aboutsummaryrefslogtreecommitdiffstats
path: root/backend/Values.v
diff options
context:
space:
mode:
Diffstat (limited to 'backend/Values.v')
-rw-r--r--backend/Values.v888
1 files changed, 0 insertions, 888 deletions
diff --git a/backend/Values.v b/backend/Values.v
deleted file mode 100644
index aa59e045..00000000
--- a/backend/Values.v
+++ /dev/null
@@ -1,888 +0,0 @@
-(** This module defines the type of values that is used in the dynamic
- semantics of all our intermediate languages. *)
-
-Require Import Coqlib.
-Require Import AST.
-Require Import Integers.
-Require Import Floats.
-
-Definition block : Set := Z.
-Definition eq_block := zeq.
-
-(** A value is either:
-- a machine integer;
-- a floating-point number;
-- a pointer: a pair of a memory address and an integer offset with respect
- to this address;
-- the [Vundef] value denoting an arbitrary bit pattern, such as the
- value of an uninitialized variable.
-*)
-
-Inductive val: Set :=
- | Vundef: val
- | Vint: int -> val
- | Vfloat: float -> val
- | Vptr: block -> int -> val.
-
-Definition Vzero: val := Vint Int.zero.
-Definition Vone: val := Vint Int.one.
-Definition Vmone: val := Vint Int.mone.
-
-Definition Vtrue: val := Vint Int.one.
-Definition Vfalse: val := Vint Int.zero.
-
-(** The module [Val] defines a number of arithmetic and logical operations
- over type [val]. Most of these operations are straightforward extensions
- of the corresponding integer or floating-point operations. *)
-
-Module Val.
-
-Definition of_bool (b: bool): val := if b then Vtrue else Vfalse.
-
-Definition has_type (v: val) (t: typ) : Prop :=
- match v, t with
- | Vundef, _ => True
- | Vint _, Tint => True
- | Vfloat _, Tfloat => True
- | Vptr _ _, Tint => True
- | _, _ => False
- end.
-
-Fixpoint has_type_list (vl: list val) (tl: list typ) {struct vl} : Prop :=
- match vl, tl with
- | nil, nil => True
- | v1 :: vs, t1 :: ts => has_type v1 t1 /\ has_type_list vs ts
- | _, _ => False
- end.
-
-(** Truth values. Pointers and non-zero integers are treated as [True].
- The integer 0 (also used to represent the null pointer) is [False].
- [Vundef] and floats are neither true nor false. *)
-
-Definition is_true (v: val) : Prop :=
- match v with
- | Vint n => n <> Int.zero
- | Vptr b ofs => True
- | _ => False
- end.
-
-Definition is_false (v: val) : Prop :=
- match v with
- | Vint n => n = Int.zero
- | _ => False
- end.
-
-Inductive bool_of_val: val -> bool -> Prop :=
- | bool_of_val_int_true:
- forall n, n <> Int.zero -> bool_of_val (Vint n) true
- | bool_of_val_int_false:
- bool_of_val (Vint Int.zero) false
- | bool_of_val_ptr:
- forall b ofs, bool_of_val (Vptr b ofs) true.
-
-Definition neg (v: val) : val :=
- match v with
- | Vint n => Vint (Int.neg n)
- | _ => Vundef
- end.
-
-Definition negf (v: val) : val :=
- match v with
- | Vfloat f => Vfloat (Float.neg f)
- | _ => Vundef
- end.
-
-Definition absf (v: val) : val :=
- match v with
- | Vfloat f => Vfloat (Float.abs f)
- | _ => Vundef
- end.
-
-Definition intoffloat (v: val) : val :=
- match v with
- | Vfloat f => Vint (Float.intoffloat f)
- | _ => Vundef
- end.
-
-Definition floatofint (v: val) : val :=
- match v with
- | Vint n => Vfloat (Float.floatofint n)
- | _ => Vundef
- end.
-
-Definition floatofintu (v: val) : val :=
- match v with
- | Vint n => Vfloat (Float.floatofintu n)
- | _ => Vundef
- end.
-
-Definition notint (v: val) : val :=
- match v with
- | Vint n => Vint (Int.xor n Int.mone)
- | _ => Vundef
- end.
-
-Definition notbool (v: val) : val :=
- match v with
- | Vint n => of_bool (Int.eq n Int.zero)
- | Vptr b ofs => Vfalse
- | _ => Vundef
- end.
-
-Definition cast8signed (v: val) : val :=
- match v with
- | Vint n => Vint(Int.cast8signed n)
- | _ => Vundef
- end.
-
-Definition cast8unsigned (v: val) : val :=
- match v with
- | Vint n => Vint(Int.cast8unsigned n)
- | _ => Vundef
- end.
-
-Definition cast16signed (v: val) : val :=
- match v with
- | Vint n => Vint(Int.cast16signed n)
- | _ => Vundef
- end.
-
-Definition cast16unsigned (v: val) : val :=
- match v with
- | Vint n => Vint(Int.cast16unsigned n)
- | _ => Vundef
- end.
-
-Definition singleoffloat (v: val) : val :=
- match v with
- | Vfloat f => Vfloat(Float.singleoffloat f)
- | _ => Vundef
- end.
-
-Definition add (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 => Vint(Int.add n1 n2)
- | Vptr b1 ofs1, Vint n2 => Vptr b1 (Int.add ofs1 n2)
- | Vint n1, Vptr b2 ofs2 => Vptr b2 (Int.add ofs2 n1)
- | _, _ => Vundef
- end.
-
-Definition sub (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 => Vint(Int.sub n1 n2)
- | Vptr b1 ofs1, Vint n2 => Vptr b1 (Int.sub ofs1 n2)
- | Vptr b1 ofs1, Vptr b2 ofs2 =>
- if zeq b1 b2 then Vint(Int.sub ofs1 ofs2) else Vundef
- | _, _ => Vundef
- end.
-
-Definition mul (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 => Vint(Int.mul n1 n2)
- | _, _ => Vundef
- end.
-
-Definition divs (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 =>
- if Int.eq n2 Int.zero then Vundef else Vint(Int.divs n1 n2)
- | _, _ => Vundef
- end.
-
-Definition mods (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 =>
- if Int.eq n2 Int.zero then Vundef else Vint(Int.mods n1 n2)
- | _, _ => Vundef
- end.
-
-Definition divu (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 =>
- if Int.eq n2 Int.zero then Vundef else Vint(Int.divu n1 n2)
- | _, _ => Vundef
- end.
-
-Definition modu (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 =>
- if Int.eq n2 Int.zero then Vundef else Vint(Int.modu n1 n2)
- | _, _ => Vundef
- end.
-
-Definition and (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 => Vint(Int.and n1 n2)
- | _, _ => Vundef
- end.
-
-Definition or (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 => Vint(Int.or n1 n2)
- | _, _ => Vundef
- end.
-
-Definition xor (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 => Vint(Int.xor n1 n2)
- | _, _ => Vundef
- end.
-
-Definition shl (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 =>
- if Int.ltu n2 (Int.repr 32)
- then Vint(Int.shl n1 n2)
- else Vundef
- | _, _ => Vundef
- end.
-
-Definition shr (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 =>
- if Int.ltu n2 (Int.repr 32)
- then Vint(Int.shr n1 n2)
- else Vundef
- | _, _ => Vundef
- end.
-
-Definition shr_carry (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 =>
- if Int.ltu n2 (Int.repr 32)
- then Vint(Int.shr_carry n1 n2)
- else Vundef
- | _, _ => Vundef
- end.
-
-Definition shrx (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 =>
- if Int.ltu n2 (Int.repr 32)
- then Vint(Int.shrx n1 n2)
- else Vundef
- | _, _ => Vundef
- end.
-
-Definition shru (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 =>
- if Int.ltu n2 (Int.repr 32)
- then Vint(Int.shru n1 n2)
- else Vundef
- | _, _ => Vundef
- end.
-
-Definition rolm (v: val) (amount mask: int): val :=
- match v with
- | Vint n => Vint(Int.rolm n amount mask)
- | _ => Vundef
- end.
-
-Definition addf (v1 v2: val): val :=
- match v1, v2 with
- | Vfloat f1, Vfloat f2 => Vfloat(Float.add f1 f2)
- | _, _ => Vundef
- end.
-
-Definition subf (v1 v2: val): val :=
- match v1, v2 with
- | Vfloat f1, Vfloat f2 => Vfloat(Float.sub f1 f2)
- | _, _ => Vundef
- end.
-
-Definition mulf (v1 v2: val): val :=
- match v1, v2 with
- | Vfloat f1, Vfloat f2 => Vfloat(Float.mul f1 f2)
- | _, _ => Vundef
- end.
-
-Definition divf (v1 v2: val): val :=
- match v1, v2 with
- | Vfloat f1, Vfloat f2 => Vfloat(Float.div f1 f2)
- | _, _ => Vundef
- end.
-
-Definition cmp_mismatch (c: comparison): val :=
- match c with
- | Ceq => Vfalse
- | Cne => Vtrue
- | _ => Vundef
- end.
-
-Definition cmp (c: comparison) (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 => of_bool (Int.cmp c n1 n2)
- | Vint n1, Vptr b2 ofs2 =>
- if Int.eq n1 Int.zero then cmp_mismatch c else Vundef
- | Vptr b1 ofs1, Vptr b2 ofs2 =>
- if zeq b1 b2
- then of_bool (Int.cmp c ofs1 ofs2)
- else cmp_mismatch c
- | Vptr b1 ofs1, Vint n2 =>
- if Int.eq n2 Int.zero then cmp_mismatch c else Vundef
- | _, _ => Vundef
- end.
-
-Definition cmpu (c: comparison) (v1 v2: val): val :=
- match v1, v2 with
- | Vint n1, Vint n2 =>
- of_bool (Int.cmpu c n1 n2)
- | Vint n1, Vptr b2 ofs2 =>
- if Int.eq n1 Int.zero then cmp_mismatch c else Vundef
- | Vptr b1 ofs1, Vptr b2 ofs2 =>
- if zeq b1 b2
- then of_bool (Int.cmpu c ofs1 ofs2)
- else cmp_mismatch c
- | Vptr b1 ofs1, Vint n2 =>
- if Int.eq n2 Int.zero then cmp_mismatch c else Vundef
- | _, _ => Vundef
- end.
-
-Definition cmpf (c: comparison) (v1 v2: val): val :=
- match v1, v2 with
- | Vfloat f1, Vfloat f2 => of_bool (Float.cmp c f1 f2)
- | _, _ => Vundef
- end.
-
-(** [load_result] is used in the memory model (library [Mem])
- to post-process the results of a memory read. For instance,
- consider storing the integer value [0xFFF] on 1 byte at a
- given address, and reading it back. If it is read back with
- chunk [Mint8unsigned], zero-extension must be performed, resulting
- in [0xFF]. If it is read back as a [Mint8signed], sign-extension
- is performed and [0xFFFFFFFF] is returned. Type mismatches
- (e.g. reading back a float as a [Mint32]) read back as [Vundef]. *)
-
-Definition load_result (chunk: memory_chunk) (v: val) :=
- match chunk, v with
- | Mint8signed, Vint n => Vint (Int.cast8signed n)
- | Mint8unsigned, Vint n => Vint (Int.cast8unsigned n)
- | Mint16signed, Vint n => Vint (Int.cast16signed n)
- | Mint16unsigned, Vint n => Vint (Int.cast16unsigned n)
- | Mint32, Vint n => Vint n
- | Mint32, Vptr b ofs => Vptr b ofs
- | Mfloat32, Vfloat f => Vfloat(Float.singleoffloat f)
- | Mfloat64, Vfloat f => Vfloat f
- | _, _ => Vundef
- end.
-
-(** Theorems on arithmetic operations. *)
-
-Theorem cast8unsigned_and:
- forall x, cast8unsigned x = and x (Vint(Int.repr 255)).
-Proof.
- destruct x; simpl; auto. decEq. apply Int.cast8unsigned_and.
-Qed.
-
-Theorem cast16unsigned_and:
- forall x, cast16unsigned x = and x (Vint(Int.repr 65535)).
-Proof.
- destruct x; simpl; auto. decEq. apply Int.cast16unsigned_and.
-Qed.
-
-Theorem istrue_not_isfalse:
- forall v, is_false v -> is_true (notbool v).
-Proof.
- destruct v; simpl; try contradiction.
- intros. subst i. simpl. discriminate.
-Qed.
-
-Theorem isfalse_not_istrue:
- forall v, is_true v -> is_false (notbool v).
-Proof.
- destruct v; simpl; try contradiction.
- intros. generalize (Int.eq_spec i Int.zero).
- case (Int.eq i Int.zero); intro.
- contradiction. simpl. auto.
- auto.
-Qed.
-
-Theorem bool_of_true_val:
- forall v, is_true v -> bool_of_val v true.
-Proof.
- intro. destruct v; simpl; intros; try contradiction.
- constructor; auto. constructor.
-Qed.
-
-Theorem bool_of_true_val2:
- forall v, bool_of_val v true -> is_true v.
-Proof.
- intros. inversion H; simpl; auto.
-Qed.
-
-Theorem bool_of_true_val_inv:
- forall v b, is_true v -> bool_of_val v b -> b = true.
-Proof.
- intros. inversion H0; subst v b; simpl in H; auto.
-Qed.
-
-Theorem bool_of_false_val:
- forall v, is_false v -> bool_of_val v false.
-Proof.
- intro. destruct v; simpl; intros; try contradiction.
- subst i; constructor.
-Qed.
-
-Theorem bool_of_false_val2:
- forall v, bool_of_val v false -> is_false v.
-Proof.
- intros. inversion H; simpl; auto.
-Qed.
-
-Theorem bool_of_false_val_inv:
- forall v b, is_false v -> bool_of_val v b -> b = false.
-Proof.
- intros. inversion H0; subst v b; simpl in H.
- congruence. auto. contradiction.
-Qed.
-
-Theorem notbool_negb_1:
- forall b, of_bool (negb b) = notbool (of_bool b).
-Proof.
- destruct b; reflexivity.
-Qed.
-
-Theorem notbool_negb_2:
- forall b, of_bool b = notbool (of_bool (negb b)).
-Proof.
- destruct b; reflexivity.
-Qed.
-
-Theorem notbool_idem2:
- forall b, notbool(notbool(of_bool b)) = of_bool b.
-Proof.
- destruct b; reflexivity.
-Qed.
-
-Theorem notbool_idem3:
- forall x, notbool(notbool(notbool x)) = notbool x.
-Proof.
- destruct x; simpl; auto.
- case (Int.eq i Int.zero); reflexivity.
-Qed.
-
-Theorem add_commut: forall x y, add x y = add y x.
-Proof.
- destruct x; destruct y; simpl; auto.
- decEq. apply Int.add_commut.
-Qed.
-
-Theorem add_assoc: forall x y z, add (add x y) z = add x (add y z).
-Proof.
- destruct x; destruct y; destruct z; simpl; auto.
- rewrite Int.add_assoc; auto.
- rewrite Int.add_assoc; auto.
- decEq. decEq. apply Int.add_commut.
- decEq. rewrite Int.add_commut. rewrite <- Int.add_assoc.
- decEq. apply Int.add_commut.
- decEq. rewrite Int.add_assoc. auto.
-Qed.
-
-Theorem add_permut: forall x y z, add x (add y z) = add y (add x z).
-Proof.
- intros. rewrite (add_commut y z). rewrite <- add_assoc. apply add_commut.
-Qed.
-
-Theorem add_permut_4:
- forall x y z t, add (add x y) (add z t) = add (add x z) (add y t).
-Proof.
- intros. rewrite add_permut. rewrite add_assoc.
- rewrite add_permut. symmetry. apply add_assoc.
-Qed.
-
-Theorem neg_zero: neg Vzero = Vzero.
-Proof.
- reflexivity.
-Qed.
-
-Theorem neg_add_distr: forall x y, neg(add x y) = add (neg x) (neg y).
-Proof.
- destruct x; destruct y; simpl; auto. decEq. apply Int.neg_add_distr.
-Qed.
-
-Theorem sub_zero_r: forall x, sub Vzero x = neg x.
-Proof.
- destruct x; simpl; auto.
-Qed.
-
-Theorem sub_add_opp: forall x y, sub x (Vint y) = add x (Vint (Int.neg y)).
-Proof.
- destruct x; intro y; simpl; auto; rewrite Int.sub_add_opp; auto.
-Qed.
-
-Theorem sub_add_l:
- forall v1 v2 i, sub (add v1 (Vint i)) v2 = add (sub v1 v2) (Vint i).
-Proof.
- destruct v1; destruct v2; intros; simpl; auto.
- rewrite Int.sub_add_l. auto.
- rewrite Int.sub_add_l. auto.
- case (zeq b b0); intro. rewrite Int.sub_add_l. auto. reflexivity.
-Qed.
-
-Theorem sub_add_r:
- forall v1 v2 i, sub v1 (add v2 (Vint i)) = add (sub v1 v2) (Vint (Int.neg i)).
-Proof.
- destruct v1; destruct v2; intros; simpl; auto.
- rewrite Int.sub_add_r. auto.
- repeat rewrite Int.sub_add_opp. decEq.
- repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- decEq. repeat rewrite Int.sub_add_opp.
- rewrite Int.add_assoc. decEq. apply Int.neg_add_distr.
- case (zeq b b0); intro. simpl. decEq.
- repeat rewrite Int.sub_add_opp. rewrite Int.add_assoc. decEq.
- apply Int.neg_add_distr.
- reflexivity.
-Qed.
-
-Theorem mul_commut: forall x y, mul x y = mul y x.
-Proof.
- destruct x; destruct y; simpl; auto. decEq. apply Int.mul_commut.
-Qed.
-
-Theorem mul_assoc: forall x y z, mul (mul x y) z = mul x (mul y z).
-Proof.
- destruct x; destruct y; destruct z; simpl; auto.
- decEq. apply Int.mul_assoc.
-Qed.
-
-Theorem mul_add_distr_l:
- forall x y z, mul (add x y) z = add (mul x z) (mul y z).
-Proof.
- destruct x; destruct y; destruct z; simpl; auto.
- decEq. apply Int.mul_add_distr_l.
-Qed.
-
-
-Theorem mul_add_distr_r:
- forall x y z, mul x (add y z) = add (mul x y) (mul x z).
-Proof.
- destruct x; destruct y; destruct z; simpl; auto.
- decEq. apply Int.mul_add_distr_r.
-Qed.
-
-Theorem mul_pow2:
- forall x n logn,
- Int.is_power2 n = Some logn ->
- mul x (Vint n) = shl x (Vint logn).
-Proof.
- intros; destruct x; simpl; auto.
- change 32 with (Z_of_nat wordsize).
- rewrite (Int.is_power2_range _ _ H). decEq. apply Int.mul_pow2. auto.
-Qed.
-
-Theorem mods_divs:
- forall x y, mods x y = sub x (mul (divs x y) y).
-Proof.
- destruct x; destruct y; simpl; auto.
- case (Int.eq i0 Int.zero); simpl. auto. decEq. apply Int.mods_divs.
-Qed.
-
-Theorem modu_divu:
- forall x y, modu x y = sub x (mul (divu x y) y).
-Proof.
- destruct x; destruct y; simpl; auto.
- generalize (Int.eq_spec i0 Int.zero);
- case (Int.eq i0 Int.zero); simpl. auto.
- intro. decEq. apply Int.modu_divu. auto.
-Qed.
-
-Theorem divs_pow2:
- forall x n logn,
- Int.is_power2 n = Some logn ->
- divs x (Vint n) = shrx x (Vint logn).
-Proof.
- intros; destruct x; simpl; auto.
- change 32 with (Z_of_nat wordsize).
- rewrite (Int.is_power2_range _ _ H).
- generalize (Int.eq_spec n Int.zero);
- case (Int.eq n Int.zero); intro.
- subst n. compute in H. discriminate.
- decEq. apply Int.divs_pow2. auto.
-Qed.
-
-Theorem divu_pow2:
- forall x n logn,
- Int.is_power2 n = Some logn ->
- divu x (Vint n) = shru x (Vint logn).
-Proof.
- intros; destruct x; simpl; auto.
- change 32 with (Z_of_nat wordsize).
- rewrite (Int.is_power2_range _ _ H).
- generalize (Int.eq_spec n Int.zero);
- case (Int.eq n Int.zero); intro.
- subst n. compute in H. discriminate.
- decEq. apply Int.divu_pow2. auto.
-Qed.
-
-Theorem modu_pow2:
- forall x n logn,
- Int.is_power2 n = Some logn ->
- modu x (Vint n) = and x (Vint (Int.sub n Int.one)).
-Proof.
- intros; destruct x; simpl; auto.
- generalize (Int.eq_spec n Int.zero);
- case (Int.eq n Int.zero); intro.
- subst n. compute in H. discriminate.
- decEq. eapply Int.modu_and; eauto.
-Qed.
-
-Theorem and_commut: forall x y, and x y = and y x.
-Proof.
- destruct x; destruct y; simpl; auto. decEq. apply Int.and_commut.
-Qed.
-
-Theorem and_assoc: forall x y z, and (and x y) z = and x (and y z).
-Proof.
- destruct x; destruct y; destruct z; simpl; auto.
- decEq. apply Int.and_assoc.
-Qed.
-
-Theorem or_commut: forall x y, or x y = or y x.
-Proof.
- destruct x; destruct y; simpl; auto. decEq. apply Int.or_commut.
-Qed.
-
-Theorem or_assoc: forall x y z, or (or x y) z = or x (or y z).
-Proof.
- destruct x; destruct y; destruct z; simpl; auto.
- decEq. apply Int.or_assoc.
-Qed.
-
-Theorem xor_commut: forall x y, xor x y = xor y x.
-Proof.
- destruct x; destruct y; simpl; auto. decEq. apply Int.xor_commut.
-Qed.
-
-Theorem xor_assoc: forall x y z, xor (xor x y) z = xor x (xor y z).
-Proof.
- destruct x; destruct y; destruct z; simpl; auto.
- decEq. apply Int.xor_assoc.
-Qed.
-
-Theorem shl_mul: forall x y, Val.mul x (Val.shl Vone y) = Val.shl x y.
-Proof.
- destruct x; destruct y; simpl; auto.
- case (Int.ltu i0 (Int.repr 32)); auto.
- decEq. symmetry. apply Int.shl_mul.
-Qed.
-
-Theorem shl_rolm:
- forall x n,
- Int.ltu n (Int.repr 32) = true ->
- shl x (Vint n) = rolm x n (Int.shl Int.mone n).
-Proof.
- intros; destruct x; simpl; auto.
- rewrite H. decEq. apply Int.shl_rolm. exact H.
-Qed.
-
-Theorem shru_rolm:
- forall x n,
- Int.ltu n (Int.repr 32) = true ->
- shru x (Vint n) = rolm x (Int.sub (Int.repr 32) n) (Int.shru Int.mone n).
-Proof.
- intros; destruct x; simpl; auto.
- rewrite H. decEq. apply Int.shru_rolm. exact H.
-Qed.
-
-Theorem shrx_carry:
- forall x y,
- add (shr x y) (shr_carry x y) = shrx x y.
-Proof.
- destruct x; destruct y; simpl; auto.
- case (Int.ltu i0 (Int.repr 32)); auto.
- simpl. decEq. apply Int.shrx_carry.
-Qed.
-
-Theorem or_rolm:
- forall x n m1 m2,
- or (rolm x n m1) (rolm x n m2) = rolm x n (Int.or m1 m2).
-Proof.
- intros; destruct x; simpl; auto.
- decEq. apply Int.or_rolm.
-Qed.
-
-Theorem rolm_rolm:
- forall x n1 m1 n2 m2,
- rolm (rolm x n1 m1) n2 m2 =
- rolm x (Int.and (Int.add n1 n2) (Int.repr 31))
- (Int.and (Int.rol m1 n2) m2).
-Proof.
- intros; destruct x; simpl; auto.
- decEq.
- replace (Int.and (Int.add n1 n2) (Int.repr 31))
- with (Int.modu (Int.add n1 n2) (Int.repr 32)).
- apply Int.rolm_rolm.
- change (Int.repr 31) with (Int.sub (Int.repr 32) Int.one).
- apply Int.modu_and with (Int.repr 5). reflexivity.
-Qed.
-
-Theorem rolm_zero:
- forall x m,
- rolm x Int.zero m = and x (Vint m).
-Proof.
- intros; destruct x; simpl; auto. decEq. apply Int.rolm_zero.
-Qed.
-
-Theorem addf_commut: forall x y, addf x y = addf y x.
-Proof.
- destruct x; destruct y; simpl; auto. decEq. apply Float.addf_commut.
-Qed.
-
-Lemma negate_cmp_mismatch:
- forall c,
- cmp_mismatch (negate_comparison c) = notbool(cmp_mismatch c).
-Proof.
- destruct c; reflexivity.
-Qed.
-
-Theorem negate_cmp:
- forall c x y,
- cmp (negate_comparison c) x y = notbool (cmp c x y).
-Proof.
- destruct x; destruct y; simpl; auto.
- rewrite Int.negate_cmp. apply notbool_negb_1.
- case (Int.eq i Int.zero). apply negate_cmp_mismatch. reflexivity.
- case (Int.eq i0 Int.zero). apply negate_cmp_mismatch. reflexivity.
- case (zeq b b0); intro.
- rewrite Int.negate_cmp. apply notbool_negb_1.
- apply negate_cmp_mismatch.
-Qed.
-
-Theorem negate_cmpu:
- forall c x y,
- cmpu (negate_comparison c) x y = notbool (cmpu c x y).
-Proof.
- destruct x; destruct y; simpl; auto.
- rewrite Int.negate_cmpu. apply notbool_negb_1.
- case (Int.eq i Int.zero). apply negate_cmp_mismatch. reflexivity.
- case (Int.eq i0 Int.zero). apply negate_cmp_mismatch. reflexivity.
- case (zeq b b0); intro.
- rewrite Int.negate_cmpu. apply notbool_negb_1.
- apply negate_cmp_mismatch.
-Qed.
-
-Lemma swap_cmp_mismatch:
- forall c, cmp_mismatch (swap_comparison c) = cmp_mismatch c.
-Proof.
- destruct c; reflexivity.
-Qed.
-
-Theorem swap_cmp:
- forall c x y,
- cmp (swap_comparison c) x y = cmp c y x.
-Proof.
- destruct x; destruct y; simpl; auto.
- rewrite Int.swap_cmp. auto.
- case (Int.eq i Int.zero). apply swap_cmp_mismatch. auto.
- case (Int.eq i0 Int.zero). apply swap_cmp_mismatch. auto.
- case (zeq b b0); intro.
- subst b0. rewrite zeq_true. rewrite Int.swap_cmp. auto.
- rewrite zeq_false. apply swap_cmp_mismatch. auto.
-Qed.
-
-Theorem swap_cmpu:
- forall c x y,
- cmpu (swap_comparison c) x y = cmpu c y x.
-Proof.
- destruct x; destruct y; simpl; auto.
- rewrite Int.swap_cmpu. auto.
- case (Int.eq i Int.zero). apply swap_cmp_mismatch. auto.
- case (Int.eq i0 Int.zero). apply swap_cmp_mismatch. auto.
- case (zeq b b0); intro.
- subst b0. rewrite zeq_true. rewrite Int.swap_cmpu. auto.
- rewrite zeq_false. apply swap_cmp_mismatch. auto.
-Qed.
-
-Theorem negate_cmpf_eq:
- forall v1 v2, notbool (cmpf Cne v1 v2) = cmpf Ceq v1 v2.
-Proof.
- destruct v1; destruct v2; simpl; auto.
- rewrite Float.cmp_ne_eq. rewrite notbool_negb_1.
- apply notbool_idem2.
-Qed.
-
-Lemma or_of_bool:
- forall b1 b2, or (of_bool b1) (of_bool b2) = of_bool (b1 || b2).
-Proof.
- destruct b1; destruct b2; reflexivity.
-Qed.
-
-Theorem cmpf_le:
- forall v1 v2, cmpf Cle v1 v2 = or (cmpf Clt v1 v2) (cmpf Ceq v1 v2).
-Proof.
- destruct v1; destruct v2; simpl; auto.
- rewrite or_of_bool. decEq. apply Float.cmp_le_lt_eq.
-Qed.
-
-Theorem cmpf_ge:
- forall v1 v2, cmpf Cge v1 v2 = or (cmpf Cgt v1 v2) (cmpf Ceq v1 v2).
-Proof.
- destruct v1; destruct v2; simpl; auto.
- rewrite or_of_bool. decEq. apply Float.cmp_ge_gt_eq.
-Qed.
-
-Definition is_bool (v: val) :=
- v = Vundef \/ v = Vtrue \/ v = Vfalse.
-
-Lemma of_bool_is_bool:
- forall b, is_bool (of_bool b).
-Proof.
- destruct b; unfold is_bool; simpl; tauto.
-Qed.
-
-Lemma undef_is_bool: is_bool Vundef.
-Proof.
- unfold is_bool; tauto.
-Qed.
-
-Lemma cmp_mismatch_is_bool:
- forall c, is_bool (cmp_mismatch c).
-Proof.
- destruct c; simpl; unfold is_bool; tauto.
-Qed.
-
-Lemma cmp_is_bool:
- forall c v1 v2, is_bool (cmp c v1 v2).
-Proof.
- destruct v1; destruct v2; simpl; try apply undef_is_bool.
- apply of_bool_is_bool.
- case (Int.eq i Int.zero). apply cmp_mismatch_is_bool. apply undef_is_bool.
- case (Int.eq i0 Int.zero). apply cmp_mismatch_is_bool. apply undef_is_bool.
- case (zeq b b0); intro. apply of_bool_is_bool. apply cmp_mismatch_is_bool.
-Qed.
-
-Lemma cmpu_is_bool:
- forall c v1 v2, is_bool (cmpu c v1 v2).
-Proof.
- destruct v1; destruct v2; simpl; try apply undef_is_bool.
- apply of_bool_is_bool.
- case (Int.eq i Int.zero). apply cmp_mismatch_is_bool. apply undef_is_bool.
- case (Int.eq i0 Int.zero). apply cmp_mismatch_is_bool. apply undef_is_bool.
- case (zeq b b0); intro. apply of_bool_is_bool. apply cmp_mismatch_is_bool.
-Qed.
-
-Lemma cmpf_is_bool:
- forall c v1 v2, is_bool (cmpf c v1 v2).
-Proof.
- destruct v1; destruct v2; simpl;
- apply undef_is_bool || apply of_bool_is_bool.
-Qed.
-
-Lemma notbool_is_bool:
- forall v, is_bool (notbool v).
-Proof.
- destruct v; simpl.
- apply undef_is_bool. apply of_bool_is_bool.
- apply undef_is_bool. unfold is_bool; tauto.
-Qed.
-
-Lemma notbool_xor:
- forall v, is_bool v -> v = xor (notbool v) Vone.
-Proof.
- intros. elim H; intro.
- subst v. reflexivity.
- elim H0; intro; subst v; reflexivity.
-Qed.
-
-End Val.