aboutsummaryrefslogtreecommitdiffstats
path: root/riscV/SelectOpproof.v
diff options
context:
space:
mode:
authorLéo Gourdin <leo.gourdin@univ-grenoble-alpes.fr>2021-03-29 10:28:23 +0200
committerLéo Gourdin <leo.gourdin@univ-grenoble-alpes.fr>2021-03-29 10:28:23 +0200
commit9a0bf569fab7398abd46bd07d2ee777fe745f591 (patch)
tree06c979c6e2230890052749d20d58bcefca7714aa /riscV/SelectOpproof.v
parentf2e691354a0ea1988de3242e9bad9e4170bd5e03 (diff)
downloadcompcert-kvx-9a0bf569fab7398abd46bd07d2ee777fe745f591.tar.gz
compcert-kvx-9a0bf569fab7398abd46bd07d2ee777fe745f591.zip
fix riscv merge?
Diffstat (limited to 'riscV/SelectOpproof.v')
-rw-r--r--riscV/SelectOpproof.v1093
1 files changed, 1093 insertions, 0 deletions
diff --git a/riscV/SelectOpproof.v b/riscV/SelectOpproof.v
new file mode 100644
index 00000000..f450fe6c
--- /dev/null
+++ b/riscV/SelectOpproof.v
@@ -0,0 +1,1093 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* Prashanth Mundkur, SRI International *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* The contributions by Prashanth Mundkur are reused and adapted *)
+(* under the terms of a Contributor License Agreement between *)
+(* SRI International and INRIA. *)
+(* *)
+(* *********************************************************************)
+
+(** Correctness of instruction selection for operators *)
+
+Require Import Coqlib Zbits.
+Require Import AST Integers Floats.
+Require Import Values Memory Builtins Globalenvs.
+Require Import Cminor Op CminorSel.
+Require Import SelectOp.
+Require Import OpHelpers.
+Require Import OpHelpersproof.
+Require Import Lia.
+
+Local Open Scope cminorsel_scope.
+
+(** * Useful lemmas and tactics *)
+
+(** The following are trivial lemmas and custom tactics that help
+ perform backward (inversion) and forward reasoning over the evaluation
+ of operator applications. *)
+
+Ltac EvalOp := eapply eval_Eop; eauto with evalexpr.
+
+Ltac InvEval1 :=
+ match goal with
+ | [ H: (eval_expr _ _ _ _ _ (Eop _ Enil) _) |- _ ] =>
+ inv H; InvEval1
+ | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: Enil)) _) |- _ ] =>
+ inv H; InvEval1
+ | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: _ ::: Enil)) _) |- _ ] =>
+ inv H; InvEval1
+ | [ H: (eval_exprlist _ _ _ _ _ Enil _) |- _ ] =>
+ inv H; InvEval1
+ | [ H: (eval_exprlist _ _ _ _ _ (_ ::: _) _) |- _ ] =>
+ inv H; InvEval1
+ | _ =>
+ idtac
+ end.
+
+Ltac InvEval2 :=
+ match goal with
+ | [ H: (eval_operation _ _ _ nil _ = Some _) |- _ ] =>
+ simpl in H; inv H
+ | [ H: (eval_operation _ _ _ (_ :: nil) _ = Some _) |- _ ] =>
+ simpl in H; FuncInv
+ | [ H: (eval_operation _ _ _ (_ :: _ :: nil) _ = Some _) |- _ ] =>
+ simpl in H; FuncInv
+ | [ H: (eval_operation _ _ _ (_ :: _ :: _ :: nil) _ = Some _) |- _ ] =>
+ simpl in H; FuncInv
+ | _ =>
+ idtac
+ end.
+
+Ltac InvEval := InvEval1; InvEval2; InvEval2.
+
+Ltac TrivialExists :=
+ match goal with
+ | [ |- exists v, _ /\ Val.lessdef ?a v ] => exists a; split; [EvalOp | auto]
+ end.
+
+(** * Correctness of the smart constructors *)
+
+Section CMCONSTR.
+Variable prog: program.
+Variable hf: helper_functions.
+Hypothesis HELPERS: helper_functions_declared prog hf.
+Let ge := Genv.globalenv prog.
+Variable sp: val.
+Variable e: env.
+Variable m: mem.
+
+(** We now show that the code generated by "smart constructor" functions
+ such as [Selection.notint] behaves as expected. Continuing the
+ [notint] example, we show that if the expression [e]
+ evaluates to some integer value [Vint n], then [Selection.notint e]
+ evaluates to a value [Vint (Int.not n)] which is indeed the integer
+ negation of the value of [e].
+
+ All proofs follow a common pattern:
+- Reasoning by case over the result of the classification functions
+ (such as [add_match] for integer addition), gathering additional
+ information on the shape of the argument expressions in the non-default
+ cases.
+- Inversion of the evaluations of the arguments, exploiting the additional
+ information thus gathered.
+- Equational reasoning over the arithmetic operations performed,
+ using the lemmas from the [Int] and [Float] modules.
+- Construction of an evaluation derivation for the expression returned
+ by the smart constructor.
+*)
+
+Definition unary_constructor_sound (cstr: expr -> expr) (sem: val -> val) : Prop :=
+ forall le a x,
+ eval_expr ge sp e m le a x ->
+ exists v, eval_expr ge sp e m le (cstr a) v /\ Val.lessdef (sem x) v.
+
+Definition binary_constructor_sound (cstr: expr -> expr -> expr) (sem: val -> val -> val) : Prop :=
+ forall le a x b y,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ exists v, eval_expr ge sp e m le (cstr a b) v /\ Val.lessdef (sem x y) v.
+
+Theorem eval_addrsymbol:
+ forall le id ofs,
+ exists v, eval_expr ge sp e m le (addrsymbol id ofs) v /\ Val.lessdef (Genv.symbol_address ge id ofs) v.
+Proof.
+ intros. unfold addrsymbol. econstructor; split.
+ EvalOp. simpl; eauto.
+ auto.
+Qed.
+
+Theorem eval_addrstack:
+ forall le ofs,
+ exists v, eval_expr ge sp e m le (addrstack ofs) v /\ Val.lessdef (Val.offset_ptr sp ofs) v.
+Proof.
+ intros. unfold addrstack. econstructor; split.
+ EvalOp. simpl; eauto.
+ auto.
+Qed.
+
+Theorem eval_addimm:
+ forall n, unary_constructor_sound (addimm n) (fun x => Val.add x (Vint n)).
+Proof.
+ red; unfold addimm; intros until x.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ - subst n. intros. exists x; split; auto.
+ destruct x; simpl; auto.
+ rewrite Int.add_zero; auto.
+ destruct Archi.ptr64; auto. rewrite Ptrofs.add_zero; auto.
+ - case (addimm_match a); intros; InvEval; simpl.
+ + TrivialExists; simpl. rewrite Int.add_commut. auto.
+ + econstructor; split. EvalOp. simpl; eauto.
+ unfold Genv.symbol_address. destruct (Genv.find_symbol ge s); simpl; auto.
+ destruct Archi.ptr64; auto. rewrite Ptrofs.add_commut; auto.
+ + econstructor; split. EvalOp. simpl; eauto.
+ destruct sp; simpl; auto. destruct Archi.ptr64; auto.
+ rewrite Ptrofs.add_assoc. rewrite (Ptrofs.add_commut m0). auto.
+ + TrivialExists; simpl. subst x. rewrite Val.add_assoc. rewrite Int.add_commut. auto.
+ + TrivialExists.
+Qed.
+
+Theorem eval_add: binary_constructor_sound add Val.add.
+Proof.
+ red; intros until y.
+ unfold add; case (add_match a b); intros; InvEval.
+ - rewrite Val.add_commut. apply eval_addimm; auto.
+ - apply eval_addimm; auto.
+ - subst.
+ replace (Val.add (Val.add v1 (Vint n1)) (Val.add v0 (Vint n2)))
+ with (Val.add (Val.add v1 v0) (Val.add (Vint n1) (Vint n2))).
+ apply eval_addimm. EvalOp.
+ repeat rewrite Val.add_assoc. decEq. apply Val.add_permut.
+ - subst. econstructor; split.
+ EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor. simpl; eauto.
+ rewrite Val.add_commut. destruct sp; simpl; auto.
+ destruct v1; simpl; auto.
+ destruct Archi.ptr64 eqn:SF; auto.
+ apply Val.lessdef_same. f_equal. rewrite ! Ptrofs.add_assoc. f_equal.
+ rewrite (Ptrofs.add_commut (Ptrofs.of_int n1)), Ptrofs.add_assoc. f_equal. auto with ptrofs.
+ destruct Archi.ptr64 eqn:SF; auto.
+ - subst. econstructor; split.
+ EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor. simpl; eauto.
+ destruct sp; simpl; auto.
+ destruct v1; simpl; auto.
+ destruct Archi.ptr64 eqn:SF; auto.
+ apply Val.lessdef_same. f_equal. rewrite ! Ptrofs.add_assoc. f_equal. f_equal.
+ rewrite Ptrofs.add_commut. auto with ptrofs.
+ destruct Archi.ptr64 eqn:SF; auto.
+ - subst.
+ replace (Val.add (Val.add v1 (Vint n1)) y)
+ with (Val.add (Val.add v1 y) (Vint n1)).
+ apply eval_addimm. EvalOp.
+ repeat rewrite Val.add_assoc. decEq. apply Val.add_commut.
+ - subst.
+ replace (Val.add x (Val.add v1 (Vint n2)))
+ with (Val.add (Val.add x v1) (Vint n2)).
+ apply eval_addimm. EvalOp.
+ repeat rewrite Val.add_assoc. reflexivity.
+ - TrivialExists.
+Qed.
+
+Theorem eval_sub: binary_constructor_sound sub Val.sub.
+Proof.
+ red; intros until y.
+ unfold sub; case (sub_match a b); intros; InvEval.
+ - rewrite Val.sub_add_opp. apply eval_addimm; auto.
+ - subst. rewrite Val.sub_add_l. rewrite Val.sub_add_r.
+ rewrite Val.add_assoc. simpl. rewrite Int.add_commut. rewrite <- Int.sub_add_opp.
+ apply eval_addimm; EvalOp.
+ - subst. rewrite Val.sub_add_l. apply eval_addimm; EvalOp.
+ - subst. rewrite Val.sub_add_r. apply eval_addimm; EvalOp.
+ - TrivialExists.
+Qed.
+
+Theorem eval_negint: unary_constructor_sound negint (fun v => Val.sub Vzero v).
+Proof.
+ red; intros until x. unfold negint. case (negint_match a); intros; InvEval.
+ TrivialExists.
+ TrivialExists.
+Qed.
+
+Theorem eval_shlimm:
+ forall n, unary_constructor_sound (fun a => shlimm a n)
+ (fun x => Val.shl x (Vint n)).
+Proof.
+ red; intros until x. unfold shlimm.
+
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shl_zero; auto.
+
+ destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl.
+ destruct (shlimm_match a); intros; InvEval.
+ - exists (Vint (Int.shl n1 n)); split. EvalOp.
+ simpl. rewrite LT. auto.
+ - destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?.
+ + exists (Val.shl v1 (Vint (Int.add n n1))); split. EvalOp.
+ subst. destruct v1; simpl; auto.
+ rewrite Heqb.
+ destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto.
+ destruct (Int.ltu n Int.iwordsize) eqn:?; simpl; auto.
+ rewrite Int.add_commut. rewrite Int.shl_shl; auto. rewrite Int.add_commut; auto.
+ + subst. TrivialExists. econstructor. EvalOp. simpl; eauto. constructor.
+ simpl. auto.
+ - TrivialExists.
+ - intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
+ auto.
+Qed.
+
+Theorem eval_shruimm:
+ forall n, unary_constructor_sound (fun a => shruimm a n)
+ (fun x => Val.shru x (Vint n)).
+Proof.
+ red; intros until x. unfold shruimm.
+
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shru_zero; auto.
+
+ destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl.
+ destruct (shruimm_match a); intros; InvEval.
+ - exists (Vint (Int.shru n1 n)); split. EvalOp.
+ simpl. rewrite LT; auto.
+ - destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?.
+ exists (Val.shru v1 (Vint (Int.add n n1))); split. EvalOp.
+ subst. destruct v1; simpl; auto.
+ rewrite Heqb.
+ destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto.
+ rewrite LT. rewrite Int.add_commut. rewrite Int.shru_shru; auto. rewrite Int.add_commut; auto.
+ subst. TrivialExists. econstructor. EvalOp. simpl; eauto. constructor.
+ simpl. auto.
+ - TrivialExists.
+ - intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
+ auto.
+Qed.
+
+Theorem eval_shrimm:
+ forall n, unary_constructor_sound (fun a => shrimm a n)
+ (fun x => Val.shr x (Vint n)).
+Proof.
+ red; intros until x. unfold shrimm.
+
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shr_zero; auto.
+
+ destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl.
+ destruct (shrimm_match a); intros; InvEval.
+ - exists (Vint (Int.shr n1 n)); split. EvalOp.
+ simpl. rewrite LT; auto.
+ - destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?.
+ exists (Val.shr v1 (Vint (Int.add n n1))); split. EvalOp.
+ subst. destruct v1; simpl; auto.
+ rewrite Heqb.
+ destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto.
+ rewrite LT.
+ rewrite Int.add_commut. rewrite Int.shr_shr; auto. rewrite Int.add_commut; auto.
+ subst. TrivialExists. econstructor. EvalOp. simpl; eauto. constructor.
+ simpl. auto.
+ - TrivialExists.
+ - intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
+ auto.
+Qed.
+
+Lemma eval_mulimm_base:
+ forall n, unary_constructor_sound (mulimm_base n) (fun x => Val.mul x (Vint n)).
+Proof.
+ intros; red; intros; unfold mulimm_base.
+
+ assert (DFL: exists v, eval_expr ge sp e m le (Eop Omul (Eop (Ointconst n) Enil ::: a ::: Enil)) v /\ Val.lessdef (Val.mul x (Vint n)) v).
+ TrivialExists. econstructor. EvalOp. simpl; eauto. econstructor. eauto. constructor.
+ rewrite Val.mul_commut. auto.
+
+ generalize (Int.one_bits_decomp n).
+ generalize (Int.one_bits_range n).
+ destruct (Int.one_bits n).
+ - intros. auto.
+ - destruct l.
+ + intros. rewrite H1. simpl.
+ rewrite Int.add_zero.
+ replace (Vint (Int.shl Int.one i)) with (Val.shl Vone (Vint i)). rewrite Val.shl_mul.
+ apply eval_shlimm. auto. simpl. rewrite H0; auto with coqlib.
+ + destruct l.
+ intros. rewrite H1. simpl.
+ exploit (eval_shlimm i (x :: le) (Eletvar 0) x). constructor; auto. intros [v1 [A1 B1]].
+ exploit (eval_shlimm i0 (x :: le) (Eletvar 0) x). constructor; auto. intros [v2 [A2 B2]].
+ exploit (eval_add (x :: le)). eexact A1. eexact A2. intros [v [A B]].
+ exists v; split. econstructor; eauto.
+ rewrite Int.add_zero.
+ replace (Vint (Int.add (Int.shl Int.one i) (Int.shl Int.one i0)))
+ with (Val.add (Val.shl Vone (Vint i)) (Val.shl Vone (Vint i0))).
+ rewrite Val.mul_add_distr_r.
+ repeat rewrite Val.shl_mul. eapply Val.lessdef_trans. 2: eauto. apply Val.add_lessdef; auto.
+ simpl. repeat rewrite H0; auto with coqlib.
+ intros. auto.
+Qed.
+
+Theorem eval_mulimm:
+ forall n, unary_constructor_sound (mulimm n) (fun x => Val.mul x (Vint n)).
+Proof.
+ intros; red; intros until x; unfold mulimm.
+
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros. exists (Vint Int.zero); split. EvalOp.
+ destruct x; simpl; auto. subst n. rewrite Int.mul_zero. auto.
+
+ predSpec Int.eq Int.eq_spec n Int.one.
+ intros. exists x; split; auto.
+ destruct x; simpl; auto. subst n. rewrite Int.mul_one. auto.
+
+ case (mulimm_match a); intros; InvEval.
+ - TrivialExists. simpl. rewrite Int.mul_commut; auto.
+ - subst. rewrite Val.mul_add_distr_l.
+ exploit eval_mulimm_base; eauto. instantiate (1 := n). intros [v' [A1 B1]].
+ exploit (eval_addimm (Int.mul n n2) le (mulimm_base n t2) v'). auto. intros [v'' [A2 B2]].
+ exists v''; split; auto. eapply Val.lessdef_trans. eapply Val.add_lessdef; eauto.
+ rewrite Val.mul_commut; auto.
+ - apply eval_mulimm_base; auto.
+Qed.
+
+Theorem eval_mul: binary_constructor_sound mul Val.mul.
+Proof.
+ red; intros until y.
+ unfold mul; case (mul_match a b); intros; InvEval.
+ rewrite Val.mul_commut. apply eval_mulimm. auto.
+ apply eval_mulimm. auto.
+ TrivialExists.
+Qed.
+
+Theorem eval_mulhs: binary_constructor_sound mulhs Val.mulhs.
+Proof.
+ red; intros. unfold mulhs; destruct Archi.ptr64 eqn:SF.
+- econstructor; split.
+ EvalOp. constructor. EvalOp. constructor. EvalOp. constructor. EvalOp. simpl; eauto.
+ constructor. EvalOp. simpl; eauto. constructor.
+ simpl; eauto. constructor. simpl; eauto. constructor. simpl; eauto.
+ destruct x; simpl; auto. destruct y; simpl; auto.
+ change (Int.ltu (Int.repr 32) Int64.iwordsize') with true; simpl.
+ apply Val.lessdef_same. f_equal.
+ transitivity (Int.repr (Z.shiftr (Int.signed i * Int.signed i0) 32)).
+ unfold Int.mulhs; f_equal. rewrite Zshiftr_div_two_p by lia. reflexivity.
+ apply Int.same_bits_eq; intros n N.
+ change Int.zwordsize with 32 in *.
+ assert (N1: 0 <= n < 64) by lia.
+ rewrite Int64.bits_loword by auto.
+ rewrite Int64.bits_shr' by auto.
+ change (Int.unsigned (Int.repr 32)) with 32. change Int64.zwordsize with 64.
+ rewrite zlt_true by lia.
+ rewrite Int.testbit_repr by auto.
+ unfold Int64.mul. rewrite Int64.testbit_repr by (change Int64.zwordsize with 64; lia).
+ transitivity (Z.testbit (Int.signed i * Int.signed i0) (n + 32)).
+ rewrite Z.shiftr_spec by lia. auto.
+ apply Int64.same_bits_eqm. apply Int64.eqm_mult; apply Int64.eqm_unsigned_repr.
+ change Int64.zwordsize with 64; lia.
+- TrivialExists.
+Qed.
+
+Theorem eval_mulhu: binary_constructor_sound mulhu Val.mulhu.
+Proof.
+ red; intros. unfold mulhu; destruct Archi.ptr64 eqn:SF.
+- econstructor; split.
+ EvalOp. constructor. EvalOp. constructor. EvalOp. constructor. EvalOp. simpl; eauto.
+ constructor. EvalOp. simpl; eauto. constructor.
+ simpl; eauto. constructor. simpl; eauto. constructor. simpl; eauto.
+ destruct x; simpl; auto. destruct y; simpl; auto.
+ change (Int.ltu (Int.repr 32) Int64.iwordsize') with true; simpl.
+ apply Val.lessdef_same. f_equal.
+ transitivity (Int.repr (Z.shiftr (Int.unsigned i * Int.unsigned i0) 32)).
+ unfold Int.mulhu; f_equal. rewrite Zshiftr_div_two_p by lia. reflexivity.
+ apply Int.same_bits_eq; intros n N.
+ change Int.zwordsize with 32 in *.
+ assert (N1: 0 <= n < 64) by lia.
+ rewrite Int64.bits_loword by auto.
+ rewrite Int64.bits_shru' by auto.
+ change (Int.unsigned (Int.repr 32)) with 32. change Int64.zwordsize with 64.
+ rewrite zlt_true by lia.
+ rewrite Int.testbit_repr by auto.
+ unfold Int64.mul. rewrite Int64.testbit_repr by (change Int64.zwordsize with 64; lia).
+ transitivity (Z.testbit (Int.unsigned i * Int.unsigned i0) (n + 32)).
+ rewrite Z.shiftr_spec by lia. auto.
+ apply Int64.same_bits_eqm. apply Int64.eqm_mult; apply Int64.eqm_unsigned_repr.
+ change Int64.zwordsize with 64; lia.
+- TrivialExists.
+Qed.
+
+Theorem eval_andimm:
+ forall n, unary_constructor_sound (andimm n) (fun x => Val.and x (Vint n)).
+Proof.
+ intros; red; intros until x. unfold andimm.
+
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros. exists (Vint Int.zero); split. EvalOp.
+ destruct x; simpl; auto. subst n. rewrite Int.and_zero. auto.
+
+ predSpec Int.eq Int.eq_spec n Int.mone.
+ intros. exists x; split; auto.
+ subst. destruct x; simpl; auto. rewrite Int.and_mone; auto.
+
+ case (andimm_match a); intros.
+ - InvEval. TrivialExists. simpl. rewrite Int.and_commut; auto.
+ - InvEval. subst. rewrite Val.and_assoc. simpl. rewrite Int.and_commut. TrivialExists.
+ - TrivialExists.
+Qed.
+
+Theorem eval_and: binary_constructor_sound and Val.and.
+Proof.
+ red; intros until y; unfold and; case (and_match a b); intros; InvEval.
+ - rewrite Val.and_commut. apply eval_andimm; auto.
+ - apply eval_andimm; auto.
+ - TrivialExists.
+Qed.
+
+Theorem eval_orimm:
+ forall n, unary_constructor_sound (orimm n) (fun x => Val.or x (Vint n)).
+Proof.
+ intros; red; intros until x. unfold orimm.
+
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros. subst. exists x; split; auto.
+ destruct x; simpl; auto. rewrite Int.or_zero; auto.
+
+ predSpec Int.eq Int.eq_spec n Int.mone.
+ intros. exists (Vint Int.mone); split. EvalOp.
+ destruct x; simpl; auto. subst n. rewrite Int.or_mone. auto.
+
+ destruct (orimm_match a); intros; InvEval.
+ - TrivialExists. simpl. rewrite Int.or_commut; auto.
+ - subst. rewrite Val.or_assoc. simpl. rewrite Int.or_commut. TrivialExists.
+ - TrivialExists.
+Qed.
+
+Theorem eval_or: binary_constructor_sound or Val.or.
+Proof.
+ red; intros until y; unfold or; case (or_match a b); intros; InvEval.
+ - rewrite Val.or_commut. apply eval_orimm; auto.
+ - apply eval_orimm; auto.
+ - TrivialExists.
+Qed.
+
+Theorem eval_xorimm:
+ forall n, unary_constructor_sound (xorimm n) (fun x => Val.xor x (Vint n)).
+Proof.
+ intros; red; intros until x. unfold xorimm.
+
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros. exists x; split. auto.
+ destruct x; simpl; auto. subst n. rewrite Int.xor_zero. auto.
+
+ intros. destruct (xorimm_match a); intros; InvEval.
+ - TrivialExists. simpl. rewrite Int.xor_commut; auto.
+ - subst. rewrite Val.xor_assoc. simpl. rewrite Int.xor_commut.
+ predSpec Int.eq Int.eq_spec (Int.xor n2 n) Int.zero.
+ + exists v1; split; auto. destruct v1; simpl; auto. rewrite H0, Int.xor_zero; auto.
+ + TrivialExists.
+ - TrivialExists.
+Qed.
+
+Theorem eval_xor: binary_constructor_sound xor Val.xor.
+Proof.
+ red; intros until y; unfold xor; case (xor_match a b); intros; InvEval.
+ - rewrite Val.xor_commut. apply eval_xorimm; auto.
+ - apply eval_xorimm; auto.
+ - TrivialExists.
+Qed.
+
+Theorem eval_notint: unary_constructor_sound notint Val.notint.
+Proof.
+ unfold notint; red; intros. rewrite Val.not_xor. apply eval_xorimm; auto.
+Qed.
+
+Theorem eval_divs_base:
+ forall le a b x y z,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ Val.divs x y = Some z ->
+ exists v, eval_expr ge sp e m le (divs_base a b) v /\ Val.lessdef z v.
+Proof.
+ intros. unfold divs_base. exists z; split. EvalOp.
+ 2: apply Val.lessdef_refl.
+ cbn.
+ rewrite H1.
+ cbn.
+ trivial.
+Qed.
+
+Theorem eval_mods_base:
+ forall le a b x y z,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ Val.mods x y = Some z ->
+ exists v, eval_expr ge sp e m le (mods_base a b) v /\ Val.lessdef z v.
+Proof.
+ intros. unfold mods_base. exists z; split. EvalOp.
+ 2: apply Val.lessdef_refl.
+ cbn.
+ rewrite H1.
+ cbn.
+ trivial.
+Qed.
+
+Theorem eval_divu_base:
+ forall le a b x y z,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ Val.divu x y = Some z ->
+ exists v, eval_expr ge sp e m le (divu_base a b) v /\ Val.lessdef z v.
+Proof.
+ intros. unfold divu_base. exists z; split. EvalOp.
+ 2: apply Val.lessdef_refl.
+ cbn.
+ rewrite H1.
+ cbn.
+ trivial.
+Qed.
+
+Theorem eval_modu_base:
+ forall le a b x y z,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ Val.modu x y = Some z ->
+ exists v, eval_expr ge sp e m le (modu_base a b) v /\ Val.lessdef z v.
+Proof.
+ intros. unfold modu_base. exists z; split. EvalOp.
+ 2: apply Val.lessdef_refl.
+ cbn.
+ rewrite H1.
+ cbn.
+ trivial.
+Qed.
+
+Theorem eval_shrximm:
+ forall le a n x z,
+ eval_expr ge sp e m le a x ->
+ Val.shrx x (Vint n) = Some z ->
+ exists v, eval_expr ge sp e m le (shrximm a n) v /\ Val.lessdef z v.
+Proof.
+ intros. unfold shrximm.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ subst n. exists x; split; auto.
+ destruct x; simpl in H0; try discriminate.
+ destruct (Int.ltu Int.zero (Int.repr 31)); inv H0.
+ replace (Int.shrx i Int.zero) with i. auto.
+ unfold Int.shrx, Int.divs. rewrite Int.shl_zero.
+ change (Int.signed Int.one) with 1. rewrite Z.quot_1_r. rewrite Int.repr_signed; auto.
+ econstructor; split. EvalOp.
+ cbn.
+ rewrite H0.
+ cbn.
+ reflexivity.
+ apply Val.lessdef_refl.
+Qed.
+
+Theorem eval_shl: binary_constructor_sound shl Val.shl.
+Proof.
+ red; intros until y; unfold shl; case (shl_match b); intros.
+ InvEval. apply eval_shlimm; auto.
+ TrivialExists.
+Qed.
+
+Theorem eval_shr: binary_constructor_sound shr Val.shr.
+Proof.
+ red; intros until y; unfold shr; case (shr_match b); intros.
+ InvEval. apply eval_shrimm; auto.
+ TrivialExists.
+Qed.
+
+Theorem eval_shru: binary_constructor_sound shru Val.shru.
+Proof.
+ red; intros until y; unfold shru; case (shru_match b); intros.
+ InvEval. apply eval_shruimm; auto.
+ TrivialExists.
+Qed.
+
+Theorem eval_negf: unary_constructor_sound negf Val.negf.
+Proof.
+ red; intros. TrivialExists.
+Qed.
+
+Theorem eval_absf: unary_constructor_sound absf Val.absf.
+Proof.
+ red; intros. TrivialExists.
+Qed.
+
+Theorem eval_addf: binary_constructor_sound addf Val.addf.
+Proof.
+ red; intros; TrivialExists.
+Qed.
+
+Theorem eval_subf: binary_constructor_sound subf Val.subf.
+Proof.
+ red; intros; TrivialExists.
+Qed.
+
+Theorem eval_mulf: binary_constructor_sound mulf Val.mulf.
+Proof.
+ red; intros; TrivialExists.
+Qed.
+
+Theorem eval_negfs: unary_constructor_sound negfs Val.negfs.
+Proof.
+ red; intros. TrivialExists.
+Qed.
+
+Theorem eval_absfs: unary_constructor_sound absfs Val.absfs.
+Proof.
+ red; intros. TrivialExists.
+Qed.
+
+Theorem eval_addfs: binary_constructor_sound addfs Val.addfs.
+Proof.
+ red; intros; TrivialExists.
+Qed.
+
+Theorem eval_subfs: binary_constructor_sound subfs Val.subfs.
+Proof.
+ red; intros; TrivialExists.
+Qed.
+
+Theorem eval_mulfs: binary_constructor_sound mulfs Val.mulfs.
+Proof.
+ red; intros; TrivialExists.
+Qed.
+
+Section COMP_IMM.
+
+Variable default: comparison -> int -> condition.
+Variable intsem: comparison -> int -> int -> bool.
+Variable sem: comparison -> val -> val -> val.
+
+Hypothesis sem_int: forall c x y, sem c (Vint x) (Vint y) = Val.of_bool (intsem c x y).
+Hypothesis sem_undef: forall c v, sem c Vundef v = Vundef.
+Hypothesis sem_eq: forall x y, sem Ceq (Vint x) (Vint y) = Val.of_bool (Int.eq x y).
+Hypothesis sem_ne: forall x y, sem Cne (Vint x) (Vint y) = Val.of_bool (negb (Int.eq x y)).
+Hypothesis sem_default: forall c v n, sem c v (Vint n) = Val.of_optbool (eval_condition (default c n) (v :: nil) m).
+
+Lemma eval_compimm:
+ forall le c a n2 x,
+ eval_expr ge sp e m le a x ->
+ exists v, eval_expr ge sp e m le (compimm default intsem c a n2) v
+ /\ Val.lessdef (sem c x (Vint n2)) v.
+Proof.
+ intros until x.
+ unfold compimm; case (compimm_match c a); intros.
+(* constant *)
+ - InvEval. rewrite sem_int. TrivialExists. simpl. destruct (intsem c0 n1 n2); auto.
+(* eq cmp *)
+ - InvEval. inv H. simpl in H5. inv H5.
+ destruct (Int.eq_dec n2 Int.zero).
+ + subst n2. TrivialExists.
+ simpl. rewrite eval_negate_condition.
+ destruct (eval_condition c0 vl m); simpl.
+ unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto.
+ rewrite sem_undef; auto.
+ + destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists.
+ simpl. destruct (eval_condition c0 vl m); simpl.
+ unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto.
+ rewrite sem_undef; auto.
+ exists (Vint Int.zero); split. EvalOp.
+ destruct (eval_condition c0 vl m); simpl.
+ unfold Vtrue, Vfalse. destruct b; rewrite sem_eq; rewrite Int.eq_false; auto.
+ rewrite sem_undef; auto.
+(* ne cmp *)
+ - InvEval. inv H. simpl in H5. inv H5.
+ destruct (Int.eq_dec n2 Int.zero).
+ + subst n2. TrivialExists.
+ simpl. destruct (eval_condition c0 vl m); simpl.
+ unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto.
+ rewrite sem_undef; auto.
+ + destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists.
+ simpl. rewrite eval_negate_condition. destruct (eval_condition c0 vl m); simpl.
+ unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto.
+ rewrite sem_undef; auto.
+ exists (Vint Int.one); split. EvalOp.
+ destruct (eval_condition c0 vl m); simpl.
+ unfold Vtrue, Vfalse. destruct b; rewrite sem_ne; rewrite Int.eq_false; auto.
+ rewrite sem_undef; auto.
+(* default *)
+ - TrivialExists. simpl. rewrite sem_default. auto.
+Qed.
+
+Hypothesis sem_swap:
+ forall c x y, sem (swap_comparison c) x y = sem c y x.
+
+Lemma eval_compimm_swap:
+ forall le c a n2 x,
+ eval_expr ge sp e m le a x ->
+ exists v, eval_expr ge sp e m le (compimm default intsem (swap_comparison c) a n2) v
+ /\ Val.lessdef (sem c (Vint n2) x) v.
+Proof.
+ intros. rewrite <- sem_swap. eapply eval_compimm; eauto.
+Qed.
+
+End COMP_IMM.
+
+Theorem eval_comp:
+ forall c, binary_constructor_sound (comp c) (Val.cmp c).
+Proof.
+ intros; red; intros until y. unfold comp; case (comp_match a b); intros; InvEval.
+ eapply eval_compimm_swap; eauto.
+ intros. unfold Val.cmp. rewrite Val.swap_cmp_bool; auto.
+ eapply eval_compimm; eauto.
+ TrivialExists.
+Qed.
+
+Theorem eval_compu:
+ forall c, binary_constructor_sound (compu c) (Val.cmpu (Mem.valid_pointer m) c).
+Proof.
+ intros; red; intros until y. unfold compu; case (compu_match a b); intros; InvEval.
+ eapply eval_compimm_swap; eauto.
+ intros. unfold Val.cmpu. rewrite Val.swap_cmpu_bool; auto.
+ eapply eval_compimm; eauto.
+ TrivialExists.
+Qed.
+
+Theorem eval_compf:
+ forall c, binary_constructor_sound (compf c) (Val.cmpf c).
+Proof.
+ intros; red; intros. unfold compf. TrivialExists.
+Qed.
+
+Theorem eval_compfs:
+ forall c, binary_constructor_sound (compfs c) (Val.cmpfs c).
+Proof.
+ intros; red; intros. unfold compfs. TrivialExists.
+Qed.
+
+Theorem eval_cast8signed: unary_constructor_sound cast8signed (Val.sign_ext 8).
+Proof.
+ red; intros until x. unfold cast8signed. case (cast8signed_match a); intros; InvEval.
+ TrivialExists.
+ TrivialExists.
+Qed.
+
+Theorem eval_cast8unsigned: unary_constructor_sound cast8unsigned (Val.zero_ext 8).
+Proof.
+ red; intros until x. unfold cast8unsigned.
+ rewrite Val.zero_ext_and. apply eval_andimm. lia.
+Qed.
+
+Theorem eval_cast16signed: unary_constructor_sound cast16signed (Val.sign_ext 16).
+Proof.
+ red; intros until x. unfold cast16signed. case (cast16signed_match a); intros; InvEval.
+ TrivialExists.
+ TrivialExists.
+Qed.
+
+Theorem eval_cast16unsigned: unary_constructor_sound cast16unsigned (Val.zero_ext 16).
+Proof.
+ red; intros until x. unfold cast8unsigned.
+ rewrite Val.zero_ext_and. apply eval_andimm. lia.
+Qed.
+
+Theorem eval_intoffloat:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.intoffloat x = Some y ->
+ exists v, eval_expr ge sp e m le (intoffloat a) v /\ Val.lessdef y v.
+Proof.
+ intros; unfold intoffloat. TrivialExists.
+ cbn. rewrite H0. reflexivity.
+Qed.
+
+Theorem eval_intuoffloat:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.intuoffloat x = Some y ->
+ exists v, eval_expr ge sp e m le (intuoffloat a) v /\ Val.lessdef y v.
+Proof.
+ intros; unfold intuoffloat. TrivialExists.
+ cbn. rewrite H0. reflexivity.
+Qed.
+
+Theorem eval_floatofintu:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.floatofintu x = Some y ->
+ exists v, eval_expr ge sp e m le (floatofintu a) v /\ Val.lessdef y v.
+Proof.
+ intros until y; unfold floatofintu. case (floatofintu_match a); intros.
+ InvEval. simpl in H0. TrivialExists.
+ TrivialExists.
+ cbn. rewrite H0. reflexivity.
+Qed.
+
+Theorem eval_floatofint:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.floatofint x = Some y ->
+ exists v, eval_expr ge sp e m le (floatofint a) v /\ Val.lessdef y v.
+Proof.
+ intros until y; unfold floatofint. case (floatofint_match a); intros.
+ InvEval. simpl in H0. TrivialExists.
+ TrivialExists.
+ cbn. rewrite H0. reflexivity.
+Qed.
+
+Theorem eval_intofsingle:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.intofsingle x = Some y ->
+ exists v, eval_expr ge sp e m le (intofsingle a) v /\ Val.lessdef y v.
+Proof.
+ intros; unfold intofsingle. TrivialExists.
+ cbn. rewrite H0. reflexivity.
+Qed.
+
+Theorem eval_singleofint:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.singleofint x = Some y ->
+ exists v, eval_expr ge sp e m le (singleofint a) v /\ Val.lessdef y v.
+Proof.
+ intros; unfold singleofint; TrivialExists.
+ cbn. rewrite H0. reflexivity.
+Qed.
+
+Theorem eval_intuofsingle:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.intuofsingle x = Some y ->
+ exists v, eval_expr ge sp e m le (intuofsingle a) v /\ Val.lessdef y v.
+Proof.
+ intros; unfold intuofsingle. TrivialExists.
+ cbn. rewrite H0. reflexivity.
+Qed.
+
+Theorem eval_singleofintu:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.singleofintu x = Some y ->
+ exists v, eval_expr ge sp e m le (singleofintu a) v /\ Val.lessdef y v.
+Proof.
+ intros; unfold intuofsingle. TrivialExists.
+ cbn. rewrite H0. reflexivity.
+Qed.
+
+Theorem eval_singleoffloat: unary_constructor_sound singleoffloat Val.singleoffloat.
+Proof.
+ red; intros. unfold singleoffloat. TrivialExists.
+Qed.
+
+Theorem eval_floatofsingle: unary_constructor_sound floatofsingle Val.floatofsingle.
+Proof.
+ red; intros. unfold floatofsingle. TrivialExists.
+Qed.
+
+Lemma mod_small_negative:
+ forall a modulus,
+ modulus > 0 -> -modulus < a < 0 -> a mod modulus = a + modulus.
+Proof.
+ intros.
+ replace (a mod modulus) with ((a + modulus) mod modulus).
+ apply Z.mod_small.
+ lia.
+ rewrite <- Zplus_mod_idemp_r.
+ rewrite Z.mod_same by lia.
+ rewrite Z.add_0_r.
+ reflexivity.
+Qed.
+
+Remark normalize_low_long: forall
+ (PTR64 : Archi.ptr64 = true) v1,
+ Val.loword (Val.normalize (Val.longofint v1) Tlong) = Val.normalize v1 Tint.
+Proof.
+ intros.
+ destruct v1; cbn; try rewrite PTR64; trivial.
+ f_equal.
+ unfold Int64.loword.
+ unfold Int.signed.
+ destruct zlt.
+ { rewrite Int64.int_unsigned_repr.
+ apply Int.repr_unsigned.
+ }
+ pose proof (Int.unsigned_range i).
+ rewrite Int64.unsigned_repr_eq.
+ replace ((Int.unsigned i - Int.modulus) mod Int64.modulus)
+ with (Int64.modulus + Int.unsigned i - Int.modulus).
+ {
+ rewrite <- (Int.repr_unsigned i) at 2.
+ apply Int.eqm_samerepr.
+ unfold Int.eqm, eqmod.
+ change Int.modulus with 4294967296 in *.
+ change Int64.modulus with 18446744073709551616 in *.
+ exists 4294967295.
+ lia.
+ }
+ { rewrite mod_small_negative.
+ lia.
+ constructor.
+ constructor.
+ change Int.modulus with 4294967296 in *.
+ change Int.half_modulus with 2147483648 in *.
+ change Int64.modulus with 18446744073709551616 in *.
+ lia.
+ lia.
+ }
+Qed.
+
+Lemma same_expr_pure_correct:
+ forall le a1 a2 v1 v2
+ (PURE : same_expr_pure a1 a2 = true)
+ (EVAL1 : eval_expr ge sp e m le a1 v1)
+ (EVAL2 : eval_expr ge sp e m le a2 v2),
+ v1 = v2.
+Proof.
+ intros.
+ destruct a1; destruct a2; cbn in *; try discriminate.
+ inv EVAL1. inv EVAL2.
+ destruct (ident_eq i i0); congruence.
+Qed.
+
+Theorem eval_select:
+ forall le ty cond al vl a1 v1 a2 v2 a b,
+ select ty cond al a1 a2 = Some a ->
+ eval_exprlist ge sp e m le al vl ->
+ eval_expr ge sp e m le a1 v1 ->
+ eval_expr ge sp e m le a2 v2 ->
+ eval_condition cond vl m = Some b ->
+ exists v,
+ eval_expr ge sp e m le a v
+ /\ Val.lessdef (Val.select (Some b) v1 v2 ty) v.
+Proof.
+ unfold select; intros.
+ pose proof (same_expr_pure_correct le a1 a2 v1 v2) as PURE.
+ destruct (same_expr_pure a1 a2).
+ { rewrite <- PURE by auto.
+ inv H.
+ exists v1. split. assumption.
+ unfold Val.select.
+ destruct b; apply Val.lessdef_normalize.
+ }
+ clear PURE.
+ destruct Archi.ptr64 eqn:PTR64.
+ 2: discriminate.
+ destruct ty; cbn in *; try discriminate.
+ - (* Tint *)
+ inv H. TrivialExists.
+ + cbn. repeat econstructor; eassumption.
+ + cbn. f_equal. rewrite ExtValues.normalize_select01.
+ rewrite H3. destruct b.
+ * rewrite ExtValues.select01_long_true. apply normalize_low_long; assumption.
+ * rewrite ExtValues.select01_long_false. apply normalize_low_long; assumption.
+
+ - (* Tfloat *)
+ inv H. TrivialExists.
+ + cbn. repeat econstructor; eassumption.
+ + cbn. f_equal. rewrite ExtValues.normalize_select01.
+ rewrite H3. destruct b.
+ * rewrite ExtValues.select01_long_true.
+ apply ExtValues.float_bits_normalize.
+ * rewrite ExtValues.select01_long_false.
+ apply ExtValues.float_bits_normalize.
+
+ - (* Tlong *)
+ inv H. TrivialExists.
+ + cbn. repeat econstructor; eassumption.
+ + cbn. f_equal. rewrite ExtValues.normalize_select01.
+ rewrite H3. destruct b.
+ * rewrite ExtValues.select01_long_true. reflexivity.
+ * rewrite ExtValues.select01_long_false. reflexivity.
+
+ - (* Tsingle *)
+ inv H. TrivialExists.
+ + cbn. repeat econstructor; eassumption.
+ + cbn. f_equal. rewrite ExtValues.normalize_select01.
+ rewrite H3. destruct b.
+ * rewrite ExtValues.select01_long_true.
+ rewrite normalize_low_long by assumption.
+ apply ExtValues.single_bits_normalize.
+ * rewrite ExtValues.select01_long_false.
+ rewrite normalize_low_long by assumption.
+ apply ExtValues.single_bits_normalize.
+Qed.
+
+Theorem eval_addressing:
+ forall le chunk a v b ofs,
+ eval_expr ge sp e m le a v ->
+ v = Vptr b ofs ->
+ match addressing chunk a with (mode, args) =>
+ exists vl,
+ eval_exprlist ge sp e m le args vl /\
+ eval_addressing ge sp mode vl = Some v
+ end.
+Proof.
+ intros until v. unfold addressing; case (addressing_match a); intros; InvEval.
+ - exists (@nil val); split. eauto with evalexpr. simpl. auto.
+ - destruct (Archi.pic_code tt).
+ + exists (Vptr b ofs0 :: nil); split.
+ constructor. EvalOp. simpl. congruence. constructor. simpl. rewrite Ptrofs.add_zero. congruence.
+ + exists (@nil val); split. constructor. simpl; auto.
+ - exists (v1 :: nil); split. eauto with evalexpr. simpl.
+ destruct v1; simpl in H; try discriminate. destruct Archi.ptr64 eqn:SF; inv H.
+ simpl. auto.
+ - exists (v1 :: nil); split. eauto with evalexpr. simpl.
+ destruct v1; simpl in H; try discriminate. destruct Archi.ptr64 eqn:SF; inv H.
+ simpl. auto.
+ - exists (v :: nil); split. eauto with evalexpr. subst. simpl. rewrite Ptrofs.add_zero; auto.
+Qed.
+
+Theorem eval_builtin_arg:
+ forall a v,
+ eval_expr ge sp e m nil a v ->
+ CminorSel.eval_builtin_arg ge sp e m (builtin_arg a) v.
+Proof.
+ intros until v. unfold builtin_arg; case (builtin_arg_match a); intros.
+- InvEval. constructor.
+- InvEval. constructor.
+- InvEval. constructor.
+- InvEval. simpl in H5. inv H5. constructor.
+- InvEval. subst v. constructor; auto.
+- inv H. InvEval. simpl in H6; inv H6. constructor; auto.
+- destruct Archi.ptr64 eqn:SF.
++ constructor; auto.
++ InvEval. replace v with (if Archi.ptr64 then Val.addl v1 (Vint n) else Val.add v1 (Vint n)).
+ repeat constructor; auto.
+ rewrite SF; auto.
+- destruct Archi.ptr64 eqn:SF.
++ InvEval. replace v with (if Archi.ptr64 then Val.addl v1 (Vlong n) else Val.add v1 (Vlong n)).
+ repeat constructor; auto.
+ rewrite SF; auto.
++ constructor; auto.
+- constructor; auto.
+Qed.
+
+(* floating-point division without HELPERS *)
+Theorem eval_divf_base:
+ forall le a b x y,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ exists v, eval_expr ge sp e m le (divf_base a b) v /\ Val.lessdef (Val.divf x y) v.
+Proof.
+ intros; unfold divf_base.
+ TrivialExists.
+Qed.
+
+Theorem eval_divfs_base:
+ forall le a b x y,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ exists v, eval_expr ge sp e m le (divfs_base a b) v /\ Val.lessdef (Val.divfs x y) v.
+Proof.
+ intros; unfold divfs_base.
+ TrivialExists.
+Qed.
+
+(** Platform-specific known builtins *)
+
+Theorem eval_platform_builtin:
+ forall bf al a vl v le,
+ platform_builtin bf al = Some a ->
+ eval_exprlist ge sp e m le al vl ->
+ platform_builtin_sem bf vl = Some v ->
+ exists v', eval_expr ge sp e m le a v' /\ Val.lessdef v v'.
+Proof.
+ destruct bf; intros until le; intro Heval.
+ all: try (inversion Heval; subst a; clear Heval;
+ exists v; split; trivial;
+ repeat (try econstructor; try eassumption)).
+Qed.
+
+End CMCONSTR.