oc " bl _compcert_alloc\n"
+ | Pallocframe(lo, hi, ofs) ->
+ let lo = camlint_of_coqint lo
+ and hi = camlint_of_coqint hi
+ and ofs = camlint_of_coqint ofs in
+ let sz = Int32.sub hi lo in
+ (* Keep stack 16-aligned *)
+ let sz16 = Int32.logand (Int32.add sz 15l) 0xFFFF_FFF0l in
+ assert (ofs = 0l);
+ fprintf oc " stwu r1, %ld(r1)\n" (Int32.neg sz16)
+ | Pand_(r1, r2, r3) ->
+ fprintf oc " and. %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Pandc(r1, r2, r3) ->
+ fprintf oc " andc %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Pandi_(r1, r2, c) ->
+ fprintf oc " andi. %a, %a, %a\n" ireg r1 ireg r2 print_constant c
+ | Pandis_(r1, r2, c) ->
+ fprintf oc " andis. %a, %a, %a\n" ireg r1 ireg r2 print_constant c
+ | Pb lbl ->
+ fprintf oc " b %a\n" print_label lbl
+ | Pbctr ->
+ fprintf oc " bctr\n"
+ | Pbctrl ->
+ fprintf oc " bctrl\n"
+ | Pbf(bit, lbl) ->
+ fprintf oc " bf %a, %a\n" print_crbit bit print_label lbl
+ | Pbl s ->
+ fprintf oc " bl %a\n" print_symb s
+ | Pbs s ->
+ fprintf oc " b %a\n" print_symb s
+ | Pblr ->
+ fprintf oc " blr\n"
+ | Pbt(bit, lbl) ->
+ fprintf oc " bt %a, %a\n" print_crbit bit print_label lbl
+ | Pcmplw(r1, r2) ->
+ fprintf oc " cmplw cr0, %a, %a\n" ireg r1 ireg r2
+ | Pcmplwi(r1, c) ->
+ fprintf oc " cmplwi cr0, %a, %a\n" ireg r1 print_constant c
+ | Pcmpw(r1, r2) ->
+ fprintf oc " cmpw cr0, %a, %a\n" ireg r1 ireg r2
+ | Pcmpwi(r1, c) ->
+ fprintf oc " cmpwi cr0, %a, %a\n" ireg r1 print_constant c
+ | Pcror(c1, c2, c3) ->
+ fprintf oc " cror %a, %a, %a\n" print_crbit c1 print_crbit c2 print_crbit c3
+ | Pdivw(r1, r2, r3) ->
+ fprintf oc " divw %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Pdivwu(r1, r2, r3) ->
+ fprintf oc " divwu %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Peqv(r1, r2, r3) ->
+ fprintf oc " eqv %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Pextsb(r1, r2) ->
+ fprintf oc " extsb %a, %a\n" ireg r1 ireg r2
+ | Pextsh(r1, r2) ->
+ fprintf oc " extsh %a, %a\n" ireg r1 ireg r2
+ | Pfreeframe ofs ->
+ fprintf oc " lwz r1, %ld(r1)\n" (camlint_of_coqint ofs)
+ | Pfabs(r1, r2) ->
+ fprintf oc " fabs %a, %a\n" freg r1 freg r2
+ | Pfadd(r1, r2, r3) ->
+ fprintf oc " fadd %a, %a, %a\n" freg r1 freg r2 freg r3
+ | Pfcmpu(r1, r2) ->
+ fprintf oc " fcmpu cr0, %a, %a\n" freg r1 freg r2
+ | Pfcti(r1, r2) ->
+ fprintf oc " fctiwz f13, %a\n" freg r2;
+ fprintf oc " stfd f13, -8(r1)\n";
+ fprintf oc " lwz %a, -4(r1)\n" ireg r1
+ | Pfctiu(r1, r2) ->
+ let lbl1 = new_label() in
+ let lbl2 = new_label() in
+ let lbl3 = new_label() in
+ fprintf oc " addis r12, 0, ha16(L%d)\n" lbl1;
+ fprintf oc " lfd f13, lo16(L%d)(r12)\n" lbl1;
+ fprintf oc " fcmpu cr7, %a, f13\n" freg r2;
+ fprintf oc " cror 30, 29, 30\n";
+ fprintf oc " beq cr7, L%d\n" lbl2;
+ fprintf oc " fctiwz f13, %a\n" freg r2;
+ fprintf oc " stfdu f13, -8(r1)\n";
+ fprintf oc " lwz %a, 4(r1)\n" ireg r1;
+ fprintf oc " b L%d\n" lbl3;
+ fprintf oc "L%d: fsub f13, %a, f13\n" lbl2 freg r2;
+ fprintf oc " fctiwz f13, f13\n";
+ fprintf oc " stfdu f13, -8(r1)\n";
+ fprintf oc " lwz %a, 4(r1)\n" ireg r1;
+ fprintf oc " addis %a, %a, 0x8000\n" ireg r1 ireg r1;
+ fprintf oc "L%d: addi r1, r1, 8\n" lbl3;
+ fprintf oc " .const_data\n";
+ fprintf oc "L%d: .long 0x41e00000, 0x00000000\n" lbl1;
+ fprintf oc " .text\n"
+ | Pfdiv(r1, r2, r3) ->
+ fprintf oc " fdiv %a, %a, %a\n" freg r1 freg r2 freg r3
+ | Pfmadd(r1, r2, r3, r4) ->
+ fprintf oc " fmadd %a, %a, %a, %a\n" freg r1 freg r2 freg r3 freg r4
+ | Pfmr(r1, r2) ->
+ fprintf oc " fmr %a, %a\n" freg r1 freg r2
+ | Pfmsub(r1, r2, r3, r4) ->
+ fprintf oc " fmsub %a, %a, %a, %a\n" freg r1 freg r2 freg r3 freg r4
+ | Pfmul(r1, r2, r3) ->
+ fprintf oc " fmul %a, %a, %a\n" freg r1 freg r2 freg r3
+ | Pfneg(r1, r2) ->
+ fprintf oc " fneg %a, %a\n" freg r1 freg r2
+ | Pfrsp(r1, r2) ->
+ fprintf oc " frsp %a, %a\n" freg r1 freg r2
+ | Pfsub(r1, r2, r3) ->
+ fprintf oc " fsub %a, %a, %a\n" freg r1 freg r2 freg r3
+ | Pictf(r1, r2) ->
+ let lbl = new_label() in
+ fprintf oc " addis r12, 0, 0x4330\n";
+ fprintf oc " stw r12, -8(r1)\n";
+ fprintf oc " addis r12, %a, 0x8000\n" ireg r2;
+ fprintf oc " stw r12, -4(r1)\n";
+ fprintf oc " addis r12, 0, ha16(L%d)\n" lbl;
+ fprintf oc " lfd f13, lo16(L%d)(r12)\n" lbl;
+ fprintf oc " lfd %a, -8(r1)\n" freg r1;
+ fprintf oc " fsub %a, %a, f13\n" freg r1 freg r1;
+ fprintf oc " .const_data\n";
+ fprintf oc "L%d: .long 0x43300000, 0x80000000\n" lbl;
+ fprintf oc " .text\n"
+ | Piuctf(r1, r2) ->
+ let lbl = new_label() in
+ fprintf oc " addis r12, 0, 0x4330\n";
+ fprintf oc " stw r12, -8(r1)\n";
+ fprintf oc " stw %a, -4(r1)\n" ireg r2;
+ fprintf oc " addis r12, 0, ha16(L%d)\n" lbl;
+ fprintf oc " lfd f13, lo16(L%d)(r12)\n" lbl;
+ fprintf oc " lfd %a, -8(r1)\n" freg r1;
+ fprintf oc " fsub %a, %a, f13\n" freg r1 freg r1;
+ fprintf oc " .const_data\n";
+ fprintf oc "L%d: .long 0x43300000, 0x00000000\n" lbl;
+ fprintf oc " .text\n"
+ | Plbz(r1, c, r2) ->
+ fprintf oc " lbz %a, %a(%a)\n" ireg r1 print_constant c ireg r2
+ | Plbzx(r1, r2, r3) ->
+ fprintf oc " lbzx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Plfd(r1, c, r2) ->
+ fprintf oc " lfd %a, %a(%a)\n" freg r1 print_constant c ireg r2
+ | Plfdx(r1, r2, r3) ->
+ fprintf oc " lfdx %a, %a, %a\n" freg r1 ireg r2 ireg r3
+ | Plfi(r1, c) ->
+ let lbl = new_label() in
+ fprintf oc " addis r12, 0, ha16(L%d)\n" lbl;
+ fprintf oc " lfd %a, lo16(L%d)(r12)\n" freg r1 lbl;
+ fprintf oc " .const_data\n";
+ let n = Int64.bits_of_float c in
+ let nlo = Int64.to_int32 n
+ and nhi = Int64.to_int32(Int64.shift_right_logical n 32) in
+ fprintf oc "L%d: .long 0x%lx, 0x%lx ; %f\n" lbl nhi nlo c;
+ fprintf oc " .text\n"
+ | Plfs(r1, c, r2) ->
+ fprintf oc " lfs %a, %a(%a)\n" freg r1 print_constant c ireg r2
+ | Plfsx(r1, r2, r3) ->
+ fprintf oc " lfsx %a, %a, %a\n" freg r1 ireg r2 ireg r3
+ | Plha(r1, c, r2) ->
+ fprintf oc " lha %a, %a(%a)\n" ireg r1 print_constant c ireg r2
+ | Plhax(r1, r2, r3) ->
+ fprintf oc " lhax %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Plhz(r1, c, r2) ->
+ fprintf oc " lhz %a, %a(%a)\n" ireg r1 print_constant c ireg r2
+ | Plhzx(r1, r2, r3) ->
+ fprintf oc " lhzx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Plwz(r1, c, r2) ->
+ fprintf oc " lwz %a, %a(%a)\n" ireg r1 print_constant c ireg r2
+ | Plwzx(r1, r2, r3) ->
+ fprintf oc " lwzx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Pmfcrbit(r1, bit) ->
+ fprintf oc " mfcr r2\n";
+ fprintf oc " rlwinm %a, r2, %d, 1\n" ireg r1 (1 + num_crbit bit)
+ | Pmflr(r1) ->
+ fprintf oc " mflr %a\n" ireg r1
+ | Pmr(r1, r2) ->
+ fprintf oc " mr %a, %a\n" ireg r1 ireg r2
+ | Pmtctr(r1) ->
+ fprintf oc " mtctr %a\n" ireg r1
+ | Pmtlr(r1) ->
+ fprintf oc " mtlr %a\n" ireg r1
+ | Pmulli(r1, r2, c) ->
+ fprintf oc " mulli %a, %a, %a\n" ireg r1 ireg r2 print_constant c
+ | Pmullw(r1, r2, r3) ->
+ fprintf oc " mullw %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Pnand(r1, r2, r3) ->
+ fprintf oc " nand %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Pnor(r1, r2, r3) ->
+ fprintf oc " nor %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Por(r1, r2, r3) ->
+ fprintf oc " or %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Porc(r1, r2, r3) ->
+ fprintf oc " orc %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Pori(r1, r2, c) ->
+ fprintf oc " ori %a, %a, %a\n" ireg r1 ireg r2 print_constant c
+ | Poris(r1, r2, c) ->
+ fprintf oc " oris %a, %a, %a\n" ireg r1 ireg r2 print_constant c
+ | Prlwinm(r1, r2, c1, c2) ->
+ fprintf oc " rlwinm %a, %a, %ld, 0x%lx\n"
+ ireg r1 ireg r2 (camlint_of_coqint c1) (camlint_of_coqint c2)
+ | Pslw(r1, r2, r3) ->
+ fprintf oc " slw %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Psraw(r1, r2, r3) ->
+ fprintf oc " sraw %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Psrawi(r1, r2, c) ->
+ fprintf oc " srawi %a, %a, %ld\n" ireg r1 ireg r2 (camlint_of_coqint c)
+ | Psrw(r1, r2, r3) ->
+ fprintf oc " srw %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Pstb(r1, c, r2) ->
+ fprintf oc " stb %a, %a(%a)\n" ireg r1 print_constant c ireg r2
+ | Pstbx(r1, r2, r3) ->
+ fprintf oc " stbx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Pstfd(r1, c, r2) ->
+ fprintf oc " stfd %a, %a(%a)\n" freg r1 print_constant c ireg r2
+ | Pstfdx(r1, r2, r3) ->
+ fprintf oc " stfdx %a, %a, %a\n" freg r1 ireg r2 ireg r3
+ | Pstfs(r1, c, r2) ->
+ fprintf oc " stfs %a, %a(%a)\n" freg r1 print_constant c ireg r2
+ | Pstfsx(r1, r2, r3) ->
+ fprintf oc " stfsx %a, %a, %a\n" freg r1 ireg r2 ireg r3
+ | Psth(r1, c, r2) ->
+ fprintf oc " sth %a, %a(%a)\n" ireg r1 print_constant c ireg r2
+ | Psthx(r1, r2, r3) ->
+ fprintf oc " sthx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Pstw(r1, c, r2) ->
+ fprintf oc " stw %a, %a(%a)\n" ireg r1 print_constant c ireg r2
+ | Pstwx(r1, r2, r3) ->
+ fprintf oc " stwx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Psubfc(r1, r2, r3) ->
+ fprintf oc " subfc %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Psubfic(r1, r2, c) ->
+ fprintf oc " subfic %a, %a, %a\n" ireg r1 ireg r2 print_constant c
+ | Pxor(r1, r2, r3) ->
+ fprintf oc " xor %a, %a, %a\n" ireg r1 ireg r2 ireg r3
+ | Pxori(r1, r2, c) ->
+ fprintf oc " xori %a, %a, %a\n" ireg r1 ireg r2 print_constant c
+ | Pxoris(r1, r2, c) ->
+ fprintf oc " xoris %a, %a, %a\n" ireg r1 ireg r2 print_constant c
+ | Plabel lbl ->
+ if Labelset.mem lbl labels then fprintf oc "%a:\n" print_label lbl
+
+let rec labels_of_code = function
+ | [] -> Labelset.empty
+ | (Pb lbl | Pbf(_, lbl) | Pbt(_, lbl)) :: c ->
+ Labelset.add lbl (labels_of_code c)
+ | _ :: c -> labels_of_code c
+
+let print_function oc name code =
+ Hashtbl.clear current_function_labels;
+ fprintf oc " .text\n";
+ fprintf oc " .align 2\n";
+ fprintf oc " .globl %a\n" print_symb name;
+ fprintf oc "%a:\n" print_symb name;
+ List.iter (print_instruction oc (labels_of_code code)) code
+
+(* Generation of stub code for variadic functions, e.g. printf.
+ Calling conventions for variadic functions are:
+ - always reserve 8 stack words (offsets 24 to 52) so that the
+ variadic function can save there the integer registers parameters
+ r3 ... r10
+ - treat float arguments as pairs of integers, i.e. if we
+ must pass them in registers, use a pair of integer registers
+ for this purpose.
+ The code we generate is:
+ - allocate large enough stack frame
+ - save return address
+ - copy our arguments (registers and stack) to the stack frame,
+ starting at offset 24
+ - load relevant integer parameter registers r3...r10 from the
+ stack frame, limited by the actual number of arguments
+ - call the variadic thing
+ - deallocate stack frame and return
+*)
+
+let variadic_stub oc stub_name fun_name ty_args =
+ (* Compute total size of arguments *)
+ let arg_size =
+ CList.fold_left
+ (fun sz ty -> match ty with Tint -> sz + 4 | Tfloat -> sz + 8)
+ ty_args 0 in
+ (* Stack size is linkage area + argument size, with a minimum of 56 bytes *)
+ let frame_size = max 56 (24 + arg_size) in
+ fprintf oc " mflr r0\n";
+ fprintf oc " stwu r1, %d(r1)\n" (-frame_size);
+ fprintf oc " stw r0, %d(r1)\n" (frame_size + 4);
+ (* Copy our parameters to our stack frame.
+ As an optimization, don't copy parameters that are already in
+ integer registers, since these stay in place. *)
+ let rec copy gpr fpr src_ofs dst_ofs = function
+ | [] -> ()
+ | Tint :: rem ->
+ if gpr > 10 then begin
+ fprintf oc " lwz r0, %d(r1)\n" src_ofs;
+ fprintf oc " stw r0, %d(r1)\n" dst_ofs
+ end;
+ copy (gpr + 1) fpr (src_ofs + 4) (dst_ofs + 4) rem
+ | Tfloat :: rem ->
+ if fpr <= 10 then begin
+ fprintf oc " stfd f%d, %d(r1)\n" fpr dst_ofs
+ end else begin
+ fprintf oc " lfd f0, %d(r1)\n" src_ofs;
+ fprintf oc " stfd f0, %d(r1)\n" dst_ofs
+ end;
+ copy (gpr + 2) (fpr + 1) (src_ofs + 8) (dst_ofs + 8) rem
+ in copy 3 1 (frame_size + 24) 24 ty_args;
+ (* Load the first parameters into integer registers.
+ As an optimization, don't load parameters that are already
+ in the correct integer registers. *)
+ let rec load gpr ofs = function
+ | [] -> ()
+ | Tint :: rem ->
+ load (gpr + 1) (ofs + 4) rem
+ | Tfloat :: rem ->
+ if gpr <= 10 then
+ fprintf oc " lwz r%d, %d(r1)\n" gpr ofs;
+ if gpr + 1 <= 10 then
+ fprintf oc " lwz r%d, %d(r1)\n" (gpr + 1) (ofs + 4);
+ load (gpr + 2) (ofs + 8) rem
+ in load 3 24 ty_args;
+ (* Call the function *)
+ fprintf oc " addis r11, 0, ha16(L%s$ptr)\n" stub_name;
+ fprintf oc " lwz r11, lo16(L%s$ptr)(r11)\n" stub_name;
+ fprintf oc " mtctr r11\n";
+ fprintf oc " bctrl\n";
+ (* Free our frame and return *)
+ fprintf oc " lwz r0, %d(r1)\n" (frame_size + 4);
+ fprintf oc " mtlr r0\n";
+ fprintf oc " addi r1, r1, %d\n" frame_size;
+ fprintf oc " blr\n";
+ (* The function pointer *)
+ fprintf oc " .non_lazy_symbol_pointer\n";
+ fprintf oc "L%s$ptr:\n" stub_name;
+ fprintf oc " .indirect_symbol _%s\n" fun_name;
+ fprintf oc " .long 0\n"
+
+(* Stubs for fixed-type functions are much simpler *)
+
+let non_variadic_stub oc name =
+ fprintf oc " addis r11, 0, ha16(L%s$ptr)\n" name;
+ fprintf oc " lwz r11, lo16(L%s$ptr)(r11)\n" name;
+ fprintf oc " mtctr r11\n";
+ fprintf oc " bctr\n";
+ fprintf oc " .non_lazy_symbol_pointer\n";
+ fprintf oc "L%s$ptr:\n" name;
+ fprintf oc " .indirect_symbol _%s\n" name;
+ fprintf oc " .long 0\n"
+
+let re_variadic_stub = Str.regexp "\\(.*\\)\\$[if]*$"
+
+let print_external_function oc name ef =
+ let name = extern_atom name in
+ fprintf oc " .text\n";
+ fprintf oc " .align 2\n";
+ fprintf oc "L%s$stub:\n" name;
+ if Str.string_match re_variadic_stub name 0
+ then variadic_stub oc name (Str.matched_group 1 name) ef.ef_sig.sig_args
+ else non_variadic_stub oc name
+
+let print_fundef oc (Coq_pair(name, defn)) =
+ match defn with
+ | Internal code -> print_function oc name code
+ | External ef -> print_external_function oc name ef
+
+let init_data_queue = ref []
+
+let print_init oc = function
+ | Init_int8 n ->
+ fprintf oc " .byte %ld\n" (camlint_of_coqint n)
+ | Init_int16 n ->
+ fprintf oc " .short %ld\n" (camlint_of_coqint n)
+ | Init_int32 n ->
+ fprintf oc " .long %ld\n" (camlint_of_coqint n)
+ | Init_float32 n ->
+ fprintf oc " .long %ld ; %g \n" (Int32.bits_of_float n) n
+ | Init_float64 n ->
+ (* .quad not working on all versions of the MacOSX assembler *)
+ let b = Int64.bits_of_float n in
+ fprintf oc " .long %Ld, %Ld ; %g \n"
+ (Int64.shift_right_logical b 32)
+ (Int64.logand b 0xFFFFFFFFL)
+ n
+ | Init_space n ->
+ let n = camlint_of_z n in
+ if n > 0l then fprintf oc " .space %ld\n" n
+ | Init_pointer id ->
+ let lbl = new_label() in
+ fprintf oc " .long L%d\n" lbl;
+ init_data_queue := (lbl, id) :: !init_data_queue
+
+let print_init_data oc id =
+ init_data_queue := [];
+ List.iter (print_init oc) id;
+ let rec print_remainder () =
+ match !init_data_queue with
+ | [] -> ()
+ | (lbl, id) :: rem ->
+ init_data_queue := rem;
+ fprintf oc "L%d:\n" lbl;
+ List.iter (print_init oc) id;
+ print_remainder()
+ in print_remainder()
+
+let print_var oc (Coq_pair(Coq_pair(name, init_data), _)) =
+ match init_data with
+ | [] -> ()
+ | _ ->
+ fprintf oc " .data\n";
+ fprintf oc " .align 3\n";
+ fprintf oc " .globl %a\n" print_symb name;
+ fprintf oc "%a:\n" print_symb name;
+ print_init_data oc init_data
+
+let print_program oc p =
+ extfuns := IdentSet.empty;
+ List.iter record_extfun p.prog_funct;
+ List.iter (print_var oc) p.prog_vars;
+ List.iter (print_fundef oc) p.prog_funct
+
diff --git a/powerpc/PrintAsm.mli b/powerpc/PrintAsm.mli
new file mode 100644
index 00000000..aefe3a0a
--- /dev/null
+++ b/powerpc/PrintAsm.mli
@@ -0,0 +1,13 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+val print_program: out_channel -> Asm.program -> unit
diff --git a/powerpc/Selection.v b/powerpc/Selection.v
new file mode 100644
index 00000000..1de6ae3c
--- /dev/null
+++ b/powerpc/Selection.v
@@ -0,0 +1,1196 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Instruction selection *)
+
+(** The instruction selection pass recognizes opportunities for using
+ combined arithmetic and logical operations and addressing modes
+ offered by the target processor. For instance, the expression [x + 1]
+ can take advantage of the "immediate add" instruction of the processor,
+ and on the PowerPC, the expression [(x >> 6) & 0xFF] can be turned
+ into a "rotate and mask" instruction.
+
+ Instruction selection proceeds by bottom-up rewriting over expressions.
+ The source language is Cminor and the target language is CminorSel. *)
+
+Require Import Coqlib.
+Require Import Maps.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Mem.
+Require Import Globalenvs.
+Require Cminor.
+Require Import Op.
+Require Import CminorSel.
+
+Infix ":::" := Econs (at level 60, right associativity) : selection_scope.
+
+Open Local Scope selection_scope.
+
+(** * Lifting of let-bound variables *)
+
+(** Some of the instruction functions generate [Elet] constructs to
+ share the evaluation of a subexpression. Owing to the use of de
+ Bruijn indices for let-bound variables, we need to shift de Bruijn
+ indices when an expression [b] is put in a [Elet a b] context. *)
+
+Fixpoint lift_expr (p: nat) (a: expr) {struct a}: expr :=
+ match a with
+ | Evar id => Evar id
+ | Eop op bl => Eop op (lift_exprlist p bl)
+ | Eload chunk addr bl => Eload chunk addr (lift_exprlist p bl)
+ | Econdition b c d =>
+ Econdition (lift_condexpr p b) (lift_expr p c) (lift_expr p d)
+ | Elet b c => Elet (lift_expr p b) (lift_expr (S p) c)
+ | Eletvar n =>
+ if le_gt_dec p n then Eletvar (S n) else Eletvar n
+ end
+
+with lift_condexpr (p: nat) (a: condexpr) {struct a}: condexpr :=
+ match a with
+ | CEtrue => CEtrue
+ | CEfalse => CEfalse
+ | CEcond cond bl => CEcond cond (lift_exprlist p bl)
+ | CEcondition b c d =>
+ CEcondition (lift_condexpr p b) (lift_condexpr p c) (lift_condexpr p d)
+ end
+
+with lift_exprlist (p: nat) (a: exprlist) {struct a}: exprlist :=
+ match a with
+ | Enil => Enil
+ | Econs b cl => Econs (lift_expr p b) (lift_exprlist p cl)
+ end.
+
+Definition lift (a: expr): expr := lift_expr O a.
+
+(** * Smart constructors for operators *)
+
+(** This section defines functions for building CminorSel expressions
+ and statements, especially expressions consisting of operator
+ applications. These functions examine their arguments to choose
+ cheaper forms of operators whenever possible.
+
+ For instance, [add e1 e2] will return a CminorSel expression semantically
+ equivalent to [Eop Oadd (e1 ::: e2 ::: Enil)], but will use a
+ [Oaddimm] operator if one of the arguments is an integer constant,
+ or suppress the addition altogether if one of the arguments is the
+ null integer. In passing, we perform operator reassociation
+ ([(e + c1) * c2] becomes [(e * c2) + (c1 * c2)]) and a small amount
+ of constant propagation.
+*)
+
+(** ** Integer logical negation *)
+
+(** The natural way to write smart constructors is by pattern-matching
+ on their arguments, recognizing cases where cheaper operators
+ or combined operators are applicable. For instance, integer logical
+ negation has three special cases (not-and, not-or and not-xor),
+ along with a default case that uses not-or over its arguments and itself.
+ This is written naively as follows:
+<<
+Definition notint (e: expr) :=
+ match e with
+ | Eop Oand (t1:::t2:::Enil) => Eop Onand (t1:::t2:::Enil)
+ | Eop Oor (t1:::t2:::Enil) => Eop Onor (t1:::t2:::Enil)
+ | Eop Oxor (t1:::t2:::Enil) => Eop Onxor (t1:::t2:::Enil)
+ | _ => Elet(e, Eop Onor (Eletvar O ::: Eletvar O ::: Enil)
+ end.
+>>
+ However, Coq expands complex pattern-matchings like the above into
+ elementary matchings over all constructors of an inductive type,
+ resulting in much duplication of the final catch-all case.
+ Such duplications generate huge executable code and duplicate
+ cases in the correctness proofs.
+
+ To limit this duplication, we use the following trick due to
+ Yves Bertot. We first define a dependent inductive type that
+ characterizes the expressions that match each of the 4 cases of interest.
+*)
+
+Inductive notint_cases: forall (e: expr), Set :=
+ | notint_case1:
+ forall (t1: expr) (t2: expr),
+ notint_cases (Eop Oand (t1:::t2:::Enil))
+ | notint_case2:
+ forall (t1: expr) (t2: expr),
+ notint_cases (Eop Oor (t1:::t2:::Enil))
+ | notint_case3:
+ forall (t1: expr) (t2: expr),
+ notint_cases (Eop Oxor (t1:::t2:::Enil))
+ | notint_default:
+ forall (e: expr),
+ notint_cases e.
+
+(** We then define a classification function that takes an expression
+ and return the case in which it falls. Note that the catch-all case
+ [notint_default] does not state that it is mutually exclusive with
+ the first three, more specific cases. The classification function
+ nonetheless chooses the specific cases in preference to the catch-all
+ case. *)
+
+Definition notint_match (e: expr) :=
+ match e as z1 return notint_cases z1 with
+ | Eop Oand (t1:::t2:::Enil) =>
+ notint_case1 t1 t2
+ | Eop Oor (t1:::t2:::Enil) =>
+ notint_case2 t1 t2
+ | Eop Oxor (t1:::t2:::Enil) =>
+ notint_case3 t1 t2
+ | e =>
+ notint_default e
+ end.
+
+(** Finally, the [notint] function we need is defined by a 4-case match
+ over the result of the classification function. Thus, no duplication
+ of the right-hand sides of this match occur, and the proof has only
+ 4 cases to consider (it proceeds by case over [notint_match e]).
+ Since the default case is not obviously exclusive with the three
+ specific cases, it is important that its right-hand side is
+ semantically correct for all possible values of [e], which is the
+ case here and for all other smart constructors. *)
+
+Definition notint (e: expr) :=
+ match notint_match e with
+ | notint_case1 t1 t2 =>
+ Eop Onand (t1:::t2:::Enil)
+ | notint_case2 t1 t2 =>
+ Eop Onor (t1:::t2:::Enil)
+ | notint_case3 t1 t2 =>
+ Eop Onxor (t1:::t2:::Enil)
+ | notint_default e =>
+ Elet e (Eop Onor (Eletvar O ::: Eletvar O ::: Enil))
+ end.
+
+(** This programming pattern will be applied systematically for the
+ other smart constructors in this file. *)
+
+(** ** Boolean negation *)
+
+Definition notbool_base (e: expr) :=
+ Eop (Ocmp (Ccompimm Ceq Int.zero)) (e ::: Enil).
+
+Fixpoint notbool (e: expr) {struct e} : expr :=
+ match e with
+ | Eop (Ointconst n) Enil =>
+ Eop (Ointconst (if Int.eq n Int.zero then Int.one else Int.zero)) Enil
+ | Eop (Ocmp cond) args =>
+ Eop (Ocmp (negate_condition cond)) args
+ | Econdition e1 e2 e3 =>
+ Econdition e1 (notbool e2) (notbool e3)
+ | _ =>
+ notbool_base e
+ end.
+
+(** ** Integer addition and pointer addition *)
+
+(*
+Definition addimm (n: int) (e: expr) :=
+ if Int.eq n Int.zero then e else
+ match e with
+ | Eop (Ointconst m) Enil => Eop (Ointconst(Int.add n m)) Enil
+ | Eop (Oaddrsymbol s m) Enil => Eop (Oaddrsymbol s (Int.add n m)) Enil
+ | Eop (Oaddrstack m) Enil => Eop (Oaddrstack (Int.add n m)) Enil
+ | Eop (Oaddimm m) (t ::: Enil) => Eop (Oaddimm(Int.add n m)) (t ::: Enil)
+ | _ => Eop (Oaddimm n) (e ::: Enil)
+ end.
+*)
+
+(** Addition of an integer constant. *)
+
+Inductive addimm_cases: forall (e: expr), Set :=
+ | addimm_case1:
+ forall (m: int),
+ addimm_cases (Eop (Ointconst m) Enil)
+ | addimm_case2:
+ forall (s: ident) (m: int),
+ addimm_cases (Eop (Oaddrsymbol s m) Enil)
+ | addimm_case3:
+ forall (m: int),
+ addimm_cases (Eop (Oaddrstack m) Enil)
+ | addimm_case4:
+ forall (m: int) (t: expr),
+ addimm_cases (Eop (Oaddimm m) (t ::: Enil))
+ | addimm_default:
+ forall (e: expr),
+ addimm_cases e.
+
+Definition addimm_match (e: expr) :=
+ match e as z1 return addimm_cases z1 with
+ | Eop (Ointconst m) Enil =>
+ addimm_case1 m
+ | Eop (Oaddrsymbol s m) Enil =>
+ addimm_case2 s m
+ | Eop (Oaddrstack m) Enil =>
+ addimm_case3 m
+ | Eop (Oaddimm m) (t ::: Enil) =>
+ addimm_case4 m t
+ | e =>
+ addimm_default e
+ end.
+
+Definition addimm (n: int) (e: expr) :=
+ if Int.eq n Int.zero then e else
+ match addimm_match e with
+ | addimm_case1 m =>
+ Eop (Ointconst(Int.add n m)) Enil
+ | addimm_case2 s m =>
+ Eop (Oaddrsymbol s (Int.add n m)) Enil
+ | addimm_case3 m =>
+ Eop (Oaddrstack (Int.add n m)) Enil
+ | addimm_case4 m t =>
+ Eop (Oaddimm(Int.add n m)) (t ::: Enil)
+ | addimm_default e =>
+ Eop (Oaddimm n) (e ::: Enil)
+ end.
+
+(** Addition of two integer or pointer expressions. *)
+
+(*
+Definition add (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop (Ointconst n1) Enil, t2 => addimm n1 t2
+ | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) => addimm (Int.add n1 n2) (Eop Oadd (t1:::t2:::Enil))
+ | Eop(Oaddimm n1) (t1:::Enil)), t2 => addimm n1 (Eop Oadd (t1:::t2:::Enil))
+ | t1, Eop (Ointconst n2) Enil => addimm n2 t1
+ | t1, Eop (Oaddimm n2) (t2:::Enil) => addimm n2 (Eop Oadd (t1:::t2:::Enil))
+ | _, _ => Eop Oadd (e1:::e2:::Enil)
+ end.
+*)
+
+Inductive add_cases: forall (e1: expr) (e2: expr), Set :=
+ | add_case1:
+ forall (n1: int) (t2: expr),
+ add_cases (Eop (Ointconst n1) Enil) (t2)
+ | add_case2:
+ forall (n1: int) (t1: expr) (n2: int) (t2: expr),
+ add_cases (Eop (Oaddimm n1) (t1:::Enil)) (Eop (Oaddimm n2) (t2:::Enil))
+ | add_case3:
+ forall (n1: int) (t1: expr) (t2: expr),
+ add_cases (Eop(Oaddimm n1) (t1:::Enil)) (t2)
+ | add_case4:
+ forall (t1: expr) (n2: int),
+ add_cases (t1) (Eop (Ointconst n2) Enil)
+ | add_case5:
+ forall (t1: expr) (n2: int) (t2: expr),
+ add_cases (t1) (Eop (Oaddimm n2) (t2:::Enil))
+ | add_default:
+ forall (e1: expr) (e2: expr),
+ add_cases e1 e2.
+
+Definition add_match_aux (e1: expr) (e2: expr) :=
+ match e2 as z2 return add_cases e1 z2 with
+ | Eop (Ointconst n2) Enil =>
+ add_case4 e1 n2
+ | Eop (Oaddimm n2) (t2:::Enil) =>
+ add_case5 e1 n2 t2
+ | e2 =>
+ add_default e1 e2
+ end.
+
+Definition add_match (e1: expr) (e2: expr) :=
+ match e1 as z1, e2 as z2 return add_cases z1 z2 with
+ | Eop (Ointconst n1) Enil, t2 =>
+ add_case1 n1 t2
+ | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) =>
+ add_case2 n1 t1 n2 t2
+ | Eop(Oaddimm n1) (t1:::Enil), t2 =>
+ add_case3 n1 t1 t2
+ | e1, e2 =>
+ add_match_aux e1 e2
+ end.
+
+Definition add (e1: expr) (e2: expr) :=
+ match add_match e1 e2 with
+ | add_case1 n1 t2 =>
+ addimm n1 t2
+ | add_case2 n1 t1 n2 t2 =>
+ addimm (Int.add n1 n2) (Eop Oadd (t1:::t2:::Enil))
+ | add_case3 n1 t1 t2 =>
+ addimm n1 (Eop Oadd (t1:::t2:::Enil))
+ | add_case4 t1 n2 =>
+ addimm n2 t1
+ | add_case5 t1 n2 t2 =>
+ addimm n2 (Eop Oadd (t1:::t2:::Enil))
+ | add_default e1 e2 =>
+ Eop Oadd (e1:::e2:::Enil)
+ end.
+
+(** ** Integer and pointer subtraction *)
+
+(*
+Definition sub (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | t1, Eop (Ointconst n2) Enil => addimm (Int.neg n2) t1
+ | Eop (Oaddimm n1) (t1:::Enil), Eop (Oaddimm n2) (t2:::Enil) => addimm
+(intsub n1 n2) (Eop Osub (t1:::t2:::Enil))
+ | Eop (Oaddimm n1) (t1:::Enil), t2 => addimm n1 (Eop Osub (t1:::t2:::Rni
+l))
+ | t1, Eop (Oaddimm n2) (t2:::Enil) => addimm (Int.neg n2) (Eop Osub (t1:::
+:t2:::Enil))
+ | _, _ => Eop Osub (e1:::e2:::Enil)
+ end.
+*)
+
+Inductive sub_cases: forall (e1: expr) (e2: expr), Set :=
+ | sub_case1:
+ forall (t1: expr) (n2: int),
+ sub_cases (t1) (Eop (Ointconst n2) Enil)
+ | sub_case2:
+ forall (n1: int) (t1: expr) (n2: int) (t2: expr),
+ sub_cases (Eop (Oaddimm n1) (t1:::Enil)) (Eop (Oaddimm n2) (t2:::Enil))
+ | sub_case3:
+ forall (n1: int) (t1: expr) (t2: expr),
+ sub_cases (Eop (Oaddimm n1) (t1:::Enil)) (t2)
+ | sub_case4:
+ forall (t1: expr) (n2: int) (t2: expr),
+ sub_cases (t1) (Eop (Oaddimm n2) (t2:::Enil))
+ | sub_default:
+ forall (e1: expr) (e2: expr),
+ sub_cases e1 e2.
+
+Definition sub_match_aux (e1: expr) (e2: expr) :=
+ match e1 as z1 return sub_cases z1 e2 with
+ | Eop (Oaddimm n1) (t1:::Enil) =>
+ sub_case3 n1 t1 e2
+ | e1 =>
+ sub_default e1 e2
+ end.
+
+Definition sub_match (e1: expr) (e2: expr) :=
+ match e2 as z2, e1 as z1 return sub_cases z1 z2 with
+ | Eop (Ointconst n2) Enil, t1 =>
+ sub_case1 t1 n2
+ | Eop (Oaddimm n2) (t2:::Enil), Eop (Oaddimm n1) (t1:::Enil) =>
+ sub_case2 n1 t1 n2 t2
+ | Eop (Oaddimm n2) (t2:::Enil), t1 =>
+ sub_case4 t1 n2 t2
+ | e2, e1 =>
+ sub_match_aux e1 e2
+ end.
+
+Definition sub (e1: expr) (e2: expr) :=
+ match sub_match e1 e2 with
+ | sub_case1 t1 n2 =>
+ addimm (Int.neg n2) t1
+ | sub_case2 n1 t1 n2 t2 =>
+ addimm (Int.sub n1 n2) (Eop Osub (t1:::t2:::Enil))
+ | sub_case3 n1 t1 t2 =>
+ addimm n1 (Eop Osub (t1:::t2:::Enil))
+ | sub_case4 t1 n2 t2 =>
+ addimm (Int.neg n2) (Eop Osub (t1:::t2:::Enil))
+ | sub_default e1 e2 =>
+ Eop Osub (e1:::e2:::Enil)
+ end.
+
+(** ** Rotates and immediate shifts *)
+
+(*
+Definition rolm (e1: expr) :=
+ match e1 with
+ | Eop (Ointconst n1) Enil =>
+ Eop (Ointconst(Int.and (Int.rol n1 amount2) mask2)) Enil
+ | Eop (Orolm amount1 mask1) (t1:::Enil) =>
+ let amount := Int.and (Int.add amount1 amount2) Ox1Fl in
+ let mask := Int.and (Int.rol mask1 amount2) mask2 in
+ if Int.is_rlw_mask mask
+ then Eop (Orolm amount mask) (t1:::Enil)
+ else Eop (Orolm amount2 mask2) (e1:::Enil)
+ | _ => Eop (Orolm amount2 mask2) (e1:::Enil)
+ end
+*)
+
+Inductive rolm_cases: forall (e1: expr), Set :=
+ | rolm_case1:
+ forall (n1: int),
+ rolm_cases (Eop (Ointconst n1) Enil)
+ | rolm_case2:
+ forall (amount1: int) (mask1: int) (t1: expr),
+ rolm_cases (Eop (Orolm amount1 mask1) (t1:::Enil))
+ | rolm_default:
+ forall (e1: expr),
+ rolm_cases e1.
+
+Definition rolm_match (e1: expr) :=
+ match e1 as z1 return rolm_cases z1 with
+ | Eop (Ointconst n1) Enil =>
+ rolm_case1 n1
+ | Eop (Orolm amount1 mask1) (t1:::Enil) =>
+ rolm_case2 amount1 mask1 t1
+ | e1 =>
+ rolm_default e1
+ end.
+
+Definition rolm (e1: expr) (amount2 mask2: int) :=
+ match rolm_match e1 with
+ | rolm_case1 n1 =>
+ Eop (Ointconst(Int.and (Int.rol n1 amount2) mask2)) Enil
+ | rolm_case2 amount1 mask1 t1 =>
+ let amount := Int.and (Int.add amount1 amount2) (Int.repr 31) in
+ let mask := Int.and (Int.rol mask1 amount2) mask2 in
+ if Int.is_rlw_mask mask
+ then Eop (Orolm amount mask) (t1:::Enil)
+ else Eop (Orolm amount2 mask2) (e1:::Enil)
+ | rolm_default e1 =>
+ Eop (Orolm amount2 mask2) (e1:::Enil)
+ end.
+
+Definition shlimm (e1: expr) (n2: int) :=
+ if Int.eq n2 Int.zero then
+ e1
+ else if Int.ltu n2 (Int.repr 32) then
+ rolm e1 n2 (Int.shl Int.mone n2)
+ else
+ Eop Oshl (e1:::Eop (Ointconst n2) Enil:::Enil).
+
+Definition shruimm (e1: expr) (n2: int) :=
+ if Int.eq n2 Int.zero then
+ e1
+ else if Int.ltu n2 (Int.repr 32) then
+ rolm e1 (Int.sub (Int.repr 32) n2) (Int.shru Int.mone n2)
+ else
+ Eop Oshru (e1:::Eop (Ointconst n2) Enil:::Enil).
+
+(** ** Integer multiply *)
+
+Definition mulimm_base (n1: int) (e2: expr) :=
+ match Int.one_bits n1 with
+ | i :: nil =>
+ shlimm e2 i
+ | i :: j :: nil =>
+ Elet e2
+ (Eop Oadd (shlimm (Eletvar 0) i :::
+ shlimm (Eletvar 0) j ::: Enil))
+ | _ =>
+ Eop (Omulimm n1) (e2:::Enil)
+ end.
+
+(*
+Definition mulimm (n1: int) (e2: expr) :=
+ if Int.eq n1 Int.zero then
+ Elet e2 (Eop (Ointconst Int.zero) Enil)
+ else if Int.eq n1 Int.one then
+ e2
+ else match e2 with
+ | Eop (Ointconst n2) Enil => Eop (Ointconst(intmul n1 n2)) Enil
+ | Eop (Oaddimm n2) (t2:::Enil) => addimm (intmul n1 n2) (mulimm_base n1 t2)
+ | _ => mulimm_base n1 e2
+ end.
+*)
+
+Inductive mulimm_cases: forall (e2: expr), Set :=
+ | mulimm_case1:
+ forall (n2: int),
+ mulimm_cases (Eop (Ointconst n2) Enil)
+ | mulimm_case2:
+ forall (n2: int) (t2: expr),
+ mulimm_cases (Eop (Oaddimm n2) (t2:::Enil))
+ | mulimm_default:
+ forall (e2: expr),
+ mulimm_cases e2.
+
+Definition mulimm_match (e2: expr) :=
+ match e2 as z1 return mulimm_cases z1 with
+ | Eop (Ointconst n2) Enil =>
+ mulimm_case1 n2
+ | Eop (Oaddimm n2) (t2:::Enil) =>
+ mulimm_case2 n2 t2
+ | e2 =>
+ mulimm_default e2
+ end.
+
+Definition mulimm (n1: int) (e2: expr) :=
+ if Int.eq n1 Int.zero then
+ Elet e2 (Eop (Ointconst Int.zero) Enil)
+ else if Int.eq n1 Int.one then
+ e2
+ else match mulimm_match e2 with
+ | mulimm_case1 n2 =>
+ Eop (Ointconst(Int.mul n1 n2)) Enil
+ | mulimm_case2 n2 t2 =>
+ addimm (Int.mul n1 n2) (mulimm_base n1 t2)
+ | mulimm_default e2 =>
+ mulimm_base n1 e2
+ end.
+
+(*
+Definition mul (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop (Ointconst n1) Enil, t2 => mulimm n1 t2
+ | t1, Eop (Ointconst n2) Enil => mulimm n2 t1
+ | _, _ => Eop Omul (e1:::e2:::Enil)
+ end.
+*)
+
+Inductive mul_cases: forall (e1: expr) (e2: expr), Set :=
+ | mul_case1:
+ forall (n1: int) (t2: expr),
+ mul_cases (Eop (Ointconst n1) Enil) (t2)
+ | mul_case2:
+ forall (t1: expr) (n2: int),
+ mul_cases (t1) (Eop (Ointconst n2) Enil)
+ | mul_default:
+ forall (e1: expr) (e2: expr),
+ mul_cases e1 e2.
+
+Definition mul_match_aux (e1: expr) (e2: expr) :=
+ match e2 as z2 return mul_cases e1 z2 with
+ | Eop (Ointconst n2) Enil =>
+ mul_case2 e1 n2
+ | e2 =>
+ mul_default e1 e2
+ end.
+
+Definition mul_match (e1: expr) (e2: expr) :=
+ match e1 as z1 return mul_cases z1 e2 with
+ | Eop (Ointconst n1) Enil =>
+ mul_case1 n1 e2
+ | e1 =>
+ mul_match_aux e1 e2
+ end.
+
+Definition mul (e1: expr) (e2: expr) :=
+ match mul_match e1 e2 with
+ | mul_case1 n1 t2 =>
+ mulimm n1 t2
+ | mul_case2 t1 n2 =>
+ mulimm n2 t1
+ | mul_default e1 e2 =>
+ Eop Omul (e1:::e2:::Enil)
+ end.
+
+(** ** Integer division and modulus *)
+
+Definition divs (e1: expr) (e2: expr) := Eop Odiv (e1:::e2:::Enil).
+
+Definition mod_aux (divop: operation) (e1 e2: expr) :=
+ Elet e1
+ (Elet (lift e2)
+ (Eop Osub (Eletvar 1 :::
+ Eop Omul (Eop divop (Eletvar 1 ::: Eletvar 0 ::: Enil) :::
+ Eletvar 0 :::
+ Enil) :::
+ Enil))).
+
+Definition mods := mod_aux Odiv.
+
+Inductive divu_cases: forall (e2: expr), Set :=
+ | divu_case1:
+ forall (n2: int),
+ divu_cases (Eop (Ointconst n2) Enil)
+ | divu_default:
+ forall (e2: expr),
+ divu_cases e2.
+
+Definition divu_match (e2: expr) :=
+ match e2 as z1 return divu_cases z1 with
+ | Eop (Ointconst n2) Enil =>
+ divu_case1 n2
+ | e2 =>
+ divu_default e2
+ end.
+
+Definition divu (e1: expr) (e2: expr) :=
+ match divu_match e2 with
+ | divu_case1 n2 =>
+ match Int.is_power2 n2 with
+ | Some l2 => shruimm e1 l2
+ | None => Eop Odivu (e1:::e2:::Enil)
+ end
+ | divu_default e2 =>
+ Eop Odivu (e1:::e2:::Enil)
+ end.
+
+Definition modu (e1: expr) (e2: expr) :=
+ match divu_match e2 with
+ | divu_case1 n2 =>
+ match Int.is_power2 n2 with
+ | Some l2 => rolm e1 Int.zero (Int.sub n2 Int.one)
+ | None => mod_aux Odivu e1 e2
+ end
+ | divu_default e2 =>
+ mod_aux Odivu e1 e2
+ end.
+
+(** ** Bitwise and, or, xor *)
+
+Definition andimm (n1: int) (e2: expr) :=
+ if Int.is_rlw_mask n1
+ then rolm e2 Int.zero n1
+ else Eop (Oandimm n1) (e2:::Enil).
+
+Definition and (e1: expr) (e2: expr) :=
+ match mul_match e1 e2 with
+ | mul_case1 n1 t2 =>
+ andimm n1 t2
+ | mul_case2 t1 n2 =>
+ andimm n2 t1
+ | mul_default e1 e2 =>
+ Eop Oand (e1:::e2:::Enil)
+ end.
+
+Definition same_expr_pure (e1 e2: expr) :=
+ match e1, e2 with
+ | Evar v1, Evar v2 => if ident_eq v1 v2 then true else false
+ | _, _ => false
+ end.
+
+Inductive or_cases: forall (e1: expr) (e2: expr), Set :=
+ | or_case1:
+ forall (amount1: int) (mask1: int) (t1: expr)
+ (amount2: int) (mask2: int) (t2: expr),
+ or_cases (Eop (Orolm amount1 mask1) (t1:::Enil))
+ (Eop (Orolm amount2 mask2) (t2:::Enil))
+ | or_default:
+ forall (e1: expr) (e2: expr),
+ or_cases e1 e2.
+
+Definition or_match (e1: expr) (e2: expr) :=
+ match e1 as z1, e2 as z2 return or_cases z1 z2 with
+ | Eop (Orolm amount1 mask1) (t1:::Enil),
+ Eop (Orolm amount2 mask2) (t2:::Enil) =>
+ or_case1 amount1 mask1 t1 amount2 mask2 t2
+ | e1, e2 =>
+ or_default e1 e2
+ end.
+
+Definition or (e1: expr) (e2: expr) :=
+ match or_match e1 e2 with
+ | or_case1 amount1 mask1 t1 amount2 mask2 t2 =>
+ if Int.eq amount1 amount2
+ && Int.is_rlw_mask (Int.or mask1 mask2)
+ && same_expr_pure t1 t2
+ then Eop (Orolm amount1 (Int.or mask1 mask2)) (t1:::Enil)
+ else Eop Oor (e1:::e2:::Enil)
+ | or_default e1 e2 =>
+ Eop Oor (e1:::e2:::Enil)
+ end.
+
+(** ** General shifts *)
+
+Inductive shift_cases: forall (e1: expr), Set :=
+ | shift_case1:
+ forall (n2: int),
+ shift_cases (Eop (Ointconst n2) Enil)
+ | shift_default:
+ forall (e1: expr),
+ shift_cases e1.
+
+Definition shift_match (e1: expr) :=
+ match e1 as z1 return shift_cases z1 with
+ | Eop (Ointconst n2) Enil =>
+ shift_case1 n2
+ | e1 =>
+ shift_default e1
+ end.
+
+Definition shl (e1: expr) (e2: expr) :=
+ match shift_match e2 with
+ | shift_case1 n2 =>
+ shlimm e1 n2
+ | shift_default e2 =>
+ Eop Oshl (e1:::e2:::Enil)
+ end.
+
+Definition shru (e1: expr) (e2: expr) :=
+ match shift_match e2 with
+ | shift_case1 n2 =>
+ shruimm e1 n2
+ | shift_default e2 =>
+ Eop Oshru (e1:::e2:::Enil)
+ end.
+
+(** ** Floating-point arithmetic *)
+
+Parameter use_fused_mul : unit -> bool.
+
+(*
+Definition addf (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop Omulf (t1:::t2:::Enil), t3 => Eop Omuladdf (t1:::t2:::t3:::Enil)
+ | t1, Eop Omulf (t2:::t3:::Enil) => Elet t1 (Eop Omuladdf (t2:::t3:::Rvar 0:::Enil))
+ | _, _ => Eop Oaddf (e1:::e2:::Enil)
+ end.
+*)
+
+Inductive addf_cases: forall (e1: expr) (e2: expr), Set :=
+ | addf_case1:
+ forall (t1: expr) (t2: expr) (t3: expr),
+ addf_cases (Eop Omulf (t1:::t2:::Enil)) (t3)
+ | addf_case2:
+ forall (t1: expr) (t2: expr) (t3: expr),
+ addf_cases (t1) (Eop Omulf (t2:::t3:::Enil))
+ | addf_default:
+ forall (e1: expr) (e2: expr),
+ addf_cases e1 e2.
+
+Definition addf_match_aux (e1: expr) (e2: expr) :=
+ match e2 as z2 return addf_cases e1 z2 with
+ | Eop Omulf (t2:::t3:::Enil) =>
+ addf_case2 e1 t2 t3
+ | e2 =>
+ addf_default e1 e2
+ end.
+
+Definition addf_match (e1: expr) (e2: expr) :=
+ match e1 as z1 return addf_cases z1 e2 with
+ | Eop Omulf (t1:::t2:::Enil) =>
+ addf_case1 t1 t2 e2
+ | e1 =>
+ addf_match_aux e1 e2
+ end.
+
+Definition addf (e1: expr) (e2: expr) :=
+ if use_fused_mul tt then
+ match addf_match e1 e2 with
+ | addf_case1 t1 t2 t3 =>
+ Eop Omuladdf (t1:::t2:::t3:::Enil)
+ | addf_case2 t1 t2 t3 =>
+ Eop Omuladdf (t2:::t3:::t1:::Enil)
+ | addf_default e1 e2 =>
+ Eop Oaddf (e1:::e2:::Enil)
+ end
+ else Eop Oaddf (e1:::e2:::Enil).
+
+(*
+Definition subf (e1: expr) (e2: expr) :=
+ match e1, e2 with
+ | Eop Omulfloat (t1:::t2:::Enil), t3 => Eop Omulsubf (t1:::t2:::t3:::Enil)
+ | _, _ => Eop Osubf (e1:::e2:::Enil)
+ end.
+*)
+
+Inductive subf_cases: forall (e1: expr) (e2: expr), Set :=
+ | subf_case1:
+ forall (t1: expr) (t2: expr) (t3: expr),
+ subf_cases (Eop Omulf (t1:::t2:::Enil)) (t3)
+ | subf_default:
+ forall (e1: expr) (e2: expr),
+ subf_cases e1 e2.
+
+Definition subf_match (e1: expr) (e2: expr) :=
+ match e1 as z1 return subf_cases z1 e2 with
+ | Eop Omulf (t1:::t2:::Enil) =>
+ subf_case1 t1 t2 e2
+ | e1 =>
+ subf_default e1 e2
+ end.
+
+Definition subf (e1: expr) (e2: expr) :=
+ if use_fused_mul tt then
+ match subf_match e1 e2 with
+ | subf_case1 t1 t2 t3 =>
+ Eop Omulsubf (t1:::t2:::t3:::Enil)
+ | subf_default e1 e2 =>
+ Eop Osubf (e1:::e2:::Enil)
+ end
+ else Eop Osubf (e1:::e2:::Enil).
+
+(** ** Truncations and sign extensions *)
+
+Inductive cast8signed_cases: forall (e1: expr), Set :=
+ | cast8signed_case1:
+ forall (e2: expr),
+ cast8signed_cases (Eop Ocast8signed (e2 ::: Enil))
+ | cast8signed_default:
+ forall (e1: expr),
+ cast8signed_cases e1.
+
+Definition cast8signed_match (e1: expr) :=
+ match e1 as z1 return cast8signed_cases z1 with
+ | Eop Ocast8signed (e2 ::: Enil) =>
+ cast8signed_case1 e2
+ | e1 =>
+ cast8signed_default e1
+ end.
+
+Definition cast8signed (e: expr) :=
+ match cast8signed_match e with
+ | cast8signed_case1 e1 => e
+ | cast8signed_default e1 => Eop Ocast8signed (e1 ::: Enil)
+ end.
+
+Inductive cast8unsigned_cases: forall (e1: expr), Set :=
+ | cast8unsigned_case1:
+ forall (e2: expr),
+ cast8unsigned_cases (Eop Ocast8unsigned (e2 ::: Enil))
+ | cast8unsigned_default:
+ forall (e1: expr),
+ cast8unsigned_cases e1.
+
+Definition cast8unsigned_match (e1: expr) :=
+ match e1 as z1 return cast8unsigned_cases z1 with
+ | Eop Ocast8unsigned (e2 ::: Enil) =>
+ cast8unsigned_case1 e2
+ | e1 =>
+ cast8unsigned_default e1
+ end.
+
+Definition cast8unsigned (e: expr) :=
+ match cast8unsigned_match e with
+ | cast8unsigned_case1 e1 => e
+ | cast8unsigned_default e1 => Eop Ocast8unsigned (e1 ::: Enil)
+ end.
+
+Inductive cast16signed_cases: forall (e1: expr), Set :=
+ | cast16signed_case1:
+ forall (e2: expr),
+ cast16signed_cases (Eop Ocast16signed (e2 ::: Enil))
+ | cast16signed_default:
+ forall (e1: expr),
+ cast16signed_cases e1.
+
+Definition cast16signed_match (e1: expr) :=
+ match e1 as z1 return cast16signed_cases z1 with
+ | Eop Ocast16signed (e2 ::: Enil) =>
+ cast16signed_case1 e2
+ | e1 =>
+ cast16signed_default e1
+ end.
+
+Definition cast16signed (e: expr) :=
+ match cast16signed_match e with
+ | cast16signed_case1 e1 => e
+ | cast16signed_default e1 => Eop Ocast16signed (e1 ::: Enil)
+ end.
+
+Inductive cast16unsigned_cases: forall (e1: expr), Set :=
+ | cast16unsigned_case1:
+ forall (e2: expr),
+ cast16unsigned_cases (Eop Ocast16unsigned (e2 ::: Enil))
+ | cast16unsigned_default:
+ forall (e1: expr),
+ cast16unsigned_cases e1.
+
+Definition cast16unsigned_match (e1: expr) :=
+ match e1 as z1 return cast16unsigned_cases z1 with
+ | Eop Ocast16unsigned (e2 ::: Enil) =>
+ cast16unsigned_case1 e2
+ | e1 =>
+ cast16unsigned_default e1
+ end.
+
+Definition cast16unsigned (e: expr) :=
+ match cast16unsigned_match e with
+ | cast16unsigned_case1 e1 => e
+ | cast16unsigned_default e1 => Eop Ocast16unsigned (e1 ::: Enil)
+ end.
+
+Inductive singleoffloat_cases: forall (e1: expr), Set :=
+ | singleoffloat_case1:
+ forall (e2: expr),
+ singleoffloat_cases (Eop Osingleoffloat (e2 ::: Enil))
+ | singleoffloat_default:
+ forall (e1: expr),
+ singleoffloat_cases e1.
+
+Definition singleoffloat_match (e1: expr) :=
+ match e1 as z1 return singleoffloat_cases z1 with
+ | Eop Osingleoffloat (e2 ::: Enil) =>
+ singleoffloat_case1 e2
+ | e1 =>
+ singleoffloat_default e1
+ end.
+
+Definition singleoffloat (e: expr) :=
+ match singleoffloat_match e with
+ | singleoffloat_case1 e1 => e
+ | singleoffloat_default e1 => Eop Osingleoffloat (e1 ::: Enil)
+ end.
+
+(** ** Comparisons *)
+
+Inductive comp_cases: forall (e1: expr) (e2: expr), Set :=
+ | comp_case1:
+ forall n1 t2,
+ comp_cases (Eop (Ointconst n1) Enil) (t2)
+ | comp_case2:
+ forall t1 n2,
+ comp_cases (t1) (Eop (Ointconst n2) Enil)
+ | comp_default:
+ forall (e1: expr) (e2: expr),
+ comp_cases e1 e2.
+
+Definition comp_match (e1: expr) (e2: expr) :=
+ match e1 as z1, e2 as z2 return comp_cases z1 z2 with
+ | Eop (Ointconst n1) Enil, t2 =>
+ comp_case1 n1 t2
+ | t1, Eop (Ointconst n2) Enil =>
+ comp_case2 t1 n2
+ | e1, e2 =>
+ comp_default e1 e2
+ end.
+
+Definition comp (c: comparison) (e1: expr) (e2: expr) :=
+ match comp_match e1 e2 with
+ | comp_case1 n1 t2 =>
+ Eop (Ocmp (Ccompimm (swap_comparison c) n1)) (t2 ::: Enil)
+ | comp_case2 t1 n2 =>
+ Eop (Ocmp (Ccompimm c n2)) (t1 ::: Enil)
+ | comp_default e1 e2 =>
+ Eop (Ocmp (Ccomp c)) (e1 ::: e2 ::: Enil)
+ end.
+
+Definition compu (c: comparison) (e1: expr) (e2: expr) :=
+ match comp_match e1 e2 with
+ | comp_case1 n1 t2 =>
+ Eop (Ocmp (Ccompuimm (swap_comparison c) n1)) (t2 ::: Enil)
+ | comp_case2 t1 n2 =>
+ Eop (Ocmp (Ccompuimm c n2)) (t1 ::: Enil)
+ | comp_default e1 e2 =>
+ Eop (Ocmp (Ccompu c)) (e1 ::: e2 ::: Enil)
+ end.
+
+Definition compf (c: comparison) (e1: expr) (e2: expr) :=
+ Eop (Ocmp (Ccompf c)) (e1 ::: e2 ::: Enil).
+
+(** ** Conditional expressions *)
+
+Fixpoint negate_condexpr (e: condexpr): condexpr :=
+ match e with
+ | CEtrue => CEfalse
+ | CEfalse => CEtrue
+ | CEcond c el => CEcond (negate_condition c) el
+ | CEcondition e1 e2 e3 =>
+ CEcondition e1 (negate_condexpr e2) (negate_condexpr e3)
+ end.
+
+
+Definition is_compare_neq_zero (c: condition) : bool :=
+ match c with
+ | Ccompimm Cne n => Int.eq n Int.zero
+ | Ccompuimm Cne n => Int.eq n Int.zero
+ | _ => false
+ end.
+
+Definition is_compare_eq_zero (c: condition) : bool :=
+ match c with
+ | Ccompimm Ceq n => Int.eq n Int.zero
+ | Ccompuimm Ceq n => Int.eq n Int.zero
+ | _ => false
+ end.
+
+Fixpoint condexpr_of_expr (e: expr) : condexpr :=
+ match e with
+ | Eop (Ointconst n) Enil =>
+ if Int.eq n Int.zero then CEfalse else CEtrue
+ | Eop (Ocmp c) (e1 ::: Enil) =>
+ if is_compare_neq_zero c then
+ condexpr_of_expr e1
+ else if is_compare_eq_zero c then
+ negate_condexpr (condexpr_of_expr e1)
+ else
+ CEcond c (e1 ::: Enil)
+ | Eop (Ocmp c) el =>
+ CEcond c el
+ | Econdition ce e1 e2 =>
+ CEcondition ce (condexpr_of_expr e1) (condexpr_of_expr e2)
+ | _ =>
+ CEcond (Ccompimm Cne Int.zero) (e:::Enil)
+ end.
+
+(** ** Recognition of addressing modes for load and store operations *)
+
+(*
+Definition addressing (e: expr) :=
+ match e with
+ | Eop (Oaddrsymbol s n) Enil => (Aglobal s n, Enil)
+ | Eop (Oaddrstack n) Enil => (Ainstack n, Enil)
+ | Eop Oadd (Eop (Oaddrsymbol s n) Enil) e2 => (Abased(s, n), e2:::Enil)
+ | Eop (Oaddimm n) (e1:::Enil) => (Aindexed n, e1:::Enil)
+ | Eop Oadd (e1:::e2:::Enil) => (Aindexed2, e1:::e2:::Enil)
+ | _ => (Aindexed Int.zero, e:::Enil)
+ end.
+*)
+
+Inductive addressing_cases: forall (e: expr), Set :=
+ | addressing_case1:
+ forall (s: ident) (n: int),
+ addressing_cases (Eop (Oaddrsymbol s n) Enil)
+ | addressing_case2:
+ forall (n: int),
+ addressing_cases (Eop (Oaddrstack n) Enil)
+ | addressing_case3:
+ forall (s: ident) (n: int) (e2: expr),
+ addressing_cases
+ (Eop Oadd (Eop (Oaddrsymbol s n) Enil:::e2:::Enil))
+ | addressing_case4:
+ forall (n: int) (e1: expr),
+ addressing_cases (Eop (Oaddimm n) (e1:::Enil))
+ | addressing_case5:
+ forall (e1: expr) (e2: expr),
+ addressing_cases (Eop Oadd (e1:::e2:::Enil))
+ | addressing_default:
+ forall (e: expr),
+ addressing_cases e.
+
+Definition addressing_match (e: expr) :=
+ match e as z1 return addressing_cases z1 with
+ | Eop (Oaddrsymbol s n) Enil =>
+ addressing_case1 s n
+ | Eop (Oaddrstack n) Enil =>
+ addressing_case2 n
+ | Eop Oadd (Eop (Oaddrsymbol s n) Enil:::e2:::Enil) =>
+ addressing_case3 s n e2
+ | Eop (Oaddimm n) (e1:::Enil) =>
+ addressing_case4 n e1
+ | Eop Oadd (e1:::e2:::Enil) =>
+ addressing_case5 e1 e2
+ | e =>
+ addressing_default e
+ end.
+
+Definition addressing (e: expr) :=
+ match addressing_match e with
+ | addressing_case1 s n =>
+ (Aglobal s n, Enil)
+ | addressing_case2 n =>
+ (Ainstack n, Enil)
+ | addressing_case3 s n e2 =>
+ (Abased s n, e2:::Enil)
+ | addressing_case4 n e1 =>
+ (Aindexed n, e1:::Enil)
+ | addressing_case5 e1 e2 =>
+ (Aindexed2, e1:::e2:::Enil)
+ | addressing_default e =>
+ (Aindexed Int.zero, e:::Enil)
+ end.
+
+Definition load (chunk: memory_chunk) (e1: expr) :=
+ match addressing e1 with
+ | (mode, args) => Eload chunk mode args
+ end.
+
+Definition store (chunk: memory_chunk) (e1 e2: expr) :=
+ match addressing e1 with
+ | (mode, args) => Sstore chunk mode args e2
+ end.
+
+(** * Translation from Cminor to CminorSel *)
+
+(** Instruction selection for operator applications *)
+
+Definition sel_constant (cst: Cminor.constant) : expr :=
+ match cst with
+ | Cminor.Ointconst n => Eop (Ointconst n) Enil
+ | Cminor.Ofloatconst f => Eop (Ofloatconst f) Enil
+ | Cminor.Oaddrsymbol id ofs => Eop (Oaddrsymbol id ofs) Enil
+ | Cminor.Oaddrstack ofs => Eop (Oaddrstack ofs) Enil
+ end.
+
+Definition sel_unop (op: Cminor.unary_operation) (arg: expr) : expr :=
+ match op with
+ | Cminor.Ocast8unsigned => cast8unsigned arg
+ | Cminor.Ocast8signed => cast8signed arg
+ | Cminor.Ocast16unsigned => cast16unsigned arg
+ | Cminor.Ocast16signed => cast16signed arg
+ | Cminor.Onegint => Eop (Osubimm Int.zero) (arg ::: Enil)
+ | Cminor.Onotbool => notbool arg
+ | Cminor.Onotint => notint arg
+ | Cminor.Onegf => Eop Onegf (arg ::: Enil)
+ | Cminor.Oabsf => Eop Oabsf (arg ::: Enil)
+ | Cminor.Osingleoffloat => singleoffloat arg
+ | Cminor.Ointoffloat => Eop Ointoffloat (arg ::: Enil)
+ | Cminor.Ointuoffloat => Eop Ointuoffloat (arg ::: Enil)
+ | Cminor.Ofloatofint => Eop Ofloatofint (arg ::: Enil)
+ | Cminor.Ofloatofintu => Eop Ofloatofintu (arg ::: Enil)
+ end.
+
+Definition sel_binop (op: Cminor.binary_operation) (arg1 arg2: expr) : expr :=
+ match op with
+ | Cminor.Oadd => add arg1 arg2
+ | Cminor.Osub => sub arg1 arg2
+ | Cminor.Omul => mul arg1 arg2
+ | Cminor.Odiv => divs arg1 arg2
+ | Cminor.Odivu => divu arg1 arg2
+ | Cminor.Omod => mods arg1 arg2
+ | Cminor.Omodu => modu arg1 arg2
+ | Cminor.Oand => and arg1 arg2
+ | Cminor.Oor => or arg1 arg2
+ | Cminor.Oxor => Eop Oxor (arg1 ::: arg2 ::: Enil)
+ | Cminor.Oshl => shl arg1 arg2
+ | Cminor.Oshr => Eop Oshr (arg1 ::: arg2 ::: Enil)
+ | Cminor.Oshru => shru arg1 arg2
+ | Cminor.Oaddf => addf arg1 arg2
+ | Cminor.Osubf => subf arg1 arg2
+ | Cminor.Omulf => Eop Omulf (arg1 ::: arg2 ::: Enil)
+ | Cminor.Odivf => Eop Odivf (arg1 ::: arg2 ::: Enil)
+ | Cminor.Ocmp c => comp c arg1 arg2
+ | Cminor.Ocmpu c => compu c arg1 arg2
+ | Cminor.Ocmpf c => compf c arg1 arg2
+ end.
+
+(** Conversion from Cminor expression to Cminorsel expressions *)
+
+Fixpoint sel_expr (a: Cminor.expr) : expr :=
+ match a with
+ | Cminor.Evar id => Evar id
+ | Cminor.Econst cst => sel_constant cst
+ | Cminor.Eunop op arg => sel_unop op (sel_expr arg)
+ | Cminor.Ebinop op arg1 arg2 => sel_binop op (sel_expr arg1) (sel_expr arg2)
+ | Cminor.Eload chunk addr => load chunk (sel_expr addr)
+ | Cminor.Econdition cond ifso ifnot =>
+ Econdition (condexpr_of_expr (sel_expr cond))
+ (sel_expr ifso) (sel_expr ifnot)
+ end.
+
+Fixpoint sel_exprlist (al: list Cminor.expr) : exprlist :=
+ match al with
+ | nil => Enil
+ | a :: bl => Econs (sel_expr a) (sel_exprlist bl)
+ end.
+
+(** Conversion from Cminor statements to Cminorsel statements. *)
+
+Fixpoint sel_stmt (s: Cminor.stmt) : stmt :=
+ match s with
+ | Cminor.Sskip => Sskip
+ | Cminor.Sassign id e => Sassign id (sel_expr e)
+ | Cminor.Sstore chunk addr rhs => store chunk (sel_expr addr) (sel_expr rhs)
+ | Cminor.Scall optid sg fn args =>
+ Scall optid sg (sel_expr fn) (sel_exprlist args)
+ | Cminor.Stailcall sg fn args =>
+ Stailcall sg (sel_expr fn) (sel_exprlist args)
+ | Cminor.Salloc id b => Salloc id (sel_expr b)
+ | Cminor.Sseq s1 s2 => Sseq (sel_stmt s1) (sel_stmt s2)
+ | Cminor.Sifthenelse e ifso ifnot =>
+ Sifthenelse (condexpr_of_expr (sel_expr e))
+ (sel_stmt ifso) (sel_stmt ifnot)
+ | Cminor.Sloop body => Sloop (sel_stmt body)
+ | Cminor.Sblock body => Sblock (sel_stmt body)
+ | Cminor.Sexit n => Sexit n
+ | Cminor.Sswitch e cases dfl => Sswitch (sel_expr e) cases dfl
+ | Cminor.Sreturn None => Sreturn None
+ | Cminor.Sreturn (Some e) => Sreturn (Some (sel_expr e))
+ | Cminor.Slabel lbl body => Slabel lbl (sel_stmt body)
+ | Cminor.Sgoto lbl => Sgoto lbl
+ end.
+
+(** Conversion of functions and programs. *)
+
+Definition sel_function (f: Cminor.function) : function :=
+ mkfunction
+ f.(Cminor.fn_sig)
+ f.(Cminor.fn_params)
+ f.(Cminor.fn_vars)
+ f.(Cminor.fn_stackspace)
+ (sel_stmt f.(Cminor.fn_body)).
+
+Definition sel_fundef (f: Cminor.fundef) : fundef :=
+ transf_fundef sel_function f.
+
+Definition sel_program (p: Cminor.program) : program :=
+ transform_program sel_fundef p.
+
+
+
diff --git a/powerpc/Selectionproof.v b/powerpc/Selectionproof.v
new file mode 100644
index 00000000..6d629794
--- /dev/null
+++ b/powerpc/Selectionproof.v
@@ -0,0 +1,1398 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Correctness of instruction selection *)
+
+Require Import Coqlib.
+Require Import Maps.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Mem.
+Require Import Events.
+Require Import Globalenvs.
+Require Import Smallstep.
+Require Import Cminor.
+Require Import Op.
+Require Import CminorSel.
+Require Import Selection.
+
+Open Local Scope selection_scope.
+
+Section CMCONSTR.
+
+Variable ge: genv.
+Variable sp: val.
+Variable e: env.
+Variable m: mem.
+
+(** * Lifting of let-bound variables *)
+
+Inductive insert_lenv: letenv -> nat -> val -> letenv -> Prop :=
+ | insert_lenv_0:
+ forall le v,
+ insert_lenv le O v (v :: le)
+ | insert_lenv_S:
+ forall le p w le' v,
+ insert_lenv le p w le' ->
+ insert_lenv (v :: le) (S p) w (v :: le').
+
+Lemma insert_lenv_lookup1:
+ forall le p w le',
+ insert_lenv le p w le' ->
+ forall n v,
+ nth_error le n = Some v -> (p > n)%nat ->
+ nth_error le' n = Some v.
+Proof.
+ induction 1; intros.
+ omegaContradiction.
+ destruct n; simpl; simpl in H0. auto.
+ apply IHinsert_lenv. auto. omega.
+Qed.
+
+Lemma insert_lenv_lookup2:
+ forall le p w le',
+ insert_lenv le p w le' ->
+ forall n v,
+ nth_error le n = Some v -> (p <= n)%nat ->
+ nth_error le' (S n) = Some v.
+Proof.
+ induction 1; intros.
+ simpl. assumption.
+ simpl. destruct n. omegaContradiction.
+ apply IHinsert_lenv. exact H0. omega.
+Qed.
+
+Hint Resolve eval_Evar eval_Eop eval_Eload eval_Econdition
+ eval_Elet eval_Eletvar
+ eval_CEtrue eval_CEfalse eval_CEcond
+ eval_CEcondition eval_Enil eval_Econs: evalexpr.
+
+Lemma eval_lift_expr:
+ forall w le a v,
+ eval_expr ge sp e m le a v ->
+ forall p le', insert_lenv le p w le' ->
+ eval_expr ge sp e m le' (lift_expr p a) v.
+Proof.
+ intro w.
+ apply (eval_expr_ind3 ge sp e m
+ (fun le a v =>
+ forall p le', insert_lenv le p w le' ->
+ eval_expr ge sp e m le' (lift_expr p a) v)
+ (fun le a v =>
+ forall p le', insert_lenv le p w le' ->
+ eval_condexpr ge sp e m le' (lift_condexpr p a) v)
+ (fun le al vl =>
+ forall p le', insert_lenv le p w le' ->
+ eval_exprlist ge sp e m le' (lift_exprlist p al) vl));
+ simpl; intros; eauto with evalexpr.
+
+ destruct v1; eapply eval_Econdition;
+ eauto with evalexpr; simpl; eauto with evalexpr.
+
+ eapply eval_Elet. eauto. apply H2. apply insert_lenv_S; auto.
+
+ case (le_gt_dec p n); intro.
+ apply eval_Eletvar. eapply insert_lenv_lookup2; eauto.
+ apply eval_Eletvar. eapply insert_lenv_lookup1; eauto.
+
+ destruct vb1; eapply eval_CEcondition;
+ eauto with evalexpr; simpl; eauto with evalexpr.
+Qed.
+
+Lemma eval_lift:
+ forall le a v w,
+ eval_expr ge sp e m le a v ->
+ eval_expr ge sp e m (w::le) (lift a) v.
+Proof.
+ intros. unfold lift. eapply eval_lift_expr.
+ eexact H. apply insert_lenv_0.
+Qed.
+
+Hint Resolve eval_lift: evalexpr.
+
+(** * Useful lemmas and tactics *)
+
+(** The following are trivial lemmas and custom tactics that help
+ perform backward (inversion) and forward reasoning over the evaluation
+ of operator applications. *)
+
+Ltac EvalOp := eapply eval_Eop; eauto with evalexpr.
+
+Ltac TrivialOp cstr := unfold cstr; intros; EvalOp.
+
+Ltac InvEval1 :=
+ match goal with
+ | [ H: (eval_expr _ _ _ _ _ (Eop _ Enil) _) |- _ ] =>
+ inv H; InvEval1
+ | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: Enil)) _) |- _ ] =>
+ inv H; InvEval1
+ | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: _ ::: Enil)) _) |- _ ] =>
+ inv H; InvEval1
+ | [ H: (eval_exprlist _ _ _ _ _ Enil _) |- _ ] =>
+ inv H; InvEval1
+ | [ H: (eval_exprlist _ _ _ _ _ (_ ::: _) _) |- _ ] =>
+ inv H; InvEval1
+ | _ =>
+ idtac
+ end.
+
+Ltac InvEval2 :=
+ match goal with
+ | [ H: (eval_operation _ _ _ nil _ = Some _) |- _ ] =>
+ simpl in H; inv H
+ | [ H: (eval_operation _ _ _ (_ :: nil) _ = Some _) |- _ ] =>
+ simpl in H; FuncInv
+ | [ H: (eval_operation _ _ _ (_ :: _ :: nil) _ = Some _) |- _ ] =>
+ simpl in H; FuncInv
+ | [ H: (eval_operation _ _ _ (_ :: _ :: _ :: nil) _ = Some _) |- _ ] =>
+ simpl in H; FuncInv
+ | _ =>
+ idtac
+ end.
+
+Ltac InvEval := InvEval1; InvEval2; InvEval2.
+
+(** * Correctness of the smart constructors *)
+
+(** We now show that the code generated by "smart constructor" functions
+ such as [Selection.notint] behaves as expected. Continuing the
+ [notint] example, we show that if the expression [e]
+ evaluates to some integer value [Vint n], then [Selection.notint e]
+ evaluates to a value [Vint (Int.not n)] which is indeed the integer
+ negation of the value of [e].
+
+ All proofs follow a common pattern:
+- Reasoning by case over the result of the classification functions
+ (such as [add_match] for integer addition), gathering additional
+ information on the shape of the argument expressions in the non-default
+ cases.
+- Inversion of the evaluations of the arguments, exploiting the additional
+ information thus gathered.
+- Equational reasoning over the arithmetic operations performed,
+ using the lemmas from the [Int] and [Float] modules.
+- Construction of an evaluation derivation for the expression returned
+ by the smart constructor.
+*)
+
+Theorem eval_notint:
+ forall le a x,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le (notint a) (Vint (Int.not x)).
+Proof.
+ unfold notint; intros until x; case (notint_match a); intros; InvEval.
+ EvalOp. simpl. congruence.
+ EvalOp. simpl. congruence.
+ EvalOp. simpl. congruence.
+ eapply eval_Elet. eexact H.
+ eapply eval_Eop.
+ eapply eval_Econs. apply eval_Eletvar. simpl. reflexivity.
+ eapply eval_Econs. apply eval_Eletvar. simpl. reflexivity.
+ apply eval_Enil.
+ simpl. rewrite Int.or_idem. auto.
+Qed.
+
+Lemma eval_notbool_base:
+ forall le a v b,
+ eval_expr ge sp e m le a v ->
+ Val.bool_of_val v b ->
+ eval_expr ge sp e m le (notbool_base a) (Val.of_bool (negb b)).
+Proof.
+ TrivialOp notbool_base. simpl.
+ inv H0.
+ rewrite Int.eq_false; auto.
+ rewrite Int.eq_true; auto.
+ reflexivity.
+Qed.
+
+Hint Resolve Val.bool_of_true_val Val.bool_of_false_val
+ Val.bool_of_true_val_inv Val.bool_of_false_val_inv: valboolof.
+
+Theorem eval_notbool:
+ forall le a v b,
+ eval_expr ge sp e m le a v ->
+ Val.bool_of_val v b ->
+ eval_expr ge sp e m le (notbool a) (Val.of_bool (negb b)).
+Proof.
+ induction a; simpl; intros; try (eapply eval_notbool_base; eauto).
+ destruct o; try (eapply eval_notbool_base; eauto).
+
+ destruct e0. InvEval.
+ inv H0. rewrite Int.eq_false; auto.
+ simpl; eauto with evalexpr.
+ rewrite Int.eq_true; simpl; eauto with evalexpr.
+ eapply eval_notbool_base; eauto.
+
+ inv H. eapply eval_Eop; eauto.
+ simpl. assert (eval_condition c vl m = Some b).
+ generalize H6. simpl.
+ case (eval_condition c vl m); intros.
+ destruct b0; inv H1; inversion H0; auto; congruence.
+ congruence.
+ rewrite (Op.eval_negate_condition _ _ _ H).
+ destruct b; reflexivity.
+
+ inv H. eapply eval_Econdition; eauto.
+ destruct v1; eauto.
+Qed.
+
+Theorem eval_addimm:
+ forall le n a x,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le (addimm n a) (Vint (Int.add x n)).
+Proof.
+ unfold addimm; intros until x.
+ generalize (Int.eq_spec n Int.zero). case (Int.eq n Int.zero); intro.
+ subst n. rewrite Int.add_zero. auto.
+ case (addimm_match a); intros; InvEval; EvalOp; simpl.
+ rewrite Int.add_commut. auto.
+ destruct (Genv.find_symbol ge s); discriminate.
+ destruct sp; simpl in H1; discriminate.
+ subst x. rewrite Int.add_assoc. decEq; decEq; decEq. apply Int.add_commut.
+Qed.
+
+Theorem eval_addimm_ptr:
+ forall le n a b ofs,
+ eval_expr ge sp e m le a (Vptr b ofs) ->
+ eval_expr ge sp e m le (addimm n a) (Vptr b (Int.add ofs n)).
+Proof.
+ unfold addimm; intros until ofs.
+ generalize (Int.eq_spec n Int.zero). case (Int.eq n Int.zero); intro.
+ subst n. rewrite Int.add_zero. auto.
+ case (addimm_match a); intros; InvEval; EvalOp; simpl.
+ destruct (Genv.find_symbol ge s).
+ rewrite Int.add_commut. congruence.
+ discriminate.
+ destruct sp; simpl in H1; try discriminate.
+ inv H1. simpl. decEq. decEq.
+ rewrite Int.add_assoc. decEq. apply Int.add_commut.
+ subst. rewrite (Int.add_commut n m0). rewrite Int.add_assoc. auto.
+Qed.
+
+Theorem eval_add:
+ forall le a b x y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ eval_expr ge sp e m le (add a b) (Vint (Int.add x y)).
+Proof.
+ intros until y.
+ unfold add; case (add_match a b); intros; InvEval.
+ rewrite Int.add_commut. apply eval_addimm. auto.
+ replace (Int.add x y) with (Int.add (Int.add i0 i) (Int.add n1 n2)).
+ apply eval_addimm. EvalOp.
+ subst x; subst y.
+ repeat rewrite Int.add_assoc. decEq. apply Int.add_permut.
+ replace (Int.add x y) with (Int.add (Int.add i y) n1).
+ apply eval_addimm. EvalOp.
+ subst x. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
+ apply eval_addimm. auto.
+ replace (Int.add x y) with (Int.add (Int.add x i) n2).
+ apply eval_addimm. EvalOp.
+ subst y. rewrite Int.add_assoc. auto.
+ EvalOp.
+Qed.
+
+Theorem eval_add_ptr:
+ forall le a b p x y,
+ eval_expr ge sp e m le a (Vptr p x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ eval_expr ge sp e m le (add a b) (Vptr p (Int.add x y)).
+Proof.
+ intros until y. unfold add; case (add_match a b); intros; InvEval.
+ replace (Int.add x y) with (Int.add (Int.add i0 i) (Int.add n1 n2)).
+ apply eval_addimm_ptr. subst b0. EvalOp.
+ subst x; subst y.
+ repeat rewrite Int.add_assoc. decEq. apply Int.add_permut.
+ replace (Int.add x y) with (Int.add (Int.add i y) n1).
+ apply eval_addimm_ptr. subst b0. EvalOp.
+ subst x. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
+ apply eval_addimm_ptr. auto.
+ replace (Int.add x y) with (Int.add (Int.add x i) n2).
+ apply eval_addimm_ptr. EvalOp.
+ subst y. rewrite Int.add_assoc. auto.
+ EvalOp.
+Qed.
+
+Theorem eval_add_ptr_2:
+ forall le a b x p y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vptr p y) ->
+ eval_expr ge sp e m le (add a b) (Vptr p (Int.add y x)).
+Proof.
+ intros until y. unfold add; case (add_match a b); intros; InvEval.
+ apply eval_addimm_ptr. auto.
+ replace (Int.add y x) with (Int.add (Int.add i i0) (Int.add n1 n2)).
+ apply eval_addimm_ptr. subst b0. EvalOp.
+ subst x; subst y.
+ repeat rewrite Int.add_assoc. decEq.
+ rewrite (Int.add_commut n1 n2). apply Int.add_permut.
+ replace (Int.add y x) with (Int.add (Int.add y i) n1).
+ apply eval_addimm_ptr. EvalOp.
+ subst x. repeat rewrite Int.add_assoc. auto.
+ replace (Int.add y x) with (Int.add (Int.add i x) n2).
+ apply eval_addimm_ptr. EvalOp. subst b0; reflexivity.
+ subst y. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
+ EvalOp.
+Qed.
+
+Theorem eval_sub:
+ forall le a b x y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ eval_expr ge sp e m le (sub a b) (Vint (Int.sub x y)).
+Proof.
+ intros until y.
+ unfold sub; case (sub_match a b); intros; InvEval.
+ rewrite Int.sub_add_opp.
+ apply eval_addimm. assumption.
+ replace (Int.sub x y) with (Int.add (Int.sub i0 i) (Int.sub n1 n2)).
+ apply eval_addimm. EvalOp.
+ subst x; subst y.
+ repeat rewrite Int.sub_add_opp.
+ repeat rewrite Int.add_assoc. decEq.
+ rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr.
+ replace (Int.sub x y) with (Int.add (Int.sub i y) n1).
+ apply eval_addimm. EvalOp.
+ subst x. rewrite Int.sub_add_l. auto.
+ replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)).
+ apply eval_addimm. EvalOp.
+ subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r.
+ EvalOp.
+Qed.
+
+Theorem eval_sub_ptr_int:
+ forall le a b p x y,
+ eval_expr ge sp e m le a (Vptr p x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ eval_expr ge sp e m le (sub a b) (Vptr p (Int.sub x y)).
+Proof.
+ intros until y.
+ unfold sub; case (sub_match a b); intros; InvEval.
+ rewrite Int.sub_add_opp.
+ apply eval_addimm_ptr. assumption.
+ subst b0. replace (Int.sub x y) with (Int.add (Int.sub i0 i) (Int.sub n1 n2)).
+ apply eval_addimm_ptr. EvalOp.
+ subst x; subst y.
+ repeat rewrite Int.sub_add_opp.
+ repeat rewrite Int.add_assoc. decEq.
+ rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr.
+ subst b0. replace (Int.sub x y) with (Int.add (Int.sub i y) n1).
+ apply eval_addimm_ptr. EvalOp.
+ subst x. rewrite Int.sub_add_l. auto.
+ replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)).
+ apply eval_addimm_ptr. EvalOp.
+ subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r.
+ EvalOp.
+Qed.
+
+Theorem eval_sub_ptr_ptr:
+ forall le a b p x y,
+ eval_expr ge sp e m le a (Vptr p x) ->
+ eval_expr ge sp e m le b (Vptr p y) ->
+ eval_expr ge sp e m le (sub a b) (Vint (Int.sub x y)).
+Proof.
+ intros until y.
+ unfold sub; case (sub_match a b); intros; InvEval.
+ replace (Int.sub x y) with (Int.add (Int.sub i0 i) (Int.sub n1 n2)).
+ apply eval_addimm. EvalOp.
+ simpl; unfold eq_block. subst b0; subst b1; rewrite zeq_true. auto.
+ subst x; subst y.
+ repeat rewrite Int.sub_add_opp.
+ repeat rewrite Int.add_assoc. decEq.
+ rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr.
+ subst b0. replace (Int.sub x y) with (Int.add (Int.sub i y) n1).
+ apply eval_addimm. EvalOp.
+ simpl. unfold eq_block. rewrite zeq_true. auto.
+ subst x. rewrite Int.sub_add_l. auto.
+ subst b0. replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)).
+ apply eval_addimm. EvalOp.
+ simpl. unfold eq_block. rewrite zeq_true. auto.
+ subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r.
+ EvalOp. simpl. unfold eq_block. rewrite zeq_true. auto.
+Qed.
+
+Lemma eval_rolm:
+ forall le a amount mask x,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le (rolm a amount mask) (Vint (Int.rolm x amount mask)).
+Proof.
+ intros until x. unfold rolm; case (rolm_match a); intros; InvEval.
+ eauto with evalexpr.
+ case (Int.is_rlw_mask (Int.and (Int.rol mask1 amount) mask)).
+ EvalOp. simpl. subst x.
+ decEq. decEq.
+ replace (Int.and (Int.add amount1 amount) (Int.repr 31))
+ with (Int.modu (Int.add amount1 amount) (Int.repr 32)).
+ symmetry. apply Int.rolm_rolm.
+ change (Int.repr 31) with (Int.sub (Int.repr 32) Int.one).
+ apply Int.modu_and with (Int.repr 5). reflexivity.
+ EvalOp. econstructor. EvalOp. simpl. rewrite H. reflexivity. constructor. auto.
+ EvalOp.
+Qed.
+
+Theorem eval_shlimm:
+ forall le a n x,
+ eval_expr ge sp e m le a (Vint x) ->
+ Int.ltu n (Int.repr 32) = true ->
+ eval_expr ge sp e m le (shlimm a n) (Vint (Int.shl x n)).
+Proof.
+ intros. unfold shlimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro.
+ subst n. rewrite Int.shl_zero. auto.
+ rewrite H0.
+ replace (Int.shl x n) with (Int.rolm x n (Int.shl Int.mone n)).
+ apply eval_rolm. auto. symmetry. apply Int.shl_rolm. exact H0.
+Qed.
+
+Theorem eval_shruimm:
+ forall le a n x,
+ eval_expr ge sp e m le a (Vint x) ->
+ Int.ltu n (Int.repr 32) = true ->
+ eval_expr ge sp e m le (shruimm a n) (Vint (Int.shru x n)).
+Proof.
+ intros. unfold shruimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro.
+ subst n. rewrite Int.shru_zero. auto.
+ rewrite H0.
+ replace (Int.shru x n) with (Int.rolm x (Int.sub (Int.repr 32) n) (Int.shru Int.mone n)).
+ apply eval_rolm. auto. symmetry. apply Int.shru_rolm. exact H0.
+Qed.
+
+Lemma eval_mulimm_base:
+ forall le a n x,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le (mulimm_base n a) (Vint (Int.mul x n)).
+Proof.
+ intros; unfold mulimm_base.
+ generalize (Int.one_bits_decomp n).
+ generalize (Int.one_bits_range n).
+ change (Z_of_nat wordsize) with 32.
+ destruct (Int.one_bits n).
+ intros. EvalOp.
+ destruct l.
+ intros. rewrite H1. simpl.
+ rewrite Int.add_zero. rewrite <- Int.shl_mul.
+ apply eval_shlimm. auto. auto with coqlib.
+ destruct l.
+ intros. apply eval_Elet with (Vint x). auto.
+ rewrite H1. simpl. rewrite Int.add_zero.
+ rewrite Int.mul_add_distr_r.
+ rewrite <- Int.shl_mul.
+ rewrite <- Int.shl_mul.
+ EvalOp. eapply eval_Econs.
+ apply eval_shlimm. apply eval_Eletvar. simpl. reflexivity.
+ auto with coqlib.
+ eapply eval_Econs.
+ apply eval_shlimm. apply eval_Eletvar. simpl. reflexivity.
+ auto with coqlib.
+ auto with evalexpr.
+ reflexivity.
+ intros. EvalOp.
+Qed.
+
+Theorem eval_mulimm:
+ forall le a n x,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le (mulimm n a) (Vint (Int.mul x n)).
+Proof.
+ intros until x; unfold mulimm.
+ generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro.
+ subst n. rewrite Int.mul_zero.
+ intro. eapply eval_Elet; eauto with evalexpr.
+ generalize (Int.eq_spec n Int.one); case (Int.eq n Int.one); intro.
+ subst n. rewrite Int.mul_one. auto.
+ case (mulimm_match a); intros; InvEval.
+ EvalOp. rewrite Int.mul_commut. reflexivity.
+ replace (Int.mul x n) with (Int.add (Int.mul i n) (Int.mul n n2)).
+ apply eval_addimm. apply eval_mulimm_base. auto.
+ subst x. rewrite Int.mul_add_distr_l. decEq. apply Int.mul_commut.
+ apply eval_mulimm_base. assumption.
+Qed.
+
+Theorem eval_mul:
+ forall le a b x y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ eval_expr ge sp e m le (mul a b) (Vint (Int.mul x y)).
+Proof.
+ intros until y.
+ unfold mul; case (mul_match a b); intros; InvEval.
+ rewrite Int.mul_commut. apply eval_mulimm. auto.
+ apply eval_mulimm. auto.
+ EvalOp.
+Qed.
+
+Theorem eval_divs:
+ forall le a b x y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ y <> Int.zero ->
+ eval_expr ge sp e m le (divs a b) (Vint (Int.divs x y)).
+Proof.
+ TrivialOp divs. simpl.
+ predSpec Int.eq Int.eq_spec y Int.zero. contradiction. auto.
+Qed.
+
+Lemma eval_mod_aux:
+ forall divop semdivop,
+ (forall sp x y m,
+ y <> Int.zero ->
+ eval_operation ge sp divop (Vint x :: Vint y :: nil) m =
+ Some (Vint (semdivop x y))) ->
+ forall le a b x y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ y <> Int.zero ->
+ eval_expr ge sp e m le (mod_aux divop a b)
+ (Vint (Int.sub x (Int.mul (semdivop x y) y))).
+Proof.
+ intros; unfold mod_aux.
+ eapply eval_Elet. eexact H0. eapply eval_Elet.
+ apply eval_lift. eexact H1.
+ eapply eval_Eop. eapply eval_Econs.
+ eapply eval_Eletvar. simpl; reflexivity.
+ eapply eval_Econs. eapply eval_Eop.
+ eapply eval_Econs. eapply eval_Eop.
+ eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
+ eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
+ apply eval_Enil.
+ apply H. assumption.
+ eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
+ apply eval_Enil.
+ simpl; reflexivity. apply eval_Enil.
+ reflexivity.
+Qed.
+
+Theorem eval_mods:
+ forall le a b x y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ y <> Int.zero ->
+ eval_expr ge sp e m le (mods a b) (Vint (Int.mods x y)).
+Proof.
+ intros; unfold mods.
+ rewrite Int.mods_divs.
+ eapply eval_mod_aux; eauto.
+ intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero.
+ contradiction. auto.
+Qed.
+
+Lemma eval_divu_base:
+ forall le a x b y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ y <> Int.zero ->
+ eval_expr ge sp e m le (Eop Odivu (a ::: b ::: Enil)) (Vint (Int.divu x y)).
+Proof.
+ intros. EvalOp. simpl.
+ predSpec Int.eq Int.eq_spec y Int.zero. contradiction. auto.
+Qed.
+
+Theorem eval_divu:
+ forall le a x b y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ y <> Int.zero ->
+ eval_expr ge sp e m le (divu a b) (Vint (Int.divu x y)).
+Proof.
+ intros until y.
+ unfold divu; case (divu_match b); intros; InvEval.
+ caseEq (Int.is_power2 y).
+ intros. rewrite (Int.divu_pow2 x y i H0).
+ apply eval_shruimm. auto.
+ apply Int.is_power2_range with y. auto.
+ intros. apply eval_divu_base. auto. EvalOp. auto.
+ eapply eval_divu_base; eauto.
+Qed.
+
+Theorem eval_modu:
+ forall le a x b y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ y <> Int.zero ->
+ eval_expr ge sp e m le (modu a b) (Vint (Int.modu x y)).
+Proof.
+ intros until y; unfold modu; case (divu_match b); intros; InvEval.
+ caseEq (Int.is_power2 y).
+ intros. rewrite (Int.modu_and x y i H0).
+ rewrite <- Int.rolm_zero. apply eval_rolm. auto.
+ intro. rewrite Int.modu_divu. eapply eval_mod_aux.
+ intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero.
+ contradiction. auto.
+ auto. EvalOp. auto. auto.
+ rewrite Int.modu_divu. eapply eval_mod_aux.
+ intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero.
+ contradiction. auto. auto. auto. auto. auto.
+Qed.
+
+Theorem eval_andimm:
+ forall le n a x,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le (andimm n a) (Vint (Int.and x n)).
+Proof.
+ intros. unfold andimm. case (Int.is_rlw_mask n).
+ rewrite <- Int.rolm_zero. apply eval_rolm; auto.
+ EvalOp.
+Qed.
+
+Theorem eval_and:
+ forall le a x b y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ eval_expr ge sp e m le (and a b) (Vint (Int.and x y)).
+Proof.
+ intros until y; unfold and; case (mul_match a b); intros; InvEval.
+ rewrite Int.and_commut. apply eval_andimm; auto.
+ apply eval_andimm; auto.
+ EvalOp.
+Qed.
+
+Remark eval_same_expr:
+ forall a1 a2 le v1 v2,
+ same_expr_pure a1 a2 = true ->
+ eval_expr ge sp e m le a1 v1 ->
+ eval_expr ge sp e m le a2 v2 ->
+ a1 = a2 /\ v1 = v2.
+Proof.
+ intros until v2.
+ destruct a1; simpl; try (intros; discriminate).
+ destruct a2; simpl; try (intros; discriminate).
+ case (ident_eq i i0); intros.
+ subst i0. inversion H0. inversion H1. split. auto. congruence.
+ discriminate.
+Qed.
+
+Lemma eval_or:
+ forall le a x b y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ eval_expr ge sp e m le (or a b) (Vint (Int.or x y)).
+Proof.
+ intros until y; unfold or; case (or_match a b); intros; InvEval.
+ caseEq (Int.eq amount1 amount2
+ && Int.is_rlw_mask (Int.or mask1 mask2)
+ && same_expr_pure t1 t2); intro.
+ destruct (andb_prop _ _ H1). destruct (andb_prop _ _ H4).
+ generalize (Int.eq_spec amount1 amount2). rewrite H6. intro. subst amount2.
+ exploit eval_same_expr; eauto. intros [EQ1 EQ2]. inv EQ1. inv EQ2.
+ simpl. EvalOp. simpl. rewrite Int.or_rolm. auto.
+ simpl. apply eval_Eop with (Vint x :: Vint y :: nil).
+ econstructor. EvalOp. simpl. congruence.
+ econstructor. EvalOp. simpl. congruence. constructor. auto.
+ EvalOp.
+Qed.
+
+Theorem eval_shl:
+ forall le a x b y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ Int.ltu y (Int.repr 32) = true ->
+ eval_expr ge sp e m le (shl a b) (Vint (Int.shl x y)).
+Proof.
+ intros until y; unfold shl; case (shift_match b); intros.
+ InvEval. apply eval_shlimm; auto.
+ EvalOp. simpl. rewrite H1. auto.
+Qed.
+
+Theorem eval_shru:
+ forall le a x b y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ Int.ltu y (Int.repr 32) = true ->
+ eval_expr ge sp e m le (shru a b) (Vint (Int.shru x y)).
+Proof.
+ intros until y; unfold shru; case (shift_match b); intros.
+ InvEval. apply eval_shruimm; auto.
+ EvalOp. simpl. rewrite H1. auto.
+Qed.
+
+Theorem eval_addf:
+ forall le a x b y,
+ eval_expr ge sp e m le a (Vfloat x) ->
+ eval_expr ge sp e m le b (Vfloat y) ->
+ eval_expr ge sp e m le (addf a b) (Vfloat (Float.add x y)).
+Proof.
+ intros until y; unfold addf.
+ destruct (use_fused_mul tt).
+ case (addf_match a b); intros; InvEval.
+ EvalOp. simpl. congruence.
+ EvalOp. simpl. rewrite Float.addf_commut. congruence.
+ EvalOp.
+ intros. EvalOp.
+Qed.
+
+Theorem eval_subf:
+ forall le a x b y,
+ eval_expr ge sp e m le a (Vfloat x) ->
+ eval_expr ge sp e m le b (Vfloat y) ->
+ eval_expr ge sp e m le (subf a b) (Vfloat (Float.sub x y)).
+Proof.
+ intros until y; unfold subf.
+ destruct (use_fused_mul tt).
+ case (subf_match a b); intros.
+ InvEval. EvalOp. simpl. congruence.
+ EvalOp.
+ intros. EvalOp.
+Qed.
+
+Theorem eval_cast8signed:
+ forall le a v,
+ eval_expr ge sp e m le a v ->
+ eval_expr ge sp e m le (cast8signed a) (Val.sign_ext 8 v).
+Proof.
+ intros until v; unfold cast8signed; case (cast8signed_match a); intros; InvEval.
+ EvalOp. simpl. subst v. destruct v1; simpl; auto.
+ rewrite Int.sign_ext_idem. reflexivity. compute; auto.
+ EvalOp.
+Qed.
+
+Theorem eval_cast8unsigned:
+ forall le a v,
+ eval_expr ge sp e m le a v ->
+ eval_expr ge sp e m le (cast8unsigned a) (Val.zero_ext 8 v).
+Proof.
+ intros until v; unfold cast8unsigned; case (cast8unsigned_match a); intros; InvEval.
+ EvalOp. simpl. subst v. destruct v1; simpl; auto.
+ rewrite Int.zero_ext_idem. reflexivity. compute; auto.
+ EvalOp.
+Qed.
+
+Theorem eval_cast16signed:
+ forall le a v,
+ eval_expr ge sp e m le a v ->
+ eval_expr ge sp e m le (cast16signed a) (Val.sign_ext 16 v).
+Proof.
+ intros until v; unfold cast16signed; case (cast16signed_match a); intros; InvEval.
+ EvalOp. simpl. subst v. destruct v1; simpl; auto.
+ rewrite Int.sign_ext_idem. reflexivity. compute; auto.
+ EvalOp.
+Qed.
+
+Theorem eval_cast16unsigned:
+ forall le a v,
+ eval_expr ge sp e m le a v ->
+ eval_expr ge sp e m le (cast16unsigned a) (Val.zero_ext 16 v).
+Proof.
+ intros until v; unfold cast16unsigned; case (cast16unsigned_match a); intros; InvEval.
+ EvalOp. simpl. subst v. destruct v1; simpl; auto.
+ rewrite Int.zero_ext_idem. reflexivity. compute; auto.
+ EvalOp.
+Qed.
+
+Theorem eval_singleoffloat:
+ forall le a v,
+ eval_expr ge sp e m le a v ->
+ eval_expr ge sp e m le (singleoffloat a) (Val.singleoffloat v).
+Proof.
+ intros until v; unfold singleoffloat; case (singleoffloat_match a); intros; InvEval.
+ EvalOp. simpl. subst v. destruct v1; simpl; auto. rewrite Float.singleoffloat_idem. reflexivity.
+ EvalOp.
+Qed.
+
+Theorem eval_comp_int:
+ forall le c a x b y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ eval_expr ge sp e m le (comp c a b) (Val.of_bool(Int.cmp c x y)).
+Proof.
+ intros until y.
+ unfold comp; case (comp_match a b); intros; InvEval.
+ EvalOp. simpl. rewrite Int.swap_cmp. destruct (Int.cmp c x y); reflexivity.
+ EvalOp. simpl. destruct (Int.cmp c x y); reflexivity.
+ EvalOp. simpl. destruct (Int.cmp c x y); reflexivity.
+Qed.
+
+Theorem eval_comp_ptr_int:
+ forall le c a x1 x2 b y v,
+ eval_expr ge sp e m le a (Vptr x1 x2) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ (if Int.eq y Int.zero then Cminor.eval_compare_mismatch c else None) = Some v ->
+ eval_expr ge sp e m le (comp c a b) v.
+Proof.
+ intros until v.
+ unfold comp; case (comp_match a b); intros; InvEval.
+ EvalOp. simpl. destruct (Int.eq y Int.zero); try discriminate.
+ unfold Cminor.eval_compare_mismatch in H1. unfold eval_compare_mismatch.
+ destruct c; try discriminate; auto.
+ EvalOp. simpl. destruct (Int.eq y Int.zero); try discriminate.
+ unfold Cminor.eval_compare_mismatch in H1. unfold eval_compare_mismatch.
+ destruct c; try discriminate; auto.
+Qed.
+
+Theorem eval_comp_int_ptr:
+ forall le c a x b y1 y2 v,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vptr y1 y2) ->
+ (if Int.eq x Int.zero then Cminor.eval_compare_mismatch c else None) = Some v ->
+ eval_expr ge sp e m le (comp c a b) v.
+Proof.
+ intros until v.
+ unfold comp; case (comp_match a b); intros; InvEval.
+ EvalOp. simpl. destruct (Int.eq x Int.zero); try discriminate.
+ unfold Cminor.eval_compare_mismatch in H1. unfold eval_compare_mismatch.
+ destruct c; try discriminate; auto.
+ EvalOp. simpl. destruct (Int.eq x Int.zero); try discriminate.
+ unfold Cminor.eval_compare_mismatch in H1. unfold eval_compare_mismatch.
+ destruct c; try discriminate; auto.
+Qed.
+
+Theorem eval_comp_ptr_ptr:
+ forall le c a x1 x2 b y1 y2,
+ eval_expr ge sp e m le a (Vptr x1 x2) ->
+ eval_expr ge sp e m le b (Vptr y1 y2) ->
+ valid_pointer m x1 (Int.signed x2) &&
+ valid_pointer m y1 (Int.signed y2) = true ->
+ x1 = y1 ->
+ eval_expr ge sp e m le (comp c a b) (Val.of_bool(Int.cmp c x2 y2)).
+Proof.
+ intros until y2.
+ unfold comp; case (comp_match a b); intros; InvEval.
+ EvalOp. simpl. rewrite H1. subst y1. rewrite dec_eq_true.
+ destruct (Int.cmp c x2 y2); reflexivity.
+Qed.
+
+Theorem eval_comp_ptr_ptr_2:
+ forall le c a x1 x2 b y1 y2 v,
+ eval_expr ge sp e m le a (Vptr x1 x2) ->
+ eval_expr ge sp e m le b (Vptr y1 y2) ->
+ valid_pointer m x1 (Int.signed x2) &&
+ valid_pointer m y1 (Int.signed y2) = true ->
+ x1 <> y1 ->
+ Cminor.eval_compare_mismatch c = Some v ->
+ eval_expr ge sp e m le (comp c a b) v.
+Proof.
+ intros until y2.
+ unfold comp; case (comp_match a b); intros; InvEval.
+ EvalOp. simpl. rewrite H1. rewrite dec_eq_false; auto.
+ destruct c; simpl in H3; inv H3; auto.
+Qed.
+
+Theorem eval_compu:
+ forall le c a x b y,
+ eval_expr ge sp e m le a (Vint x) ->
+ eval_expr ge sp e m le b (Vint y) ->
+ eval_expr ge sp e m le (compu c a b) (Val.of_bool(Int.cmpu c x y)).
+Proof.
+ intros until y.
+ unfold compu; case (comp_match a b); intros; InvEval.
+ EvalOp. simpl. rewrite Int.swap_cmpu. destruct (Int.cmpu c x y); reflexivity.
+ EvalOp. simpl. destruct (Int.cmpu c x y); reflexivity.
+ EvalOp. simpl. destruct (Int.cmpu c x y); reflexivity.
+Qed.
+
+Theorem eval_compf:
+ forall le c a x b y,
+ eval_expr ge sp e m le a (Vfloat x) ->
+ eval_expr ge sp e m le b (Vfloat y) ->
+ eval_expr ge sp e m le (compf c a b) (Val.of_bool(Float.cmp c x y)).
+Proof.
+ intros. unfold compf. EvalOp. simpl.
+ destruct (Float.cmp c x y); reflexivity.
+Qed.
+
+Lemma negate_condexpr_correct:
+ forall le a b,
+ eval_condexpr ge sp e m le a b ->
+ eval_condexpr ge sp e m le (negate_condexpr a) (negb b).
+Proof.
+ induction 1; simpl.
+ constructor.
+ constructor.
+ econstructor. eauto. apply eval_negate_condition. auto.
+ econstructor. eauto. destruct vb1; auto.
+Qed.
+
+Scheme expr_ind2 := Induction for expr Sort Prop
+ with exprlist_ind2 := Induction for exprlist Sort Prop.
+
+Fixpoint forall_exprlist (P: expr -> Prop) (el: exprlist) {struct el}: Prop :=
+ match el with
+ | Enil => True
+ | Econs e el' => P e /\ forall_exprlist P el'
+ end.
+
+Lemma expr_induction_principle:
+ forall (P: expr -> Prop),
+ (forall i : ident, P (Evar i)) ->
+ (forall (o : operation) (e : exprlist),
+ forall_exprlist P e -> P (Eop o e)) ->
+ (forall (m : memory_chunk) (a : Op.addressing) (e : exprlist),
+ forall_exprlist P e -> P (Eload m a e)) ->
+ (forall (c : condexpr) (e : expr),
+ P e -> forall e0 : expr, P e0 -> P (Econdition c e e0)) ->
+ (forall e : expr, P e -> forall e0 : expr, P e0 -> P (Elet e e0)) ->
+ (forall n : nat, P (Eletvar n)) ->
+ forall e : expr, P e.
+Proof.
+ intros. apply expr_ind2 with (P := P) (P0 := forall_exprlist P); auto.
+ simpl. auto.
+ intros. simpl. auto.
+Qed.
+
+Lemma eval_base_condition_of_expr:
+ forall le a v b,
+ eval_expr ge sp e m le a v ->
+ Val.bool_of_val v b ->
+ eval_condexpr ge sp e m le
+ (CEcond (Ccompimm Cne Int.zero) (a ::: Enil))
+ b.
+Proof.
+ intros.
+ eapply eval_CEcond. eauto with evalexpr.
+ inversion H0; simpl. rewrite Int.eq_false; auto. auto. auto.
+Qed.
+
+Lemma is_compare_neq_zero_correct:
+ forall c v b,
+ is_compare_neq_zero c = true ->
+ eval_condition c (v :: nil) m = Some b ->
+ Val.bool_of_val v b.
+Proof.
+ intros.
+ destruct c; simpl in H; try discriminate;
+ destruct c; simpl in H; try discriminate;
+ generalize (Int.eq_spec i Int.zero); rewrite H; intro; subst i.
+
+ simpl in H0. destruct v; inv H0.
+ generalize (Int.eq_spec i Int.zero). destruct (Int.eq i Int.zero); intros; simpl.
+ subst i; constructor. constructor; auto. constructor.
+
+ simpl in H0. destruct v; inv H0.
+ generalize (Int.eq_spec i Int.zero). destruct (Int.eq i Int.zero); intros; simpl.
+ subst i; constructor. constructor; auto.
+Qed.
+
+Lemma is_compare_eq_zero_correct:
+ forall c v b,
+ is_compare_eq_zero c = true ->
+ eval_condition c (v :: nil) m = Some b ->
+ Val.bool_of_val v (negb b).
+Proof.
+ intros. apply is_compare_neq_zero_correct with (negate_condition c).
+ destruct c; simpl in H; simpl; try discriminate;
+ destruct c; simpl; try discriminate; auto.
+ apply eval_negate_condition; auto.
+Qed.
+
+Lemma eval_condition_of_expr:
+ forall a le v b,
+ eval_expr ge sp e m le a v ->
+ Val.bool_of_val v b ->
+ eval_condexpr ge sp e m le (condexpr_of_expr a) b.
+Proof.
+ intro a0; pattern a0.
+ apply expr_induction_principle; simpl; intros;
+ try (eapply eval_base_condition_of_expr; eauto; fail).
+
+ destruct o; try (eapply eval_base_condition_of_expr; eauto; fail).
+
+ destruct e0. InvEval.
+ inversion H1.
+ rewrite Int.eq_false; auto. constructor.
+ subst i; rewrite Int.eq_true. constructor.
+ eapply eval_base_condition_of_expr; eauto.
+
+ inv H0. simpl in H7.
+ assert (eval_condition c vl m = Some b).
+ destruct (eval_condition c vl m); try discriminate.
+ destruct b0; inv H7; inversion H1; congruence.
+ assert (eval_condexpr ge sp e m le (CEcond c e0) b).
+ eapply eval_CEcond; eauto.
+ destruct e0; auto. destruct e1; auto.
+ simpl in H. destruct H.
+ inv H5. inv H11.
+
+ case_eq (is_compare_neq_zero c); intros.
+ eapply H; eauto.
+ apply is_compare_neq_zero_correct with c; auto.
+
+ case_eq (is_compare_eq_zero c); intros.
+ replace b with (negb (negb b)). apply negate_condexpr_correct.
+ eapply H; eauto.
+ apply is_compare_eq_zero_correct with c; auto.
+ apply negb_involutive.
+
+ auto.
+
+ inv H1. destruct v1; eauto with evalexpr.
+Qed.
+
+Lemma eval_addressing:
+ forall le a v b ofs,
+ eval_expr ge sp e m le a v ->
+ v = Vptr b ofs ->
+ match addressing a with (mode, args) =>
+ exists vl,
+ eval_exprlist ge sp e m le args vl /\
+ eval_addressing ge sp mode vl = Some v
+ end.
+Proof.
+ intros until v. unfold addressing; case (addressing_match a); intros; InvEval.
+ exists (@nil val). split. eauto with evalexpr. simpl. auto.
+ exists (@nil val). split. eauto with evalexpr. simpl. auto.
+ destruct (Genv.find_symbol ge s); congruence.
+ exists (Vint i0 :: nil). split. eauto with evalexpr.
+ simpl. destruct (Genv.find_symbol ge s). congruence. discriminate.
+ exists (Vptr b0 i :: nil). split. eauto with evalexpr.
+ simpl. congruence.
+ exists (Vint i :: Vptr b0 i0 :: nil).
+ split. eauto with evalexpr. simpl.
+ congruence.
+ exists (Vptr b0 i :: Vint i0 :: nil).
+ split. eauto with evalexpr. simpl. congruence.
+ exists (v :: nil). split. eauto with evalexpr.
+ subst v. simpl. rewrite Int.add_zero. auto.
+Qed.
+
+Lemma eval_load:
+ forall le a v chunk v',
+ eval_expr ge sp e m le a v ->
+ Mem.loadv chunk m v = Some v' ->
+ eval_expr ge sp e m le (load chunk a) v'.
+Proof.
+ intros. generalize H0; destruct v; simpl; intro; try discriminate.
+ unfold load.
+ generalize (eval_addressing _ _ _ _ _ H (refl_equal _)).
+ destruct (addressing a). intros [vl [EV EQ]].
+ eapply eval_Eload; eauto.
+Qed.
+
+Lemma eval_store:
+ forall chunk a1 a2 v1 v2 f k m',
+ eval_expr ge sp e m nil a1 v1 ->
+ eval_expr ge sp e m nil a2 v2 ->
+ Mem.storev chunk m v1 v2 = Some m' ->
+ step ge (State f (store chunk a1 a2) k sp e m)
+ E0 (State f Sskip k sp e m').
+Proof.
+ intros. generalize H1; destruct v1; simpl; intro; try discriminate.
+ unfold store.
+ generalize (eval_addressing _ _ _ _ _ H (refl_equal _)).
+ destruct (addressing a1). intros [vl [EV EQ]].
+ eapply step_store; eauto.
+Qed.
+
+(** * Correctness of instruction selection for operators *)
+
+(** We now prove a semantic preservation result for the [sel_unop]
+ and [sel_binop] selection functions. The proof exploits
+ the results of the previous section. *)
+
+Lemma eval_sel_unop:
+ forall le op a1 v1 v,
+ eval_expr ge sp e m le a1 v1 ->
+ eval_unop op v1 = Some v ->
+ eval_expr ge sp e m le (sel_unop op a1) v.
+Proof.
+ destruct op; simpl; intros; FuncInv; try subst v.
+ apply eval_cast8unsigned; auto.
+ apply eval_cast8signed; auto.
+ apply eval_cast16unsigned; auto.
+ apply eval_cast16signed; auto.
+ EvalOp.
+ generalize (Int.eq_spec i Int.zero). destruct (Int.eq i Int.zero); intro.
+ change true with (negb false). eapply eval_notbool; eauto. subst i; constructor.
+ change false with (negb true). eapply eval_notbool; eauto. constructor; auto.
+ change Vfalse with (Val.of_bool (negb true)).
+ eapply eval_notbool; eauto. constructor.
+ apply eval_notint; auto.
+ EvalOp.
+ EvalOp.
+ apply eval_singleoffloat; auto.
+ EvalOp.
+ EvalOp.
+ EvalOp.
+ EvalOp.
+Qed.
+
+Lemma eval_sel_binop:
+ forall le op a1 a2 v1 v2 v,
+ eval_expr ge sp e m le a1 v1 ->
+ eval_expr ge sp e m le a2 v2 ->
+ eval_binop op v1 v2 m = Some v ->
+ eval_expr ge sp e m le (sel_binop op a1 a2) v.
+Proof.
+ destruct op; simpl; intros; FuncInv; try subst v.
+ apply eval_add; auto.
+ apply eval_add_ptr_2; auto.
+ apply eval_add_ptr; auto.
+ apply eval_sub; auto.
+ apply eval_sub_ptr_int; auto.
+ destruct (eq_block b b0); inv H1.
+ eapply eval_sub_ptr_ptr; eauto.
+ apply eval_mul; eauto.
+ generalize (Int.eq_spec i0 Int.zero). destruct (Int.eq i0 Int.zero); inv H1.
+ apply eval_divs; eauto.
+ generalize (Int.eq_spec i0 Int.zero). destruct (Int.eq i0 Int.zero); inv H1.
+ apply eval_divu; eauto.
+ generalize (Int.eq_spec i0 Int.zero). destruct (Int.eq i0 Int.zero); inv H1.
+ apply eval_mods; eauto.
+ generalize (Int.eq_spec i0 Int.zero). destruct (Int.eq i0 Int.zero); inv H1.
+ apply eval_modu; eauto.
+ apply eval_and; auto.
+ apply eval_or; auto.
+ EvalOp.
+ caseEq (Int.ltu i0 (Int.repr 32)); intro; rewrite H2 in H1; inv H1.
+ apply eval_shl; auto.
+ EvalOp.
+ caseEq (Int.ltu i0 (Int.repr 32)); intro; rewrite H2 in H1; inv H1.
+ apply eval_shru; auto.
+ apply eval_addf; auto.
+ apply eval_subf; auto.
+ EvalOp.
+ EvalOp.
+ apply eval_comp_int; auto.
+ eapply eval_comp_int_ptr; eauto.
+ eapply eval_comp_ptr_int; eauto.
+ generalize H1; clear H1.
+ case_eq (valid_pointer m b (Int.signed i) && valid_pointer m b0 (Int.signed i0)); intros.
+ destruct (eq_block b b0); inv H2.
+ eapply eval_comp_ptr_ptr; eauto.
+ eapply eval_comp_ptr_ptr_2; eauto.
+ discriminate.
+ eapply eval_compu; eauto.
+ eapply eval_compf; eauto.
+Qed.
+
+End CMCONSTR.
+
+(** * Semantic preservation for instruction selection. *)
+
+Section PRESERVATION.
+
+Variable prog: Cminor.program.
+Let tprog := sel_program prog.
+Let ge := Genv.globalenv prog.
+Let tge := Genv.globalenv tprog.
+
+(** Relationship between the global environments for the original
+ CminorSel program and the generated RTL program. *)
+
+Lemma symbols_preserved:
+ forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
+Proof.
+ intros; unfold ge, tge, tprog, sel_program.
+ apply Genv.find_symbol_transf.
+Qed.
+
+Lemma functions_translated:
+ forall (v: val) (f: Cminor.fundef),
+ Genv.find_funct ge v = Some f ->
+ Genv.find_funct tge v = Some (sel_fundef f).
+Proof.
+ intros.
+ exact (Genv.find_funct_transf sel_fundef H).
+Qed.
+
+Lemma function_ptr_translated:
+ forall (b: block) (f: Cminor.fundef),
+ Genv.find_funct_ptr ge b = Some f ->
+ Genv.find_funct_ptr tge b = Some (sel_fundef f).
+Proof.
+ intros.
+ exact (Genv.find_funct_ptr_transf sel_fundef H).
+Qed.
+
+Lemma sig_function_translated:
+ forall f,
+ funsig (sel_fundef f) = Cminor.funsig f.
+Proof.
+ intros. destruct f; reflexivity.
+Qed.
+
+(** Semantic preservation for expressions. *)
+
+Lemma sel_expr_correct:
+ forall sp e m a v,
+ Cminor.eval_expr ge sp e m a v ->
+ forall le,
+ eval_expr tge sp e m le (sel_expr a) v.
+Proof.
+ induction 1; intros; simpl.
+ (* Evar *)
+ constructor; auto.
+ (* Econst *)
+ destruct cst; simpl; simpl in H; (econstructor; [constructor|simpl;auto]).
+ rewrite symbols_preserved. auto.
+ (* Eunop *)
+ eapply eval_sel_unop; eauto.
+ (* Ebinop *)
+ eapply eval_sel_binop; eauto.
+ (* Eload *)
+ eapply eval_load; eauto.
+ (* Econdition *)
+ econstructor; eauto. eapply eval_condition_of_expr; eauto.
+ destruct b1; auto.
+Qed.
+
+Hint Resolve sel_expr_correct: evalexpr.
+
+Lemma sel_exprlist_correct:
+ forall sp e m a v,
+ Cminor.eval_exprlist ge sp e m a v ->
+ forall le,
+ eval_exprlist tge sp e m le (sel_exprlist a) v.
+Proof.
+ induction 1; intros; simpl; constructor; auto with evalexpr.
+Qed.
+
+Hint Resolve sel_exprlist_correct: evalexpr.
+
+(** Semantic preservation for terminating function calls and statements. *)
+
+Fixpoint sel_cont (k: Cminor.cont) : CminorSel.cont :=
+ match k with
+ | Cminor.Kstop => Kstop
+ | Cminor.Kseq s1 k1 => Kseq (sel_stmt s1) (sel_cont k1)
+ | Cminor.Kblock k1 => Kblock (sel_cont k1)
+ | Cminor.Kcall id f sp e k1 =>
+ Kcall id (sel_function f) sp e (sel_cont k1)
+ end.
+
+Inductive match_states: Cminor.state -> CminorSel.state -> Prop :=
+ | match_state: forall f s k s' k' sp e m,
+ s' = sel_stmt s ->
+ k' = sel_cont k ->
+ match_states
+ (Cminor.State f s k sp e m)
+ (State (sel_function f) s' k' sp e m)
+ | match_callstate: forall f args k k' m,
+ k' = sel_cont k ->
+ match_states
+ (Cminor.Callstate f args k m)
+ (Callstate (sel_fundef f) args k' m)
+ | match_returnstate: forall v k k' m,
+ k' = sel_cont k ->
+ match_states
+ (Cminor.Returnstate v k m)
+ (Returnstate v k' m).
+
+Remark call_cont_commut:
+ forall k, call_cont (sel_cont k) = sel_cont (Cminor.call_cont k).
+Proof.
+ induction k; simpl; auto.
+Qed.
+
+Remark find_label_commut:
+ forall lbl s k,
+ find_label lbl (sel_stmt s) (sel_cont k) =
+ option_map (fun sk => (sel_stmt (fst sk), sel_cont (snd sk)))
+ (Cminor.find_label lbl s k).
+Proof.
+ induction s; intros; simpl; auto.
+ unfold store. destruct (addressing (sel_expr e)); auto.
+ change (Kseq (sel_stmt s2) (sel_cont k))
+ with (sel_cont (Cminor.Kseq s2 k)).
+ rewrite IHs1. rewrite IHs2.
+ destruct (Cminor.find_label lbl s1 (Cminor.Kseq s2 k)); auto.
+ rewrite IHs1. rewrite IHs2.
+ destruct (Cminor.find_label lbl s1 k); auto.
+ change (Kseq (Sloop (sel_stmt s)) (sel_cont k))
+ with (sel_cont (Cminor.Kseq (Cminor.Sloop s) k)).
+ auto.
+ change (Kblock (sel_cont k))
+ with (sel_cont (Cminor.Kblock k)).
+ auto.
+ destruct o; auto.
+ destruct (ident_eq lbl l); auto.
+Qed.
+
+Lemma sel_step_correct:
+ forall S1 t S2, Cminor.step ge S1 t S2 ->
+ forall T1, match_states S1 T1 ->
+ exists T2, step tge T1 t T2 /\ match_states S2 T2.
+Proof.
+ induction 1; intros T1 ME; inv ME; simpl;
+ try (econstructor; split; [econstructor; eauto with evalexpr | econstructor; eauto]; fail).
+
+ (* skip call *)
+ econstructor; split.
+ econstructor. destruct k; simpl in H; simpl; auto.
+ rewrite <- H0; reflexivity.
+ constructor; auto.
+ (* assign *)
+ exists (State (sel_function f) Sskip (sel_cont k) sp (PTree.set id v e) m); split.
+ constructor. auto with evalexpr.
+ constructor; auto.
+ (* store *)
+ econstructor; split.
+ eapply eval_store; eauto with evalexpr.
+ constructor; auto.
+ (* Scall *)
+ econstructor; split.
+ econstructor; eauto with evalexpr.
+ apply functions_translated; eauto.
+ apply sig_function_translated.
+ constructor; auto.
+ (* Stailcall *)
+ econstructor; split.
+ econstructor; eauto with evalexpr.
+ apply functions_translated; eauto.
+ apply sig_function_translated.
+ constructor; auto. apply call_cont_commut.
+ (* Salloc *)
+ exists (State (sel_function f) Sskip (sel_cont k) sp (PTree.set id (Vptr b Int.zero) e) m'); split.
+ econstructor; eauto with evalexpr.
+ constructor; auto.
+ (* Sifthenelse *)
+ exists (State (sel_function f) (if b then sel_stmt s1 else sel_stmt s2) (sel_cont k) sp e m); split.
+ constructor. eapply eval_condition_of_expr; eauto with evalexpr.
+ constructor; auto. destruct b; auto.
+ (* Sreturn None *)
+ econstructor; split.
+ econstructor. rewrite <- H; reflexivity.
+ constructor; auto. apply call_cont_commut.
+ (* Sreturn Some *)
+ econstructor; split.
+ econstructor. simpl. auto. eauto with evalexpr.
+ constructor; auto. apply call_cont_commut.
+ (* Sgoto *)
+ econstructor; split.
+ econstructor. simpl. rewrite call_cont_commut. rewrite find_label_commut.
+ rewrite H. simpl. reflexivity.
+ constructor; auto.
+Qed.
+
+Lemma sel_initial_states:
+ forall S, Cminor.initial_state prog S ->
+ exists R, initial_state tprog R /\ match_states S R.
+Proof.
+ induction 1.
+ econstructor; split.
+ econstructor.
+ simpl. fold tge. rewrite symbols_preserved. eexact H.
+ apply function_ptr_translated. eauto.
+ rewrite <- H1. apply sig_function_translated; auto.
+ unfold tprog, sel_program. rewrite Genv.init_mem_transf.
+ constructor; auto.
+Qed.
+
+Lemma sel_final_states:
+ forall S R r,
+ match_states S R -> Cminor.final_state S r -> final_state R r.
+Proof.
+ intros. inv H0. inv H. simpl. constructor.
+Qed.
+
+Theorem transf_program_correct:
+ forall (beh: program_behavior),
+ Cminor.exec_program prog beh -> CminorSel.exec_program tprog beh.
+Proof.
+ unfold CminorSel.exec_program, Cminor.exec_program; intros.
+ eapply simulation_step_preservation; eauto.
+ eexact sel_initial_states.
+ eexact sel_final_states.
+ exact sel_step_correct.
+Qed.
+
+End PRESERVATION.
diff --git a/powerpc/eabi/Conventions.v b/powerpc/eabi/Conventions.v
new file mode 100644
index 00000000..6e27b9d2
--- /dev/null
+++ b/powerpc/eabi/Conventions.v
@@ -0,0 +1,798 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Function calling conventions and other conventions regarding the use of
+ machine registers and stack slots. *)
+
+Require Import Coqlib.
+Require Import AST.
+Require Import Locations.
+
+(** * Classification of machine registers *)
+
+(** Machine registers (type [mreg] in module [Locations]) are divided in
+ the following groups:
+- Temporaries used for spilling, reloading, and parallel move operations.
+- Allocatable registers, that can be assigned to RTL pseudo-registers.
+ These are further divided into:
+-- Callee-save registers, whose value is preserved across a function call.
+-- Caller-save registers that can be modified during a function call.
+
+ We follow the PowerPC/EABI application binary interface (ABI) in our choice
+ of callee- and caller-save registers.
+*)
+
+Definition int_caller_save_regs :=
+ R3 :: R4 :: R5 :: R6 :: R7 :: R8 :: R9 :: R10 :: nil.
+
+Definition float_caller_save_regs :=
+ F1 :: F2 :: F3 :: F4 :: F5 :: F6 :: F7 :: F8 :: F9 :: F10 :: nil.
+
+Definition int_callee_save_regs :=
+ R13 :: R14 :: R15 :: R16 :: R17 :: R18 :: R19 :: R20 :: R21 :: R22 ::
+ R23 :: R24 :: R25 :: R26 :: R27 :: R28 :: R29 :: R30 :: R31 :: nil.
+
+Definition float_callee_save_regs :=
+ F14 :: F15 :: F16 :: F17 :: F18 :: F19 :: F20 :: F21 :: F22 ::
+ F23 :: F24 :: F25 :: F26 :: F27 :: F28 :: F29 :: F30 :: F31 :: nil.
+
+Definition destroyed_at_call_regs :=
+ int_caller_save_regs ++ float_caller_save_regs.
+
+Definition destroyed_at_call :=
+ List.map R destroyed_at_call_regs.
+
+Definition int_temporaries := IT1 :: IT2 :: nil.
+
+Definition float_temporaries := FT1 :: FT2 :: FT3 :: nil.
+
+Definition temporaries :=
+ R IT1 :: R IT2 :: R FT1 :: R FT2 :: R FT3 :: nil.
+
+(** The [index_int_callee_save] and [index_float_callee_save] associate
+ a unique positive integer to callee-save registers. This integer is
+ used in [Stacking] to determine where to save these registers in
+ the activation record if they are used by the current function. *)
+
+Definition index_int_callee_save (r: mreg) :=
+ match r with
+ | R13 => 0 | R14 => 1 | R15 => 2 | R16 => 3
+ | R17 => 4 | R18 => 5 | R19 => 6 | R20 => 7
+ | R21 => 8 | R22 => 9 | R23 => 10 | R24 => 11
+ | R25 => 12 | R26 => 13 | R27 => 14 | R28 => 15
+ | R29 => 16 | R30 => 17 | R31 => 18 | _ => -1
+ end.
+
+Definition index_float_callee_save (r: mreg) :=
+ match r with
+ | F14 => 0 | F15 => 1 | F16 => 2 | F17 => 3
+ | F18 => 4 | F19 => 5 | F20 => 6 | F21 => 7
+ | F22 => 8 | F23 => 9 | F24 => 10 | F25 => 11
+ | F26 => 12 | F27 => 13 | F28 => 14 | F29 => 15
+ | F30 => 16 | F31 => 17 | _ => -1
+ end.
+
+Ltac ElimOrEq :=
+ match goal with
+ | |- (?x = ?y) \/ _ -> _ =>
+ let H := fresh in
+ (intro H; elim H; clear H;
+ [intro H; rewrite <- H; clear H | ElimOrEq])
+ | |- False -> _ =>
+ let H := fresh in (intro H; contradiction)
+ end.
+
+Ltac OrEq :=
+ match goal with
+ | |- (?x = ?x) \/ _ => left; reflexivity
+ | |- (?x = ?y) \/ _ => right; OrEq
+ | |- False => fail
+ end.
+
+Ltac NotOrEq :=
+ match goal with
+ | |- (?x = ?y) \/ _ -> False =>
+ let H := fresh in (
+ intro H; elim H; clear H; [intro; discriminate | NotOrEq])
+ | |- False -> False =>
+ contradiction
+ end.
+
+Lemma index_int_callee_save_pos:
+ forall r, In r int_callee_save_regs -> index_int_callee_save r >= 0.
+Proof.
+ intro r. simpl; ElimOrEq; unfold index_int_callee_save; omega.
+Qed.
+
+Lemma index_float_callee_save_pos:
+ forall r, In r float_callee_save_regs -> index_float_callee_save r >= 0.
+Proof.
+ intro r. simpl; ElimOrEq; unfold index_float_callee_save; omega.
+Qed.
+
+Lemma index_int_callee_save_pos2:
+ forall r, index_int_callee_save r >= 0 -> In r int_callee_save_regs.
+Proof.
+ destruct r; simpl; intro; omegaContradiction || OrEq.
+Qed.
+
+Lemma index_float_callee_save_pos2:
+ forall r, index_float_callee_save r >= 0 -> In r float_callee_save_regs.
+Proof.
+ destruct r; simpl; intro; omegaContradiction || OrEq.
+Qed.
+
+Lemma index_int_callee_save_inj:
+ forall r1 r2,
+ In r1 int_callee_save_regs ->
+ In r2 int_callee_save_regs ->
+ r1 <> r2 ->
+ index_int_callee_save r1 <> index_int_callee_save r2.
+Proof.
+ intros r1 r2.
+ simpl; ElimOrEq; ElimOrEq; unfold index_int_callee_save;
+ intros; congruence.
+Qed.
+
+Lemma index_float_callee_save_inj:
+ forall r1 r2,
+ In r1 float_callee_save_regs ->
+ In r2 float_callee_save_regs ->
+ r1 <> r2 ->
+ index_float_callee_save r1 <> index_float_callee_save r2.
+Proof.
+ intros r1 r2.
+ simpl; ElimOrEq; ElimOrEq; unfold index_float_callee_save;
+ intros; congruence.
+Qed.
+
+(** The following lemmas show that
+ (temporaries, destroyed at call, integer callee-save, float callee-save)
+ is a partition of the set of machine registers. *)
+
+Lemma int_float_callee_save_disjoint:
+ list_disjoint int_callee_save_regs float_callee_save_regs.
+Proof.
+ red; intros r1 r2. simpl; ElimOrEq; ElimOrEq; discriminate.
+Qed.
+
+Lemma register_classification:
+ forall r,
+ (In (R r) temporaries \/ In (R r) destroyed_at_call) \/
+ (In r int_callee_save_regs \/ In r float_callee_save_regs).
+Proof.
+ destruct r;
+ try (left; left; simpl; OrEq);
+ try (left; right; simpl; OrEq);
+ try (right; left; simpl; OrEq);
+ try (right; right; simpl; OrEq).
+Qed.
+
+Lemma int_callee_save_not_destroyed:
+ forall r,
+ In (R r) temporaries \/ In (R r) destroyed_at_call ->
+ ~(In r int_callee_save_regs).
+Proof.
+ intros; red; intros. elim H.
+ generalize H0. simpl; ElimOrEq; NotOrEq.
+ generalize H0. simpl; ElimOrEq; NotOrEq.
+Qed.
+
+Lemma float_callee_save_not_destroyed:
+ forall r,
+ In (R r) temporaries \/ In (R r) destroyed_at_call ->
+ ~(In r float_callee_save_regs).
+Proof.
+ intros; red; intros. elim H.
+ generalize H0. simpl; ElimOrEq; NotOrEq.
+ generalize H0. simpl; ElimOrEq; NotOrEq.
+Qed.
+
+Lemma int_callee_save_type:
+ forall r, In r int_callee_save_regs -> mreg_type r = Tint.
+Proof.
+ intro. simpl; ElimOrEq; reflexivity.
+Qed.
+
+Lemma float_callee_save_type:
+ forall r, In r float_callee_save_regs -> mreg_type r = Tfloat.
+Proof.
+ intro. simpl; ElimOrEq; reflexivity.
+Qed.
+
+Ltac NoRepet :=
+ match goal with
+ | |- list_norepet nil =>
+ apply list_norepet_nil
+ | |- list_norepet (?a :: ?b) =>
+ apply list_norepet_cons; [simpl; intuition discriminate | NoRepet]
+ end.
+
+Lemma int_callee_save_norepet:
+ list_norepet int_callee_save_regs.
+Proof.
+ unfold int_callee_save_regs; NoRepet.
+Qed.
+
+Lemma float_callee_save_norepet:
+ list_norepet float_callee_save_regs.
+Proof.
+ unfold float_callee_save_regs; NoRepet.
+Qed.
+
+(** * Acceptable locations for register allocation *)
+
+(** The following predicate describes the locations that can be assigned
+ to an RTL pseudo-register during register allocation: a non-temporary
+ machine register or a [Local] stack slot are acceptable. *)
+
+Definition loc_acceptable (l: loc) : Prop :=
+ match l with
+ | R r => ~(In l temporaries)
+ | S (Local ofs ty) => ofs >= 0
+ | S (Incoming _ _) => False
+ | S (Outgoing _ _) => False
+ end.
+
+Definition locs_acceptable (ll: list loc) : Prop :=
+ forall l, In l ll -> loc_acceptable l.
+
+Lemma temporaries_not_acceptable:
+ forall l, loc_acceptable l -> Loc.notin l temporaries.
+Proof.
+ unfold loc_acceptable; destruct l.
+ simpl. intuition congruence.
+ destruct s; try contradiction.
+ intro. simpl. tauto.
+Qed.
+Hint Resolve temporaries_not_acceptable: locs.
+
+Lemma locs_acceptable_disj_temporaries:
+ forall ll, locs_acceptable ll -> Loc.disjoint ll temporaries.
+Proof.
+ intros. apply Loc.notin_disjoint. intros.
+ apply temporaries_not_acceptable. auto.
+Qed.
+
+Lemma loc_acceptable_noteq_diff:
+ forall l1 l2,
+ loc_acceptable l1 -> l1 <> l2 -> Loc.diff l1 l2.
+Proof.
+ unfold loc_acceptable, Loc.diff; destruct l1; destruct l2;
+ try (destruct s); try (destruct s0); intros; auto; try congruence.
+ case (zeq z z0); intro.
+ compare t t0; intro.
+ subst z0; subst t0; tauto.
+ tauto. tauto.
+ contradiction. contradiction.
+Qed.
+
+Lemma loc_acceptable_notin_notin:
+ forall r ll,
+ loc_acceptable r ->
+ ~(In r ll) -> Loc.notin r ll.
+Proof.
+ induction ll; simpl; intros.
+ auto.
+ split. apply loc_acceptable_noteq_diff. assumption.
+ apply sym_not_equal. tauto.
+ apply IHll. assumption. tauto.
+Qed.
+
+(** * Function calling conventions *)
+
+(** The functions in this section determine the locations (machine registers
+ and stack slots) used to communicate arguments and results between the
+ caller and the callee during function calls. These locations are functions
+ of the signature of the function and of the call instruction.
+ Agreement between the caller and the callee on the locations to use
+ is guaranteed by our dynamic semantics for Cminor and RTL, which demand
+ that the signature of the call instruction is identical to that of the
+ called function.
+
+ Calling conventions are largely arbitrary: they must respect the properties
+ proved in this section (such as no overlapping between the locations
+ of function arguments), but this leaves much liberty in choosing actual
+ locations. To ensure binary interoperability of code generated by our
+ compiler with libraries compiled by another PowerPC compiler, we
+ implement the standard conventions defined in the PowerPC/EABI
+ application binary interface. *)
+
+(** ** Location of function result *)
+
+(** The result value of a function is passed back to the caller in
+ registers [R3] or [F1], depending on the type of the returned value.
+ We treat a function without result as a function with one integer result. *)
+
+Definition loc_result (s: signature) : mreg :=
+ match s.(sig_res) with
+ | None => R3
+ | Some Tint => R3
+ | Some Tfloat => F1
+ end.
+
+(** The result location has the type stated in the signature. *)
+
+Lemma loc_result_type:
+ forall sig,
+ mreg_type (loc_result sig) =
+ match sig.(sig_res) with None => Tint | Some ty => ty end.
+Proof.
+ intros; unfold loc_result.
+ destruct (sig_res sig).
+ destruct t; reflexivity.
+ reflexivity.
+Qed.
+
+(** The result location is acceptable. *)
+
+Lemma loc_result_acceptable:
+ forall sig, loc_acceptable (R (loc_result sig)).
+Proof.
+ intros. unfold loc_acceptable. red.
+ unfold loc_result. destruct (sig_res sig).
+ destruct t; simpl; NotOrEq.
+ simpl; NotOrEq.
+Qed.
+
+(** The result location is a caller-save register. *)
+
+Lemma loc_result_caller_save:
+ forall (s: signature), In (R (loc_result s)) destroyed_at_call.
+Proof.
+ intros; unfold loc_result.
+ destruct (sig_res s).
+ destruct t; simpl; OrEq.
+ simpl; OrEq.
+Qed.
+
+(** The result location is not a callee-save register. *)
+
+Lemma loc_result_not_callee_save:
+ forall (s: signature),
+ ~(In (loc_result s) int_callee_save_regs \/ In (loc_result s) float_callee_save_regs).
+Proof.
+ intros. generalize (loc_result_caller_save s).
+ generalize (int_callee_save_not_destroyed (loc_result s)).
+ generalize (float_callee_save_not_destroyed (loc_result s)).
+ tauto.
+Qed.
+
+(** ** Location of function arguments *)
+
+(** The PowerPC EABI states the following convention for passing arguments
+ to a function:
+- The first 8 integer arguments are passed in registers [R3] to [R10].
+- The first 8 float arguments are passed in registers [F1] to [F8].
+- Extra arguments are passed on the stack, in [Outgoing] slots, consecutively
+ assigned (1 word for an integer argument, 2 words for a float),
+ starting at word offset 0.
+- No stack space is reserved for the arguments that are passed in registers.
+*)
+
+Fixpoint loc_arguments_rec
+ (tyl: list typ) (iregl: list mreg) (fregl: list mreg)
+ (ofs: Z) {struct tyl} : list loc :=
+ match tyl with
+ | nil => nil
+ | Tint :: tys =>
+ match iregl with
+ | nil =>
+ S (Outgoing ofs Tint) :: loc_arguments_rec tys nil fregl (ofs + 1)
+ | ireg :: iregs =>
+ R ireg :: loc_arguments_rec tys iregs fregl ofs
+ end
+ | Tfloat :: tys =>
+ match fregl with
+ | nil =>
+ S (Outgoing ofs Tfloat) :: loc_arguments_rec tys iregl nil (ofs + 2)
+ | freg :: fregs =>
+ R freg :: loc_arguments_rec tys iregl fregs ofs
+ end
+ end.
+
+Definition int_param_regs :=
+ R3 :: R4 :: R5 :: R6 :: R7 :: R8 :: R9 :: R10 :: nil.
+Definition float_param_regs :=
+ F1 :: F2 :: F3 :: F4 :: F5 :: F6 :: F7 :: F8 :: nil.
+
+(** [loc_arguments s] returns the list of locations where to store arguments
+ when calling a function with signature [s]. *)
+
+Definition loc_arguments (s: signature) : list loc :=
+ loc_arguments_rec s.(sig_args) int_param_regs float_param_regs 0.
+
+(** [size_arguments s] returns the number of [Outgoing] slots used
+ to call a function with signature [s]. *)
+
+Fixpoint size_arguments_rec
+ (tyl: list typ) (iregl: list mreg) (fregl: list mreg)
+ (ofs: Z) {struct tyl} : Z :=
+ match tyl with
+ | nil => ofs
+ | Tint :: tys =>
+ match iregl with
+ | nil => size_arguments_rec tys nil fregl (ofs + 1)
+ | ireg :: iregs => size_arguments_rec tys iregs fregl ofs
+ end
+ | Tfloat :: tys =>
+ match fregl with
+ | nil => size_arguments_rec tys iregl nil (ofs + 2)
+ | freg :: fregs => size_arguments_rec tys iregl fregs ofs
+ end
+ end.
+
+Definition size_arguments (s: signature) : Z :=
+ size_arguments_rec s.(sig_args) int_param_regs float_param_regs 0.
+
+(** A tail-call is possible for a signature if the corresponding
+ arguments are all passed in registers. *)
+
+Definition tailcall_possible (s: signature) : Prop :=
+ forall l, In l (loc_arguments s) ->
+ match l with R _ => True | S _ => False end.
+
+(** Argument locations are either non-temporary registers or [Outgoing]
+ stack slots at nonnegative offsets. *)
+
+Definition loc_argument_acceptable (l: loc) : Prop :=
+ match l with
+ | R r => ~(In l temporaries)
+ | S (Outgoing ofs ty) => ofs >= 0
+ | _ => False
+ end.
+
+Remark loc_arguments_rec_charact:
+ forall tyl iregl fregl ofs l,
+ In l (loc_arguments_rec tyl iregl fregl ofs) ->
+ match l with
+ | R r => In r iregl \/ In r fregl
+ | S (Outgoing ofs' ty) => ofs' >= ofs
+ | S _ => False
+ end.
+Proof.
+ induction tyl; simpl loc_arguments_rec; intros.
+ elim H.
+ destruct a.
+ destruct iregl; elim H; intro.
+ subst l. omega.
+ generalize (IHtyl _ _ _ _ H0). destruct l; auto. destruct s; auto. omega.
+ subst l. auto with coqlib.
+ generalize (IHtyl _ _ _ _ H0). destruct l; auto. simpl; intuition.
+ destruct fregl; elim H; intro.
+ subst l. omega.
+ generalize (IHtyl _ _ _ _ H0). destruct l; auto. destruct s; auto. omega.
+ subst l. auto with coqlib.
+ generalize (IHtyl _ _ _ _ H0). destruct l; auto.
+ intros [A|B]. left; auto. right; auto with coqlib.
+Qed.
+
+Lemma loc_arguments_acceptable:
+ forall (s: signature) (r: loc),
+ In r (loc_arguments s) -> loc_argument_acceptable r.
+Proof.
+ unfold loc_arguments; intros.
+ generalize (loc_arguments_rec_charact _ _ _ _ _ H).
+ destruct r.
+ intro H0; elim H0. simpl. unfold not. ElimOrEq; NotOrEq.
+ simpl. unfold not. ElimOrEq; NotOrEq.
+ destruct s0; try contradiction.
+ simpl. omega.
+Qed.
+Hint Resolve loc_arguments_acceptable: locs.
+
+(** Arguments are parwise disjoint (in the sense of [Loc.norepet]). *)
+
+Remark loc_arguments_rec_notin_reg:
+ forall tyl iregl fregl ofs r,
+ ~(In r iregl) -> ~(In r fregl) ->
+ Loc.notin (R r) (loc_arguments_rec tyl iregl fregl ofs).
+Proof.
+ induction tyl; simpl; intros.
+ auto.
+ destruct a.
+ destruct iregl; simpl. auto.
+ simpl in H. split. apply sym_not_equal. tauto.
+ apply IHtyl. tauto. tauto.
+ destruct fregl; simpl. auto.
+ simpl in H0. split. apply sym_not_equal. tauto.
+ apply IHtyl.
+ red; intro. apply H. auto.
+ tauto.
+Qed.
+
+Remark loc_arguments_rec_notin_local:
+ forall tyl iregl fregl ofs ofs0 ty0,
+ Loc.notin (S (Local ofs0 ty0)) (loc_arguments_rec tyl iregl fregl ofs).
+Proof.
+ induction tyl; simpl; intros.
+ auto.
+ destruct a.
+ destruct iregl; simpl; auto.
+ destruct fregl; simpl; auto.
+Qed.
+
+Remark loc_arguments_rec_notin_outgoing:
+ forall tyl iregl fregl ofs ofs0 ty0,
+ ofs0 + typesize ty0 <= ofs ->
+ Loc.notin (S (Outgoing ofs0 ty0)) (loc_arguments_rec tyl iregl fregl ofs).
+Proof.
+ induction tyl; simpl; intros.
+ auto.
+ destruct a.
+ destruct iregl; simpl.
+ split. omega. eapply IHtyl. omega.
+ auto.
+ destruct fregl; simpl.
+ split. omega. eapply IHtyl. omega.
+ auto.
+Qed.
+
+Lemma loc_arguments_norepet:
+ forall (s: signature), Loc.norepet (loc_arguments s).
+Proof.
+ assert (forall tyl iregl fregl ofs,
+ list_norepet iregl ->
+ list_norepet fregl ->
+ list_disjoint iregl fregl ->
+ Loc.norepet (loc_arguments_rec tyl iregl fregl ofs)).
+ induction tyl; simpl; intros.
+ constructor.
+ destruct a.
+ destruct iregl; constructor.
+ apply loc_arguments_rec_notin_outgoing. simpl; omega. auto.
+ apply loc_arguments_rec_notin_reg. inversion H. auto.
+ apply list_disjoint_notin with (m :: iregl); auto with coqlib.
+ apply IHtyl. inv H; auto. auto.
+ eapply list_disjoint_cons_left; eauto.
+ destruct fregl; constructor.
+ apply loc_arguments_rec_notin_outgoing. simpl; omega. auto.
+ apply loc_arguments_rec_notin_reg.
+ red; intro. apply (H1 m m). auto.
+ auto with coqlib. auto. inv H0; auto.
+ apply IHtyl. auto.
+ inv H0; auto.
+ red; intros. apply H1. auto. auto with coqlib.
+
+ intro. unfold loc_arguments. apply H.
+ unfold int_param_regs. NoRepet.
+ unfold float_param_regs. NoRepet.
+ red; intros x y; simpl. ElimOrEq; ElimOrEq; discriminate.
+Qed.
+
+(** The offsets of [Outgoing] arguments are below [size_arguments s]. *)
+
+Remark size_arguments_rec_above:
+ forall tyl iregl fregl ofs0,
+ ofs0 <= size_arguments_rec tyl iregl fregl ofs0.
+Proof.
+ induction tyl; simpl; intros.
+ omega.
+ destruct a.
+ destruct iregl. apply Zle_trans with (ofs0 + 1); auto; omega. auto.
+ destruct fregl. apply Zle_trans with (ofs0 + 2); auto; omega. auto.
+Qed.
+
+Lemma size_arguments_above:
+ forall s, size_arguments s >= 0.
+Proof.
+ intros; unfold size_arguments. apply Zle_ge.
+ apply size_arguments_rec_above.
+Qed.
+
+Lemma loc_arguments_bounded:
+ forall (s: signature) (ofs: Z) (ty: typ),
+ In (S (Outgoing ofs ty)) (loc_arguments s) ->
+ ofs + typesize ty <= size_arguments s.
+Proof.
+ intros.
+ assert (forall tyl iregl fregl ofs0,
+ In (S (Outgoing ofs ty)) (loc_arguments_rec tyl iregl fregl ofs0) ->
+ ofs + typesize ty <= size_arguments_rec tyl iregl fregl ofs0).
+ induction tyl; simpl; intros.
+ elim H0.
+ destruct a. destruct iregl; elim H0; intro.
+ inv H1. simpl. apply size_arguments_rec_above. auto.
+ discriminate. auto.
+ destruct fregl; elim H0; intro.
+ inv H1. simpl. apply size_arguments_rec_above. auto.
+ discriminate. auto.
+ unfold size_arguments. eapply H0. unfold loc_arguments in H. eauto.
+Qed.
+
+(** Temporary registers do not overlap with argument locations. *)
+
+Lemma loc_arguments_not_temporaries:
+ forall sig, Loc.disjoint (loc_arguments sig) temporaries.
+Proof.
+ intros; red; intros x1 x2 H.
+ generalize (loc_arguments_rec_charact _ _ _ _ _ H).
+ destruct x1.
+ intro H0; elim H0; simpl; (ElimOrEq; ElimOrEq; congruence).
+ destruct s; try contradiction. intro.
+ simpl; ElimOrEq; auto.
+Qed.
+Hint Resolve loc_arguments_not_temporaries: locs.
+
+(** Argument registers are caller-save. *)
+
+Lemma arguments_caller_save:
+ forall sig r,
+ In (R r) (loc_arguments sig) -> In (R r) destroyed_at_call.
+Proof.
+ unfold loc_arguments; intros.
+ elim (loc_arguments_rec_charact _ _ _ _ _ H); simpl.
+ ElimOrEq; intuition.
+ ElimOrEq; intuition.
+Qed.
+
+(** Callee-save registers do not overlap with argument locations. *)
+
+Lemma arguments_not_preserved:
+ forall sig l,
+ Loc.notin l destroyed_at_call -> loc_acceptable l ->
+ Loc.notin l (loc_arguments sig).
+Proof.
+ intros. unfold loc_arguments. destruct l.
+ apply loc_arguments_rec_notin_reg.
+ generalize (Loc.notin_not_in _ _ H). intro; red; intro.
+ apply H1. generalize H2. simpl. ElimOrEq; OrEq.
+ generalize (Loc.notin_not_in _ _ H). intro; red; intro.
+ apply H1. generalize H2. simpl. ElimOrEq; OrEq.
+ destruct s; simpl in H0; try contradiction.
+ apply loc_arguments_rec_notin_local.
+Qed.
+Hint Resolve arguments_not_preserved: locs.
+
+(** Argument locations agree in number with the function signature. *)
+
+Lemma loc_arguments_length:
+ forall sig,
+ List.length (loc_arguments sig) = List.length sig.(sig_args).
+Proof.
+ assert (forall tyl iregl fregl ofs,
+ List.length (loc_arguments_rec tyl iregl fregl ofs) = List.length tyl).
+ induction tyl; simpl; intros.
+ auto.
+ destruct a.
+ destruct iregl; simpl; decEq; auto.
+ destruct fregl; simpl; decEq; auto.
+ intros. unfold loc_arguments. auto.
+Qed.
+
+(** Argument locations agree in types with the function signature. *)
+
+Lemma loc_arguments_type:
+ forall sig, List.map Loc.type (loc_arguments sig) = sig.(sig_args).
+Proof.
+ assert (forall tyl iregl fregl ofs,
+ (forall r, In r iregl -> mreg_type r = Tint) ->
+ (forall r, In r fregl -> mreg_type r = Tfloat) ->
+ List.map Loc.type (loc_arguments_rec tyl iregl fregl ofs) = tyl).
+ induction tyl; simpl; intros.
+ auto.
+ destruct a; [destruct iregl|destruct fregl]; simpl;
+ f_equal; eauto with coqlib.
+
+ intros. unfold loc_arguments. apply H.
+ intro; simpl. ElimOrEq; reflexivity.
+ intro; simpl. ElimOrEq; reflexivity.
+Qed.
+
+(** There is no partial overlap between an argument location and an
+ acceptable location: they are either identical or disjoint. *)
+
+Lemma no_overlap_arguments:
+ forall args sg,
+ locs_acceptable args ->
+ Loc.no_overlap args (loc_arguments sg).
+Proof.
+ unfold Loc.no_overlap; intros.
+ generalize (H r H0).
+ generalize (loc_arguments_acceptable _ _ H1).
+ destruct s; destruct r; simpl.
+ intros. case (mreg_eq m0 m); intro. left; congruence. tauto.
+ intros. right; destruct s; auto.
+ intros. right. auto.
+ destruct s; try tauto. destruct s0; tauto.
+Qed.
+
+(** Decide whether a tailcall is possible. *)
+
+Definition tailcall_is_possible (sg: signature) : bool :=
+ let fix tcisp (l: list loc) :=
+ match l with
+ | nil => true
+ | R _ :: l' => tcisp l'
+ | S _ :: l' => false
+ end
+ in tcisp (loc_arguments sg).
+
+Lemma tailcall_is_possible_correct:
+ forall s, tailcall_is_possible s = true -> tailcall_possible s.
+Proof.
+ intro s. unfold tailcall_is_possible, tailcall_possible.
+ generalize (loc_arguments s). induction l; simpl; intros.
+ elim H0.
+ destruct a.
+ destruct H0. subst l0. auto. apply IHl. auto. auto. discriminate.
+Qed.
+
+(** ** Location of function parameters *)
+
+(** A function finds the values of its parameter in the same locations
+ where its caller stored them, except that the stack-allocated arguments,
+ viewed as [Outgoing] slots by the caller, are accessed via [Incoming]
+ slots (at the same offsets and types) in the callee. *)
+
+Definition parameter_of_argument (l: loc) : loc :=
+ match l with
+ | S (Outgoing n ty) => S (Incoming n ty)
+ | _ => l
+ end.
+
+Definition loc_parameters (s: signature) :=
+ List.map parameter_of_argument (loc_arguments s).
+
+Lemma loc_parameters_type:
+ forall sig, List.map Loc.type (loc_parameters sig) = sig.(sig_args).
+Proof.
+ intros. unfold loc_parameters.
+ rewrite list_map_compose.
+ rewrite <- loc_arguments_type.
+ apply list_map_exten.
+ intros. destruct x; simpl. auto.
+ destruct s; reflexivity.
+Qed.
+
+Lemma loc_parameters_length:
+ forall sg, List.length (loc_parameters sg) = List.length sg.(sig_args).
+Proof.
+ intros. unfold loc_parameters. rewrite list_length_map.
+ apply loc_arguments_length.
+Qed.
+
+Lemma loc_parameters_not_temporaries:
+ forall sig, Loc.disjoint (loc_parameters sig) temporaries.
+Proof.
+ intro; red; intros.
+ unfold loc_parameters in H.
+ elim (list_in_map_inv _ _ _ H). intros y [EQ IN].
+ generalize (loc_arguments_not_temporaries sig y x2 IN H0).
+ subst x1. destruct x2.
+ destruct y; simpl. auto. destruct s; auto.
+ byContradiction. generalize H0. simpl. NotOrEq.
+Qed.
+
+Lemma no_overlap_parameters:
+ forall params sg,
+ locs_acceptable params ->
+ Loc.no_overlap (loc_parameters sg) params.
+Proof.
+ unfold Loc.no_overlap; intros.
+ unfold loc_parameters in H0.
+ elim (list_in_map_inv _ _ _ H0). intros t [EQ IN].
+ rewrite EQ.
+ generalize (loc_arguments_acceptable _ _ IN).
+ generalize (H s H1).
+ destruct s; destruct t; simpl.
+ intros. case (mreg_eq m0 m); intro. left; congruence. tauto.
+ intros. right; destruct s; simpl; auto.
+ intros; right; auto.
+ destruct s; try tauto. destruct s0; try tauto.
+ intros; simpl. tauto.
+Qed.
+
+(** ** Location of argument and result for dynamic memory allocation *)
+
+Definition loc_alloc_argument := R3.
+Definition loc_alloc_result := R3.
diff --git a/powerpc/eabi/Stacklayout.v b/powerpc/eabi/Stacklayout.v
new file mode 100644
index 00000000..f641847e
--- /dev/null
+++ b/powerpc/eabi/Stacklayout.v
@@ -0,0 +1,79 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Machine- and ABI-dependent layout information for activation records. *)
+
+Require Import Coqlib.
+Require Import Bounds.
+
+(** In the PowerPC/EABI application binary interface,
+ the general shape of activation records is as follows,
+ from bottom (lowest offsets) to top:
+- 8 reserved bytes. The first 4 bytes hold the back pointer to the
+ activation record of the caller. The next 4 bytes hold the
+ return address.
+- Space for outgoing arguments to function calls.
+- Local stack slots of integer type.
+- Saved values of integer callee-save registers used by the function.
+- One word of padding, if necessary to align the following data
+ on a 8-byte boundary.
+- Local stack slots of float type.
+- Saved values of float callee-save registers used by the function.
+- Space for the stack-allocated data declared in Cminor.
+
+To facilitate some of the proofs, the Cminor stack-allocated data
+starts at offset 0; the preceding areas in the activation record
+therefore have negative offsets. This part (with negative offsets)
+is called the ``frame'', by opposition with the ``Cminor stack data''
+which is the part with positive offsets.
+
+The [frame_env] compilation environment records the positions of
+the boundaries between areas in the frame part.
+*)
+
+Definition fe_ofs_arg := 8.
+
+Record frame_env : Set := mk_frame_env {
+ fe_size: Z;
+ fe_ofs_link: Z;
+ fe_ofs_retaddr: Z;
+ fe_ofs_int_local: Z;
+ fe_ofs_int_callee_save: Z;
+ fe_num_int_callee_save: Z;
+ fe_ofs_float_local: Z;
+ fe_ofs_float_callee_save: Z;
+ fe_num_float_callee_save: Z
+}.
+
+(** Computation of the frame environment from the bounds of the current
+ function. *)
+
+Definition make_env (b: bounds) :=
+ let oil := 8 + 4 * b.(bound_outgoing) in (* integer locals *)
+ let oics := oil + 4 * b.(bound_int_local) in (* integer callee-saves *)
+ let oendi := oics + 4 * b.(bound_int_callee_save) in
+ let ofl := align oendi 8 in (* float locals *)
+ let ofcs := ofl + 8 * b.(bound_float_local) in (* float callee-saves *)
+ let sz := ofcs + 8 * b.(bound_float_callee_save) in (* total frame size *)
+ mk_frame_env sz 0 4
+ oil oics b.(bound_int_callee_save)
+ ofl ofcs b.(bound_float_callee_save).
+
+
+Remark align_float_part:
+ forall b,
+ 8 + 4 * bound_outgoing b + 4 * bound_int_local b + 4 * bound_int_callee_save b <=
+ align (8 + 4 * bound_outgoing b + 4 * bound_int_local b + 4 * bound_int_callee_save b) 8.
+Proof.
+ intros. apply align_le. omega.
+Qed.
+
diff --git a/powerpc/macosx/Conventions.v b/powerpc/macosx/Conventions.v
new file mode 100644
index 00000000..4f06b415
--- /dev/null
+++ b/powerpc/macosx/Conventions.v
@@ -0,0 +1,805 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Function calling conventions and other conventions regarding the use of
+ machine registers and stack slots. *)
+
+Require Import Coqlib.
+Require Import AST.
+Require Import Locations.
+
+(** * Classification of machine registers *)
+
+(** Machine registers (type [mreg] in module [Locations]) are divided in
+ the following groups:
+- Temporaries used for spilling, reloading, and parallel move operations.
+- Allocatable registers, that can be assigned to RTL pseudo-registers.
+ These are further divided into:
+-- Callee-save registers, whose value is preserved across a function call.
+-- Caller-save registers that can be modified during a function call.
+
+ We follow the PowerPC/MacOSX application binary interface (ABI) in our choice
+ of callee- and caller-save registers.
+*)
+
+Definition int_caller_save_regs :=
+ R3 :: R4 :: R5 :: R6 :: R7 :: R8 :: R9 :: R10 :: nil.
+
+Definition float_caller_save_regs :=
+ F1 :: F2 :: F3 :: F4 :: F5 :: F6 :: F7 :: F8 :: F9 :: F10 :: nil.
+
+Definition int_callee_save_regs :=
+ R13 :: R14 :: R15 :: R16 :: R17 :: R18 :: R19 :: R20 :: R21 :: R22 ::
+ R23 :: R24 :: R25 :: R26 :: R27 :: R28 :: R29 :: R30 :: R31 :: nil.
+
+Definition float_callee_save_regs :=
+ F14 :: F15 :: F16 :: F17 :: F18 :: F19 :: F20 :: F21 :: F22 ::
+ F23 :: F24 :: F25 :: F26 :: F27 :: F28 :: F29 :: F30 :: F31 :: nil.
+
+Definition destroyed_at_call_regs :=
+ int_caller_save_regs ++ float_caller_save_regs.
+
+Definition destroyed_at_call :=
+ List.map R destroyed_at_call_regs.
+
+Definition int_temporaries := IT1 :: IT2 :: nil.
+
+Definition float_temporaries := FT1 :: FT2 :: FT3 :: nil.
+
+Definition temporaries :=
+ R IT1 :: R IT2 :: R FT1 :: R FT2 :: R FT3 :: nil.
+
+(** The [index_int_callee_save] and [index_float_callee_save] associate
+ a unique positive integer to callee-save registers. This integer is
+ used in [Stacking] to determine where to save these registers in
+ the activation record if they are used by the current function. *)
+
+Definition index_int_callee_save (r: mreg) :=
+ match r with
+ | R13 => 0 | R14 => 1 | R15 => 2 | R16 => 3
+ | R17 => 4 | R18 => 5 | R19 => 6 | R20 => 7
+ | R21 => 8 | R22 => 9 | R23 => 10 | R24 => 11
+ | R25 => 12 | R26 => 13 | R27 => 14 | R28 => 15
+ | R29 => 16 | R30 => 17 | R31 => 18 | _ => -1
+ end.
+
+Definition index_float_callee_save (r: mreg) :=
+ match r with
+ | F14 => 0 | F15 => 1 | F16 => 2 | F17 => 3
+ | F18 => 4 | F19 => 5 | F20 => 6 | F21 => 7
+ | F22 => 8 | F23 => 9 | F24 => 10 | F25 => 11
+ | F26 => 12 | F27 => 13 | F28 => 14 | F29 => 15
+ | F30 => 16 | F31 => 17 | _ => -1
+ end.
+
+Ltac ElimOrEq :=
+ match goal with
+ | |- (?x = ?y) \/ _ -> _ =>
+ let H := fresh in
+ (intro H; elim H; clear H;
+ [intro H; rewrite <- H; clear H | ElimOrEq])
+ | |- False -> _ =>
+ let H := fresh in (intro H; contradiction)
+ end.
+
+Ltac OrEq :=
+ match goal with
+ | |- (?x = ?x) \/ _ => left; reflexivity
+ | |- (?x = ?y) \/ _ => right; OrEq
+ | |- False => fail
+ end.
+
+Ltac NotOrEq :=
+ match goal with
+ | |- (?x = ?y) \/ _ -> False =>
+ let H := fresh in (
+ intro H; elim H; clear H; [intro; discriminate | NotOrEq])
+ | |- False -> False =>
+ contradiction
+ end.
+
+Lemma index_int_callee_save_pos:
+ forall r, In r int_callee_save_regs -> index_int_callee_save r >= 0.
+Proof.
+ intro r. simpl; ElimOrEq; unfold index_int_callee_save; omega.
+Qed.
+
+Lemma index_float_callee_save_pos:
+ forall r, In r float_callee_save_regs -> index_float_callee_save r >= 0.
+Proof.
+ intro r. simpl; ElimOrEq; unfold index_float_callee_save; omega.
+Qed.
+
+Lemma index_int_callee_save_pos2:
+ forall r, index_int_callee_save r >= 0 -> In r int_callee_save_regs.
+Proof.
+ destruct r; simpl; intro; omegaContradiction || OrEq.
+Qed.
+
+Lemma index_float_callee_save_pos2:
+ forall r, index_float_callee_save r >= 0 -> In r float_callee_save_regs.
+Proof.
+ destruct r; simpl; intro; omegaContradiction || OrEq.
+Qed.
+
+Lemma index_int_callee_save_inj:
+ forall r1 r2,
+ In r1 int_callee_save_regs ->
+ In r2 int_callee_save_regs ->
+ r1 <> r2 ->
+ index_int_callee_save r1 <> index_int_callee_save r2.
+Proof.
+ intros r1 r2.
+ simpl; ElimOrEq; ElimOrEq; unfold index_int_callee_save;
+ intros; congruence.
+Qed.
+
+Lemma index_float_callee_save_inj:
+ forall r1 r2,
+ In r1 float_callee_save_regs ->
+ In r2 float_callee_save_regs ->
+ r1 <> r2 ->
+ index_float_callee_save r1 <> index_float_callee_save r2.
+Proof.
+ intros r1 r2.
+ simpl; ElimOrEq; ElimOrEq; unfold index_float_callee_save;
+ intros; congruence.
+Qed.
+
+(** The following lemmas show that
+ (temporaries, destroyed at call, integer callee-save, float callee-save)
+ is a partition of the set of machine registers. *)
+
+Lemma int_float_callee_save_disjoint:
+ list_disjoint int_callee_save_regs float_callee_save_regs.
+Proof.
+ red; intros r1 r2. simpl; ElimOrEq; ElimOrEq; discriminate.
+Qed.
+
+Lemma register_classification:
+ forall r,
+ (In (R r) temporaries \/ In (R r) destroyed_at_call) \/
+ (In r int_callee_save_regs \/ In r float_callee_save_regs).
+Proof.
+ destruct r;
+ try (left; left; simpl; OrEq);
+ try (left; right; simpl; OrEq);
+ try (right; left; simpl; OrEq);
+ try (right; right; simpl; OrEq).
+Qed.
+
+Lemma int_callee_save_not_destroyed:
+ forall r,
+ In (R r) temporaries \/ In (R r) destroyed_at_call ->
+ ~(In r int_callee_save_regs).
+Proof.
+ intros; red; intros. elim H.
+ generalize H0. simpl; ElimOrEq; NotOrEq.
+ generalize H0. simpl; ElimOrEq; NotOrEq.
+Qed.
+
+Lemma float_callee_save_not_destroyed:
+ forall r,
+ In (R r) temporaries \/ In (R r) destroyed_at_call ->
+ ~(In r float_callee_save_regs).
+Proof.
+ intros; red; intros. elim H.
+ generalize H0. simpl; ElimOrEq; NotOrEq.
+ generalize H0. simpl; ElimOrEq; NotOrEq.
+Qed.
+
+Lemma int_callee_save_type:
+ forall r, In r int_callee_save_regs -> mreg_type r = Tint.
+Proof.
+ intro. simpl; ElimOrEq; reflexivity.
+Qed.
+
+Lemma float_callee_save_type:
+ forall r, In r float_callee_save_regs -> mreg_type r = Tfloat.
+Proof.
+ intro. simpl; ElimOrEq; reflexivity.
+Qed.
+
+Ltac NoRepet :=
+ match goal with
+ | |- list_norepet nil =>
+ apply list_norepet_nil
+ | |- list_norepet (?a :: ?b) =>
+ apply list_norepet_cons; [simpl; intuition discriminate | NoRepet]
+ end.
+
+Lemma int_callee_save_norepet:
+ list_norepet int_callee_save_regs.
+Proof.
+ unfold int_callee_save_regs; NoRepet.
+Qed.
+
+Lemma float_callee_save_norepet:
+ list_norepet float_callee_save_regs.
+Proof.
+ unfold float_callee_save_regs; NoRepet.
+Qed.
+
+(** * Acceptable locations for register allocation *)
+
+(** The following predicate describes the locations that can be assigned
+ to an RTL pseudo-register during register allocation: a non-temporary
+ machine register or a [Local] stack slot are acceptable. *)
+
+Definition loc_acceptable (l: loc) : Prop :=
+ match l with
+ | R r => ~(In l temporaries)
+ | S (Local ofs ty) => ofs >= 0
+ | S (Incoming _ _) => False
+ | S (Outgoing _ _) => False
+ end.
+
+Definition locs_acceptable (ll: list loc) : Prop :=
+ forall l, In l ll -> loc_acceptable l.
+
+Lemma temporaries_not_acceptable:
+ forall l, loc_acceptable l -> Loc.notin l temporaries.
+Proof.
+ unfold loc_acceptable; destruct l.
+ simpl. intuition congruence.
+ destruct s; try contradiction.
+ intro. simpl. tauto.
+Qed.
+Hint Resolve temporaries_not_acceptable: locs.
+
+Lemma locs_acceptable_disj_temporaries:
+ forall ll, locs_acceptable ll -> Loc.disjoint ll temporaries.
+Proof.
+ intros. apply Loc.notin_disjoint. intros.
+ apply temporaries_not_acceptable. auto.
+Qed.
+
+Lemma loc_acceptable_noteq_diff:
+ forall l1 l2,
+ loc_acceptable l1 -> l1 <> l2 -> Loc.diff l1 l2.
+Proof.
+ unfold loc_acceptable, Loc.diff; destruct l1; destruct l2;
+ try (destruct s); try (destruct s0); intros; auto; try congruence.
+ case (zeq z z0); intro.
+ compare t t0; intro.
+ subst z0; subst t0; tauto.
+ tauto. tauto.
+ contradiction. contradiction.
+Qed.
+
+Lemma loc_acceptable_notin_notin:
+ forall r ll,
+ loc_acceptable r ->
+ ~(In r ll) -> Loc.notin r ll.
+Proof.
+ induction ll; simpl; intros.
+ auto.
+ split. apply loc_acceptable_noteq_diff. assumption.
+ apply sym_not_equal. tauto.
+ apply IHll. assumption. tauto.
+Qed.
+
+(** * Function calling conventions *)
+
+(** The functions in this section determine the locations (machine registers
+ and stack slots) used to communicate arguments and results between the
+ caller and the callee during function calls. These locations are functions
+ of the signature of the function and of the call instruction.
+ Agreement between the caller and the callee on the locations to use
+ is guaranteed by our dynamic semantics for Cminor and RTL, which demand
+ that the signature of the call instruction is identical to that of the
+ called function.
+
+ Calling conventions are largely arbitrary: they must respect the properties
+ proved in this section (such as no overlapping between the locations
+ of function arguments), but this leaves much liberty in choosing actual
+ locations. To ensure binary interoperability of code generated by our
+ compiler with libraries compiled by another PowerPC compiler, we
+ implement the standard conventions defined in the PowerPC/MacOS X
+ application binary interface. *)
+
+(** ** Location of function result *)
+
+(** The result value of a function is passed back to the caller in
+ registers [R3] or [F1], depending on the type of the returned value.
+ We treat a function without result as a function with one integer result. *)
+
+Definition loc_result (s: signature) : mreg :=
+ match s.(sig_res) with
+ | None => R3
+ | Some Tint => R3
+ | Some Tfloat => F1
+ end.
+
+(** The result location has the type stated in the signature. *)
+
+Lemma loc_result_type:
+ forall sig,
+ mreg_type (loc_result sig) =
+ match sig.(sig_res) with None => Tint | Some ty => ty end.
+Proof.
+ intros; unfold loc_result.
+ destruct (sig_res sig).
+ destruct t; reflexivity.
+ reflexivity.
+Qed.
+
+(** The result location is acceptable. *)
+
+Lemma loc_result_acceptable:
+ forall sig, loc_acceptable (R (loc_result sig)).
+Proof.
+ intros. unfold loc_acceptable. red.
+ unfold loc_result. destruct (sig_res sig).
+ destruct t; simpl; NotOrEq.
+ simpl; NotOrEq.
+Qed.
+
+(** The result location is a caller-save register. *)
+
+Lemma loc_result_caller_save:
+ forall (s: signature), In (R (loc_result s)) destroyed_at_call.
+Proof.
+ intros; unfold loc_result.
+ destruct (sig_res s).
+ destruct t; simpl; OrEq.
+ simpl; OrEq.
+Qed.
+
+(** The result location is not a callee-save register. *)
+
+Lemma loc_result_not_callee_save:
+ forall (s: signature),
+ ~(In (loc_result s) int_callee_save_regs \/ In (loc_result s) float_callee_save_regs).
+Proof.
+ intros. generalize (loc_result_caller_save s).
+ generalize (int_callee_save_not_destroyed (loc_result s)).
+ generalize (float_callee_save_not_destroyed (loc_result s)).
+ tauto.
+Qed.
+
+(** ** Location of function arguments *)
+
+(** The PowerPC ABI states the following convention for passing arguments
+ to a function:
+- The first 8 integer arguments are passed in registers [R3] to [R10].
+- The first 10 float arguments are passed in registers [F1] to [F10].
+- Each float argument passed in a float register ``consumes'' two
+ integer arguments.
+- Extra arguments are passed on the stack, in [Outgoing] slots, consecutively
+ assigned (1 word for an integer argument, 2 words for a float),
+ starting at word offset 0.
+- Stack space is reserved (as unused [Outgoing] slots) for the arguments
+ that are passed in registers.
+
+These conventions are somewhat baroque, but they are mandated by the ABI.
+*)
+
+Fixpoint loc_arguments_rec
+ (tyl: list typ) (iregl: list mreg) (fregl: list mreg)
+ (ofs: Z) {struct tyl} : list loc :=
+ match tyl with
+ | nil => nil
+ | Tint :: tys =>
+ match iregl with
+ | nil =>
+ S (Outgoing ofs Tint) :: loc_arguments_rec tys nil fregl (ofs + 1)
+ | ireg :: iregs =>
+ R ireg :: loc_arguments_rec tys iregs fregl ofs
+ end
+ | Tfloat :: tys =>
+ match fregl with
+ | nil =>
+ S (Outgoing ofs Tfloat) :: loc_arguments_rec tys iregl nil (ofs + 2)
+ | freg :: fregs =>
+ R freg :: loc_arguments_rec tys (list_drop2 iregl) fregs ofs
+ end
+ end.
+
+Definition int_param_regs :=
+ R3 :: R4 :: R5 :: R6 :: R7 :: R8 :: R9 :: R10 :: nil.
+Definition float_param_regs :=
+ F1 :: F2 :: F3 :: F4 :: F5 :: F6 :: F7 :: F8 :: F9 :: F10 :: nil.
+
+(** [loc_arguments s] returns the list of locations where to store arguments
+ when calling a function with signature [s]. *)
+
+Definition loc_arguments (s: signature) : list loc :=
+ loc_arguments_rec s.(sig_args) int_param_regs float_param_regs 8.
+
+(** [size_arguments s] returns the number of [Outgoing] slots used
+ to call a function with signature [s]. *)
+
+Fixpoint size_arguments_rec
+ (tyl: list typ) (iregl: list mreg) (fregl: list mreg)
+ (ofs: Z) {struct tyl} : Z :=
+ match tyl with
+ | nil => ofs
+ | Tint :: tys =>
+ match iregl with
+ | nil => size_arguments_rec tys nil fregl (ofs + 1)
+ | ireg :: iregs => size_arguments_rec tys iregs fregl ofs
+ end
+ | Tfloat :: tys =>
+ match fregl with
+ | nil => size_arguments_rec tys iregl nil (ofs + 2)
+ | freg :: fregs => size_arguments_rec tys (list_drop2 iregl) fregs ofs
+ end
+ end.
+
+Definition size_arguments (s: signature) : Z :=
+ size_arguments_rec s.(sig_args) int_param_regs float_param_regs 8.
+
+(** A tail-call is possible for a signature if the corresponding
+ arguments are all passed in registers. *)
+
+Definition tailcall_possible (s: signature) : Prop :=
+ forall l, In l (loc_arguments s) ->
+ match l with R _ => True | S _ => False end.
+
+(** Argument locations are either non-temporary registers or [Outgoing]
+ stack slots at nonnegative offsets. *)
+
+Definition loc_argument_acceptable (l: loc) : Prop :=
+ match l with
+ | R r => ~(In l temporaries)
+ | S (Outgoing ofs ty) => ofs >= 0
+ | _ => False
+ end.
+
+Remark loc_arguments_rec_charact:
+ forall tyl iregl fregl ofs l,
+ In l (loc_arguments_rec tyl iregl fregl ofs) ->
+ match l with
+ | R r => In r iregl \/ In r fregl
+ | S (Outgoing ofs' ty) => ofs' >= ofs
+ | S _ => False
+ end.
+Proof.
+ induction tyl; simpl loc_arguments_rec; intros.
+ elim H.
+ destruct a.
+ destruct iregl; elim H; intro.
+ subst l. omega.
+ generalize (IHtyl _ _ _ _ H0). destruct l; auto. destruct s; auto. omega.
+ subst l. auto with coqlib.
+ generalize (IHtyl _ _ _ _ H0). destruct l; auto. simpl; intuition.
+ destruct fregl; elim H; intro.
+ subst l. omega.
+ generalize (IHtyl _ _ _ _ H0). destruct l; auto. destruct s; auto. omega.
+ subst l. auto with coqlib.
+ generalize (IHtyl _ _ _ _ H0). destruct l; auto.
+ intros [A|B]. left; apply list_drop2_incl; auto. right; auto with coqlib.
+Qed.
+
+Lemma loc_arguments_acceptable:
+ forall (s: signature) (r: loc),
+ In r (loc_arguments s) -> loc_argument_acceptable r.
+Proof.
+ unfold loc_arguments; intros.
+ generalize (loc_arguments_rec_charact _ _ _ _ _ H).
+ destruct r.
+ intro H0; elim H0. simpl. unfold not. ElimOrEq; NotOrEq.
+ simpl. unfold not. ElimOrEq; NotOrEq.
+ destruct s0; try contradiction.
+ simpl. omega.
+Qed.
+Hint Resolve loc_arguments_acceptable: locs.
+
+(** Arguments are parwise disjoint (in the sense of [Loc.norepet]). *)
+
+Remark loc_arguments_rec_notin_reg:
+ forall tyl iregl fregl ofs r,
+ ~(In r iregl) -> ~(In r fregl) ->
+ Loc.notin (R r) (loc_arguments_rec tyl iregl fregl ofs).
+Proof.
+ induction tyl; simpl; intros.
+ auto.
+ destruct a.
+ destruct iregl; simpl. auto.
+ simpl in H. split. apply sym_not_equal. tauto.
+ apply IHtyl. tauto. tauto.
+ destruct fregl; simpl. auto.
+ simpl in H0. split. apply sym_not_equal. tauto.
+ apply IHtyl.
+ red; intro. apply H. apply list_drop2_incl. auto.
+ tauto.
+Qed.
+
+Remark loc_arguments_rec_notin_local:
+ forall tyl iregl fregl ofs ofs0 ty0,
+ Loc.notin (S (Local ofs0 ty0)) (loc_arguments_rec tyl iregl fregl ofs).
+Proof.
+ induction tyl; simpl; intros.
+ auto.
+ destruct a.
+ destruct iregl; simpl; auto.
+ destruct fregl; simpl; auto.
+Qed.
+
+Remark loc_arguments_rec_notin_outgoing:
+ forall tyl iregl fregl ofs ofs0 ty0,
+ ofs0 + typesize ty0 <= ofs ->
+ Loc.notin (S (Outgoing ofs0 ty0)) (loc_arguments_rec tyl iregl fregl ofs).
+Proof.
+ induction tyl; simpl; intros.
+ auto.
+ destruct a.
+ destruct iregl; simpl.
+ split. omega. eapply IHtyl. omega.
+ auto.
+ destruct fregl; simpl.
+ split. omega. eapply IHtyl. omega.
+ auto.
+Qed.
+
+Lemma loc_arguments_norepet:
+ forall (s: signature), Loc.norepet (loc_arguments s).
+Proof.
+ assert (forall tyl iregl fregl ofs,
+ list_norepet iregl ->
+ list_norepet fregl ->
+ list_disjoint iregl fregl ->
+ Loc.norepet (loc_arguments_rec tyl iregl fregl ofs)).
+ induction tyl; simpl; intros.
+ constructor.
+ destruct a.
+ destruct iregl; constructor.
+ apply loc_arguments_rec_notin_outgoing. simpl; omega. auto.
+ apply loc_arguments_rec_notin_reg. inversion H. auto.
+ apply list_disjoint_notin with (m :: iregl); auto with coqlib.
+ apply IHtyl. inv H; auto. auto.
+ eapply list_disjoint_cons_left; eauto.
+ destruct fregl; constructor.
+ apply loc_arguments_rec_notin_outgoing. simpl; omega. auto.
+ apply loc_arguments_rec_notin_reg.
+ red; intro. apply (H1 m m). apply list_drop2_incl; auto.
+ auto with coqlib. auto. inv H0; auto.
+ apply IHtyl. apply list_drop2_norepet; auto.
+ inv H0; auto.
+ red; intros. apply H1. apply list_drop2_incl; auto. auto with coqlib.
+
+ intro. unfold loc_arguments. apply H.
+ unfold int_param_regs. NoRepet.
+ unfold float_param_regs. NoRepet.
+ red; intros x y; simpl. ElimOrEq; ElimOrEq; discriminate.
+Qed.
+
+(** The offsets of [Outgoing] arguments are below [size_arguments s]. *)
+
+Remark size_arguments_rec_above:
+ forall tyl iregl fregl ofs0,
+ ofs0 <= size_arguments_rec tyl iregl fregl ofs0.
+Proof.
+ induction tyl; simpl; intros.
+ omega.
+ destruct a.
+ destruct iregl. apply Zle_trans with (ofs0 + 1); auto; omega. auto.
+ destruct fregl. apply Zle_trans with (ofs0 + 2); auto; omega. auto.
+Qed.
+
+Lemma size_arguments_above:
+ forall s, size_arguments s >= 0.
+Proof.
+ intros; unfold size_arguments. apply Zle_ge. apply Zle_trans with 8. omega.
+ apply size_arguments_rec_above.
+Qed.
+
+Lemma loc_arguments_bounded:
+ forall (s: signature) (ofs: Z) (ty: typ),
+ In (S (Outgoing ofs ty)) (loc_arguments s) ->
+ ofs + typesize ty <= size_arguments s.
+Proof.
+ intros.
+ assert (forall tyl iregl fregl ofs0,
+ In (S (Outgoing ofs ty)) (loc_arguments_rec tyl iregl fregl ofs0) ->
+ ofs + typesize ty <= size_arguments_rec tyl iregl fregl ofs0).
+ induction tyl; simpl; intros.
+ elim H0.
+ destruct a. destruct iregl; elim H0; intro.
+ inv H1. simpl. apply size_arguments_rec_above. auto.
+ discriminate. auto.
+ destruct fregl; elim H0; intro.
+ inv H1. simpl. apply size_arguments_rec_above. auto.
+ discriminate. auto.
+ unfold size_arguments. eapply H0. unfold loc_arguments in H. eauto.
+Qed.
+
+(** Temporary registers do not overlap with argument locations. *)
+
+Lemma loc_arguments_not_temporaries:
+ forall sig, Loc.disjoint (loc_arguments sig) temporaries.
+Proof.
+ intros; red; intros x1 x2 H.
+ generalize (loc_arguments_rec_charact _ _ _ _ _ H).
+ destruct x1.
+ intro H0; elim H0; simpl; (ElimOrEq; ElimOrEq; congruence).
+ destruct s; try contradiction. intro.
+ simpl; ElimOrEq; auto.
+Qed.
+Hint Resolve loc_arguments_not_temporaries: locs.
+
+(** Argument registers are caller-save. *)
+
+Lemma arguments_caller_save:
+ forall sig r,
+ In (R r) (loc_arguments sig) -> In (R r) destroyed_at_call.
+Proof.
+ unfold loc_arguments; intros.
+ elim (loc_arguments_rec_charact _ _ _ _ _ H); simpl.
+ ElimOrEq; intuition.
+ ElimOrEq; intuition.
+Qed.
+
+(** Callee-save registers do not overlap with argument locations. *)
+
+Lemma arguments_not_preserved:
+ forall sig l,
+ Loc.notin l destroyed_at_call -> loc_acceptable l ->
+ Loc.notin l (loc_arguments sig).
+Proof.
+ intros. unfold loc_arguments. destruct l.
+ apply loc_arguments_rec_notin_reg.
+ generalize (Loc.notin_not_in _ _ H). intro; red; intro.
+ apply H1. generalize H2. simpl. ElimOrEq; OrEq.
+ generalize (Loc.notin_not_in _ _ H). intro; red; intro.
+ apply H1. generalize H2. simpl. ElimOrEq; OrEq.
+ destruct s; simpl in H0; try contradiction.
+ apply loc_arguments_rec_notin_local.
+Qed.
+Hint Resolve arguments_not_preserved: locs.
+
+(** Argument locations agree in number with the function signature. *)
+
+Lemma loc_arguments_length:
+ forall sig,
+ List.length (loc_arguments sig) = List.length sig.(sig_args).
+Proof.
+ assert (forall tyl iregl fregl ofs,
+ List.length (loc_arguments_rec tyl iregl fregl ofs) = List.length tyl).
+ induction tyl; simpl; intros.
+ auto.
+ destruct a.
+ destruct iregl; simpl; decEq; auto.
+ destruct fregl; simpl; decEq; auto.
+ intros. unfold loc_arguments. auto.
+Qed.
+
+(** Argument locations agree in types with the function signature. *)
+
+Lemma loc_arguments_type:
+ forall sig, List.map Loc.type (loc_arguments sig) = sig.(sig_args).
+Proof.
+ assert (forall tyl iregl fregl ofs,
+ (forall r, In r iregl -> mreg_type r = Tint) ->
+ (forall r, In r fregl -> mreg_type r = Tfloat) ->
+ List.map Loc.type (loc_arguments_rec tyl iregl fregl ofs) = tyl).
+ induction tyl; simpl; intros.
+ auto.
+ destruct a; [destruct iregl|destruct fregl]; simpl;
+ f_equal; eauto with coqlib.
+ apply IHtyl. intros. apply H. apply list_drop2_incl; auto.
+ eauto with coqlib.
+
+ intros. unfold loc_arguments. apply H.
+ intro; simpl. ElimOrEq; reflexivity.
+ intro; simpl. ElimOrEq; reflexivity.
+Qed.
+
+(** There is no partial overlap between an argument location and an
+ acceptable location: they are either identical or disjoint. *)
+
+Lemma no_overlap_arguments:
+ forall args sg,
+ locs_acceptable args ->
+ Loc.no_overlap args (loc_arguments sg).
+Proof.
+ unfold Loc.no_overlap; intros.
+ generalize (H r H0).
+ generalize (loc_arguments_acceptable _ _ H1).
+ destruct s; destruct r; simpl.
+ intros. case (mreg_eq m0 m); intro. left; congruence. tauto.
+ intros. right; destruct s; auto.
+ intros. right. auto.
+ destruct s; try tauto. destruct s0; tauto.
+Qed.
+
+(** Decide whether a tailcall is possible. *)
+
+Definition tailcall_is_possible (sg: signature) : bool :=
+ let fix tcisp (l: list loc) :=
+ match l with
+ | nil => true
+ | R _ :: l' => tcisp l'
+ | S _ :: l' => false
+ end
+ in tcisp (loc_arguments sg).
+
+Lemma tailcall_is_possible_correct:
+ forall s, tailcall_is_possible s = true -> tailcall_possible s.
+Proof.
+ intro s. unfold tailcall_is_possible, tailcall_possible.
+ generalize (loc_arguments s). induction l; simpl; intros.
+ elim H0.
+ destruct a.
+ destruct H0. subst l0. auto. apply IHl. auto. auto. discriminate.
+Qed.
+
+(** ** Location of function parameters *)
+
+(** A function finds the values of its parameter in the same locations
+ where its caller stored them, except that the stack-allocated arguments,
+ viewed as [Outgoing] slots by the caller, are accessed via [Incoming]
+ slots (at the same offsets and types) in the callee. *)
+
+Definition parameter_of_argument (l: loc) : loc :=
+ match l with
+ | S (Outgoing n ty) => S (Incoming n ty)
+ | _ => l
+ end.
+
+Definition loc_parameters (s: signature) :=
+ List.map parameter_of_argument (loc_arguments s).
+
+Lemma loc_parameters_type:
+ forall sig, List.map Loc.type (loc_parameters sig) = sig.(sig_args).
+Proof.
+ intros. unfold loc_parameters.
+ rewrite list_map_compose.
+ rewrite <- loc_arguments_type.
+ apply list_map_exten.
+ intros. destruct x; simpl. auto.
+ destruct s; reflexivity.
+Qed.
+
+Lemma loc_parameters_length:
+ forall sg, List.length (loc_parameters sg) = List.length sg.(sig_args).
+Proof.
+ intros. unfold loc_parameters. rewrite list_length_map.
+ apply loc_arguments_length.
+Qed.
+
+Lemma loc_parameters_not_temporaries:
+ forall sig, Loc.disjoint (loc_parameters sig) temporaries.
+Proof.
+ intro; red; intros.
+ unfold loc_parameters in H.
+ elim (list_in_map_inv _ _ _ H). intros y [EQ IN].
+ generalize (loc_arguments_not_temporaries sig y x2 IN H0).
+ subst x1. destruct x2.
+ destruct y; simpl. auto. destruct s; auto.
+ byContradiction. generalize H0. simpl. NotOrEq.
+Qed.
+
+Lemma no_overlap_parameters:
+ forall params sg,
+ locs_acceptable params ->
+ Loc.no_overlap (loc_parameters sg) params.
+Proof.
+ unfold Loc.no_overlap; intros.
+ unfold loc_parameters in H0.
+ elim (list_in_map_inv _ _ _ H0). intros t [EQ IN].
+ rewrite EQ.
+ generalize (loc_arguments_acceptable _ _ IN).
+ generalize (H s H1).
+ destruct s; destruct t; simpl.
+ intros. case (mreg_eq m0 m); intro. left; congruence. tauto.
+ intros. right; destruct s; simpl; auto.
+ intros; right; auto.
+ destruct s; try tauto. destruct s0; try tauto.
+ intros; simpl. tauto.
+Qed.
+
+(** ** Location of argument and result for dynamic memory allocation *)
+
+Definition loc_alloc_argument := R3.
+Definition loc_alloc_result := R3.
diff --git a/powerpc/macosx/Stacklayout.v b/powerpc/macosx/Stacklayout.v
new file mode 100644
index 00000000..0e9be224
--- /dev/null
+++ b/powerpc/macosx/Stacklayout.v
@@ -0,0 +1,79 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Machine- and ABI-dependent layout information for activation records. *)
+
+Require Import Coqlib.
+Require Import Bounds.
+
+(** The general shape of activation records is as follows,
+ from bottom (lowest offsets) to top:
+- 24 reserved bytes. The first 4 bytes hold the back pointer to the
+ activation record of the caller. We use the 4 bytes at offset 12
+ to store the return address. (These are reserved by the PowerPC
+ application binary interface.) The remaining bytes are unused.
+- Space for outgoing arguments to function calls.
+- Local stack slots of integer type.
+- Saved values of integer callee-save registers used by the function.
+- One word of padding, if necessary to align the following data
+ on a 8-byte boundary.
+- Local stack slots of float type.
+- Saved values of float callee-save registers used by the function.
+- Space for the stack-allocated data declared in Cminor.
+
+To facilitate some of the proofs, the Cminor stack-allocated data
+starts at offset 0; the preceding areas in the activation record
+therefore have negative offsets. This part (with negative offsets)
+is called the ``frame'', by opposition with the ``Cminor stack data''
+which is the part with positive offsets.
+
+The [frame_env] compilation environment records the positions of
+the boundaries between areas in the frame part.
+*)
+
+Definition fe_ofs_arg := 24.
+
+Record frame_env : Set := mk_frame_env {
+ fe_size: Z;
+ fe_ofs_link: Z;
+ fe_ofs_retaddr: Z;
+ fe_ofs_int_local: Z;
+ fe_ofs_int_callee_save: Z;
+ fe_num_int_callee_save: Z;
+ fe_ofs_float_local: Z;
+ fe_ofs_float_callee_save: Z;
+ fe_num_float_callee_save: Z
+}.
+
+(** Computation of the frame environment from the bounds of the current
+ function. *)
+
+Definition make_env (b: bounds) :=
+ let oil := 24 + 4 * b.(bound_outgoing) in (* integer locals *)
+ let oics := oil + 4 * b.(bound_int_local) in (* integer callee-saves *)
+ let oendi := oics + 4 * b.(bound_int_callee_save) in
+ let ofl := align oendi 8 in (* float locals *)
+ let ofcs := ofl + 8 * b.(bound_float_local) in (* float callee-saves *)
+ let sz := ofcs + 8 * b.(bound_float_callee_save) in (* total frame size *)
+ mk_frame_env sz 0 12
+ oil oics b.(bound_int_callee_save)
+ ofl ofcs b.(bound_float_callee_save).
+
+
+Remark align_float_part:
+ forall b,
+ 24 + 4 * bound_outgoing b + 4 * bound_int_local b + 4 * bound_int_callee_save b <=
+ align (24 + 4 * bound_outgoing b + 4 * bound_int_local b + 4 * bound_int_callee_save b) 8.
+Proof.
+ intros. apply align_le. omega.
+Qed.
+