aboutsummaryrefslogtreecommitdiffstats
path: root/backend/Tunnelingproof.v
diff options
context:
space:
mode:
Diffstat (limited to 'backend/Tunnelingproof.v')
-rw-r--r--backend/Tunnelingproof.v504
1 files changed, 287 insertions, 217 deletions
diff --git a/backend/Tunnelingproof.v b/backend/Tunnelingproof.v
index cdf6c800..126b7b87 100644
--- a/backend/Tunnelingproof.v
+++ b/backend/Tunnelingproof.v
@@ -3,6 +3,7 @@
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* Sylvain Boulmé Grenoble-INP, VERIMAG *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
@@ -12,131 +13,163 @@
(** Correctness proof for the branch tunneling optimization. *)
-Require Import Coqlib Maps UnionFind.
+Require Import Coqlib Maps Errors.
Require Import AST Linking.
Require Import Values Memory Events Globalenvs Smallstep.
Require Import Op Locations LTL.
Require Import Tunneling.
-Definition match_prog (p tp: program) :=
- match_program (fun ctx f tf => tf = tunnel_fundef f) eq p tp.
+Local Open Scope nat.
-Lemma transf_program_match:
- forall p, match_prog p (transf_program p).
+
+(** * Properties of the branch_target, when the verifier succeeds *)
+
+Definition check_included_spec (c:code) (td:UF) (ok: option bblock) :=
+ ok <> None -> forall pc, c!pc = None -> td!pc = None.
+
+Lemma check_included_correct (td: UF) (c: code):
+ check_included_spec c td (check_included td c).
+Proof.
+ apply PTree_Properties.fold_rec with (P := check_included_spec c).
+- (* extensionality *)
+ unfold check_included_spec. intros m m' a EQ IND X pc. rewrite <- EQ; auto.
+- (* base case *)
+ intros _ pc. rewrite PTree.gempty; try congruence.
+- (* inductive case *)
+ unfold check_included_spec.
+ intros m [|] pc bb NEW ATPC IND; simpl; try congruence.
+ intros H pc0. rewrite PTree.gsspec; destruct (peq _ _); subst; simpl; try congruence.
+ intros; eapply IND; try congruence.
+Qed.
+
+Inductive target_bounds (target: node -> node) (bound: node -> nat) (pc: node): (option bblock) -> Prop :=
+ | TB_default (TB: target pc = pc) ob
+ : target_bounds target bound pc ob
+ | TB_branch s bb
+ (EQ: target pc = target s)
+ (DECREASE: bound s < bound pc)
+ : target_bounds target bound pc (Some (Lbranch s::bb))
+ | TB_cond cond args s1 s2 info bb
+ (EQ1: target pc = target s1)
+ (EQ2: target pc = target s2)
+ (DEC1: bound s1 < bound pc)
+ (DEC2: bound s2 < bound pc)
+ : target_bounds target bound pc (Some (Lcond cond args s1 s2 info::bb))
+ .
+Local Hint Resolve TB_default: core.
+
+Lemma target_None (td:UF) (pc: node): td!pc = None -> td pc = pc.
Proof.
- intros. eapply match_transform_program; eauto.
+ unfold target, get. intros H; rewrite H; auto.
Qed.
+Local Hint Resolve target_None Z.abs_nonneg: core.
-(** * Properties of the branch map computed using union-find. *)
+Lemma get_nonneg td pc t d: get td pc = (t, d) -> (0 <= d)%Z.
+Proof.
+ unfold get. destruct (td!_) as [(t0&d0)|]; intros H; inversion H; subst; simpl; omega || auto.
+Qed.
+Local Hint Resolve get_nonneg: core.
-(** A variant of [record_goto] that also incrementally computes a measure [f: node -> nat]
- counting the number of [Lnop] instructions starting at a given [pc] that were eliminated. *)
+Definition bound (td: UF) (pc: node) := Z.to_nat (snd (get td pc)).
-Definition measure_edge (u: U.t) (pc s: node) (f: node -> nat) : node -> nat :=
- fun x => if peq (U.repr u s) pc then f x
- else if peq (U.repr u x) pc then (f x + f s + 1)%nat
- else f x.
+Lemma check_bblock_correct (td:UF) (pc:node) (bb: bblock):
+ check_bblock td pc bb = OK tt ->
+ target_bounds (target td) (bound td) pc (Some bb).
+Proof.
+ unfold check_bblock, bound.
+ destruct (td!pc) as [(tpc&dpc)|] eqn:Hpc; auto.
+ assert (Tpc: td pc = tpc). { unfold target, get; rewrite Hpc; simpl; auto. }
+ assert (Dpc: snd (get td pc) = Z.abs dpc). { unfold get; rewrite Hpc; simpl; auto. }
+ destruct bb as [|[ ] bb]; simpl; try congruence.
+ + destruct (get td s) as (ts, ds) eqn:Hs.
+ repeat (destruct (peq _ _) || destruct (zlt _ _)); simpl; try congruence.
+ intros; apply TB_branch.
+ * rewrite Tpc. unfold target; rewrite Hs; simpl; auto.
+ * rewrite Dpc, Hs; simpl. apply Z2Nat.inj_lt; eauto.
+ + destruct (get td s1) as (ts1, ds1) eqn:Hs1.
+ destruct (get td s2) as (ts2, ds2) eqn:Hs2.
+ repeat (destruct (peq _ _) || destruct (zlt _ _)); simpl; try congruence.
+ intros; apply TB_cond.
+ * rewrite Tpc. unfold target; rewrite Hs1; simpl; auto.
+ * rewrite Tpc. unfold target; rewrite Hs2; simpl; auto.
+ * rewrite Dpc, Hs1; simpl. apply Z2Nat.inj_lt; eauto.
+ * rewrite Dpc, Hs2; simpl. apply Z2Nat.inj_lt; eauto.
+Qed.
-Definition record_goto' (uf: U.t * (node -> nat)) (pc: node) (b: bblock) : U.t * (node -> nat) :=
- match b with
- | Lbranch s :: b' => let (u, f) := uf in (U.union u pc s, measure_edge u pc s f)
- | _ => uf
- end.
+Definition check_code_spec (td:UF) (c:code) (ok: res unit) :=
+ ok = OK tt -> forall pc bb, c!pc = Some bb -> target_bounds (target td) (bound td) pc (Some bb).
-Definition branch_map_correct (c: code) (uf: U.t * (node -> nat)): Prop :=
- forall pc,
- match c!pc with
- | Some(Lbranch s :: b) =>
- U.repr (fst uf) pc = pc \/ (U.repr (fst uf) pc = U.repr (fst uf) s /\ snd uf s < snd uf pc)%nat
- | _ =>
- U.repr (fst uf) pc = pc
- end.
+Lemma check_code_correct (td:UF) c:
+ check_code_spec td c (check_code td c).
+Proof.
+ apply PTree_Properties.fold_rec with (P := check_code_spec td).
+- (* extensionality *)
+ unfold check_code_spec. intros m m' a EQ IND X pc bb; subst. rewrite <- ! EQ; eauto.
+- (* base case *)
+ intros _ pc. rewrite PTree.gempty; try congruence.
+- (* inductive case *)
+ unfold check_code_spec.
+ intros m [[]|] pc bb NEW ATPC IND; simpl; try congruence.
+ intros H pc0 bb0. rewrite PTree.gsspec; destruct (peq _ _); subst; simpl; auto.
+ intros X; inversion X; subst.
+ apply check_bblock_correct; auto.
+Qed.
-Lemma record_gotos'_correct:
- forall c,
- branch_map_correct c (PTree.fold record_goto' c (U.empty, fun (x: node) => O)).
+Theorem branch_target_bounds:
+ forall f tf pc,
+ tunnel_function f = OK tf ->
+ target_bounds (branch_target f) (bound (branch_target f)) pc (f.(fn_code)!pc).
Proof.
- intros.
- apply PTree_Properties.fold_rec with (P := fun c uf => branch_map_correct c uf).
+ unfold tunnel_function; intros f f' pc.
+ destruct (check_included _ _) eqn:H1; try congruence.
+ destruct (check_code _ _) as [[]|] eqn:H2; simpl; try congruence.
+ intros _.
+ destruct ((fn_code f)!pc) eqn:X.
+ - exploit check_code_correct; eauto.
+ - exploit check_included_correct; eauto.
+ congruence.
+Qed.
-- (* extensionality *)
- intros. red; intros. rewrite <- H. apply H0.
+Lemma tunnel_function_unfold:
+ forall f tf pc,
+ tunnel_function f = OK tf ->
+ (fn_code tf)!pc = option_map (tunnel_block (branch_target f)) (fn_code f)!pc.
+Proof.
+ unfold tunnel_function; intros f f' pc.
+ destruct (check_included _ _) eqn:H1; try congruence.
+ destruct (check_code _ _) as [[]|] eqn:H2; simpl; try congruence.
+ intros X; inversion X; clear X; subst.
+ simpl. rewrite PTree.gmap1. auto.
+Qed.
-- (* base case *)
- red; intros; simpl. rewrite PTree.gempty. apply U.repr_empty.
+Lemma tunnel_fundef_Internal:
+ forall f tf, tunnel_fundef (Internal f) = OK tf
+ -> exists tf', tunnel_function f = OK tf' /\ tf = Internal tf'.
+Proof.
+ intros f tf; simpl.
+ destruct (tunnel_function f) eqn:X; simpl; try congruence.
+ intros EQ; inversion EQ.
+ eexists; split; eauto.
+Qed.
-- (* inductive case *)
- intros m uf pc bb; intros. destruct uf as [u f].
- assert (PC: U.repr u pc = pc).
- generalize (H1 pc). rewrite H. auto.
- assert (record_goto' (u, f) pc bb = (u, f)
- \/ exists s, exists bb', bb = Lbranch s :: bb' /\ record_goto' (u, f) pc bb = (U.union u pc s, measure_edge u pc s f)).
- unfold record_goto'; simpl. destruct bb; auto. destruct i; auto. right. exists s; exists bb; auto.
- destruct H2 as [B | [s [bb' [EQ B]]]].
-
-+ (* u and f are unchanged *)
- rewrite B.
- red. intro pc'. simpl. rewrite PTree.gsspec. destruct (peq pc' pc). subst pc'.
- destruct bb; auto. destruct i; auto.
- apply H1.
-
-+ (* b is Lbranch s, u becomes union u pc s, f becomes measure_edge u pc s f *)
- rewrite B.
- red. intro pc'. simpl. rewrite PTree.gsspec. destruct (peq pc' pc). subst pc'. rewrite EQ.
-
-* (* The new instruction *)
- rewrite (U.repr_union_2 u pc s); auto. rewrite U.repr_union_3.
- unfold measure_edge. destruct (peq (U.repr u s) pc). auto. right. split. auto.
- rewrite PC. rewrite peq_true. omega.
-
-* (* An old instruction *)
- assert (U.repr u pc' = pc' -> U.repr (U.union u pc s) pc' = pc').
- { intro. rewrite <- H2 at 2. apply U.repr_union_1. congruence. }
- generalize (H1 pc'). simpl. destruct (m!pc'); auto. destruct b; auto. destruct i; auto.
- intros [P | [P Q]]. left; auto. right.
- split. apply U.sameclass_union_2. auto.
- unfold measure_edge. destruct (peq (U.repr u s) pc). auto.
- rewrite P. destruct (peq (U.repr u s0) pc). omega. auto.
-Qed.
-
-Definition record_gotos' (f: function) :=
- PTree.fold record_goto' f.(fn_code) (U.empty, fun (x: node) => O).
-
-Lemma record_gotos_gotos':
- forall f, fst (record_gotos' f) = record_gotos f.
-Proof.
- intros. unfold record_gotos', record_gotos.
- repeat rewrite PTree.fold_spec.
- generalize (PTree.elements (fn_code f)) (U.empty) (fun _ : node => O).
- induction l; intros; simpl.
- auto.
- unfold record_goto' at 2. unfold record_goto at 2.
- destruct (snd a). apply IHl. destruct i; apply IHl.
-Qed.
-
-Definition branch_target (f: function) (pc: node) : node :=
- U.repr (record_gotos f) pc.
-
-Definition count_gotos (f: function) (pc: node) : nat :=
- snd (record_gotos' f) pc.
-
-Theorem record_gotos_correct:
- forall f pc,
- match f.(fn_code)!pc with
- | Some(Lbranch s :: b) =>
- branch_target f pc = pc \/
- (branch_target f pc = branch_target f s /\ count_gotos f s < count_gotos f pc)%nat
- | _ => branch_target f pc = pc
- end.
+Lemma tunnel_fundef_External:
+ forall tf ef, tunnel_fundef (External ef) = OK tf
+ -> tf = External ef.
Proof.
- intros.
- generalize (record_gotos'_correct f.(fn_code) pc). simpl.
- fold (record_gotos' f). unfold branch_map_correct, branch_target, count_gotos.
- rewrite record_gotos_gotos'. auto.
+ intros tf ef; simpl. intros H; inversion H; auto.
Qed.
(** * Preservation of semantics *)
+Definition match_prog (p tp: program) :=
+ match_program (fun _ f tf => tunnel_fundef f = OK tf) eq p tp.
+
+Lemma transf_program_match:
+ forall prog tprog, transf_program prog = OK tprog -> match_prog prog tprog.
+Proof.
+ intros. eapply match_transform_partial_program_contextual; eauto.
+Qed.
+
Section PRESERVATION.
Variables prog tprog: program.
@@ -145,32 +178,65 @@ Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Lemma functions_translated:
- forall v f,
+ forall (v: val) (f: fundef),
Genv.find_funct ge v = Some f ->
- Genv.find_funct tge v = Some (tunnel_fundef f).
-Proof (Genv.find_funct_transf TRANSL).
+ exists tf, tunnel_fundef f = OK tf /\ Genv.find_funct tge v = Some tf.
+Proof.
+ intros. exploit (Genv.find_funct_match TRANSL); eauto.
+ intros (cu & tf & A & B & C).
+ repeat eexists; intuition eauto.
+Qed.
Lemma function_ptr_translated:
forall v f,
Genv.find_funct_ptr ge v = Some f ->
- Genv.find_funct_ptr tge v = Some (tunnel_fundef f).
-Proof (Genv.find_funct_ptr_transf TRANSL).
+ exists tf,
+ Genv.find_funct_ptr tge v = Some tf /\ tunnel_fundef f = OK tf.
+Proof.
+ intros.
+ exploit (Genv.find_funct_ptr_transf_partial TRANSL); eauto.
+Qed.
-Lemma symbols_preserved:
- forall id,
- Genv.find_symbol tge id = Genv.find_symbol ge id.
-Proof (Genv.find_symbol_transf TRANSL).
+Lemma symbols_preserved s: Genv.find_symbol tge s = Genv.find_symbol ge s.
+Proof.
+ rewrite <- (Genv.find_symbol_match TRANSL). reflexivity.
+Qed.
Lemma senv_preserved:
Senv.equiv ge tge.
-Proof (Genv.senv_transf TRANSL).
+Proof.
+ eapply (Genv.senv_match TRANSL).
+Qed.
Lemma sig_preserved:
- forall f, funsig (tunnel_fundef f) = funsig f.
+ forall f tf, tunnel_fundef f = OK tf -> funsig tf = funsig f.
Proof.
- destruct f; reflexivity.
+ intros. destruct f.
+ - simpl in H. monadInv H. unfold tunnel_function in EQ.
+ destruct (check_included _ _); try congruence.
+ monadInv EQ. simpl; auto.
+ - simpl in H. monadInv H. reflexivity.
Qed.
+Lemma fn_stacksize_preserved:
+ forall f tf, tunnel_function f = OK tf -> fn_stacksize tf = fn_stacksize f.
+Proof.
+ intros f tf; unfold tunnel_function.
+ destruct (check_included _ _); try congruence.
+ destruct (check_code _ _); simpl; try congruence.
+ intros H; inversion H; simpl; auto.
+Qed.
+
+Lemma fn_entrypoint_preserved:
+ forall f tf, tunnel_function f = OK tf -> fn_entrypoint tf = branch_target f (fn_entrypoint f).
+Proof.
+ intros f tf; unfold tunnel_function.
+ destruct (check_included _ _); try congruence.
+ destruct (check_code _ _); simpl; try congruence.
+ intros H; inversion H; simpl; auto.
+Qed.
+
+
(** The proof of semantic preservation is a simulation argument
based on diagrams of the following form:
<<
@@ -185,7 +251,7 @@ Qed.
between states [st1] and [st2], as well as the postcondition between
[st1'] and [st2']. One transition in the source code (left) can correspond
to zero or one transition in the transformed code (right). The
- "zero transition" case occurs when executing a [Lgoto] instruction
+ "zero transition" case occurs when executing a [Lnop] instruction
in the source code that has been removed by tunneling.
In the definition of [match_states], what changes between the original and
@@ -194,52 +260,52 @@ Qed.
and memory states, since some [Vundef] values can become more defined
as a consequence of eliminating useless [Lcond] instructions. *)
-Definition tunneled_block (f: function) (b: bblock) :=
- tunnel_block (record_gotos f) b.
-
-Definition tunneled_code (f: function) :=
- PTree.map1 (tunneled_block f) (fn_code f).
-
Definition locmap_lessdef (ls1 ls2: locset) : Prop :=
forall l, Val.lessdef (ls1 l) (ls2 l).
Inductive match_stackframes: stackframe -> stackframe -> Prop :=
| match_stackframes_intro:
- forall f sp ls0 bb tls0,
+ forall f tf sp ls0 bb tls0,
locmap_lessdef ls0 tls0 ->
+ tunnel_function f = OK tf ->
match_stackframes
(Stackframe f sp ls0 bb)
- (Stackframe (tunnel_function f) sp tls0 (tunneled_block f bb)).
+ (Stackframe tf sp tls0 (tunnel_block (branch_target f) bb)).
Inductive match_states: state -> state -> Prop :=
| match_states_intro:
- forall s f sp pc ls m ts tls tm
+ forall s f tf sp pc ls m ts tls tm
(STK: list_forall2 match_stackframes s ts)
(LS: locmap_lessdef ls tls)
- (MEM: Mem.extends m tm),
+ (MEM: Mem.extends m tm)
+ (TF: tunnel_function f = OK tf),
match_states (State s f sp pc ls m)
- (State ts (tunnel_function f) sp (branch_target f pc) tls tm)
+ (State ts tf sp (branch_target f pc) tls tm)
| match_states_block:
- forall s f sp bb ls m ts tls tm
+ forall s f tf sp bb ls m ts tls tm
(STK: list_forall2 match_stackframes s ts)
(LS: locmap_lessdef ls tls)
- (MEM: Mem.extends m tm),
+ (MEM: Mem.extends m tm)
+ (TF: tunnel_function f = OK tf),
match_states (Block s f sp bb ls m)
- (Block ts (tunnel_function f) sp (tunneled_block f bb) tls tm)
+ (Block ts tf sp (tunnel_block (branch_target f) bb) tls tm)
| match_states_interm:
- forall s f sp pc bb ls m ts tls tm
+ forall s f tf sp pc i bb ls m ts tls tm
(STK: list_forall2 match_stackframes s ts)
(LS: locmap_lessdef ls tls)
- (MEM: Mem.extends m tm),
- match_states (Block s f sp (Lbranch pc :: bb) ls m)
- (State ts (tunnel_function f) sp (branch_target f pc) tls tm)
+ (MEM: Mem.extends m tm)
+ (IBRANCH: tunnel_instr (branch_target f) i = Lbranch pc)
+ (TF: tunnel_function f = OK tf),
+ match_states (Block s f sp (i :: bb) ls m)
+ (State ts tf sp pc tls tm)
| match_states_call:
- forall s f ls m ts tls tm
+ forall s f tf ls m ts tls tm
(STK: list_forall2 match_stackframes s ts)
(LS: locmap_lessdef ls tls)
- (MEM: Mem.extends m tm),
+ (MEM: Mem.extends m tm)
+ (TF: tunnel_fundef f = OK tf),
match_states (Callstate s f ls m)
- (Callstate ts (tunnel_fundef f) tls tm)
+ (Callstate ts tf tls tm)
| match_states_return:
forall s ls m ts tls tm
(STK: list_forall2 match_stackframes s ts)
@@ -289,22 +355,6 @@ Proof.
induction rl as [ | r rl]; intros; simpl. auto. apply locmap_set_undef_lessdef; auto.
Qed.
-(*
-Lemma locmap_undef_lessdef:
- forall ll ls1 ls2,
- locmap_lessdef ls1 ls2 -> locmap_lessdef (Locmap.undef ll ls1) (Locmap.undef ll ls2).
-Proof.
- induction ll as [ | l ll]; intros; simpl. auto. apply IHll. apply locmap_set_lessdef; auto.
-Qed.
-
-Lemma locmap_undef_lessdef_1:
- forall ll ls1 ls2,
- locmap_lessdef ls1 ls2 -> locmap_lessdef (Locmap.undef ll ls1) ls2.
-Proof.
- induction ll as [ | l ll]; intros; simpl. auto. apply IHll. apply locmap_set_undef_lessdef; auto.
-Qed.
-*)
-
Lemma locmap_getpair_lessdef:
forall p ls1 ls2,
locmap_lessdef ls1 ls2 -> Val.lessdef (Locmap.getpair p ls1) (Locmap.getpair p ls2).
@@ -348,15 +398,16 @@ Lemma find_function_translated:
forall ros ls tls fd,
locmap_lessdef ls tls ->
find_function ge ros ls = Some fd ->
- find_function tge ros tls = Some (tunnel_fundef fd).
+ exists tfd, tunnel_fundef fd = OK tfd /\ find_function tge ros tls = Some tfd.
Proof.
intros. destruct ros; simpl in *.
- assert (E: tls (R m) = ls (R m)).
{ exploit Genv.find_funct_inv; eauto. intros (b & EQ).
generalize (H (R m)). rewrite EQ. intros LD; inv LD. auto. }
- rewrite E. apply functions_translated; auto.
+ rewrite E. exploit functions_translated; eauto.
- rewrite symbols_preserved. destruct (Genv.find_symbol ge i); inv H0.
- apply function_ptr_translated; auto.
+ exploit function_ptr_translated; eauto.
+ intros (tf & X1 & X2). exists tf; intuition.
Qed.
Lemma call_regs_lessdef:
@@ -383,11 +434,12 @@ Qed.
Definition measure (st: state) : nat :=
match st with
- | State s f sp pc ls m => (count_gotos f pc * 2)%nat
- | Block s f sp (Lbranch pc :: _) ls m => (count_gotos f pc * 2 + 1)%nat
- | Block s f sp bb ls m => 0%nat
- | Callstate s f ls m => 0%nat
- | Returnstate s ls m => 0%nat
+ | State s f sp pc ls m => (bound (branch_target f) pc) * 2
+ | Block s f sp (Lbranch pc :: _) ls m => (bound (branch_target f) pc) * 2 + 1
+ | Block s f sp (Lcond _ _ pc1 pc2 _ :: _) ls m => (max (bound (branch_target f) pc1) (bound (branch_target f) pc2)) * 2 + 1
+ | Block s f sp bb ls m => 0
+ | Callstate s f ls m => 0
+ | Returnstate s ls m => 0
end.
Lemma match_parent_locset:
@@ -406,24 +458,23 @@ Lemma tunnel_step_correct:
(exists st2', step tge st1' t st2' /\ match_states st2 st2')
\/ (measure st2 < measure st1 /\ t = E0 /\ match_states st2 st1')%nat.
Proof.
- induction 1; intros; try inv MS.
+ induction 1; intros; try inv MS; try (simpl in IBRANCH; inv IBRANCH).
- (* entering a block *)
- assert (DEFAULT: branch_target f pc = pc ->
- (exists st2' : state,
- step tge (State ts (tunnel_function f) sp (branch_target f pc) tls tm) E0 st2'
- /\ match_states (Block s f sp bb rs m) st2')).
- { intros. rewrite H0. econstructor; split.
- econstructor. simpl. rewrite PTree.gmap1. rewrite H. simpl. eauto.
- econstructor; eauto. }
-
- generalize (record_gotos_correct f pc). rewrite H.
- destruct bb; auto. destruct i; auto.
- intros [A | [B C]]. auto.
- right. split. simpl. omega.
- split. auto.
- rewrite B. econstructor; eauto.
-
+ exploit (branch_target_bounds f tf pc); eauto.
+ rewrite H. intros X; inversion X.
+ + (* TB_default *)
+ rewrite TB; left. econstructor; split.
+ * econstructor. simpl. erewrite tunnel_function_unfold, H ; simpl; eauto.
+ * econstructor; eauto.
+ + (* FT_branch *)
+ simpl; right.
+ rewrite EQ; repeat (econstructor; omega || eauto).
+ + (* FT_cond *)
+ simpl; right.
+ repeat (econstructor; omega || eauto); simpl.
+ apply Nat.max_case; omega.
+ destruct (peq _ _); try congruence.
- (* Lop *)
exploit eval_operation_lessdef. apply reglist_lessdef; eauto. eauto. eauto.
intros (tv & EV & LD).
@@ -485,20 +536,25 @@ Proof.
eauto. eauto.
econstructor; eauto using locmap_undef_regs_lessdef.
- (* Lcall *)
- left; simpl; econstructor; split.
- eapply exec_Lcall with (fd := tunnel_fundef fd); eauto.
- eapply find_function_translated; eauto.
- rewrite sig_preserved. auto.
- econstructor; eauto.
- constructor; auto.
- constructor; auto.
+ left; simpl.
+ exploit find_function_translated; eauto.
+ intros (tfd & Htfd & FIND).
+ econstructor; split.
+ + eapply exec_Lcall; eauto.
+ erewrite sig_preserved; eauto.
+ + econstructor; eauto.
+ constructor; auto.
+ constructor; auto.
- (* Ltailcall *)
- exploit Mem.free_parallel_extends. eauto. eauto. intros (tm' & FREE & MEM').
+ exploit find_function_translated. 2: eauto.
+ { eauto using return_regs_lessdef, match_parent_locset. }
+ intros (tfd & Htfd & FIND).
+ exploit Mem.free_parallel_extends. eauto. eauto. intros (tm' & FREE & MEM').
left; simpl; econstructor; split.
- eapply exec_Ltailcall with (fd := tunnel_fundef fd); eauto.
- eapply find_function_translated; eauto using return_regs_lessdef, match_parent_locset.
- apply sig_preserved.
- econstructor; eauto using return_regs_lessdef, match_parent_locset.
+ + eapply exec_Ltailcall; eauto.
+ * eapply sig_preserved; eauto.
+ * erewrite fn_stacksize_preserved; eauto.
+ + econstructor; eauto using return_regs_lessdef, match_parent_locset.
- (* Lbuiltin *)
exploit eval_builtin_args_lessdef. eexact LS. eauto. eauto. intros (tvargs & EVA & LDA).
exploit external_call_mem_extends; eauto. intros (tvres & tm' & A & B & C & D).
@@ -513,45 +569,58 @@ Proof.
fold (branch_target f pc). econstructor; eauto.
- (* Lbranch (eliminated) *)
right; split. simpl. omega. split. auto. constructor; auto.
-
-- (* Lcond *)
- simpl tunneled_block.
- set (s1 := U.repr (record_gotos f) pc1). set (s2 := U.repr (record_gotos f) pc2).
- destruct (peq s1 s2).
-+ left; econstructor; split.
- eapply exec_Lbranch.
- destruct b.
-* constructor; eauto using locmap_undef_regs_lessdef_1.
-* rewrite e. constructor; eauto using locmap_undef_regs_lessdef_1.
-+ left; econstructor; split.
- eapply exec_Lcond; eauto. eapply eval_condition_lessdef; eauto using reglist_lessdef.
- destruct b; econstructor; eauto using locmap_undef_regs_lessdef.
-
+- (* Lcond (preserved) *)
+ simpl; left; destruct (peq _ _) eqn: EQ.
+ + econstructor; split.
+ eapply exec_Lbranch.
+ destruct b.
+ * constructor; eauto using locmap_undef_regs_lessdef_1.
+ * rewrite e. constructor; eauto using locmap_undef_regs_lessdef_1.
+ + econstructor; split.
+ eapply exec_Lcond; eauto. eapply eval_condition_lessdef; eauto using reglist_lessdef.
+ destruct b; econstructor; eauto using locmap_undef_regs_lessdef.
+- (* Lcond (eliminated) *)
+ destruct (peq _ _) eqn: EQ; try inv H1.
+ right; split; simpl.
+ + destruct b.
+ generalize (Nat.le_max_l (bound (branch_target f) pc1) (bound (branch_target f) pc2)); omega.
+ generalize (Nat.le_max_r (bound (branch_target f) pc1) (bound (branch_target f) pc2)); omega.
+ + destruct b.
+ -- repeat (constructor; auto).
+ -- rewrite e; repeat (constructor; auto).
- (* Ljumptable *)
assert (tls (R arg) = Vint n).
{ generalize (LS (R arg)); rewrite H; intros LD; inv LD; auto. }
left; simpl; econstructor; split.
eapply exec_Ljumptable.
- eauto. rewrite list_nth_z_map. change U.elt with node. rewrite H0. reflexivity. eauto.
+ eauto. rewrite list_nth_z_map, H0; simpl; eauto. eauto.
econstructor; eauto using locmap_undef_regs_lessdef.
- (* Lreturn *)
exploit Mem.free_parallel_extends. eauto. eauto. intros (tm' & FREE & MEM').
left; simpl; econstructor; split.
- eapply exec_Lreturn; eauto.
- constructor; eauto using return_regs_lessdef, match_parent_locset.
+ + eapply exec_Lreturn; eauto.
+ erewrite fn_stacksize_preserved; eauto.
+ + constructor; eauto using return_regs_lessdef, match_parent_locset.
- (* internal function *)
+ exploit tunnel_fundef_Internal; eauto.
+ intros (tf' & TF' & ITF). subst.
exploit Mem.alloc_extends. eauto. eauto. apply Z.le_refl. apply Z.le_refl.
- intros (tm' & ALLOC & MEM').
- left; simpl; econstructor; split.
- eapply exec_function_internal; eauto.
- simpl. econstructor; eauto using locmap_undef_regs_lessdef, call_regs_lessdef.
+ intros (tm' & ALLOC & MEM').
+ left; simpl.
+ econstructor; split.
+ + eapply exec_function_internal; eauto.
+ erewrite fn_stacksize_preserved; eauto.
+ + simpl.
+ erewrite (fn_entrypoint_preserved f tf'); auto.
+ econstructor; eauto using locmap_undef_regs_lessdef, call_regs_lessdef.
- (* external function *)
exploit external_call_mem_extends; eauto using locmap_getpairs_lessdef.
intros (tvres & tm' & A & B & C & D).
left; simpl; econstructor; split.
- eapply exec_function_external; eauto.
- eapply external_call_symbols_preserved; eauto. apply senv_preserved.
- simpl. econstructor; eauto using locmap_setpair_lessdef, locmap_undef_caller_save_regs_lessdef.
+ + erewrite (tunnel_fundef_External tf ef); eauto.
+ eapply exec_function_external; eauto.
+ eapply external_call_symbols_preserved; eauto. apply senv_preserved.
+ + simpl. econstructor; eauto using locmap_setpair_lessdef, locmap_undef_caller_save_regs_lessdef.
- (* return *)
inv STK. inv H1.
left; econstructor; split.
@@ -564,14 +633,15 @@ Lemma transf_initial_states:
exists st2, initial_state tprog st2 /\ match_states st1 st2.
Proof.
intros. inversion H.
- exists (Callstate nil (tunnel_fundef f) (Locmap.init Vundef) m0); split.
+ exploit function_ptr_translated; eauto.
+ intros (tf & Htf & Hf).
+ exists (Callstate nil tf (Locmap.init Vundef) m0); split.
econstructor; eauto.
- apply (Genv.init_mem_transf TRANSL); auto.
+ apply (Genv.init_mem_transf_partial TRANSL); auto.
rewrite (match_program_main TRANSL).
rewrite symbols_preserved. eauto.
- apply function_ptr_translated; auto.
- rewrite <- H3. apply sig_preserved.
- constructor. constructor. red; simpl; auto. apply Mem.extends_refl.
+ rewrite <- H3. apply sig_preserved. auto.
+ constructor. constructor. red; simpl; auto. apply Mem.extends_refl. auto.
Qed.
Lemma transf_final_states: