aboutsummaryrefslogtreecommitdiffstats
path: root/riscV
diff options
context:
space:
mode:
authorLéo Gourdin <leo.gourdin@univ-grenoble-alpes.fr>2021-05-19 18:17:31 +0200
committerLéo Gourdin <leo.gourdin@univ-grenoble-alpes.fr>2021-05-19 18:17:31 +0200
commitbe8d929aef8e86c2e22e32c525093c6bfe56a300 (patch)
tree9026f38d9251477da228ba0d27706d448d7b7cfb /riscV
parenta6545d8fa35ab4ab3a12823eafacff99d7307314 (diff)
downloadcompcert-kvx-be8d929aef8e86c2e22e32c525093c6bfe56a300.tar.gz
compcert-kvx-be8d929aef8e86c2e22e32c525093c6bfe56a300.zip
Adding both RV expansion methods in kvx-work
Diffstat (limited to 'riscV')
-rw-r--r--riscV/Asmexpand.ml9
-rw-r--r--riscV/Asmgen.v344
-rw-r--r--riscV/Asmgenproof.v162
-rw-r--r--riscV/Asmgenproof1.v919
-rw-r--r--riscV/ExpansionOracle.ml10
-rw-r--r--riscV/RTLpathSE_simplify.v10
6 files changed, 1406 insertions, 48 deletions
diff --git a/riscV/Asmexpand.ml b/riscV/Asmexpand.ml
index 3f9d3359..c5cd6817 100644
--- a/riscV/Asmexpand.ml
+++ b/riscV/Asmexpand.ml
@@ -23,7 +23,6 @@ open Asm
open Asmexpandaux
open AST
open Camlcoq
-open Asmgen
open! Integers
exception Error of string
@@ -45,13 +44,11 @@ let align n a = (n + a - 1) land (-a)
(* Emit instruction sequences that set or offset a register by a constant. *)
let expand_loadimm32 dst n =
- match make_immed32 n with
- | Imm32_single imm -> emit (Paddiw (dst, X0, imm))
- | Imm32_pair (hi, lo) -> List.iter emit (load_hilo32 dst hi lo [])
+ List.iter emit (Asmgen.loadimm32 dst n [])
let expand_addptrofs dst src n =
- List.iter emit (addptrofs dst src n [])
+ List.iter emit (Asmgen.addptrofs dst src n [])
let expand_storeind_ptr src base ofs =
- List.iter emit (storeind_ptr src base ofs [])
+ List.iter emit (Asmgen.storeind_ptr src base ofs [])
(* Built-ins. They come in two flavors:
- annotation statements: take their arguments in registers or stack
diff --git a/riscV/Asmgen.v b/riscV/Asmgen.v
index da6c0101..3e84e950 100644
--- a/riscV/Asmgen.v
+++ b/riscV/Asmgen.v
@@ -86,6 +86,12 @@ Definition make_immed64 (val: int64) :=
Definition load_hilo32 (r: ireg) (hi lo: int) k :=
if Int.eq lo Int.zero then Pluiw r hi :: k
else Pluiw r hi :: Paddiw r r lo :: k.
+
+Definition loadimm32 (r: ireg) (n: int) (k: code) :=
+ match make_immed32 n with
+ | Imm32_single imm => Paddiw r X0 imm :: k
+ | Imm32_pair hi lo => load_hilo32 r hi lo k
+ end.
Definition opimm32 (op: ireg -> ireg0 -> ireg0 -> instruction)
(opimm: ireg -> ireg0 -> int -> instruction)
@@ -96,11 +102,23 @@ Definition opimm32 (op: ireg -> ireg0 -> ireg0 -> instruction)
end.
Definition addimm32 := opimm32 Paddw Paddiw.
+Definition andimm32 := opimm32 Pandw Pandiw.
+Definition orimm32 := opimm32 Porw Poriw.
+Definition xorimm32 := opimm32 Pxorw Pxoriw.
+Definition sltimm32 := opimm32 Psltw Psltiw.
+Definition sltuimm32 := opimm32 Psltuw Psltiuw.
Definition load_hilo64 (r: ireg) (hi lo: int64) k :=
if Int64.eq lo Int64.zero then Pluil r hi :: k
else Pluil r hi :: Paddil r r lo :: k.
+Definition loadimm64 (r: ireg) (n: int64) (k: code) :=
+ match make_immed64 n with
+ | Imm64_single imm => Paddil r X0 imm :: k
+ | Imm64_pair hi lo => load_hilo64 r hi lo k
+ | Imm64_large imm => Ploadli r imm :: k
+ end.
+
Definition opimm64 (op: ireg -> ireg0 -> ireg0 -> instruction)
(opimm: ireg -> ireg0 -> int64 -> instruction)
(rd rs: ireg) (n: int64) (k: code) :=
@@ -111,6 +129,11 @@ Definition opimm64 (op: ireg -> ireg0 -> ireg0 -> instruction)
end.
Definition addimm64 := opimm64 Paddl Paddil.
+Definition andimm64 := opimm64 Pandl Pandil.
+Definition orimm64 := opimm64 Porl Poril.
+Definition xorimm64 := opimm64 Pxorl Pxoril.
+Definition sltimm64 := opimm64 Psltl Psltil.
+Definition sltuimm64 := opimm64 Psltul Psltiul.
Definition addptrofs (rd rs: ireg) (n: ptrofs) (k: code) :=
if Ptrofs.eq_dec n Ptrofs.zero then
@@ -120,6 +143,68 @@ Definition addptrofs (rd rs: ireg) (n: ptrofs) (k: code) :=
then addimm64 rd rs (Ptrofs.to_int64 n) k
else addimm32 rd rs (Ptrofs.to_int n) k.
+(** Translation of conditional branches. *)
+
+Definition transl_cbranch_int32s (cmp: comparison) (r1 r2: ireg0) (lbl: label) :=
+ match cmp with
+ | Ceq => Pbeqw r1 r2 lbl
+ | Cne => Pbnew r1 r2 lbl
+ | Clt => Pbltw r1 r2 lbl
+ | Cle => Pbgew r2 r1 lbl
+ | Cgt => Pbltw r2 r1 lbl
+ | Cge => Pbgew r1 r2 lbl
+ end.
+
+Definition transl_cbranch_int32u (cmp: comparison) (r1 r2: ireg0) (lbl: label) :=
+ match cmp with
+ | Ceq => Pbeqw r1 r2 lbl
+ | Cne => Pbnew r1 r2 lbl
+ | Clt => Pbltuw r1 r2 lbl
+ | Cle => Pbgeuw r2 r1 lbl
+ | Cgt => Pbltuw r2 r1 lbl
+ | Cge => Pbgeuw r1 r2 lbl
+ end.
+
+Definition transl_cbranch_int64s (cmp: comparison) (r1 r2: ireg0) (lbl: label) :=
+ match cmp with
+ | Ceq => Pbeql r1 r2 lbl
+ | Cne => Pbnel r1 r2 lbl
+ | Clt => Pbltl r1 r2 lbl
+ | Cle => Pbgel r2 r1 lbl
+ | Cgt => Pbltl r2 r1 lbl
+ | Cge => Pbgel r1 r2 lbl
+ end.
+
+Definition transl_cbranch_int64u (cmp: comparison) (r1 r2: ireg0) (lbl: label) :=
+ match cmp with
+ | Ceq => Pbeql r1 r2 lbl
+ | Cne => Pbnel r1 r2 lbl
+ | Clt => Pbltul r1 r2 lbl
+ | Cle => Pbgeul r2 r1 lbl
+ | Cgt => Pbltul r2 r1 lbl
+ | Cge => Pbgeul r1 r2 lbl
+ end.
+
+Definition transl_cond_float (cmp: comparison) (rd: ireg) (fs1 fs2: freg) :=
+ match cmp with
+ | Ceq => (Pfeqd rd fs1 fs2, true)
+ | Cne => (Pfeqd rd fs1 fs2, false)
+ | Clt => (Pfltd rd fs1 fs2, true)
+ | Cle => (Pfled rd fs1 fs2, true)
+ | Cgt => (Pfltd rd fs2 fs1, true)
+ | Cge => (Pfled rd fs2 fs1, true)
+ end.
+
+Definition transl_cond_single (cmp: comparison) (rd: ireg) (fs1 fs2: freg) :=
+ match cmp with
+ | Ceq => (Pfeqs rd fs1 fs2, true)
+ | Cne => (Pfeqs rd fs1 fs2, false)
+ | Clt => (Pflts rd fs1 fs2, true)
+ | Cle => (Pfles rd fs1 fs2, true)
+ | Cgt => (Pflts rd fs2 fs1, true)
+ | Cge => (Pfles rd fs2 fs1, true)
+ end.
+
(** Functions to select a special register according to the op "oreg" argument from RTL *)
Definition apply_bin_oreg_ireg0 (optR: option oreg) (r1 r2: ireg0): (ireg0 * ireg0) :=
@@ -138,6 +223,59 @@ Definition get_oreg (optR: option oreg) (r: ireg0) :=
Definition transl_cbranch
(cond: condition) (args: list mreg) (lbl: label) (k: code) :=
match cond, args with
+ | Ccomp c, a1 :: a2 :: nil =>
+ do r1 <- ireg_of a1; do r2 <- ireg_of a2;
+ OK (transl_cbranch_int32s c r1 r2 lbl :: k)
+ | Ccompu c, a1 :: a2 :: nil =>
+ do r1 <- ireg_of a1; do r2 <- ireg_of a2;
+ OK (transl_cbranch_int32u c r1 r2 lbl :: k)
+ | Ccompimm c n, a1 :: nil =>
+ do r1 <- ireg_of a1;
+ OK (if Int.eq n Int.zero then
+ transl_cbranch_int32s c r1 X0 lbl :: k
+ else
+ loadimm32 X31 n (transl_cbranch_int32s c r1 X31 lbl :: k))
+ | Ccompuimm c n, a1 :: nil =>
+ do r1 <- ireg_of a1;
+ OK (if Int.eq n Int.zero then
+ transl_cbranch_int32u c r1 X0 lbl :: k
+ else
+ loadimm32 X31 n (transl_cbranch_int32u c r1 X31 lbl :: k))
+ | Ccompl c, a1 :: a2 :: nil =>
+ do r1 <- ireg_of a1; do r2 <- ireg_of a2;
+ OK (transl_cbranch_int64s c r1 r2 lbl :: k)
+ | Ccomplu c, a1 :: a2 :: nil =>
+ do r1 <- ireg_of a1; do r2 <- ireg_of a2;
+ OK (transl_cbranch_int64u c r1 r2 lbl :: k)
+ | Ccomplimm c n, a1 :: nil =>
+ do r1 <- ireg_of a1;
+ OK (if Int64.eq n Int64.zero then
+ transl_cbranch_int64s c r1 X0 lbl :: k
+ else
+ loadimm64 X31 n (transl_cbranch_int64s c r1 X31 lbl :: k))
+ | Ccompluimm c n, a1 :: nil =>
+ do r1 <- ireg_of a1;
+ OK (if Int64.eq n Int64.zero then
+ transl_cbranch_int64u c r1 X0 lbl :: k
+ else
+ loadimm64 X31 n (transl_cbranch_int64u c r1 X31 lbl :: k))
+ | Ccompf c, f1 :: f2 :: nil =>
+ do r1 <- freg_of f1; do r2 <- freg_of f2;
+ let (insn, normal) := transl_cond_float c X31 r1 r2 in
+ OK (insn :: (if normal then Pbnew X31 X0 lbl else Pbeqw X31 X0 lbl) :: k)
+ | Cnotcompf c, f1 :: f2 :: nil =>
+ do r1 <- freg_of f1; do r2 <- freg_of f2;
+ let (insn, normal) := transl_cond_float c X31 r1 r2 in
+ OK (insn :: (if normal then Pbeqw X31 X0 lbl else Pbnew X31 X0 lbl) :: k)
+ | Ccompfs c, f1 :: f2 :: nil =>
+ do r1 <- freg_of f1; do r2 <- freg_of f2;
+ let (insn, normal) := transl_cond_single c X31 r1 r2 in
+ OK (insn :: (if normal then Pbnew X31 X0 lbl else Pbeqw X31 X0 lbl) :: k)
+ | Cnotcompfs c, f1 :: f2 :: nil =>
+ do r1 <- freg_of f1; do r2 <- freg_of f2;
+ let (insn, normal) := transl_cond_single c X31 r1 r2 in
+ OK (insn :: (if normal then Pbeqw X31 X0 lbl else Pbnew X31 X0 lbl) :: k)
+
| CEbeqw optR, a1 :: a2 :: nil =>
do r1 <- ireg_of a1; do r2 <- ireg_of a2;
let (r1', r2') := apply_bin_oreg_ireg0 optR r1 r2 in
@@ -206,6 +344,133 @@ Definition transl_cbranch
Error(msg "Asmgen.transl_cond_branch")
end.
+(** Translation of a condition operator. The generated code sets the
+ [rd] target register to 0 or 1 depending on the truth value of the
+ condition. *)
+
+Definition transl_cond_int32s (cmp: comparison) (rd: ireg) (r1 r2: ireg0) (k: code) :=
+ match cmp with
+ | Ceq => Pseqw rd r1 r2 :: k
+ | Cne => Psnew rd r1 r2 :: k
+ | Clt => Psltw rd r1 r2 :: k
+ | Cle => Psltw rd r2 r1 :: Pxoriw rd rd Int.one :: k
+ | Cgt => Psltw rd r2 r1 :: k
+ | Cge => Psltw rd r1 r2 :: Pxoriw rd rd Int.one :: k
+ end.
+
+Definition transl_cond_int32u (cmp: comparison) (rd: ireg) (r1 r2: ireg0) (k: code) :=
+ match cmp with
+ | Ceq => Pseqw rd r1 r2 :: k
+ | Cne => Psnew rd r1 r2 :: k
+ | Clt => Psltuw rd r1 r2 :: k
+ | Cle => Psltuw rd r2 r1 :: Pxoriw rd rd Int.one :: k
+ | Cgt => Psltuw rd r2 r1 :: k
+ | Cge => Psltuw rd r1 r2 :: Pxoriw rd rd Int.one :: k
+ end.
+
+Definition transl_cond_int64s (cmp: comparison) (rd: ireg) (r1 r2: ireg0) (k: code) :=
+ match cmp with
+ | Ceq => Pseql rd r1 r2 :: k
+ | Cne => Psnel rd r1 r2 :: k
+ | Clt => Psltl rd r1 r2 :: k
+ | Cle => Psltl rd r2 r1 :: Pxoriw rd rd Int.one :: k
+ | Cgt => Psltl rd r2 r1 :: k
+ | Cge => Psltl rd r1 r2 :: Pxoriw rd rd Int.one :: k
+ end.
+
+Definition transl_cond_int64u (cmp: comparison) (rd: ireg) (r1 r2: ireg0) (k: code) :=
+ match cmp with
+ | Ceq => Pseql rd r1 r2 :: k
+ | Cne => Psnel rd r1 r2 :: k
+ | Clt => Psltul rd r1 r2 :: k
+ | Cle => Psltul rd r2 r1 :: Pxoriw rd rd Int.one :: k
+ | Cgt => Psltul rd r2 r1 :: k
+ | Cge => Psltul rd r1 r2 :: Pxoriw rd rd Int.one :: k
+ end.
+
+Definition transl_condimm_int32s (cmp: comparison) (rd: ireg) (r1: ireg) (n: int) (k: code) :=
+ if Int.eq n Int.zero then transl_cond_int32s cmp rd r1 X0 k else
+ match cmp with
+ | Ceq | Cne => xorimm32 rd r1 n (transl_cond_int32s cmp rd rd X0 k)
+ | Clt => sltimm32 rd r1 n k
+ | Cle => if Int.eq n (Int.repr Int.max_signed)
+ then loadimm32 rd Int.one k
+ else sltimm32 rd r1 (Int.add n Int.one) k
+ | _ => loadimm32 X31 n (transl_cond_int32s cmp rd r1 X31 k)
+ end.
+
+Definition transl_condimm_int32u (cmp: comparison) (rd: ireg) (r1: ireg) (n: int) (k: code) :=
+ if Int.eq n Int.zero then transl_cond_int32u cmp rd r1 X0 k else
+ match cmp with
+ | Clt => sltuimm32 rd r1 n k
+ | _ => loadimm32 X31 n (transl_cond_int32u cmp rd r1 X31 k)
+ end.
+
+Definition transl_condimm_int64s (cmp: comparison) (rd: ireg) (r1: ireg) (n: int64) (k: code) :=
+ if Int64.eq n Int64.zero then transl_cond_int64s cmp rd r1 X0 k else
+ match cmp with
+ | Ceq | Cne => xorimm64 rd r1 n (transl_cond_int64s cmp rd rd X0 k)
+ | Clt => sltimm64 rd r1 n k
+ | Cle => if Int64.eq n (Int64.repr Int64.max_signed)
+ then loadimm32 rd Int.one k
+ else sltimm64 rd r1 (Int64.add n Int64.one) k
+ | _ => loadimm64 X31 n (transl_cond_int64s cmp rd r1 X31 k)
+ end.
+
+Definition transl_condimm_int64u (cmp: comparison) (rd: ireg) (r1: ireg) (n: int64) (k: code) :=
+ if Int64.eq n Int64.zero then transl_cond_int64u cmp rd r1 X0 k else
+ match cmp with
+ | Clt => sltuimm64 rd r1 n k
+ | _ => loadimm64 X31 n (transl_cond_int64u cmp rd r1 X31 k)
+ end.
+
+Definition transl_cond_op
+ (cond: condition) (rd: ireg) (args: list mreg) (k: code) :=
+ match cond, args with
+ | Ccomp c, a1 :: a2 :: nil =>
+ do r1 <- ireg_of a1; do r2 <- ireg_of a2;
+ OK (transl_cond_int32s c rd r1 r2 k)
+ | Ccompu c, a1 :: a2 :: nil =>
+ do r1 <- ireg_of a1; do r2 <- ireg_of a2;
+ OK (transl_cond_int32u c rd r1 r2 k)
+ | Ccompimm c n, a1 :: nil =>
+ do r1 <- ireg_of a1;
+ OK (transl_condimm_int32s c rd r1 n k)
+ | Ccompuimm c n, a1 :: nil =>
+ do r1 <- ireg_of a1;
+ OK (transl_condimm_int32u c rd r1 n k)
+ | Ccompl c, a1 :: a2 :: nil =>
+ do r1 <- ireg_of a1; do r2 <- ireg_of a2;
+ OK (transl_cond_int64s c rd r1 r2 k)
+ | Ccomplu c, a1 :: a2 :: nil =>
+ do r1 <- ireg_of a1; do r2 <- ireg_of a2;
+ OK (transl_cond_int64u c rd r1 r2 k)
+ | Ccomplimm c n, a1 :: nil =>
+ do r1 <- ireg_of a1;
+ OK (transl_condimm_int64s c rd r1 n k)
+ | Ccompluimm c n, a1 :: nil =>
+ do r1 <- ireg_of a1;
+ OK (transl_condimm_int64u c rd r1 n k)
+ | Ccompf c, f1 :: f2 :: nil =>
+ do r1 <- freg_of f1; do r2 <- freg_of f2;
+ let (insn, normal) := transl_cond_float c rd r1 r2 in
+ OK (insn :: if normal then k else Pxoriw rd rd Int.one :: k)
+ | Cnotcompf c, f1 :: f2 :: nil =>
+ do r1 <- freg_of f1; do r2 <- freg_of f2;
+ let (insn, normal) := transl_cond_float c rd r1 r2 in
+ OK (insn :: if normal then Pxoriw rd rd Int.one :: k else k)
+ | Ccompfs c, f1 :: f2 :: nil =>
+ do r1 <- freg_of f1; do r2 <- freg_of f2;
+ let (insn, normal) := transl_cond_single c rd r1 r2 in
+ OK (insn :: if normal then k else Pxoriw rd rd Int.one :: k)
+ | Cnotcompfs c, f1 :: f2 :: nil =>
+ do r1 <- freg_of f1; do r2 <- freg_of f2;
+ let (insn, normal) := transl_cond_single c rd r1 r2 in
+ OK (insn :: if normal then Pxoriw rd rd Int.one :: k else k)
+ | _, _ =>
+ Error(msg "Asmgen.transl_cond_op")
+ end.
+
(** Translation of the arithmetic operation [r <- op(args)].
The corresponding instructions are prepended to [k]. *)
@@ -218,6 +483,22 @@ Definition transl_op
| FR r, FR a => OK (Pfmv r a :: k)
| _ , _ => Error(msg "Asmgen.Omove")
end
+ | Ointconst n, nil =>
+ do rd <- ireg_of res;
+ OK (loadimm32 rd n k)
+ | Olongconst n, nil =>
+ do rd <- ireg_of res;
+ OK (loadimm64 rd n k)
+ | Ofloatconst f, nil =>
+ do rd <- freg_of res;
+ OK (if Float.eq_dec f Float.zero
+ then Pfcvtdw rd X0 :: k
+ else Ploadfi rd f :: k)
+ | Osingleconst f, nil =>
+ do rd <- freg_of res;
+ OK (if Float32.eq_dec f Float32.zero
+ then Pfcvtsw rd X0 :: k
+ else Ploadsi rd f :: k)
| Oaddrsymbol s ofs, nil =>
do rd <- ireg_of res;
OK (if Archi.pic_code tt && negb (Ptrofs.eq ofs Ptrofs.zero)
@@ -227,9 +508,18 @@ Definition transl_op
do rd <- ireg_of res;
OK (addptrofs rd SP n k)
+ | Ocast8signed, a1 :: nil =>
+ do rd <- ireg_of res; do rs <- ireg_of a1;
+ OK (Pslliw rd rs (Int.repr 24) :: Psraiw rd rd (Int.repr 24) :: k)
+ | Ocast16signed, a1 :: nil =>
+ do rd <- ireg_of res; do rs <- ireg_of a1;
+ OK (Pslliw rd rs (Int.repr 16) :: Psraiw rd rd (Int.repr 16) :: k)
| Oadd, a1 :: a2 :: nil =>
do rd <- ireg_of res; do rs1 <- ireg_of a1; do rs2 <- ireg_of a2;
OK (Paddw rd rs1 rs2 :: k)
+ | Oaddimm n, a1 :: nil =>
+ do rd <- ireg_of res; do rs <- ireg_of a1;
+ OK (addimm32 rd rs n k)
| Oneg, a1 :: nil =>
do rd <- ireg_of res; do rs <- ireg_of a1;
OK (Psubw rd X0 rs :: k)
@@ -260,12 +550,21 @@ Definition transl_op
| Oand, a1 :: a2 :: nil =>
do rd <- ireg_of res; do rs1 <- ireg_of a1; do rs2 <- ireg_of a2;
OK (Pandw rd rs1 rs2 :: k)
+ | Oandimm n, a1 :: nil =>
+ do rd <- ireg_of res; do rs <- ireg_of a1;
+ OK (andimm32 rd rs n k)
| Oor, a1 :: a2 :: nil =>
do rd <- ireg_of res; do rs1 <- ireg_of a1; do rs2 <- ireg_of a2;
OK (Porw rd rs1 rs2 :: k)
+ | Oorimm n, a1 :: nil =>
+ do rd <- ireg_of res; do rs <- ireg_of a1;
+ OK (orimm32 rd rs n k)
| Oxor, a1 :: a2 :: nil =>
do rd <- ireg_of res; do rs1 <- ireg_of a1; do rs2 <- ireg_of a2;
OK (Pxorw rd rs1 rs2 :: k)
+ | Oxorimm n, a1 :: nil =>
+ do rd <- ireg_of res; do rs <- ireg_of a1;
+ OK (xorimm32 rd rs n k)
| Oshl, a1 :: a2 :: nil =>
do rd <- ireg_of res; do rs1 <- ireg_of a1; do rs2 <- ireg_of a2;
OK (Psllw rd rs1 rs2 :: k)
@@ -284,6 +583,19 @@ Definition transl_op
| Oshruimm n, a1 :: nil =>
do rd <- ireg_of res; do rs <- ireg_of a1;
OK (Psrliw rd rs n :: k)
+ | Oshrximm n, a1 :: nil =>
+ do rd <- ireg_of res; do rs <- ireg_of a1;
+ OK (if Int.eq n Int.zero
+ then Pmv rd rs :: k
+ else if Int.eq n Int.one
+ then Psrliw X31 rs (Int.repr 31) ::
+ Paddw X31 rs X31 ::
+ Psraiw rd X31 Int.one :: k
+ else Psraiw X31 rs (Int.repr 31) ::
+ Psrliw X31 X31 (Int.sub Int.iwordsize n) ::
+ Paddw X31 rs X31 ::
+ Psraiw rd X31 n :: k)
+
(* [Omakelong], [Ohighlong] should not occur *)
| Olowlong, a1 :: nil =>
do rd <- ireg_of res; do rs <- ireg_of a1;
@@ -292,9 +604,16 @@ Definition transl_op
do rd <- ireg_of res; do rs <- ireg_of a1;
assertion (ireg_eq rd rs);
OK (Pcvtw2l rd :: k)
+ | Ocast32unsigned, a1 :: nil =>
+ do rd <- ireg_of res; do rs <- ireg_of a1;
+ assertion (ireg_eq rd rs);
+ OK (Pcvtw2l rd :: Psllil rd rd (Int.repr 32) :: Psrlil rd rd (Int.repr 32) :: k)
| Oaddl, a1 :: a2 :: nil =>
do rd <- ireg_of res; do rs1 <- ireg_of a1; do rs2 <- ireg_of a2;
OK (Paddl rd rs1 rs2 :: k)
+ | Oaddlimm n, a1 :: nil =>
+ do rd <- ireg_of res; do rs <- ireg_of a1;
+ OK (addimm64 rd rs n k)
| Onegl, a1 :: nil =>
do rd <- ireg_of res; do rs <- ireg_of a1;
OK (Psubl rd X0 rs :: k)
@@ -325,12 +644,21 @@ Definition transl_op
| Oandl, a1 :: a2 :: nil =>
do rd <- ireg_of res; do rs1 <- ireg_of a1; do rs2 <- ireg_of a2;
OK (Pandl rd rs1 rs2 :: k)
+ | Oandlimm n, a1 :: nil =>
+ do rd <- ireg_of res; do rs <- ireg_of a1;
+ OK (andimm64 rd rs n k)
| Oorl, a1 :: a2 :: nil =>
do rd <- ireg_of res; do rs1 <- ireg_of a1; do rs2 <- ireg_of a2;
OK (Porl rd rs1 rs2 :: k)
+ | Oorlimm n, a1 :: nil =>
+ do rd <- ireg_of res; do rs <- ireg_of a1;
+ OK (orimm64 rd rs n k)
| Oxorl, a1 :: a2 :: nil =>
do rd <- ireg_of res; do rs1 <- ireg_of a1; do rs2 <- ireg_of a2;
OK (Pxorl rd rs1 rs2 :: k)
+ | Oxorlimm n, a1 :: nil =>
+ do rd <- ireg_of res; do rs <- ireg_of a1;
+ OK (xorimm64 rd rs n k)
| Oshll, a1 :: a2 :: nil =>
do rd <- ireg_of res; do rs1 <- ireg_of a1; do rs2 <- ireg_of a2;
OK (Pslll rd rs1 rs2 :: k)
@@ -349,6 +677,19 @@ Definition transl_op
| Oshrluimm n, a1 :: nil =>
do rd <- ireg_of res; do rs <- ireg_of a1;
OK (Psrlil rd rs n :: k)
+ | Oshrxlimm n, a1 :: nil =>
+ do rd <- ireg_of res; do rs <- ireg_of a1;
+ OK (if Int.eq n Int.zero
+ then Pmv rd rs :: k
+ else if Int.eq n Int.one
+ then Psrlil X31 rs (Int.repr 63) ::
+ Paddl X31 rs X31 ::
+ Psrail rd X31 Int.one :: k
+ else Psrail X31 rs (Int.repr 63) ::
+ Psrlil X31 X31 (Int.sub Int64.iwordsize' n) ::
+ Paddl X31 rs X31 ::
+ Psrail rd X31 n :: k)
+
| Onegf, a1 :: nil =>
do rd <- freg_of res; do rs <- freg_of a1;
OK (Pfnegd rd rs :: k)
@@ -443,6 +784,9 @@ Definition transl_op
| Osingleoflongu, a1 :: nil =>
do rd <- freg_of res; do rs <- ireg_of a1;
OK (Pfcvtslu rd rs :: k)
+ | Ocmp cmp, _ =>
+ do rd <- ireg_of res;
+ transl_cond_op cmp rd args k
(* Instructions expanded in RTL *)
| OEseqw optR, a1 :: a2 :: nil =>
diff --git a/riscV/Asmgenproof.v b/riscV/Asmgenproof.v
index 4af8352c..509eac94 100644
--- a/riscV/Asmgenproof.v
+++ b/riscV/Asmgenproof.v
@@ -115,6 +115,14 @@ Qed.
Section TRANSL_LABEL.
+Remark loadimm32_label:
+ forall r n k, tail_nolabel k (loadimm32 r n k).
+Proof.
+ intros; unfold loadimm32. destruct (make_immed32 n); TailNoLabel.
+ unfold load_hilo32. destruct (Int.eq lo Int.zero); TailNoLabel.
+Qed.
+Hint Resolve loadimm32_label: labels.
+
Remark opimm32_label:
forall op opimm r1 r2 n k,
(forall r1 r2 r3, nolabel (op r1 r2 r3)) ->
@@ -126,6 +134,14 @@ Proof.
Qed.
Hint Resolve opimm32_label: labels.
+Remark loadimm64_label:
+ forall r n k, tail_nolabel k (loadimm64 r n k).
+Proof.
+ intros; unfold loadimm64. destruct (make_immed64 n); TailNoLabel.
+ unfold load_hilo64. destruct (Int64.eq lo Int64.zero); TailNoLabel.
+Qed.
+Hint Resolve loadimm64_label: labels.
+
Remark opimm64_label:
forall op opimm r1 r2 n k,
(forall r1 r2 r3, nolabel (op r1 r2 r3)) ->
@@ -145,25 +161,165 @@ Proof.
Qed.
Hint Resolve addptrofs_label: labels.
+Remark transl_cond_float_nolabel:
+ forall c r1 r2 r3 insn normal,
+ transl_cond_float c r1 r2 r3 = (insn, normal) -> nolabel insn.
+Proof.
+ unfold transl_cond_float; intros. destruct c; inv H; exact I.
+Qed.
+
+Remark transl_cond_single_nolabel:
+ forall c r1 r2 r3 insn normal,
+ transl_cond_single c r1 r2 r3 = (insn, normal) -> nolabel insn.
+Proof.
+ unfold transl_cond_single; intros. destruct c; inv H; exact I.
+ Qed.
+
Remark transl_cbranch_label:
forall cond args lbl k c,
transl_cbranch cond args lbl k = OK c -> tail_nolabel k c.
Proof.
intros. unfold transl_cbranch in H; destruct cond; TailNoLabel.
- all: destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct c0; simpl; TailNoLabel.
+- destruct c0; simpl; TailNoLabel.
+- destruct (Int.eq n Int.zero).
+ destruct c0; simpl; TailNoLabel.
+ apply tail_nolabel_trans with (transl_cbranch_int32s c0 x X31 lbl :: k).
+ auto with labels. destruct c0; simpl; TailNoLabel.
+- destruct (Int.eq n Int.zero).
+ destruct c0; simpl; TailNoLabel.
+ apply tail_nolabel_trans with (transl_cbranch_int32u c0 x X31 lbl :: k).
+ auto with labels. destruct c0; simpl; TailNoLabel.
+- destruct c0; simpl; TailNoLabel.
+- destruct c0; simpl; TailNoLabel.
+- destruct (Int64.eq n Int64.zero).
+ destruct c0; simpl; TailNoLabel.
+ apply tail_nolabel_trans with (transl_cbranch_int64s c0 x X31 lbl :: k).
+ auto with labels. destruct c0; simpl; TailNoLabel.
+- destruct (Int64.eq n Int64.zero).
+ destruct c0; simpl; TailNoLabel.
+ apply tail_nolabel_trans with (transl_cbranch_int64u c0 x X31 lbl :: k).
+ auto with labels. destruct c0; simpl; TailNoLabel.
+- destruct (transl_cond_float c0 X31 x x0) as [insn normal] eqn:F; inv EQ2.
+ apply tail_nolabel_cons. eapply transl_cond_float_nolabel; eauto.
+ destruct normal; TailNoLabel.
+- destruct (transl_cond_float c0 X31 x x0) as [insn normal] eqn:F; inv EQ2.
+ apply tail_nolabel_cons. eapply transl_cond_float_nolabel; eauto.
+ destruct normal; TailNoLabel.
+- destruct (transl_cond_single c0 X31 x x0) as [insn normal] eqn:F; inv EQ2.
+ apply tail_nolabel_cons. eapply transl_cond_single_nolabel; eauto.
+ destruct normal; TailNoLabel.
+- destruct (transl_cond_single c0 X31 x x0) as [insn normal] eqn:F; inv EQ2.
+ apply tail_nolabel_cons. eapply transl_cond_single_nolabel; eauto.
+ destruct normal; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
Qed.
+Remark transl_cond_op_label:
+ forall cond args r k c,
+ transl_cond_op cond r args k = OK c -> tail_nolabel k c.
+Proof.
+ intros. unfold transl_cond_op in H; destruct cond; TailNoLabel.
+- destruct c0; simpl; TailNoLabel.
+- destruct c0; simpl; TailNoLabel.
+- unfold transl_condimm_int32s.
+ destruct (Int.eq n Int.zero).
++ destruct c0; simpl; TailNoLabel.
++ destruct c0; simpl.
+* eapply tail_nolabel_trans; [apply opimm32_label; intros; exact I | TailNoLabel].
+* eapply tail_nolabel_trans; [apply opimm32_label; intros; exact I | TailNoLabel].
+* apply opimm32_label; intros; exact I.
+* destruct (Int.eq n (Int.repr Int.max_signed)). apply loadimm32_label. apply opimm32_label; intros; exact I.
+* eapply tail_nolabel_trans. apply loadimm32_label. TailNoLabel.
+* eapply tail_nolabel_trans. apply loadimm32_label. TailNoLabel.
+- unfold transl_condimm_int32u.
+ destruct (Int.eq n Int.zero).
++ destruct c0; simpl; TailNoLabel.
++ destruct c0; simpl;
+ try (eapply tail_nolabel_trans; [apply loadimm32_label | TailNoLabel]).
+ apply opimm32_label; intros; exact I.
+- destruct c0; simpl; TailNoLabel.
+ - destruct c0; simpl; TailNoLabel.
+- unfold transl_condimm_int64s.
+ destruct (Int64.eq n Int64.zero).
++ destruct c0; simpl; TailNoLabel.
++ destruct c0; simpl.
+* eapply tail_nolabel_trans; [apply opimm64_label; intros; exact I | TailNoLabel].
+* eapply tail_nolabel_trans; [apply opimm64_label; intros; exact I | TailNoLabel].
+* apply opimm64_label; intros; exact I.
+* destruct (Int64.eq n (Int64.repr Int64.max_signed)). apply loadimm32_label. apply opimm64_label; intros; exact I.
+* eapply tail_nolabel_trans. apply loadimm64_label. TailNoLabel.
+* eapply tail_nolabel_trans. apply loadimm64_label. TailNoLabel.
+- unfold transl_condimm_int64u.
+ destruct (Int64.eq n Int64.zero).
++ destruct c0; simpl; TailNoLabel.
++ destruct c0; simpl;
+ try (eapply tail_nolabel_trans; [apply loadimm64_label | TailNoLabel]).
+ apply opimm64_label; intros; exact I.
+- destruct (transl_cond_float c0 r x x0) as [insn normal] eqn:F; inv EQ2.
+ apply tail_nolabel_cons. eapply transl_cond_float_nolabel; eauto.
+ destruct normal; TailNoLabel.
+- destruct (transl_cond_float c0 r x x0) as [insn normal] eqn:F; inv EQ2.
+ apply tail_nolabel_cons. eapply transl_cond_float_nolabel; eauto.
+ destruct normal; TailNoLabel.
+- destruct (transl_cond_single c0 r x x0) as [insn normal] eqn:F; inv EQ2.
+ apply tail_nolabel_cons. eapply transl_cond_single_nolabel; eauto.
+ destruct normal; TailNoLabel.
+- destruct (transl_cond_single c0 r x x0) as [insn normal] eqn:F; inv EQ2.
+ apply tail_nolabel_cons. eapply transl_cond_single_nolabel; eauto.
+ destruct normal; TailNoLabel.
+ Qed.
+
Remark transl_op_label:
forall op args r k c,
transl_op op args r k = OK c -> tail_nolabel k c.
Proof.
Opaque Int.eq.
- unfold transl_op; intros; destruct op; TailNoLabel;
- try (destruct optR as [[]|]; simpl in *; TailNoLabel).
+ unfold transl_op; intros; destruct op; TailNoLabel.
- destruct (preg_of r); try discriminate; destruct (preg_of m); inv H; TailNoLabel.
+- destruct (Float.eq_dec n Float.zero); TailNoLabel.
+- destruct (Float32.eq_dec n Float32.zero); TailNoLabel.
- destruct (Archi.pic_code tt && negb (Ptrofs.eq ofs Ptrofs.zero)).
+ eapply tail_nolabel_trans; [|apply addptrofs_label]. TailNoLabel.
+ TailNoLabel.
+- apply opimm32_label; intros; exact I.
+- apply opimm32_label; intros; exact I.
+- apply opimm32_label; intros; exact I.
+- apply opimm32_label; intros; exact I.
+- destruct (Int.eq n Int.zero); try destruct (Int.eq n Int.one); TailNoLabel.
+- apply opimm64_label; intros; exact I.
+- apply opimm64_label; intros; exact I.
+- apply opimm64_label; intros; exact I.
+- apply opimm64_label; intros; exact I.
+- destruct (Int.eq n Int.zero); try destruct (Int.eq n Int.one); TailNoLabel.
+- eapply transl_cond_op_label; eauto.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
+- destruct optR as [[]|]; simpl in *; TailNoLabel.
Qed.
Remark indexed_memory_access_label:
diff --git a/riscV/Asmgenproof1.v b/riscV/Asmgenproof1.v
index faa066b0..2293e001 100644
--- a/riscV/Asmgenproof1.v
+++ b/riscV/Asmgenproof1.v
@@ -129,6 +129,22 @@ Proof.
intros; Simpl.
Qed.
+Lemma loadimm32_correct:
+ forall rd n k rs m,
+ exists rs',
+ exec_straight ge fn (loadimm32 rd n k) rs m k rs' m
+ /\ rs'#rd = Vint n
+ /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
+Proof.
+ unfold loadimm32; intros. generalize (make_immed32_sound n); intros E.
+ destruct (make_immed32 n).
+- subst imm. econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split. rewrite Int.add_zero_l; Simpl.
+ intros; Simpl.
+- rewrite E. apply load_hilo32_correct.
+Qed.
+
Lemma opimm32_correct:
forall (op: ireg -> ireg0 -> ireg0 -> instruction)
(opi: ireg -> ireg0 -> int -> instruction)
@@ -179,6 +195,27 @@ Proof.
intros; Simpl.
Qed.
+Lemma loadimm64_correct:
+ forall rd n k rs m,
+ exists rs',
+ exec_straight ge fn (loadimm64 rd n k) rs m k rs' m
+ /\ rs'#rd = Vlong n
+ /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r.
+Proof.
+ unfold loadimm64; intros. generalize (make_immed64_sound n); intros E.
+ destruct (make_immed64 n).
+- subst imm. econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split. rewrite Int64.add_zero_l; Simpl.
+ intros; Simpl.
+- exploit load_hilo64_correct; eauto. intros (rs' & A & B & C).
+ rewrite E. exists rs'; eauto.
+- subst imm. econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split. Simpl.
+ intros; Simpl.
+Qed.
+
Lemma opimm64_correct:
forall (op: ireg -> ireg0 -> ireg0 -> instruction)
(opi: ireg -> ireg0 -> int64 -> instruction)
@@ -253,6 +290,102 @@ Proof.
rewrite H0 in B. inv B. auto.
Qed.
+(** Translation of conditional branches *)
+
+Lemma transl_cbranch_int32s_correct:
+ forall cmp r1 r2 lbl (rs: regset) m b,
+ Val.cmp_bool cmp rs##r1 rs##r2 = Some b ->
+ exec_instr ge fn (transl_cbranch_int32s cmp r1 r2 lbl) rs m =
+ eval_branch fn lbl rs m (Some b).
+Proof.
+ intros. destruct cmp; simpl; rewrite ? H.
+- destruct rs##r1; simpl in H; try discriminate. destruct rs##r2; inv H.
+ simpl; auto.
+- destruct rs##r1; simpl in H; try discriminate. destruct rs##r2; inv H.
+ simpl; auto.
+- auto.
+- rewrite <- Val.swap_cmp_bool. simpl. rewrite H; auto.
+- rewrite <- Val.swap_cmp_bool. simpl. rewrite H; auto.
+- auto.
+Qed.
+
+Lemma transl_cbranch_int32u_correct:
+ forall cmp r1 r2 lbl (rs: regset) m b,
+ Val.cmpu_bool (Mem.valid_pointer m) cmp rs##r1 rs##r2 = Some b ->
+ exec_instr ge fn (transl_cbranch_int32u cmp r1 r2 lbl) rs m =
+ eval_branch fn lbl rs m (Some b).
+Proof.
+ intros. destruct cmp; simpl; rewrite ? H; auto.
+- rewrite <- Val.swap_cmpu_bool. simpl. rewrite H; auto.
+- rewrite <- Val.swap_cmpu_bool. simpl. rewrite H; auto.
+Qed.
+
+Lemma transl_cbranch_int64s_correct:
+ forall cmp r1 r2 lbl (rs: regset) m b,
+ Val.cmpl_bool cmp rs###r1 rs###r2 = Some b ->
+ exec_instr ge fn (transl_cbranch_int64s cmp r1 r2 lbl) rs m =
+ eval_branch fn lbl rs m (Some b).
+Proof.
+ intros. destruct cmp; simpl; rewrite ? H.
+- destruct rs###r1; simpl in H; try discriminate. destruct rs###r2; inv H.
+ simpl; auto.
+- destruct rs###r1; simpl in H; try discriminate. destruct rs###r2; inv H.
+ simpl; auto.
+- auto.
+- rewrite <- Val.swap_cmpl_bool. simpl. rewrite H; auto.
+- rewrite <- Val.swap_cmpl_bool. simpl. rewrite H; auto.
+- auto.
+Qed.
+
+Lemma transl_cbranch_int64u_correct:
+ forall cmp r1 r2 lbl (rs: regset) m b,
+ Val.cmplu_bool (Mem.valid_pointer m) cmp rs###r1 rs###r2 = Some b ->
+ exec_instr ge fn (transl_cbranch_int64u cmp r1 r2 lbl) rs m =
+ eval_branch fn lbl rs m (Some b).
+Proof.
+ intros. destruct cmp; simpl; rewrite ? H; auto.
+- rewrite <- Val.swap_cmplu_bool. simpl. rewrite H; auto.
+- rewrite <- Val.swap_cmplu_bool. simpl. rewrite H; auto.
+Qed.
+
+Lemma transl_cond_float_correct:
+ forall (rs: regset) m cmp rd r1 r2 insn normal v,
+ transl_cond_float cmp rd r1 r2 = (insn, normal) ->
+ v = (if normal then Val.cmpf cmp rs#r1 rs#r2 else Val.notbool (Val.cmpf cmp rs#r1 rs#r2)) ->
+ exec_instr ge fn insn rs m = Next (nextinstr (rs#rd <- v)) m.
+Proof.
+ intros. destruct cmp; simpl in H; inv H; auto.
+- rewrite Val.negate_cmpf_eq. auto.
+- simpl. f_equal. f_equal. f_equal. destruct (rs r2), (rs r1); auto. unfold Val.cmpf, Val.cmpf_bool.
+ rewrite <- Float.cmp_swap. auto.
+- simpl. f_equal. f_equal. f_equal. destruct (rs r2), (rs r1); auto. unfold Val.cmpf, Val.cmpf_bool.
+ rewrite <- Float.cmp_swap. auto.
+Qed.
+
+Lemma transl_cond_single_correct:
+ forall (rs: regset) m cmp rd r1 r2 insn normal v,
+ transl_cond_single cmp rd r1 r2 = (insn, normal) ->
+ v = (if normal then Val.cmpfs cmp rs#r1 rs#r2 else Val.notbool (Val.cmpfs cmp rs#r1 rs#r2)) ->
+ exec_instr ge fn insn rs m = Next (nextinstr (rs#rd <- v)) m.
+Proof.
+ intros. destruct cmp; simpl in H; inv H; auto.
+- simpl. f_equal. f_equal. f_equal. destruct (rs r2), (rs r1); auto. unfold Val.cmpfs, Val.cmpfs_bool.
+ rewrite Float32.cmp_ne_eq. destruct (Float32.cmp Ceq f0 f); auto.
+- simpl. f_equal. f_equal. f_equal. destruct (rs r2), (rs r1); auto. unfold Val.cmpfs, Val.cmpfs_bool.
+ rewrite <- Float32.cmp_swap. auto.
+- simpl. f_equal. f_equal. f_equal. destruct (rs r2), (rs r1); auto. unfold Val.cmpfs, Val.cmpfs_bool.
+ rewrite <- Float32.cmp_swap. auto.
+ Qed.
+
+(* TODO gourdinl UNUSUED ? Remark branch_on_X31:
+ forall normal lbl (rs: regset) m b,
+ rs#X31 = Val.of_bool (eqb normal b) ->
+ exec_instr ge fn (if normal then Pbnew X31 X0 lbl else Pbeqw X31 X0 lbl) rs m =
+ eval_branch fn lbl rs m (Some b).
+Proof.
+ intros. destruct normal; simpl; rewrite H; simpl; destruct b; reflexivity.
+ Qed.*)
+
Ltac ArgsInv :=
repeat (match goal with
| [ H: Error _ = OK _ |- _ ] => discriminate
@@ -284,46 +417,219 @@ Proof.
{ apply eval_condition_lessdef with (map ms args) m; auto. eapply preg_vals; eauto. }
clear EVAL MEXT AG.
destruct cond; simpl in TRANSL; ArgsInv.
- all:
- destruct optR as [[]|];
- unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
- unfold zero32, Op.zero32 in *;
- unfold zero64, Op.zero64 in *; inv EQ2;
- try (destruct (rs x); simpl in EVAL'; discriminate; fail);
- try (eexists; eexists; eauto; split; constructor;
- simpl in *; try rewrite EVAL'; auto; fail).
- all:
- destruct (rs x) eqn:EQRS; simpl in *; try congruence;
- eexists; eexists; eauto; split; constructor; auto;
- simpl in *; rewrite EQRS.
- - assert (HB: (Int.eq Int.zero i) = b) by congruence;
+ - exists rs, (transl_cbranch_int32s c0 x x0 lbl).
+ intuition auto. constructor. apply transl_cbranch_int32s_correct; auto.
+- exists rs, (transl_cbranch_int32u c0 x x0 lbl).
+ intuition auto. constructor. apply transl_cbranch_int32u_correct; auto.
+- predSpec Int.eq Int.eq_spec n Int.zero.
++ subst n. exists rs, (transl_cbranch_int32s c0 x X0 lbl).
+ intuition auto. constructor. apply transl_cbranch_int32s_correct; auto.
++ exploit (loadimm32_correct X31 n); eauto. intros (rs' & A & B & C).
+ exists rs', (transl_cbranch_int32s c0 x X31 lbl).
+ split. constructor; eexact A. split; auto.
+ apply transl_cbranch_int32s_correct; auto.
+ simpl; rewrite B, C; eauto with asmgen.
+- predSpec Int.eq Int.eq_spec n Int.zero.
++ subst n. exists rs, (transl_cbranch_int32u c0 x X0 lbl).
+ intuition auto. constructor. apply transl_cbranch_int32u_correct; auto.
++ exploit (loadimm32_correct X31 n); eauto. intros (rs' & A & B & C).
+ exists rs', (transl_cbranch_int32u c0 x X31 lbl).
+ split. constructor; eexact A. split; auto.
+ apply transl_cbranch_int32u_correct; auto.
+ simpl; rewrite B, C; eauto with asmgen.
+- exists rs, (transl_cbranch_int64s c0 x x0 lbl).
+ intuition auto. constructor. apply transl_cbranch_int64s_correct; auto.
+- exists rs, (transl_cbranch_int64u c0 x x0 lbl).
+ intuition auto. constructor. apply transl_cbranch_int64u_correct; auto.
+- predSpec Int64.eq Int64.eq_spec n Int64.zero.
++ subst n. exists rs, (transl_cbranch_int64s c0 x X0 lbl).
+ intuition auto. constructor. apply transl_cbranch_int64s_correct; auto.
++ exploit (loadimm64_correct X31 n); eauto. intros (rs' & A & B & C).
+ exists rs', (transl_cbranch_int64s c0 x X31 lbl).
+ split. constructor; eexact A. split; auto.
+ apply transl_cbranch_int64s_correct; auto.
+ simpl; rewrite B, C; eauto with asmgen.
+- predSpec Int64.eq Int64.eq_spec n Int64.zero.
++ subst n. exists rs, (transl_cbranch_int64u c0 x X0 lbl).
+ intuition auto. constructor. apply transl_cbranch_int64u_correct; auto.
++ exploit (loadimm64_correct X31 n); eauto. intros (rs' & A & B & C).
+ exists rs', (transl_cbranch_int64u c0 x X31 lbl).
+ split. constructor; eexact A. split; auto.
+ apply transl_cbranch_int64u_correct; auto.
+ simpl; rewrite B, C; eauto with asmgen.
+- destruct (transl_cond_float c0 X31 x x0) as [insn normal] eqn:TC; inv EQ2.
+ set (v := if normal then Val.cmpf c0 rs#x rs#x0 else Val.notbool (Val.cmpf c0 rs#x rs#x0)).
+ assert (V: v = Val.of_bool (eqb normal b)).
+ { unfold v, Val.cmpf. rewrite EVAL'. destruct normal, b; reflexivity. }
+ econstructor; econstructor.
+ split. constructor. apply exec_straight_one. eapply transl_cond_float_correct with (v := v); eauto. auto.
+ split. rewrite V; destruct normal, b; reflexivity.
+ intros; Simpl.
+- destruct (transl_cond_float c0 X31 x x0) as [insn normal] eqn:TC; inv EQ2.
+ assert (EVAL'': Val.cmpf_bool c0 (rs x) (rs x0) = Some (negb b)).
+ { destruct (Val.cmpf_bool c0 (rs x) (rs x0)) as [[]|]; inv EVAL'; auto. }
+ set (v := if normal then Val.cmpf c0 rs#x rs#x0 else Val.notbool (Val.cmpf c0 rs#x rs#x0)).
+ assert (V: v = Val.of_bool (xorb normal b)).
+ { unfold v, Val.cmpf. rewrite EVAL''. destruct normal, b; reflexivity. }
+ econstructor; econstructor.
+ split. constructor. apply exec_straight_one. eapply transl_cond_float_correct with (v := v); eauto. auto.
+ split. rewrite V; destruct normal, b; reflexivity.
+ intros; Simpl.
+- destruct (transl_cond_single c0 X31 x x0) as [insn normal] eqn:TC; inv EQ2.
+ set (v := if normal then Val.cmpfs c0 rs#x rs#x0 else Val.notbool (Val.cmpfs c0 rs#x rs#x0)).
+ assert (V: v = Val.of_bool (eqb normal b)).
+ { unfold v, Val.cmpfs. rewrite EVAL'. destruct normal, b; reflexivity. }
+ econstructor; econstructor.
+ split. constructor. apply exec_straight_one. eapply transl_cond_single_correct with (v := v); eauto. auto.
+ split. rewrite V; destruct normal, b; reflexivity.
+ intros; Simpl.
+- destruct (transl_cond_single c0 X31 x x0) as [insn normal] eqn:TC; inv EQ2.
+ assert (EVAL'': Val.cmpfs_bool c0 (rs x) (rs x0) = Some (negb b)).
+ { destruct (Val.cmpfs_bool c0 (rs x) (rs x0)) as [[]|]; inv EVAL'; auto. }
+ set (v := if normal then Val.cmpfs c0 rs#x rs#x0 else Val.notbool (Val.cmpfs c0 rs#x rs#x0)).
+ assert (V: v = Val.of_bool (xorb normal b)).
+ { unfold v, Val.cmpfs. rewrite EVAL''. destruct normal, b; reflexivity. }
+ econstructor; econstructor.
+ split. constructor. apply exec_straight_one. eapply transl_cond_single_correct with (v := v); eauto. auto.
+ split. rewrite V; destruct normal, b; reflexivity.
+ intros; Simpl.
+
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32 in *;
+ destruct (rs x) eqn:EQRS; simpl in *; try congruence;
+ inv EQ2; eexists; eexists; eauto; split; constructor; auto;
+ simpl in *.
+ + rewrite EQRS;
+ assert (HB: (Int.eq Int.zero i) = b) by congruence.
rewrite HB; destruct b; simpl; auto.
- - assert (HB: (Int.eq i Int.zero) = b) by congruence.
+ + rewrite EQRS;
+ assert (HB: (Int.eq i Int.zero) = b) by congruence.
rewrite <- HB; destruct b; simpl; auto.
- - destruct (rs x0); try congruence.
+ + rewrite EQRS;
+ destruct (rs x0); try congruence.
assert (HB: (Int.eq i i0) = b) by congruence.
rewrite <- HB; destruct b; simpl; auto.
- - assert (HB: negb (Int.eq Int.zero i) = b) by congruence.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32 in *;
+ destruct (rs x) eqn:EQRS; simpl in *; try congruence;
+ inv EQ2; eexists; eexists; eauto; split; constructor; auto;
+ simpl in *.
+ + rewrite EQRS;
+ assert (HB: negb (Int.eq Int.zero i) = b) by congruence.
rewrite HB; destruct b; simpl; auto.
- - assert (HB: negb (Int.eq i Int.zero) = b) by congruence.
+ + rewrite EQRS;
+ assert (HB: negb (Int.eq i Int.zero) = b) by congruence.
rewrite <- HB; destruct b; simpl; auto.
- - destruct (rs x0); try congruence.
+ + rewrite EQRS;
+ destruct (rs x0); try congruence.
assert (HB: negb (Int.eq i i0) = b) by congruence.
rewrite <- HB; destruct b; simpl; auto.
- - assert (HB: (Int64.eq Int64.zero i) = b) by congruence.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32 in *; inv EQ2;
+ try (destruct (rs x); simpl in EVAL'; discriminate; fail);
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; try rewrite EVAL'; auto.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32 in *; inv EQ2;
+ try (destruct (rs x); simpl in EVAL'; discriminate; fail);
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; try rewrite EVAL'; auto.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32 in *; inv EQ2;
+ try (destruct (rs x); simpl in EVAL'; discriminate; fail);
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; try rewrite EVAL'; auto.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32 in *; inv EQ2;
+ try (destruct (rs x); simpl in EVAL'; discriminate; fail);
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; try rewrite EVAL'; auto.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32 in *; inv EQ2;
+ try (destruct (rs x); simpl in EVAL'; discriminate; fail);
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; try rewrite EVAL'; auto.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32 in *; inv EQ2;
+ try (destruct (rs x); simpl in EVAL'; discriminate; fail);
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; try rewrite EVAL'; auto.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32 in *; inv EQ2;
+ destruct (rs x) eqn:EQRS; simpl in *; try congruence;
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; auto.
+ + rewrite EQRS;
+ assert (HB: (Int64.eq Int64.zero i) = b) by congruence.
rewrite HB; destruct b; simpl; auto.
- - assert (HB: (Int64.eq i Int64.zero) = b) by congruence.
+ + rewrite EQRS;
+ assert (HB: (Int64.eq i Int64.zero) = b) by congruence.
rewrite <- HB; destruct b; simpl; auto.
- - destruct (rs x0); try congruence.
+ + rewrite EQRS;
+ destruct (rs x0); try congruence.
assert (HB: (Int64.eq i i0) = b) by congruence.
rewrite <- HB; destruct b; simpl; auto.
- - assert (HB: negb (Int64.eq Int64.zero i) = b) by congruence.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32 in *; inv EQ2;
+ destruct (rs x) eqn:EQRS; simpl in *; try congruence;
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; auto.
+ + rewrite EQRS;
+ assert (HB: negb (Int64.eq Int64.zero i) = b) by congruence.
rewrite HB; destruct b; simpl; auto.
- - assert (HB: negb (Int64.eq i Int64.zero) = b) by congruence.
+ + rewrite EQRS;
+ assert (HB: negb (Int64.eq i Int64.zero) = b) by congruence.
rewrite <- HB; destruct b; simpl; auto.
- - destruct (rs x0); try congruence.
+ + rewrite EQRS;
+ destruct (rs x0); try congruence.
assert (HB: negb (Int64.eq i i0) = b) by congruence.
rewrite <- HB; destruct b; simpl; auto.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32, zero64, Op.zero64 in *; inv EQ2;
+ try (destruct (rs x); simpl in EVAL'; discriminate; fail);
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; try rewrite EVAL'; auto.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32, zero64, Op.zero64 in *; inv EQ2;
+ try (destruct (rs x); simpl in EVAL'; discriminate; fail);
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; try rewrite EVAL'; auto.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32, zero64, Op.zero64 in *; inv EQ2;
+ try (destruct (rs x); simpl in EVAL'; discriminate; fail);
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; try rewrite EVAL'; auto.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32, zero64, Op.zero64 in *; inv EQ2;
+ try (destruct (rs x); simpl in EVAL'; discriminate; fail);
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; try rewrite EVAL'; auto.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32, zero64, Op.zero64 in *; inv EQ2;
+ try (destruct (rs x); simpl in EVAL'; discriminate; fail);
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; try rewrite EVAL'; auto.
+- destruct optR as [[]|];
+ unfold apply_bin_oreg_ireg0, apply_bin_oreg in *;
+ unfold zero32, Op.zero32, zero64, Op.zero64 in *; inv EQ2;
+ try (destruct (rs x); simpl in EVAL'; discriminate; fail);
+ eexists; eexists; eauto; split; constructor;
+ simpl in *; try rewrite EVAL'; auto.
Qed.
Lemma transl_cbranch_correct_true:
@@ -357,6 +663,417 @@ Proof.
intros; Simpl.
Qed.
+(** Translation of condition operators *)
+
+Lemma transl_cond_int32s_correct:
+ forall cmp rd r1 r2 k rs m,
+ exists rs',
+ exec_straight ge fn (transl_cond_int32s cmp rd r1 r2 k) rs m k rs' m
+ /\ Val.lessdef (Val.cmp cmp rs##r1 rs##r2) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
+Proof.
+ intros. destruct cmp; simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl. destruct (rs##r1); auto. destruct (rs##r2); auto.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl. destruct (rs##r1); auto. destruct (rs##r2); auto.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl.
+- econstructor; split.
+ eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto.
+ split; intros; Simpl. unfold Val.cmp. rewrite <- Val.swap_cmp_bool.
+ simpl. rewrite (Val.negate_cmp_bool Clt).
+ destruct (Val.cmp_bool Clt rs##r2 rs##r1) as [[]|]; auto.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl. unfold Val.cmp. rewrite <- Val.swap_cmp_bool. auto.
+- econstructor; split.
+ eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto.
+ split; intros; Simpl. unfold Val.cmp. rewrite (Val.negate_cmp_bool Clt).
+ destruct (Val.cmp_bool Clt rs##r1 rs##r2) as [[]|]; auto.
+Qed.
+
+Lemma transl_cond_int32u_correct:
+ forall cmp rd r1 r2 k rs m,
+ exists rs',
+ exec_straight ge fn (transl_cond_int32u cmp rd r1 r2 k) rs m k rs' m
+ /\ rs'#rd = Val.cmpu (Mem.valid_pointer m) cmp rs##r1 rs##r2
+ /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
+Proof.
+ intros. destruct cmp; simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl.
+- econstructor; split.
+ eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto.
+ split; intros; Simpl. unfold Val.cmpu. rewrite <- Val.swap_cmpu_bool.
+ simpl. rewrite (Val.negate_cmpu_bool (Mem.valid_pointer m) Cle).
+ destruct (Val.cmpu_bool (Mem.valid_pointer m) Cle rs##r1 rs##r2) as [[]|]; auto.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl. unfold Val.cmpu. rewrite <- Val.swap_cmpu_bool. auto.
+- econstructor; split.
+ eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto.
+ split; intros; Simpl. unfold Val.cmpu. rewrite (Val.negate_cmpu_bool (Mem.valid_pointer m) Clt).
+ destruct (Val.cmpu_bool (Mem.valid_pointer m) Clt rs##r1 rs##r2) as [[]|]; auto.
+Qed.
+
+Lemma transl_cond_int64s_correct:
+ forall cmp rd r1 r2 k rs m,
+ exists rs',
+ exec_straight ge fn (transl_cond_int64s cmp rd r1 r2 k) rs m k rs' m
+ /\ Val.lessdef (Val.maketotal (Val.cmpl cmp rs###r1 rs###r2)) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
+Proof.
+ intros. destruct cmp; simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl. destruct (rs###r1); auto. destruct (rs###r2); auto.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl. destruct (rs###r1); auto. destruct (rs###r2); auto.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl.
+- econstructor; split.
+ eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto.
+ split; intros; Simpl. unfold Val.cmpl. rewrite <- Val.swap_cmpl_bool.
+ simpl. rewrite (Val.negate_cmpl_bool Clt).
+ destruct (Val.cmpl_bool Clt rs###r2 rs###r1) as [[]|]; auto.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl. unfold Val.cmpl. rewrite <- Val.swap_cmpl_bool. auto.
+- econstructor; split.
+ eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto.
+ split; intros; Simpl. unfold Val.cmpl. rewrite (Val.negate_cmpl_bool Clt).
+ destruct (Val.cmpl_bool Clt rs###r1 rs###r2) as [[]|]; auto.
+Qed.
+
+Lemma transl_cond_int64u_correct:
+ forall cmp rd r1 r2 k rs m,
+ exists rs',
+ exec_straight ge fn (transl_cond_int64u cmp rd r1 r2 k) rs m k rs' m
+ /\ rs'#rd = Val.maketotal (Val.cmplu (Mem.valid_pointer m) cmp rs###r1 rs###r2)
+ /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
+Proof.
+ intros. destruct cmp; simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl.
+- econstructor; split.
+ eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto.
+ split; intros; Simpl. unfold Val.cmplu. rewrite <- Val.swap_cmplu_bool.
+ simpl. rewrite (Val.negate_cmplu_bool (Mem.valid_pointer m) Cle).
+ destruct (Val.cmplu_bool (Mem.valid_pointer m) Cle rs###r1 rs###r2) as [[]|]; auto.
+- econstructor; split. apply exec_straight_one; [simpl; eauto|auto].
+ split; intros; Simpl. unfold Val.cmplu. rewrite <- Val.swap_cmplu_bool. auto.
+- econstructor; split.
+ eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto.
+ split; intros; Simpl. unfold Val.cmplu. rewrite (Val.negate_cmplu_bool (Mem.valid_pointer m) Clt).
+ destruct (Val.cmplu_bool (Mem.valid_pointer m) Clt rs###r1 rs###r2) as [[]|]; auto.
+Qed.
+
+Lemma transl_condimm_int32s_correct:
+ forall cmp rd r1 n k rs m,
+ r1 <> X31 ->
+ exists rs',
+ exec_straight ge fn (transl_condimm_int32s cmp rd r1 n k) rs m k rs' m
+ /\ Val.lessdef (Val.cmp cmp rs#r1 (Vint n)) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r.
+Proof.
+ intros. unfold transl_condimm_int32s.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+- subst n. exploit transl_cond_int32s_correct. intros (rs' & A & B & C).
+ exists rs'; eauto.
+- assert (DFL:
+ exists rs',
+ exec_straight ge fn (loadimm32 X31 n (transl_cond_int32s cmp rd r1 X31 k)) rs m k rs' m
+ /\ Val.lessdef (Val.cmp cmp rs#r1 (Vint n)) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r).
+ { exploit loadimm32_correct; eauto. intros (rs1 & A1 & B1 & C1).
+ exploit transl_cond_int32s_correct; eauto. intros (rs2 & A2 & B2 & C2).
+ exists rs2; split.
+ eapply exec_straight_trans. eexact A1. eexact A2.
+ split. simpl in B2. rewrite B1, C1 in B2 by auto with asmgen. auto.
+ intros; transitivity (rs1 r); auto. }
+ destruct cmp.
++ unfold xorimm32.
+ exploit (opimm32_correct Pxorw Pxoriw Val.xor); eauto. intros (rs1 & A1 & B1 & C1).
+ exploit transl_cond_int32s_correct; eauto. intros (rs2 & A2 & B2 & C2).
+ exists rs2; split.
+ eapply exec_straight_trans. eexact A1. eexact A2.
+ split. simpl in B2; rewrite B1 in B2; simpl in B2. destruct (rs#r1); auto.
+ unfold Val.cmp in B2; simpl in B2; rewrite Int.xor_is_zero in B2. exact B2.
+ intros; transitivity (rs1 r); auto.
++ unfold xorimm32.
+ exploit (opimm32_correct Pxorw Pxoriw Val.xor); eauto. intros (rs1 & A1 & B1 & C1).
+ exploit transl_cond_int32s_correct; eauto. intros (rs2 & A2 & B2 & C2).
+ exists rs2; split.
+ eapply exec_straight_trans. eexact A1. eexact A2.
+ split. simpl in B2; rewrite B1 in B2; simpl in B2. destruct (rs#r1); auto.
+ unfold Val.cmp in B2; simpl in B2; rewrite Int.xor_is_zero in B2. exact B2.
+ intros; transitivity (rs1 r); auto.
++ exploit (opimm32_correct Psltw Psltiw (Val.cmp Clt)); eauto. intros (rs1 & A1 & B1 & C1).
+ exists rs1; split. eexact A1. split; auto. rewrite B1; auto.
++ predSpec Int.eq Int.eq_spec n (Int.repr Int.max_signed).
+* subst n. exploit loadimm32_correct; eauto. intros (rs1 & A1 & B1 & C1).
+ exists rs1; split. eexact A1. split; auto.
+ unfold Val.cmp; destruct (rs#r1); simpl; auto. rewrite B1.
+ unfold Int.lt. rewrite zlt_false. auto.
+ change (Int.signed (Int.repr Int.max_signed)) with Int.max_signed.
+ generalize (Int.signed_range i); omega.
+* exploit (opimm32_correct Psltw Psltiw (Val.cmp Clt)); eauto. intros (rs1 & A1 & B1 & C1).
+ exists rs1; split. eexact A1. split; auto.
+ rewrite B1. unfold Val.cmp; simpl; destruct (rs#r1); simpl; auto.
+ unfold Int.lt. replace (Int.signed (Int.add n Int.one)) with (Int.signed n + 1).
+ destruct (zlt (Int.signed n) (Int.signed i)).
+ rewrite zlt_false by omega. auto.
+ rewrite zlt_true by omega. auto.
+ rewrite Int.add_signed. symmetry; apply Int.signed_repr.
+ assert (Int.signed n <> Int.max_signed).
+ { red; intros E. elim H1. rewrite <- (Int.repr_signed n). rewrite E. auto. }
+ generalize (Int.signed_range n); omega.
++ apply DFL.
++ apply DFL.
+Qed.
+
+Lemma transl_condimm_int32u_correct:
+ forall cmp rd r1 n k rs m,
+ r1 <> X31 ->
+ exists rs',
+ exec_straight ge fn (transl_condimm_int32u cmp rd r1 n k) rs m k rs' m
+ /\ Val.lessdef (Val.cmpu (Mem.valid_pointer m) cmp rs#r1 (Vint n)) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r.
+Proof.
+ intros. unfold transl_condimm_int32u.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+- subst n. exploit transl_cond_int32u_correct. intros (rs' & A & B & C).
+ exists rs'; split. eexact A. split; auto. rewrite B; auto.
+- assert (DFL:
+ exists rs',
+ exec_straight ge fn (loadimm32 X31 n (transl_cond_int32u cmp rd r1 X31 k)) rs m k rs' m
+ /\ Val.lessdef (Val.cmpu (Mem.valid_pointer m) cmp rs#r1 (Vint n)) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r).
+ { exploit loadimm32_correct; eauto. intros (rs1 & A1 & B1 & C1).
+ exploit transl_cond_int32u_correct; eauto. intros (rs2 & A2 & B2 & C2).
+ exists rs2; split.
+ eapply exec_straight_trans. eexact A1. eexact A2.
+ split. simpl in B2. rewrite B1, C1 in B2 by auto with asmgen. rewrite B2; auto.
+ intros; transitivity (rs1 r); auto. }
+ destruct cmp.
++ apply DFL.
++ apply DFL.
++ exploit (opimm32_correct Psltuw Psltiuw (Val.cmpu (Mem.valid_pointer m) Clt) m); eauto.
+ intros (rs1 & A1 & B1 & C1).
+ exists rs1; split. eexact A1. split; auto. rewrite B1; auto.
++ apply DFL.
++ apply DFL.
++ apply DFL.
+Qed.
+
+Lemma transl_condimm_int64s_correct:
+ forall cmp rd r1 n k rs m,
+ r1 <> X31 ->
+ exists rs',
+ exec_straight ge fn (transl_condimm_int64s cmp rd r1 n k) rs m k rs' m
+ /\ Val.lessdef (Val.maketotal (Val.cmpl cmp rs#r1 (Vlong n))) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r.
+Proof.
+ intros. unfold transl_condimm_int64s.
+ predSpec Int64.eq Int64.eq_spec n Int64.zero.
+- subst n. exploit transl_cond_int64s_correct. intros (rs' & A & B & C).
+ exists rs'; eauto.
+- assert (DFL:
+ exists rs',
+ exec_straight ge fn (loadimm64 X31 n (transl_cond_int64s cmp rd r1 X31 k)) rs m k rs' m
+ /\ Val.lessdef (Val.maketotal (Val.cmpl cmp rs#r1 (Vlong n))) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r).
+ { exploit loadimm64_correct; eauto. intros (rs1 & A1 & B1 & C1).
+ exploit transl_cond_int64s_correct; eauto. intros (rs2 & A2 & B2 & C2).
+ exists rs2; split.
+ eapply exec_straight_trans. eexact A1. eexact A2.
+ split. simpl in B2. rewrite B1, C1 in B2 by auto with asmgen. auto.
+ intros; transitivity (rs1 r); auto. }
+ destruct cmp.
++ unfold xorimm64.
+ exploit (opimm64_correct Pxorl Pxoril Val.xorl); eauto. intros (rs1 & A1 & B1 & C1).
+ exploit transl_cond_int64s_correct; eauto. intros (rs2 & A2 & B2 & C2).
+ exists rs2; split.
+ eapply exec_straight_trans. eexact A1. eexact A2.
+ split. simpl in B2; rewrite B1 in B2; simpl in B2. destruct (rs#r1); auto.
+ unfold Val.cmpl in B2; simpl in B2; rewrite Int64.xor_is_zero in B2. exact B2.
+ intros; transitivity (rs1 r); auto.
++ unfold xorimm64.
+ exploit (opimm64_correct Pxorl Pxoril Val.xorl); eauto. intros (rs1 & A1 & B1 & C1).
+ exploit transl_cond_int64s_correct; eauto. intros (rs2 & A2 & B2 & C2).
+ exists rs2; split.
+ eapply exec_straight_trans. eexact A1. eexact A2.
+ split. simpl in B2; rewrite B1 in B2; simpl in B2. destruct (rs#r1); auto.
+ unfold Val.cmpl in B2; simpl in B2; rewrite Int64.xor_is_zero in B2. exact B2.
+ intros; transitivity (rs1 r); auto.
++ exploit (opimm64_correct Psltl Psltil (fun v1 v2 => Val.maketotal (Val.cmpl Clt v1 v2))); eauto. intros (rs1 & A1 & B1 & C1).
+ exists rs1; split. eexact A1. split; auto. rewrite B1; auto.
++ predSpec Int64.eq Int64.eq_spec n (Int64.repr Int64.max_signed).
+* subst n. exploit loadimm32_correct; eauto. intros (rs1 & A1 & B1 & C1).
+ exists rs1; split. eexact A1. split; auto.
+ unfold Val.cmpl; destruct (rs#r1); simpl; auto. rewrite B1.
+ unfold Int64.lt. rewrite zlt_false. auto.
+ change (Int64.signed (Int64.repr Int64.max_signed)) with Int64.max_signed.
+ generalize (Int64.signed_range i); omega.
+* exploit (opimm64_correct Psltl Psltil (fun v1 v2 => Val.maketotal (Val.cmpl Clt v1 v2))); eauto. intros (rs1 & A1 & B1 & C1).
+ exists rs1; split. eexact A1. split; auto.
+ rewrite B1. unfold Val.cmpl; simpl; destruct (rs#r1); simpl; auto.
+ unfold Int64.lt. replace (Int64.signed (Int64.add n Int64.one)) with (Int64.signed n + 1).
+ destruct (zlt (Int64.signed n) (Int64.signed i)).
+ rewrite zlt_false by omega. auto.
+ rewrite zlt_true by omega. auto.
+ rewrite Int64.add_signed. symmetry; apply Int64.signed_repr.
+ assert (Int64.signed n <> Int64.max_signed).
+ { red; intros E. elim H1. rewrite <- (Int64.repr_signed n). rewrite E. auto. }
+ generalize (Int64.signed_range n); omega.
++ apply DFL.
++ apply DFL.
+Qed.
+
+Lemma transl_condimm_int64u_correct:
+ forall cmp rd r1 n k rs m,
+ r1 <> X31 ->
+ exists rs',
+ exec_straight ge fn (transl_condimm_int64u cmp rd r1 n k) rs m k rs' m
+ /\ Val.lessdef (Val.maketotal (Val.cmplu (Mem.valid_pointer m) cmp rs#r1 (Vlong n))) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r.
+Proof.
+ intros. unfold transl_condimm_int64u.
+ predSpec Int64.eq Int64.eq_spec n Int64.zero.
+- subst n. exploit transl_cond_int64u_correct. intros (rs' & A & B & C).
+ exists rs'; split. eexact A. split; auto. rewrite B; auto.
+- assert (DFL:
+ exists rs',
+ exec_straight ge fn (loadimm64 X31 n (transl_cond_int64u cmp rd r1 X31 k)) rs m k rs' m
+ /\ Val.lessdef (Val.maketotal (Val.cmplu (Mem.valid_pointer m) cmp rs#r1 (Vlong n))) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r).
+ { exploit loadimm64_correct; eauto. intros (rs1 & A1 & B1 & C1).
+ exploit transl_cond_int64u_correct; eauto. intros (rs2 & A2 & B2 & C2).
+ exists rs2; split.
+ eapply exec_straight_trans. eexact A1. eexact A2.
+ split. simpl in B2. rewrite B1, C1 in B2 by auto with asmgen. rewrite B2; auto.
+ intros; transitivity (rs1 r); auto. }
+ destruct cmp.
++ apply DFL.
++ apply DFL.
++ exploit (opimm64_correct Psltul Psltiul (fun v1 v2 => Val.maketotal (Val.cmplu (Mem.valid_pointer m) Clt v1 v2)) m); eauto.
+ intros (rs1 & A1 & B1 & C1).
+ exists rs1; split. eexact A1. split; auto. rewrite B1; auto.
++ apply DFL.
++ apply DFL.
++ apply DFL.
+ Qed.
+
+Lemma transl_cond_op_correct:
+ forall cond rd args k c rs m,
+ transl_cond_op cond rd args k = OK c ->
+ exists rs',
+ exec_straight ge fn c rs m k rs' m
+ /\ Val.lessdef (Val.of_optbool (eval_condition cond (map rs (map preg_of args)) m)) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r.
+Proof.
+ assert (MKTOT: forall ob, Val.of_optbool ob = Val.maketotal (option_map Val.of_bool ob)).
+ { destruct ob as [[]|]; reflexivity. }
+ intros until m; intros TR.
+ destruct cond; simpl in TR; ArgsInv.
++ (* cmp *)
+ exploit transl_cond_int32s_correct; eauto. intros (rs' & A & B & C). exists rs'; eauto.
++ (* cmpu *)
+ exploit transl_cond_int32u_correct; eauto. intros (rs' & A & B & C).
+ exists rs'; repeat split; eauto. rewrite B; auto.
++ (* cmpimm *)
+ apply transl_condimm_int32s_correct; eauto with asmgen.
++ (* cmpuimm *)
+ apply transl_condimm_int32u_correct; eauto with asmgen.
++ (* cmpl *)
+ exploit transl_cond_int64s_correct; eauto. intros (rs' & A & B & C).
+ exists rs'; repeat split; eauto. rewrite MKTOT; eauto.
++ (* cmplu *)
+ exploit transl_cond_int64u_correct; eauto. intros (rs' & A & B & C).
+ exists rs'; repeat split; eauto. rewrite B, MKTOT; eauto.
++ (* cmplimm *)
+ exploit transl_condimm_int64s_correct; eauto. instantiate (1 := x); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; repeat split; eauto. rewrite MKTOT; eauto.
++ (* cmpluimm *)
+ exploit transl_condimm_int64u_correct; eauto. instantiate (1 := x); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; repeat split; eauto. rewrite MKTOT; eauto.
++ (* cmpf *)
+ destruct (transl_cond_float c0 rd x x0) as [insn normal] eqn:TR.
+ fold (Val.cmpf c0 (rs x) (rs x0)).
+ set (v := Val.cmpf c0 (rs x) (rs x0)).
+ destruct normal; inv EQ2.
+* econstructor; split.
+ apply exec_straight_one. eapply transl_cond_float_correct with (v := v); eauto. auto.
+ split; intros; Simpl.
+* econstructor; split.
+ eapply exec_straight_two.
+ eapply transl_cond_float_correct with (v := Val.notbool v); eauto.
+ simpl; reflexivity.
+ auto. auto.
+ split; intros; Simpl. unfold v, Val.cmpf. destruct (Val.cmpf_bool c0 (rs x) (rs x0)) as [[]|]; auto.
++ (* notcmpf *)
+ destruct (transl_cond_float c0 rd x x0) as [insn normal] eqn:TR.
+ rewrite Val.notbool_negb_3. fold (Val.cmpf c0 (rs x) (rs x0)).
+ set (v := Val.cmpf c0 (rs x) (rs x0)).
+ destruct normal; inv EQ2.
+* econstructor; split.
+ eapply exec_straight_two.
+ eapply transl_cond_float_correct with (v := v); eauto.
+ simpl; reflexivity.
+ auto. auto.
+ split; intros; Simpl. unfold v, Val.cmpf. destruct (Val.cmpf_bool c0 (rs x) (rs x0)) as [[]|]; auto.
+* econstructor; split.
+ apply exec_straight_one. eapply transl_cond_float_correct with (v := Val.notbool v); eauto. auto.
+ split; intros; Simpl.
++ (* cmpfs *)
+ destruct (transl_cond_single c0 rd x x0) as [insn normal] eqn:TR.
+ fold (Val.cmpfs c0 (rs x) (rs x0)).
+ set (v := Val.cmpfs c0 (rs x) (rs x0)).
+ destruct normal; inv EQ2.
+* econstructor; split.
+ apply exec_straight_one. eapply transl_cond_single_correct with (v := v); eauto. auto.
+ split; intros; Simpl.
+* econstructor; split.
+ eapply exec_straight_two.
+ eapply transl_cond_single_correct with (v := Val.notbool v); eauto.
+ simpl; reflexivity.
+ auto. auto.
+ split; intros; Simpl. unfold v, Val.cmpfs. destruct (Val.cmpfs_bool c0 (rs x) (rs x0)) as [[]|]; auto.
++ (* notcmpfs *)
+ destruct (transl_cond_single c0 rd x x0) as [insn normal] eqn:TR.
+ rewrite Val.notbool_negb_3. fold (Val.cmpfs c0 (rs x) (rs x0)).
+ set (v := Val.cmpfs c0 (rs x) (rs x0)).
+ destruct normal; inv EQ2.
+* econstructor; split.
+ eapply exec_straight_two.
+ eapply transl_cond_single_correct with (v := v); eauto.
+ simpl; reflexivity.
+ auto. auto.
+ split; intros; Simpl. unfold v, Val.cmpfs. destruct (Val.cmpfs_bool c0 (rs x) (rs x0)) as [[]|]; auto.
+* econstructor; split.
+ apply exec_straight_one. eapply transl_cond_single_correct with (v := Val.notbool v); eauto. auto.
+ split; intros; Simpl.
+ Qed.
+
+(** Some arithmetic properties. *)
+
+Remark cast32unsigned_from_cast32signed:
+ forall i, Int64.repr (Int.unsigned i) = Int64.zero_ext 32 (Int64.repr (Int.signed i)).
+Proof.
+ intros. apply Int64.same_bits_eq; intros.
+ rewrite Int64.bits_zero_ext, !Int64.testbit_repr by tauto.
+ rewrite Int.bits_signed by tauto. fold (Int.testbit i i0).
+ change Int.zwordsize with 32.
+ destruct (zlt i0 32). auto. apply Int.bits_above. auto.
+Qed.
+
(* Translation of arithmetic operations *)
Ltac SimplEval H :=
@@ -386,6 +1103,28 @@ Opaque Int.eq.
unfold transl_op in TR; destruct op; ArgsInv; simpl in EV; SimplEval EV; try TranslOpSimpl.
(* move *)
{ destruct (preg_of res), (preg_of m0); inv TR; TranslOpSimpl. }
+ (* intconst *)
+ { exploit loadimm32_correct; eauto. intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen. }
+ (* longconst *)
+ { exploit loadimm64_correct; eauto. intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen. }
+ (* floatconst *)
+ { destruct (Float.eq_dec n Float.zero).
+ + subst n. econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl.
+ + econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl. }
+ (* singleconst *)
+ { destruct (Float32.eq_dec n Float32.zero).
+ + subst n. econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl.
+ + econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl. }
(* addrsymbol *)
{ destruct (Archi.pic_code tt && negb (Ptrofs.eq ofs Ptrofs.zero)).
+ set (rs1 := nextinstr (rs#x <- (Genv.symbol_address ge id Ptrofs.zero))).
@@ -402,6 +1141,138 @@ Opaque Int.eq.
(* stackoffset *)
{ exploit addptrofs_correct. instantiate (1 := X2); auto with asmgen. intros (rs' & A & B & C).
exists rs'; split; eauto. auto with asmgen. }
+ (* cast8signed *)
+ { econstructor; split.
+ eapply exec_straight_two. simpl;eauto. simpl;eauto. auto. auto.
+ split; intros; Simpl.
+ assert (A: Int.ltu (Int.repr 24) Int.iwordsize = true) by auto.
+ destruct (rs x0); auto; simpl. rewrite A; simpl. rewrite A.
+ apply Val.lessdef_same. f_equal. apply Int.sign_ext_shr_shl. split; reflexivity. }
+ (* cast16signed *)
+ { econstructor; split.
+ eapply exec_straight_two. simpl;eauto. simpl;eauto. auto. auto.
+ split; intros; Simpl.
+ assert (A: Int.ltu (Int.repr 16) Int.iwordsize = true) by auto.
+ destruct (rs x0); auto; simpl. rewrite A; simpl. rewrite A.
+ apply Val.lessdef_same. f_equal. apply Int.sign_ext_shr_shl. split; reflexivity. }
+ (* addimm *)
+ { exploit (opimm32_correct Paddw Paddiw Val.add); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen. }
+ (* andimm *)
+ { exploit (opimm32_correct Pandw Pandiw Val.and); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen. }
+ (* orimm *)
+ exploit (opimm32_correct Porw Poriw Val.or); auto. instantiate (1 := x0); eauto with asmgen.
+ { intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen. }
+ (* xorimm *)
+ { exploit (opimm32_correct Pxorw Pxoriw Val.xor); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen. }
+ (* shrximm *)
+ { destruct (Val.shrx (rs x0) (Vint n)) eqn:TOTAL; cbn.
+ {
+ exploit Val.shrx_shr_3; eauto. intros E; subst v.
+ destruct (Int.eq n Int.zero).
+ + econstructor; split. apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl.
+ + destruct (Int.eq n Int.one).
+ * econstructor; split.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ apply exec_straight_one. simpl; reflexivity. auto.
+ split; intros; Simpl.
+ * change (Int.repr 32) with Int.iwordsize. set (n' := Int.sub Int.iwordsize n).
+ econstructor; split.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ apply exec_straight_one. simpl; reflexivity. auto.
+ split; intros; Simpl.
+ }
+ destruct (Int.eq n Int.zero).
+ + econstructor; split. apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl.
+ + destruct (Int.eq n Int.one).
+ * econstructor; split.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ apply exec_straight_one. simpl; reflexivity. auto.
+ split; intros; Simpl.
+ * change (Int.repr 32) with Int.iwordsize. set (n' := Int.sub Int.iwordsize n).
+ econstructor; split.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ apply exec_straight_one. simpl; reflexivity. auto.
+ split; intros; Simpl. }
+ (* longofintu *)
+ { econstructor; split.
+ eapply exec_straight_three. simpl; eauto. simpl; eauto. simpl; eauto. auto. auto. auto.
+ split; intros; Simpl. destruct (rs x0); auto. simpl.
+ assert (A: Int.ltu (Int.repr 32) Int64.iwordsize' = true) by auto.
+ rewrite A; simpl. rewrite A. apply Val.lessdef_same. f_equal.
+ rewrite cast32unsigned_from_cast32signed. apply Int64.zero_ext_shru_shl. compute; auto. }
+ (* addlimm *)
+ { exploit (opimm64_correct Paddl Paddil Val.addl); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen. }
+ (* andimm *)
+ { exploit (opimm64_correct Pandl Pandil Val.andl); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen. }
+ (* orimm *)
+ { exploit (opimm64_correct Porl Poril Val.orl); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen. }
+ (* xorimm *)
+ { exploit (opimm64_correct Pxorl Pxoril Val.xorl); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen. }
+ (* shrxlimm *)
+ { destruct (Val.shrxl (rs x0) (Vint n)) eqn:TOTAL.
+ {
+ exploit Val.shrxl_shrl_3; eauto. intros E; subst v.
+ destruct (Int.eq n Int.zero).
+ + econstructor; split. apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl.
+ + destruct (Int.eq n Int.one).
+ * econstructor; split.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ apply exec_straight_one. simpl; reflexivity. auto.
+ split; intros; Simpl.
+
+ * change (Int.repr 64) with Int64.iwordsize'. set (n' := Int.sub Int64.iwordsize' n).
+ econstructor; split.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ apply exec_straight_one. simpl; reflexivity. auto.
+ split; intros; Simpl.
+ }
+ destruct (Int.eq n Int.zero).
+ + econstructor; split. apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl.
+ + destruct (Int.eq n Int.one).
+ * econstructor; split.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ apply exec_straight_one. simpl; reflexivity. auto.
+ split; intros; Simpl.
+
+ * change (Int.repr 64) with Int64.iwordsize'. set (n' := Int.sub Int64.iwordsize' n).
+ econstructor; split.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ apply exec_straight_one. simpl; reflexivity. auto.
+ split; intros; Simpl. }
+ (* cond *)
+ { exploit transl_cond_op_correct; eauto. intros (rs' & A & B & C).
+ exists rs'; split. eexact A. eauto with asmgen. }
(* Expanded instructions from RTL *)
9,10,19,20:
econstructor; split; try apply exec_straight_one; simpl; eauto;
diff --git a/riscV/ExpansionOracle.ml b/riscV/ExpansionOracle.ml
index 5d739375..1384b9b3 100644
--- a/riscV/ExpansionOracle.ml
+++ b/riscV/ExpansionOracle.ml
@@ -116,8 +116,7 @@ let forget_reg vn rd =
print_list_pos old_regs;
Hashtbl.replace !vn.nval v
(List.filter (fun n -> not (P.eq n rd)) old_regs)
- | None ->
- debug "forget_reg: no mapping for r=%d\n" (p2i rd)
+ | None -> debug "forget_reg: no mapping for r=%d\n" (p2i rd)
let update_reg vn rd v =
debug "update_reg: update v=%d with r=%d\n" v (p2i rd);
@@ -696,8 +695,9 @@ let expanse (sb : superblock) code pm =
was_branch := false;
was_exp := false;
let inst = get_some @@ PTree.get n code in
- debug "We are checking node %d\n" (p2i n);
- (match inst with
+ (if !Clflags.option_fexpanse_rtlcond then
+ debug "We are checking node %d\n" (p2i n);
+ match inst with
(* Expansion of conditions - Ocmp *)
| Iop (Ocmp (Ccomp c), a1 :: a2 :: nil, dest, succ) ->
debug "Iop/Ccomp\n";
@@ -824,7 +824,7 @@ let expanse (sb : superblock) code pm =
was_branch := true;
was_exp := true
| _ -> ());
- (if not !was_exp then
+ (if !Clflags.option_fexpanse_others && not !was_exp then
match inst with
| Iop (Ofloatconst f, nil, dest, succ) ->
debug "Iop/Ofloatconst\n";
diff --git a/riscV/RTLpathSE_simplify.v b/riscV/RTLpathSE_simplify.v
index 7aca1772..ca049962 100644
--- a/riscV/RTLpathSE_simplify.v
+++ b/riscV/RTLpathSE_simplify.v
@@ -853,16 +853,6 @@ Proof.
destruct x; destruct y; simpl; auto. rewrite Float32.cmp_swap. auto.
Qed.
-Remark cast32unsigned_from_cast32signed:
- forall i, Int64.repr (Int.unsigned i) = Int64.zero_ext 32 (Int64.repr (Int.signed i)).
-Proof.
- intros. apply Int64.same_bits_eq; intros.
- rewrite Int64.bits_zero_ext, !Int64.testbit_repr by tauto.
- rewrite Int.bits_signed by tauto. fold (Int.testbit i i0).
- change Int.zwordsize with 32.
- destruct (zlt i0 32). auto. apply Int.bits_above. auto.
-Qed.
-
(** * Intermediates lemmas on each expanded instruction *)
Lemma simplify_ccomp_correct ge sp hst st c r r0 rs0 m0 v v0: forall