aboutsummaryrefslogtreecommitdiffstats
path: root/backend/Linearizeaux.ml
diff options
context:
space:
mode:
Diffstat (limited to 'backend/Linearizeaux.ml')
-rw-r--r--backend/Linearizeaux.ml442
1 files changed, 53 insertions, 389 deletions
diff --git a/backend/Linearizeaux.ml b/backend/Linearizeaux.ml
index 3f1a8b6e..5914f6a3 100644
--- a/backend/Linearizeaux.ml
+++ b/backend/Linearizeaux.ml
@@ -126,400 +126,64 @@ let enumerate_aux_flat f reach =
* This is a slight alteration to the above heuristic, ensuring that any
* superblock will be contiguous in memory, while still following the original
* heuristic
+ *
+ * Slight change: instead of taking the minimum pc of the superblock, we just take
+ * the pc of the first block.
+ * (experimentally this leads to slightly better performance..)
*)
-let get_some = function
-| None -> failwith "Did not get some"
-| Some thing -> thing
-
-exception EmptyList
-
-let rec last_element = function
- | [] -> raise EmptyList
- | e :: [] -> e
- | e' :: e :: l -> last_element (e::l)
-
-let print_plist l =
- let rec f = function
- | [] -> ()
- | n :: l -> Printf.printf "%d, " (P.to_int n); f l
- in begin
- if !debug_flag then begin
- Printf.printf "[";
- f l;
- Printf.printf "]"
- end
- end
-
-(* adapted from the above join_points function, but with PTree *)
-let get_join_points code entry =
- let reached = ref (PTree.map (fun n i -> false) code) in
- let reached_twice = ref (PTree.map (fun n i -> false) code) in
- let rec traverse pc =
- if get_some @@ PTree.get pc !reached then begin
- if not (get_some @@ PTree.get pc !reached_twice) then
- reached_twice := PTree.set pc true !reached_twice
- end else begin
- reached := PTree.set pc true !reached;
- traverse_succs (successors_block @@ get_some @@ PTree.get pc code)
- end
- and traverse_succs = function
- | [] -> ()
- | [pc] -> traverse pc
- | pc :: l -> traverse pc; traverse_succs l
- in traverse entry; !reached_twice
-
-let forward_sequences code entry =
- let visited = ref (PTree.map (fun n i -> false) code) in
- let join_points = get_join_points code entry in
- (* returns the list of traversed nodes, and a list of nodes to start traversing next *)
- let rec traverse_fallthrough code node =
- (* debug "Traversing %d..\n" (P.to_int node); *)
- if not (get_some @@ PTree.get node !visited) then begin
- visited := PTree.set node true !visited;
- match PTree.get node code with
- | None -> failwith "No such node"
- | Some bb ->
- let ln, rem = match (last_element bb) with
- | Lop _ | Lload _ | Lgetstack _ | Lsetstack _ | Lstore _ | Lcall _
- | Lbuiltin _ -> assert false
- | Ltailcall _ | Lreturn -> begin (* debug "STOP tailcall/return\n"; *) ([], []) end
- | Lbranch n ->
- if get_some @@ PTree.get n join_points then ([], [n])
- else let ln, rem = traverse_fallthrough code n in (ln, rem)
- | Lcond (_, _, ifso, ifnot, info) -> (match info with
- | None -> begin (* debug "STOP Lcond None\n"; *) ([], [ifso; ifnot]) end
- | Some false ->
- if get_some @@ PTree.get ifnot join_points then ([], [ifso; ifnot])
- else let ln, rem = traverse_fallthrough code ifnot in (ln, [ifso] @ rem)
- | Some true ->
- if get_some @@ PTree.get ifso join_points then ([], [ifso; ifnot])
- else let ln, rem = traverse_fallthrough code ifso in (ln, [ifnot] @ rem)
- )
- | Ljumptable(_, ln) -> begin (* debug "STOP Ljumptable\n"; *) ([], ln) end
- in ([node] @ ln, rem)
- end
- else ([], [])
- in let rec f code = function
- | [] -> []
- | node :: ln ->
- let fs, rem_from_node = traverse_fallthrough code node
- in [fs] @ ((f code rem_from_node) @ (f code ln))
- in (f code [entry])
-
-(** Unused code
-module PInt = struct
- type t = P.t
- let compare x y = compare (P.to_int x) (P.to_int y)
-end
-
-module PSet = Set.Make(PInt)
-
-module LPInt = struct
- type t = P.t list
- let rec compare x y =
- match x with
- | [] -> ( match y with
- | [] -> 0
- | _ -> 1 )
- | e :: l -> match y with
- | [] -> -1
- | e' :: l' ->
- let e_cmp = PInt.compare e e' in
- if e_cmp == 0 then compare l l' else e_cmp
-end
-
-module LPSet = Set.Make(LPInt)
-
-let iter_lpset f s = Seq.iter f (LPSet.to_seq s)
-
-let first_of = function
- | [] -> None
- | e :: l -> Some e
-
-let rec last_of = function
- | [] -> None
- | e :: l -> (match l with [] -> Some e | e :: l -> last_of l)
-
-let can_be_merged code s s' =
- let last_s = get_some @@ last_of s in
- let first_s' = get_some @@ first_of s' in
- match get_some @@ PTree.get last_s code with
- | Lop _ | Lload _ | Lgetstack _ | Lsetstack _ | Lstore _ | Lcall _
- | Lbuiltin _ | Ltailcall _ | Lreturn -> false
- | Lbranch n -> n == first_s'
- | Lcond (_, _, ifso, ifnot, info) -> (match info with
- | None -> false
- | Some false -> ifnot == first_s'
- | Some true -> failwith "Inconsistency detected - ifnot is not the preferred branch")
- | Ljumptable (_, ln) ->
- match ln with
- | [] -> false
- | n :: ln -> n == first_s'
-
-let merge s s' = Some s
-
-let try_merge code (fs: (BinNums.positive list) list) =
- let seqs = ref (LPSet.of_list fs) in
- let oldLength = ref (LPSet.cardinal !seqs) in
- let continue = ref true in
- let found = ref false in
- while !continue do
- begin
- found := false;
- iter_lpset (fun s ->
- if !found then ()
- else iter_lpset (fun s' ->
- if (!found || s == s') then ()
- else if (can_be_merged code s s') then
- begin
- seqs := LPSet.remove s !seqs;
- seqs := LPSet.remove s' !seqs;
- seqs := LPSet.add (get_some (merge s s')) !seqs;
- found := true;
- end
- else ()
- ) !seqs
- ) !seqs;
- if !oldLength == LPSet.cardinal !seqs then
- continue := false
- else
- oldLength := LPSet.cardinal !seqs
- end
- done;
- !seqs
-*)
-
-(** Code adapted from Duplicateaux.get_loop_headers
- *
- * Getting loop branches with a DFS visit :
- * Each node is either Unvisited, Visited, or Processed
- * pre-order: node becomes Processed
- * post-order: node becomes Visited
- *
- * If we come accross an edge to a Processed node, it's a loop!
- *)
-type pos = BinNums.positive
-
-module PP = struct
- type t = pos * pos
- let compare a b =
- let ax, ay = a in
- let bx, by = b in
- let dx = compare ax bx in
- if (dx == 0) then compare ay by
- else dx
-end
-
-module PPMap = Map.Make(PP)
-
-type vstate = Unvisited | Processed | Visited
-
-let get_loop_edges code entry =
- let visited = ref (PTree.map (fun n i -> Unvisited) code) in
- let is_loop_edge = ref PPMap.empty
- in let rec dfs_visit code from = function
- | [] -> ()
- | node :: ln ->
- match (get_some @@ PTree.get node !visited) with
- | Visited -> ()
- | Processed -> begin
- let from_node = get_some from in
- is_loop_edge := PPMap.add (from_node, node) true !is_loop_edge;
- visited := PTree.set node Visited !visited
- end
- | Unvisited -> begin
- visited := PTree.set node Processed !visited;
- let bb = get_some @@ PTree.get node code in
- let next_visits = (match (last_element bb) with
- | Lop _ | Lload _ | Lgetstack _ | Lsetstack _ | Lstore _ | Lcall _
- | Lbuiltin _ -> assert false
- | Ltailcall _ | Lreturn -> []
- | Lbranch n -> [n]
- | Lcond (_, _, ifso, ifnot, _) -> [ifso; ifnot]
- | Ljumptable(_, ln) -> ln
- ) in dfs_visit code (Some node) next_visits;
- visited := PTree.set node Visited !visited;
- dfs_visit code from ln
- end
- in begin
- dfs_visit code None [entry];
- !is_loop_edge
- end
-
-let ppmap_is_true pp ppmap = PPMap.mem pp ppmap && PPMap.find pp ppmap
-
-module Int = struct
- type t = int
- let compare x y = compare x y
-end
-
-module ISet = Set.Make(Int)
-
-let print_iset s = begin
- if !debug_flag then begin
- Printf.printf "{";
- ISet.iter (fun e -> Printf.printf "%d, " e) s;
- Printf.printf "}"
- end
-end
-
-let print_depmap dm = begin
- if !debug_flag then begin
- Printf.printf "[|";
- Array.iter (fun s -> print_iset s; Printf.printf ", ") dm;
- Printf.printf "|]\n"
- end
-end
-
-let construct_depmap code entry fs =
- let is_loop_edge = get_loop_edges code entry in
- let visited = ref (PTree.map (fun n i -> false) code) in
- let depmap = Array.map (fun e -> ISet.empty) fs in
- let find_index_of_node n =
- let index = ref 0 in
- begin
- Array.iteri (fun i s ->
- match List.find_opt (fun e -> e == n) s with
- | Some _ -> index := i
- | None -> ()
- ) fs;
- !index
- end
- in let check_and_update_depmap from target =
- (* debug "From %d to %d\n" (P.to_int from) (P.to_int target); *)
- if not (ppmap_is_true (from, target) is_loop_edge) then
- let in_index_fs = find_index_of_node from in
- let out_index_fs = find_index_of_node target in
- if out_index_fs != in_index_fs then
- depmap.(out_index_fs) <- ISet.add in_index_fs depmap.(out_index_fs)
- else ()
- else ()
- in let rec dfs_visit code = function
- | [] -> ()
- | node :: ln ->
- begin
- match (get_some @@ PTree.get node !visited) with
- | true -> ()
- | false -> begin
- visited := PTree.set node true !visited;
- let bb = get_some @@ PTree.get node code in
- let next_visits =
- match (last_element bb) with
- | Ltailcall _ | Lreturn -> []
- | Lbranch n -> (check_and_update_depmap node n; [n])
- | Lcond (_, _, ifso, ifnot, _) -> begin
- check_and_update_depmap node ifso;
- check_and_update_depmap node ifnot;
- [ifso; ifnot]
- end
- | Ljumptable(_, ln) -> begin
- List.iter (fun n -> check_and_update_depmap node n) ln;
- ln
- end
- (* end of bblocks should not be another value than one of the above *)
- | _ -> failwith "last_element gave an invalid output"
- in dfs_visit code next_visits
- end;
- dfs_visit code ln
- end
- in begin
- dfs_visit code [entry];
- depmap
- end
-
-let print_sequence s =
- if !debug_flag then begin
- Printf.printf "[";
- List.iter (fun n -> Printf.printf "%d, " (P.to_int n)) s;
- Printf.printf "]\n"
- end
-
-let print_ssequence ofs =
- if !debug_flag then begin
- Printf.printf "[";
- List.iter (fun s -> print_sequence s) ofs;
- Printf.printf "]\n"
- end
-
-let order_sequences code entry fs =
- let fs_a = Array.of_list fs in
- let depmap = construct_depmap code entry fs_a in
- let fs_evaluated = Array.map (fun e -> false) fs_a in
- let ordered_fs = ref [] in
- let evaluate s_id =
- begin
- assert (not fs_evaluated.(s_id));
- ordered_fs := fs_a.(s_id) :: !ordered_fs;
- fs_evaluated.(s_id) <- true;
- (* debug "++++++\n";
- debug "Scheduling %d\n" s_id;
- debug "Initial depmap: "; print_depmap depmap; *)
- Array.iteri (fun i deps ->
- depmap.(i) <- ISet.remove s_id deps
- ) depmap;
- (* debug "Final depmap: "; print_depmap depmap; *)
+let super_blocks f joins =
+ let blocks = ref [] in
+ let visited = ref IntSet.empty in
+ (* start_block:
+ pc is the function entry point
+ or a join point
+ or the successor of a conditional test *)
+ let rec start_block pc =
+ let npc = P.to_int pc in
+ if not (IntSet.mem npc !visited) then begin
+ visited := IntSet.add npc !visited;
+ in_block [] npc pc
end
- in let choose_best_of candidates =
- let current_best_id = ref None in
- let current_best_score = ref None in
- begin
- List.iter (fun id ->
- match !current_best_id with
- | None -> begin
- current_best_id := Some id;
- match fs_a.(id) with
- | [] -> current_best_score := None
- | n::l -> current_best_score := Some (P.to_int n)
- end
- | Some b -> begin
- match fs_a.(id) with
- | [] -> ()
- | n::l -> let nscore = P.to_int n in
- match !current_best_score with
- | None -> (current_best_id := Some id; current_best_score := Some nscore)
- | Some bs -> if nscore > bs then (current_best_id := Some id; current_best_score := Some nscore)
+ (* in_block: add pc to block and check successors *)
+ and in_block blk minpc pc =
+ let blk = pc :: blk in
+ match PTree.get pc f.fn_code with
+ | None -> assert false
+ | Some b ->
+ let rec do_instr_list = function
+ | [] -> assert false
+ | Lbranch s :: _ -> next_in_block blk minpc s
+ | Ltailcall (sig0, ros) :: _ -> end_block blk minpc
+ | Lcond (cond, args, ifso, ifnot, pred) :: _ -> begin
+ match pred with
+ | None -> (end_block blk minpc; start_block ifso; start_block ifnot)
+ | Some true -> (next_in_block blk minpc ifso; start_block ifnot)
+ | Some false -> (next_in_block blk minpc ifnot; start_block ifso)
end
- ) candidates;
- !current_best_id
- end
- in let select_next () =
- let candidates = ref [] in
- begin
- Array.iteri (fun i deps ->
- begin
- (* debug "Deps of %d: " i; print_iset deps; debug "\n"; *)
- (* FIXME - if we keep it that way (no dependency check), remove all the unneeded stuff *)
- if ((* deps == ISet.empty && *) not fs_evaluated.(i)) then
- candidates := i :: !candidates
- end
- ) depmap;
- if not (List.length !candidates > 0) then begin
- Array.iteri (fun i deps ->
- if (not fs_evaluated.(i)) then candidates := i :: !candidates
- ) depmap;
- end;
- get_some (choose_best_of !candidates)
- end
- in begin
- debug "-------------------------------\n";
- debug "depmap: "; print_depmap depmap;
- debug "forward sequences identified: "; print_ssequence fs;
- while List.length !ordered_fs != List.length fs do
- let next_id = select_next () in
- evaluate next_id
- done;
- debug "forward sequences ordered: "; print_ssequence (List.rev (!ordered_fs));
- List.rev (!ordered_fs)
- end
+ | Ljumptable(arg, tbl) :: _ ->
+ end_block blk minpc; List.iter start_block tbl
+ | Lreturn :: _ -> end_block blk minpc
+ | instr :: b' -> do_instr_list b' in
+ do_instr_list b
+ (* next_in_block: check if join point and either extend block
+ or start block *)
+ and next_in_block blk minpc pc =
+ let npc = P.to_int pc in
+ if IntSet.mem npc joins
+ then (end_block blk minpc; start_block pc)
+ else in_block blk minpc pc
+ (* end_block: record block that we just discovered *)
+ and end_block blk minpc =
+ blocks := (minpc, List.rev blk) :: !blocks
+ in
+ start_block f.fn_entrypoint; !blocks
+
+(* Build the enumeration *)
-let enumerate_aux_trace f reach =
- let code = f.fn_code in
- let entry = f.fn_entrypoint in
- let fs = forward_sequences code entry in
- let ofs = order_sequences code entry fs in
- List.flatten ofs
+let enumerate_aux_sb f reach =
+ flatten_blocks (super_blocks f (join_points f))
let enumerate_aux f reach =
- if !Clflags.option_ftracelinearize then enumerate_aux_trace f reach
+ if !Clflags.option_ftracelinearize then enumerate_aux_sb f reach
else enumerate_aux_flat f reach