aboutsummaryrefslogtreecommitdiffstats
path: root/cparser/MenhirLib/Alphabet.v
diff options
context:
space:
mode:
Diffstat (limited to 'cparser/MenhirLib/Alphabet.v')
-rw-r--r--cparser/MenhirLib/Alphabet.v320
1 files changed, 0 insertions, 320 deletions
diff --git a/cparser/MenhirLib/Alphabet.v b/cparser/MenhirLib/Alphabet.v
deleted file mode 100644
index a13f69b0..00000000
--- a/cparser/MenhirLib/Alphabet.v
+++ /dev/null
@@ -1,320 +0,0 @@
-(* *********************************************************************)
-(* *)
-(* The Compcert verified compiler *)
-(* *)
-(* Jacques-Henri Jourdan, INRIA Paris-Rocquencourt *)
-(* *)
-(* Copyright Institut National de Recherche en Informatique et en *)
-(* Automatique. All rights reserved. This file is distributed *)
-(* under the terms of the GNU General Public License as published by *)
-(* the Free Software Foundation, either version 2 of the License, or *)
-(* (at your option) any later version. This file is also distributed *)
-(* under the terms of the INRIA Non-Commercial License Agreement. *)
-(* *)
-(* *********************************************************************)
-
-Require Import Int31.
-Require Import Cyclic31.
-Require Import Omega.
-Require Import List.
-Require Import Syntax.
-Require Import Relations.
-Require Import RelationClasses.
-
-Local Obligation Tactic := intros.
-
-(** A comparable type is equiped with a [compare] function, that define an order
- relation. **)
-Class Comparable (A:Type) := {
- compare : A -> A -> comparison;
- compare_antisym : forall x y, CompOpp (compare x y) = compare y x;
- compare_trans : forall x y z c,
- (compare x y) = c -> (compare y z) = c -> (compare x z) = c
-}.
-
-Theorem compare_refl {A:Type} (C: Comparable A) :
- forall x, compare x x = Eq.
-Proof.
-intros.
-pose proof (compare_antisym x x).
-destruct (compare x x); intuition; try discriminate.
-Qed.
-
-(** The corresponding order is a strict order. **)
-Definition comparableLt {A:Type} (C: Comparable A) : relation A :=
- fun x y => compare x y = Lt.
-
-Instance ComparableLtStrictOrder {A:Type} (C: Comparable A) :
- StrictOrder (comparableLt C).
-Proof.
-apply Build_StrictOrder.
-unfold Irreflexive, Reflexive, complement, comparableLt.
-intros.
-pose proof H.
-rewrite <- compare_antisym in H.
-rewrite H0 in H.
-discriminate H.
-unfold Transitive, comparableLt.
-intros x y z.
-apply compare_trans.
-Qed.
-
-(** nat is comparable. **)
-Program Instance natComparable : Comparable nat :=
- { compare := Nat.compare }.
-Next Obligation.
-symmetry.
-destruct (Nat.compare x y) as [] eqn:?.
-rewrite Nat.compare_eq_iff in Heqc.
-destruct Heqc.
-rewrite Nat.compare_eq_iff.
-trivial.
-rewrite <- nat_compare_lt in *.
-rewrite <- nat_compare_gt in *.
-trivial.
-rewrite <- nat_compare_lt in *.
-rewrite <- nat_compare_gt in *.
-trivial.
-Qed.
-Next Obligation.
-destruct c.
-rewrite Nat.compare_eq_iff in *; destruct H; assumption.
-rewrite <- nat_compare_lt in *.
-apply (Nat.lt_trans _ _ _ H H0).
-rewrite <- nat_compare_gt in *.
-apply (gt_trans _ _ _ H H0).
-Qed.
-
-(** A pair of comparable is comparable. **)
-Program Instance PairComparable {A:Type} (CA:Comparable A) {B:Type} (CB:Comparable B) :
- Comparable (A*B) :=
- { compare := fun x y =>
- let (xa, xb) := x in let (ya, yb) := y in
- match compare xa ya return comparison with
- | Eq => compare xb yb
- | x => x
- end }.
-Next Obligation.
-destruct x, y.
-rewrite <- (compare_antisym a a0).
-rewrite <- (compare_antisym b b0).
-destruct (compare a a0); intuition.
-Qed.
-Next Obligation.
-destruct x, y, z.
-destruct (compare a a0) as [] eqn:?, (compare a0 a1) as [] eqn:?;
-try (rewrite <- H0 in H; discriminate);
-try (destruct (compare a a1) as [] eqn:?;
- try (rewrite <- compare_antisym in Heqc0;
- rewrite CompOpp_iff in Heqc0;
- rewrite (compare_trans _ _ _ _ Heqc0 Heqc2) in Heqc1;
- discriminate);
- try (rewrite <- compare_antisym in Heqc1;
- rewrite CompOpp_iff in Heqc1;
- rewrite (compare_trans _ _ _ _ Heqc2 Heqc1) in Heqc0;
- discriminate);
- assumption);
-rewrite (compare_trans _ _ _ _ Heqc0 Heqc1);
-try assumption.
-apply (compare_trans _ _ _ _ H H0).
-Qed.
-
-(** Special case of comparable, where equality is usual equality. **)
-Class ComparableUsualEq {A:Type} (C: Comparable A) :=
- compare_eq : forall x y, compare x y = Eq -> x = y.
-
-(** Boolean equality for a [Comparable]. **)
-Definition compare_eqb {A:Type} {C:Comparable A} (x y:A) :=
- match compare x y with
- | Eq => true
- | _ => false
- end.
-
-Theorem compare_eqb_iff {A:Type} {C:Comparable A} {U:ComparableUsualEq C} :
- forall x y, compare_eqb x y = true <-> x = y.
-Proof.
-unfold compare_eqb.
-intuition.
-apply compare_eq.
-destruct (compare x y); intuition; discriminate.
-destruct H.
-rewrite compare_refl; intuition.
-Qed.
-
-(** [Comparable] provides a decidable equality. **)
-Definition compare_eqdec {A:Type} {C:Comparable A} {U:ComparableUsualEq C} (x y:A):
- {x = y} + {x <> y}.
-Proof.
-destruct (compare x y) as [] eqn:?; [left; apply compare_eq; intuition | ..];
- right; intro; destruct H; rewrite compare_refl in Heqc; discriminate.
-Defined.
-
-Instance NComparableUsualEq : ComparableUsualEq natComparable := Nat.compare_eq.
-
-(** A pair of ComparableUsualEq is ComparableUsualEq **)
-Instance PairComparableUsualEq
- {A:Type} {CA:Comparable A} (UA:ComparableUsualEq CA)
- {B:Type} {CB:Comparable B} (UB:ComparableUsualEq CB) :
- ComparableUsualEq (PairComparable CA CB).
-Proof.
-intros x y; destruct x, y; simpl.
-pose proof (compare_eq a a0); pose proof (compare_eq b b0).
-destruct (compare a a0); try discriminate.
-intuition.
-destruct H2, H0.
-reflexivity.
-Qed.
-
-(** An [Finite] type is a type with the list of all elements. **)
-Class Finite (A:Type) := {
- all_list : list A;
- all_list_forall : forall x:A, In x all_list
-}.
-
-(** An alphabet is both [ComparableUsualEq] and [Finite]. **)
-Class Alphabet (A:Type) := {
- AlphabetComparable :> Comparable A;
- AlphabetComparableUsualEq :> ComparableUsualEq AlphabetComparable;
- AlphabetFinite :> Finite A
-}.
-
-(** The [Numbered] class provides a conveniant way to build [Alphabet] instances,
- with a good computationnal complexity. It is mainly a injection from it to
- [Int31] **)
-Class Numbered (A:Type) := {
- inj : A -> int31;
- surj : int31 -> A;
- surj_inj_compat : forall x, surj (inj x) = x;
- inj_bound : int31;
- inj_bound_spec : forall x, (phi (inj x) < phi inj_bound)%Z
-}.
-
-Program Instance NumberedAlphabet {A:Type} (N:Numbered A) : Alphabet A :=
- { AlphabetComparable :=
- {| compare := fun x y => compare31 (inj x) (inj y) |};
- AlphabetFinite :=
- {| all_list := fst (iter_int31 inj_bound _
- (fun p => (cons (surj (snd p)) (fst p), incr (snd p))) ([], 0%int31)) |} }.
-Next Obligation. apply Zcompare_antisym. Qed.
-Next Obligation.
-destruct c. unfold compare31 in *.
-rewrite Z.compare_eq_iff in *. congruence.
-eapply Zcompare_Lt_trans. apply H. apply H0.
-eapply Zcompare_Gt_trans. apply H. apply H0.
-Qed.
-Next Obligation.
-intros x y H. unfold compare, compare31 in H.
-rewrite Z.compare_eq_iff in *.
-rewrite <- surj_inj_compat, <- phi_inv_phi with (inj y), <- H.
-rewrite phi_inv_phi, surj_inj_compat; reflexivity.
-Qed.
-Next Obligation.
-rewrite iter_int31_iter_nat.
-pose proof (inj_bound_spec x).
-match goal with |- In x (fst ?p) => destruct p as [] eqn:? end.
-replace inj_bound with i in H.
-revert l i Heqp x H.
-induction (Z.abs_nat (phi inj_bound)); intros.
-inversion Heqp; clear Heqp; subst.
-rewrite spec_0 in H. pose proof (phi_bounded (inj x)). omega.
-simpl in Heqp.
-destruct nat_rect; specialize (IHn _ _ (eq_refl _) x); simpl in *.
-inversion Heqp. subst. clear Heqp.
-rewrite phi_incr in H.
-pose proof (phi_bounded i0).
-pose proof (phi_bounded (inj x)).
-destruct (Z_lt_le_dec (Z.succ (phi i0)) (2 ^ Z.of_nat size)%Z).
-rewrite Zmod_small in H by omega.
-apply Zlt_succ_le, Zle_lt_or_eq in H.
-destruct H; simpl; auto. left.
-rewrite <- surj_inj_compat, <- phi_inv_phi with (inj x), H, phi_inv_phi; reflexivity.
-replace (Z.succ (phi i0)) with (2 ^ Z.of_nat size)%Z in H by omega.
-rewrite Z_mod_same_full in H.
-exfalso; omega.
-rewrite <- phi_inv_phi with i, <- phi_inv_phi with inj_bound; f_equal.
-pose proof (phi_bounded inj_bound); pose proof (phi_bounded i).
-rewrite <- Z.abs_eq with (phi i), <- Z.abs_eq with (phi inj_bound) by omega.
-clear H H0 H1.
-do 2 rewrite <- Zabs2Nat.id_abs.
-f_equal.
-revert l i Heqp.
-assert (Z.abs_nat (phi inj_bound) < Z.abs_nat (2^31)).
-apply Zabs_nat_lt, phi_bounded.
-induction (Z.abs_nat (phi inj_bound)); intros.
-inversion Heqp; reflexivity.
-inversion Heqp; clear H1 H2 Heqp.
-match goal with |- _ (_ (_ (snd ?p))) = _ => destruct p end.
-pose proof (phi_bounded i0).
-erewrite <- IHn, <- Zabs2Nat.inj_succ in H |- *; eauto; try omega.
-rewrite phi_incr, Zmod_small; intuition; try omega.
-apply inj_lt in H.
-pose proof Z.le_le_succ_r.
-do 2 rewrite Zabs2Nat.id_abs, Z.abs_eq in H; now eauto.
-Qed.
-
-(** Previous class instances for [option A] **)
-Program Instance OptionComparable {A:Type} (C:Comparable A) : Comparable (option A) :=
- { compare := fun x y =>
- match x, y return comparison with
- | None, None => Eq
- | None, Some _ => Lt
- | Some _, None => Gt
- | Some x, Some y => compare x y
- end }.
-Next Obligation.
-destruct x, y; intuition.
-apply compare_antisym.
-Qed.
-Next Obligation.
-destruct x, y, z; try now intuition;
-try (rewrite <- H in H0; discriminate).
-apply (compare_trans _ _ _ _ H H0).
-Qed.
-
-Instance OptionComparableUsualEq {A:Type} {C:Comparable A} (U:ComparableUsualEq C) :
- ComparableUsualEq (OptionComparable C).
-Proof.
-intros x y.
-destruct x, y; intuition; try discriminate.
-rewrite (compare_eq a a0); intuition.
-Qed.
-
-Program Instance OptionFinite {A:Type} (E:Finite A) : Finite (option A) :=
- { all_list := None :: map Some all_list }.
-Next Obligation.
-destruct x; intuition.
-right.
-apply in_map.
-apply all_list_forall.
-Defined.
-
-(** Definitions of [FSet]/[FMap] from [Comparable] **)
-Require Import OrderedTypeAlt.
-Require FSetAVL.
-Require FMapAVL.
-Import OrderedType.
-
-Module Type ComparableM.
- Parameter t : Type.
- Declare Instance tComparable : Comparable t.
-End ComparableM.
-
-Module OrderedTypeAlt_from_ComparableM (C:ComparableM) <: OrderedTypeAlt.
- Definition t := C.t.
- Definition compare : t -> t -> comparison := compare.
-
- Infix "?=" := compare (at level 70, no associativity).
-
- Lemma compare_sym x y : (y?=x) = CompOpp (x?=y).
- Proof. exact (Logic.eq_sym (compare_antisym x y)). Qed.
- Lemma compare_trans c x y z :
- (x?=y) = c -> (y?=z) = c -> (x?=z) = c.
- Proof.
- apply compare_trans.
- Qed.
-End OrderedTypeAlt_from_ComparableM.
-
-Module OrderedType_from_ComparableM (C:ComparableM) <: OrderedType.
- Module Alt := OrderedTypeAlt_from_ComparableM C.
- Include (OrderedType_from_Alt Alt).
-End OrderedType_from_ComparableM.