aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/Appli
diff options
context:
space:
mode:
Diffstat (limited to 'flocq/Appli')
-rw-r--r--flocq/Appli/Fappli_IEEE.v227
-rw-r--r--flocq/Appli/Fappli_IEEE_bits.v215
-rw-r--r--flocq/Appli/Fappli_double_round.v4554
-rw-r--r--flocq/Appli/Fappli_rnd_odd.v4
4 files changed, 4889 insertions, 111 deletions
diff --git a/flocq/Appli/Fappli_IEEE.v b/flocq/Appli/Fappli_IEEE.v
index b44d711c..9b5826c1 100644
--- a/flocq/Appli/Fappli_IEEE.v
+++ b/flocq/Appli/Fappli_IEEE.v
@@ -46,6 +46,8 @@ End AnyRadix.
Section Binary.
+Implicit Arguments exist [[A] [P]].
+
(** prec is the number of bits of the mantissa including the implicit one
emax is the exponent of the infinities
Typically p=24 and emax = 128 in single precision *)
@@ -59,7 +61,7 @@ Instance fexp_correct : Valid_exp fexp := FLT_exp_valid emin prec.
Instance fexp_monotone : Monotone_exp fexp := FLT_exp_monotone emin prec.
Definition canonic_mantissa m e :=
- Zeq_bool (fexp (Z_of_nat (S (digits2_Pnat m)) + e)) e.
+ Zeq_bool (fexp (Zpos (digits2_pos m) + e)) e.
Definition bounded m e :=
andb (canonic_mantissa m e) (Zle_bool e (emax - prec)).
@@ -67,14 +69,15 @@ Definition bounded m e :=
Definition valid_binary x :=
match x with
| F754_finite _ m e => bounded m e
- | F754_nan _ pl => (Z_of_nat' (S (digits2_Pnat pl)) <? prec)%Z
+ | F754_nan _ pl => (Zpos (digits2_pos pl) <? prec)%Z
| _ => true
end.
(** Basic type used for representing binary FP numbers.
- Note that there is exactly one such object per FP datum. *)
+ Note that there is exactly one such object per FP datum.
+ NaNs do not have any payload. They cannot be distinguished. *)
-Definition nan_pl := {pl | (Z_of_nat' (S (digits2_Pnat pl)) <? prec)%Z = true}.
+Definition nan_pl := {pl | (Zpos (digits2_pos pl) <? prec)%Z = true}.
Inductive binary_float :=
| B754_zero : bool -> binary_float
@@ -88,7 +91,7 @@ Definition FF2B x :=
| F754_finite s m e => B754_finite s m e
| F754_infinity s => fun _ => B754_infinity s
| F754_zero s => fun _ => B754_zero s
- | F754_nan b pl => fun H => B754_nan b (exist _ pl H)
+ | F754_nan b pl => fun H => B754_nan b (exist pl H)
end.
Definition B2FF x :=
@@ -99,8 +102,6 @@ Definition B2FF x :=
| B754_nan b (exist pl _) => F754_nan b pl
end.
-Definition radix2 := Build_radix 2 (refl_equal true).
-
Definition B2R f :=
match f with
| B754_finite s m e _ => F2R (Float radix2 (cond_Zopp s (Zpos m)) e)
@@ -183,7 +184,7 @@ pattern ex at 2 ; rewrite <- Hx.
apply (f_equal fexp).
rewrite ln_beta_F2R_Zdigits.
rewrite <- Zdigits_abs.
-rewrite Z_of_nat_S_digits2_Pnat.
+rewrite Zpos_digits2_pos.
now case sx.
now case sx.
Qed.
@@ -419,6 +420,159 @@ simpl.
now case opp_nan.
Qed.
+(** Absolute value *)
+
+Definition Babs abs_nan (x : binary_float) : binary_float :=
+ match x with
+ | B754_nan sx plx =>
+ let '(sres, plres) := abs_nan sx plx in B754_nan sres plres
+ | B754_infinity sx => B754_infinity false
+ | B754_finite sx mx ex Hx => B754_finite false mx ex Hx
+ | B754_zero sx => B754_zero false
+ end.
+
+Theorem B2R_Babs :
+ forall abs_nan x,
+ B2R (Babs abs_nan x) = Rabs (B2R x).
+Proof.
+ intros abs_nan [sx|sx|sx plx|sx mx ex Hx]; apply sym_eq ; try apply Rabs_R0.
+ simpl. destruct abs_nan. simpl. apply Rabs_R0.
+ simpl. rewrite <- F2R_abs. now destruct sx.
+Qed.
+
+Theorem is_finite_Babs :
+ forall abs_nan x,
+ is_finite (Babs abs_nan x) = is_finite x.
+Proof.
+ intros abs_nan [| | |] ; try easy.
+ intros s pl.
+ simpl.
+ now case abs_nan.
+Qed.
+
+Theorem Bsign_Babs :
+ forall abs_nan x,
+ is_nan x = false ->
+ Bsign (Babs abs_nan x) = false.
+Proof.
+ now intros abs_nan [| | |].
+Qed.
+
+Theorem Babs_idempotent :
+ forall abs_nan (x: binary_float),
+ is_nan x = false ->
+ Babs abs_nan (Babs abs_nan x) = Babs abs_nan x.
+Proof.
+ now intros abs_nan [sx|sx|sx plx|sx mx ex Hx].
+Qed.
+
+Theorem Babs_Bopp :
+ forall abs_nan opp_nan x,
+ is_nan x = false ->
+ Babs abs_nan (Bopp opp_nan x) = Babs abs_nan x.
+Proof.
+ now intros abs_nan opp_nan [| | |].
+Qed.
+
+(** Comparison
+
+[Some c] means ordered as per [c]; [None] means unordered. *)
+
+Definition Bcompare (f1 f2 : binary_float) : option comparison :=
+ match f1, f2 with
+ | B754_nan _ _,_ | _,B754_nan _ _ => None
+ | B754_infinity true, B754_infinity true
+ | B754_infinity false, B754_infinity false => Some Eq
+ | B754_infinity true, _ => Some Lt
+ | B754_infinity false, _ => Some Gt
+ | _, B754_infinity true => Some Gt
+ | _, B754_infinity false => Some Lt
+ | B754_finite true _ _ _, B754_zero _ => Some Lt
+ | B754_finite false _ _ _, B754_zero _ => Some Gt
+ | B754_zero _, B754_finite true _ _ _ => Some Gt
+ | B754_zero _, B754_finite false _ _ _ => Some Lt
+ | B754_zero _, B754_zero _ => Some Eq
+ | B754_finite s1 m1 e1 _, B754_finite s2 m2 e2 _ =>
+ match s1, s2 with
+ | true, false => Some Lt
+ | false, true => Some Gt
+ | false, false =>
+ match Zcompare e1 e2 with
+ | Lt => Some Lt
+ | Gt => Some Gt
+ | Eq => Some (Pcompare m1 m2 Eq)
+ end
+ | true, true =>
+ match Zcompare e1 e2 with
+ | Lt => Some Gt
+ | Gt => Some Lt
+ | Eq => Some (CompOpp (Pcompare m1 m2 Eq))
+ end
+ end
+ end.
+
+Theorem Bcompare_correct :
+ forall f1 f2,
+ is_finite f1 = true -> is_finite f2 = true ->
+ Bcompare f1 f2 = Some (Rcompare (B2R f1) (B2R f2)).
+Proof.
+ Ltac apply_Rcompare :=
+ match goal with
+ | [ |- Some Lt = Some (Rcompare _ _) ] => f_equal; symmetry; apply Rcompare_Lt
+ | [ |- Some Eq = Some (Rcompare _ _) ] => f_equal; symmetry; apply Rcompare_Eq
+ | [ |- Some Gt = Some (Rcompare _ _) ] => f_equal; symmetry; apply Rcompare_Gt
+ end.
+ unfold Bcompare; intros.
+ destruct f1, f2 ; try easy.
+ now rewrite Rcompare_Eq.
+ destruct b0 ; apply_Rcompare.
+ now apply F2R_lt_0_compat.
+ now apply F2R_gt_0_compat.
+ destruct b ; apply_Rcompare.
+ now apply F2R_lt_0_compat.
+ now apply F2R_gt_0_compat.
+ simpl.
+ clear H H0.
+ apply andb_prop in e0; destruct e0; apply (canonic_canonic_mantissa false) in H.
+ apply andb_prop in e2; destruct e2; apply (canonic_canonic_mantissa false) in H1.
+ pose proof (Zcompare_spec e e1); unfold canonic, Fexp in H1, H.
+ assert (forall m1 m2 e1 e2,
+ let x := (Z2R (Zpos m1) * bpow radix2 e1)%R in
+ let y := (Z2R (Zpos m2) * bpow radix2 e2)%R in
+ (canonic_exp radix2 fexp x < canonic_exp radix2 fexp y)%Z -> (x < y)%R).
+ {
+ intros; apply Rnot_le_lt; intro; apply (ln_beta_le radix2) in H5.
+ apply Zlt_not_le with (1 := H4).
+ now apply fexp_monotone.
+ now apply (F2R_gt_0_compat _ (Float radix2 (Zpos m2) e2)).
+ }
+ assert (forall m1 m2 e1 e2, (Z2R (- Zpos m1) * bpow radix2 e1 < Z2R (Zpos m2) * bpow radix2 e2)%R).
+ {
+ intros; apply (Rlt_trans _ 0%R).
+ now apply (F2R_lt_0_compat _ (Float radix2 (Zneg m1) e0)).
+ now apply (F2R_gt_0_compat _ (Float radix2 (Zpos m2) e2)).
+ }
+ unfold F2R, Fnum, Fexp.
+ destruct b, b0; try (now apply_Rcompare; apply H5); inversion H3;
+ try (apply_Rcompare; apply H4; rewrite H, H1 in H7; assumption);
+ try (apply_Rcompare; do 2 rewrite Z2R_opp, Ropp_mult_distr_l_reverse;
+ apply Ropp_lt_contravar; apply H4; rewrite H, H1 in H7; assumption);
+ rewrite H7, Rcompare_mult_r, Rcompare_Z2R by (apply bpow_gt_0); reflexivity.
+Qed.
+
+Theorem Bcompare_swap :
+ forall x y,
+ Bcompare y x = match Bcompare x y with Some c => Some (CompOpp c) | None => None end.
+Proof.
+ intros.
+ destruct x as [ ? | [] | ? ? | [] mx ex Bx ];
+ destruct y as [ ? | [] | ? ? | [] my ey By ]; simpl; try easy.
+- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy.
+ now rewrite (Pcompare_antisym mx my).
+- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy.
+ now rewrite Pcompare_antisym.
+Qed.
+
Theorem bounded_lt_emax :
forall mx ex,
bounded mx ex = true ->
@@ -441,8 +595,7 @@ now apply F2R_gt_0_compat.
apply bpow_le.
rewrite H. 2: discriminate.
revert H1. clear -H2.
-rewrite Z_of_nat_S_digits2_Pnat.
-change Fcalc_digits.radix2 with radix2.
+rewrite Zpos_digits2_pos.
unfold fexp, FLT_exp.
generalize (Zdigits radix2 (Zpos mx)).
intros ; zify ; subst.
@@ -471,8 +624,7 @@ split.
unfold canonic_mantissa.
unfold canonic, Fexp in Cx.
rewrite Cx at 2.
-rewrite Z_of_nat_S_digits2_Pnat.
-change Fcalc_digits.radix2 with radix2.
+rewrite Zpos_digits2_pos.
unfold canonic_exp.
rewrite ln_beta_F2R_Zdigits. 2: discriminate.
now apply -> Zeq_is_eq_bool.
@@ -600,7 +752,7 @@ induction (nat_of_P n).
simpl.
rewrite Zplus_0_r.
now destruct l as [|[| |]].
-simpl iter_nat.
+simpl nat_rect.
rewrite inj_S.
unfold Zsucc.
rewrite Zplus_assoc.
@@ -617,18 +769,6 @@ intros (m, r, s) Hm.
now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
Qed.
-Definition Zdigits2 m :=
- match m with Z0 => m | Zpos p => Z_of_nat (S (digits2_Pnat p)) | Zneg p => Z_of_nat (S (digits2_Pnat p)) end.
-
-Theorem Zdigits2_Zdigits :
- forall m,
- Zdigits2 m = Zdigits radix2 m.
-Proof.
-unfold Zdigits2.
-intros [|m|m] ; try apply Z_of_nat_S_digits2_Pnat.
-easy.
-Qed.
-
Definition shr_fexp m e l :=
shr (shr_record_of_loc m l) e (fexp (Zdigits2 m + e) - e).
@@ -829,7 +969,7 @@ apply andb_true_intro.
split.
unfold canonic_mantissa.
apply Zeq_bool_true.
-rewrite Z_of_nat_S_digits2_Pnat.
+rewrite Zpos_digits2_pos.
rewrite <- ln_beta_F2R_Zdigits.
apply sym_eq.
now rewrite H3 in H4.
@@ -849,8 +989,7 @@ unfold valid_binary, bounded.
rewrite Zle_bool_refl.
rewrite Bool.andb_true_r.
apply Zeq_bool_true.
-rewrite Z_of_nat_S_digits2_Pnat.
-change Fcalc_digits.radix2 with radix2.
+rewrite Zpos_digits2_pos.
replace (Zdigits radix2 (Zpos (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end))) with prec.
unfold fexp, FLT_exp, emin.
generalize (prec_gt_0 prec).
@@ -942,7 +1081,7 @@ assert (forall m e, bounded m e = true -> fexp (Zdigits radix2 (Zpos m) + e) = e
clear. intros m e Hb.
destruct (andb_prop _ _ Hb) as (H,_).
apply Zeq_bool_eq.
-now rewrite <- Z_of_nat_S_digits2_Pnat.
+now rewrite <- Zpos_digits2_pos.
generalize (H _ _ Hx) (H _ _ Hy).
clear x y sx sy Hx Hy H.
unfold fexp, FLT_exp.
@@ -1098,7 +1237,7 @@ apply refl_equal.
Qed.
Definition shl_align_fexp mx ex :=
- shl_align mx ex (fexp (Z_of_nat (S (digits2_Pnat mx)) + ex)).
+ shl_align mx ex (fexp (Zpos (digits2_pos mx) + ex)).
Theorem shl_align_fexp_correct :
forall mx ex,
@@ -1108,8 +1247,8 @@ Theorem shl_align_fexp_correct :
Proof.
intros mx ex.
unfold shl_align_fexp.
-generalize (shl_align_correct mx ex (fexp (Z_of_nat (S (digits2_Pnat mx)) + ex))).
-rewrite Z_of_nat_S_digits2_Pnat.
+generalize (shl_align_correct mx ex (fexp (Zpos (digits2_pos mx) + ex))).
+rewrite Zpos_digits2_pos.
case shl_align.
intros mx' ex' (H1, H2).
split.
@@ -1438,10 +1577,10 @@ Definition Fdiv_core_binary m1 e1 m2 e2 :=
let e := (e1 - e2)%Z in
let (m, e') :=
match (d2 + prec - d1)%Z with
- | Zpos p => (m1 * Zpower_pos 2 p, e + Zneg p)%Z
+ | Zpos p => (Z.shiftl m1 (Zpos p), e + Zneg p)%Z
| _ => (m1, e)
end in
- let '(q, r) := Zdiv_eucl m m2 in
+ let '(q, r) := Zfast_div_eucl m m2 in
(q, e', new_location m2 r loc_Exact).
Lemma Bdiv_correct_aux :
@@ -1463,7 +1602,6 @@ Lemma Bdiv_correct_aux :
Proof.
intros m sx mx ex sy my ey.
replace (Fdiv_core_binary (Zpos mx) ex (Zpos my) ey) with (Fdiv_core radix2 prec (Zpos mx) ex (Zpos my) ey).
-2: now unfold Fdiv_core_binary ; rewrite 2!Zdigits2_Zdigits.
refine (_ (Fdiv_core_correct radix2 prec (Zpos mx) ex (Zpos my) ey _ _ _)) ; try easy.
destruct (Fdiv_core radix2 prec (Zpos mx) ex (Zpos my) ey) as ((mz, ez), lz).
intros (Pz, Bz).
@@ -1540,6 +1678,15 @@ now apply F2R_ge_0_compat.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0_compat.
+(* *)
+unfold Fdiv_core_binary, Fdiv_core.
+rewrite 2!Zdigits2_Zdigits.
+change 2%Z with (radix_val radix2).
+destruct (Zdigits radix2 (Z.pos my) + prec - Zdigits radix2 (Z.pos mx))%Z as [|p|p].
+now rewrite Zfast_div_eucl_correct.
+rewrite Z.shiftl_mul_pow2 by easy.
+now rewrite Zfast_div_eucl_correct.
+now rewrite Zfast_div_eucl_correct.
Qed.
Definition Bdiv div_nan m x y :=
@@ -1597,10 +1744,10 @@ Definition Fsqrt_core_binary m e :=
let (s', e'') := if Zeven e' then (s, e') else (s + 1, e' - 1)%Z in
let m' :=
match s' with
- | Zpos p => (m * Zpower_pos 2 p)%Z
+ | Zpos p => Z.shiftl m (Zpos p)
| _ => m
end in
- let (q, r) := Zsqrt m' in
+ let (q, r) := Z.sqrtrem m' in
let l :=
if Zeq_bool r 0 then loc_Exact
else loc_Inexact (if Zle_bool r q then Lt else Gt) in
@@ -1621,7 +1768,6 @@ Lemma Bsqrt_correct_aux :
Proof with auto with typeclass_instances.
intros m mx ex Hx.
replace (Fsqrt_core_binary (Zpos mx) ex) with (Fsqrt_core radix2 prec (Zpos mx) ex).
-2: now unfold Fsqrt_core_binary ; rewrite Zdigits2_Zdigits.
simpl.
refine (_ (Fsqrt_core_correct radix2 prec (Zpos mx) ex _)) ; try easy.
destruct (Fsqrt_core radix2 prec (Zpos mx) ex) as ((mz, ez), lz).
@@ -1716,6 +1862,11 @@ apply Rle_trans with R0.
apply F2R_le_0_compat.
now case mz.
apply sqrt_ge_0.
+(* *)
+unfold Fsqrt_core, Fsqrt_core_binary.
+rewrite Zdigits2_Zdigits.
+destruct (if Zeven _ then _ else _) as [[|s'|s'] e''] ; try easy.
+now rewrite Z.shiftl_mul_pow2.
Qed.
Definition Bsqrt sqrt_nan m x :=
diff --git a/flocq/Appli/Fappli_IEEE_bits.v b/flocq/Appli/Fappli_IEEE_bits.v
index 937e8d43..5a77bf57 100644
--- a/flocq/Appli/Fappli_IEEE_bits.v
+++ b/flocq/Appli/Fappli_IEEE_bits.v
@@ -25,6 +25,12 @@ Require Import Fappli_IEEE.
Section Binary_Bits.
+Implicit Arguments exist [[A] [P]].
+Implicit Arguments B754_zero [[prec] [emax]].
+Implicit Arguments B754_infinity [[prec] [emax]].
+Implicit Arguments B754_nan [[prec] [emax]].
+Implicit Arguments B754_finite [[prec] [emax]].
+
(** Number of bits for the fraction and exponent *)
Variable mw ew : Z.
Hypothesis Hmw : (0 < mw)%Z.
@@ -54,7 +60,40 @@ Qed.
Hypothesis Hmax : (prec < emax)%Z.
Definition join_bits (s : bool) m e :=
- (((if s then Zpower 2 ew else 0) + e) * Zpower 2 mw + m)%Z.
+ (Z.shiftl ((if s then Zpower 2 ew else 0) + e) mw + m)%Z.
+
+Lemma join_bits_range :
+ forall s m e,
+ (0 <= m < 2^mw)%Z ->
+ (0 <= e < 2^ew)%Z ->
+ (0 <= join_bits s m e < 2 ^ (mw + ew + 1))%Z.
+Proof.
+intros s m e Hm He.
+unfold join_bits.
+rewrite Z.shiftl_mul_pow2 by now apply Zlt_le_weak.
+split.
+- apply (Zplus_le_compat 0 _ 0) with (2 := proj1 Hm).
+ rewrite <- (Zmult_0_l (2^mw)).
+ apply Zmult_le_compat_r.
+ case s.
+ clear -He ; omega.
+ now rewrite Zmult_0_l.
+ clear -Hm ; omega.
+- apply Zlt_le_trans with (((if s then 2 ^ ew else 0) + e + 1) * 2 ^ mw)%Z.
+ rewrite (Zmult_plus_distr_l _ 1).
+ apply Zplus_lt_compat_l.
+ now rewrite Zmult_1_l.
+ rewrite <- (Zplus_assoc mw), (Zplus_comm mw), Zpower_plus.
+ apply Zmult_le_compat_r.
+ rewrite Zpower_plus.
+ change (2^1)%Z with 2%Z.
+ case s ; clear -He ; omega.
+ now apply Zlt_le_weak.
+ easy.
+ clear -Hm ; omega.
+ clear -Hew ; omega.
+ now apply Zlt_le_weak.
+Qed.
Definition split_bits x :=
let mm := Zpower 2 mw in
@@ -69,6 +108,7 @@ Theorem split_join_bits :
Proof.
intros s m e Hm He.
unfold split_bits, join_bits.
+rewrite Z.shiftl_mul_pow2 by now apply Zlt_le_weak.
apply f_equal2.
apply f_equal2.
(* *)
@@ -114,6 +154,7 @@ Theorem join_split_bits :
Proof.
intros x Hx.
unfold split_bits, join_bits.
+rewrite Z.shiftl_mul_pow2 by now apply Zlt_le_weak.
pattern x at 4 ; rewrite Z_div_mod_eq_full with x (2^mw)%Z.
apply (f_equal (fun v => (v + _)%Z)).
rewrite Zmult_comm.
@@ -174,8 +215,9 @@ Definition bits_of_binary_float (x : binary_float) :=
| B754_infinity sx => join_bits sx 0 (Zpower 2 ew - 1)
| B754_nan sx (exist plx _) => join_bits sx (Zpos plx) (Zpower 2 ew - 1)
| B754_finite sx mx ex _ =>
- if Zle_bool (Zpower 2 mw) (Zpos mx) then
- join_bits sx (Zpos mx - Zpower 2 mw) (ex - emin + 1)
+ let m := (Zpos mx - Zpower 2 mw)%Z in
+ if Zle_bool 0 m then
+ join_bits sx m (ex - emin + 1)
else
join_bits sx (Zpos mx) 0
end.
@@ -186,8 +228,9 @@ Definition split_bits_of_binary_float (x : binary_float) :=
| B754_infinity sx => (sx, 0, Zpower 2 ew - 1)%Z
| B754_nan sx (exist plx _) => (sx, Zpos plx, Zpower 2 ew - 1)%Z
| B754_finite sx mx ex _ =>
- if Zle_bool (Zpower 2 mw) (Zpos mx) then
- (sx, Zpos mx - Zpower 2 mw, ex - emin + 1)%Z
+ let m := (Zpos mx - Zpower 2 mw)%Z in
+ if Zle_bool 0 m then
+ (sx, m, ex - emin + 1)%Z
else
(sx, Zpos mx, 0)%Z
end.
@@ -200,6 +243,7 @@ intros [sx|sx|sx [plx Hplx]|sx mx ex Hx] ;
try ( simpl ; apply split_join_bits ; split ; try apply Zle_refl ; try apply Zlt_pred ; trivial ; omega ).
simpl. apply split_join_bits; split; try (zify; omega).
destruct (digits2_Pnat_correct plx).
+rewrite Zpos_digits2_pos, <- Z_of_nat_S_digits2_Pnat in Hplx.
rewrite Zpower_nat_Z in H0.
eapply Zlt_le_trans. apply H0.
change 2%Z with (radix_val radix2). apply Zpower_le.
@@ -210,13 +254,13 @@ unfold bits_of_binary_float, split_bits_of_binary_float.
assert (Hf: (emin <= ex /\ Zdigits radix2 (Zpos mx) <= prec)%Z).
destruct (andb_prop _ _ Hx) as (Hx', _).
unfold canonic_mantissa in Hx'.
-rewrite Z_of_nat_S_digits2_Pnat in Hx'.
+rewrite Zpos_digits2_pos in Hx'.
generalize (Zeq_bool_eq _ _ Hx').
unfold FLT_exp.
-change (Fcalc_digits.radix2) with radix2.
unfold emin.
clear ; zify ; omega.
-destruct (Zle_bool_spec (2^mw) (Zpos mx)) as [H|H] ;
+case Zle_bool_spec ; intros H ;
+ [ apply -> Z.le_0_sub in H | apply -> Z.lt_sub_0 in H ] ;
apply split_join_bits ; try now split.
(* *)
split.
@@ -251,52 +295,45 @@ Qed.
Theorem bits_of_binary_float_range:
forall x, (0 <= bits_of_binary_float x < 2^(mw+ew+1))%Z.
Proof.
- intros.
-Local Open Scope Z_scope.
- assert (J: forall s m e,
- 0 <= m < 2^mw -> 0 <= e < 2^ew ->
- 0 <= join_bits s m e < 2^(mw+ew+1)).
- {
- intros. unfold join_bits.
- set (se := (if s then 2 ^ ew else 0) + e).
- assert (0 <= se < 2^(ew+1)).
- { rewrite (Zpower_plus radix2) by omega. change (radix2^1) with 2. simpl.
- unfold se. destruct s; omega. }
- assert (0 <= se * 2^mw <= (2^(ew+1) - 1) * 2^mw).
- { split. apply Zmult_gt_0_le_0_compat; omega.
- apply Zmult_le_compat_r; omega. }
- rewrite Z.mul_sub_distr_r in H2.
- replace (mw + ew + 1) with ((ew + 1) + mw) by omega.
- rewrite (Zpower_plus radix2) by omega. simpl. omega.
- }
- assert (D: forall p n, Z.of_nat (S (digits2_Pnat p)) <= n ->
- 0 <= Z.pos p < 2^n).
- {
- intros.
- generalize (digits2_Pnat_correct p). simpl. rewrite ! Zpower_nat_Z. intros [A B].
- split. zify; omega. eapply Zlt_le_trans. eassumption.
- apply (Zpower_le radix2); auto.
- }
- destruct x; unfold bits_of_binary_float.
-- apply J; omega.
-- apply J; omega.
-- destruct n as [pl pl_range]. apply Z.ltb_lt in pl_range.
- apply J. apply D. unfold prec, Z_of_nat' in pl_range; omega. omega.
-- unfold bounded in e0. apply Bool.andb_true_iff in e0; destruct e0 as [A B].
+unfold bits_of_binary_float.
+intros [sx|sx|sx [pl pl_range]|sx mx ex H].
+- apply join_bits_range ; now split.
+- apply join_bits_range.
+ now split.
+ clear -He_gt_0 ; omega.
+- apply Z.ltb_lt in pl_range.
+ apply join_bits_range.
+ split.
+ easy.
+ apply (Zpower_gt_Zdigits radix2 _ (Zpos pl)).
+ apply Z.lt_succ_r.
+ now rewrite <- Zdigits2_Zdigits.
+ clear -He_gt_0 ; omega.
+- unfold bounded in H.
+ apply Bool.andb_true_iff in H ; destruct H as [A B].
apply Z.leb_le in B.
- unfold canonic_mantissa, FLT_exp in A. apply Zeq_bool_eq in A.
- assert (G: Z.of_nat (S (digits2_Pnat m)) <= prec) by (zify; omega).
- assert (M: emin <= e) by (unfold emin; zify; omega).
- generalize (Zle_bool_spec (2^mw) (Z.pos m)); intro SPEC; inversion SPEC.
- + apply J.
- * split. omega. generalize (D _ _ G). unfold prec.
- rewrite (Zpower_plus radix2) by omega.
- change (radix2^1) with 2. simpl radix_val. omega.
- * split. omega. unfold emin. replace (2^ew) with (2 * emax). omega.
- symmetry. replace ew with (1 + (ew - 1)) by omega.
- apply (Zpower_plus radix2); omega.
- + apply J. zify; omega. omega.
-Local Close Scope Z_scope.
+ unfold canonic_mantissa, FLT_exp in A. apply Zeq_bool_eq in A.
+ case Zle_bool_spec ; intros H.
+ + apply join_bits_range.
+ * split.
+ clear -H ; omega.
+ rewrite Zpos_digits2_pos in A.
+ cut (Zpos mx < 2 ^ prec)%Z.
+ unfold prec.
+ rewrite Zpower_plus by (clear -Hmw ; omega).
+ change (2^1)%Z with 2%Z.
+ clear ; omega.
+ apply (Zpower_gt_Zdigits radix2 _ (Zpos mx)).
+ clear -A ; zify ; omega.
+ * split.
+ unfold emin ; clear -A ; zify ; omega.
+ replace ew with ((ew - 1) + 1)%Z by ring.
+ rewrite Zpower_plus by (clear - Hew ; omega).
+ unfold emin, emax in *.
+ change (2^1)%Z with 2%Z.
+ clear -B ; omega.
+ + apply -> Z.lt_sub_0 in H.
+ apply join_bits_range ; now split.
Qed.
Definition binary_float_of_bits_aux x :=
@@ -360,7 +397,7 @@ case Zeq_bool_spec ; intros He2.
case_eq (x mod 2 ^ mw)%Z; try easy.
(* nan *)
intros plx Eqplx. apply Z.ltb_lt.
-rewrite Z_of_nat_S_digits2_Pnat.
+rewrite Zpos_digits2_pos.
assert (forall a b, a <= b -> a < b+1)%Z by (intros; omega). apply H. clear H.
apply Zdigits_le_Zpower. simpl.
rewrite <- Eqplx. edestruct Z_mod_lt; eauto.
@@ -488,9 +525,8 @@ discriminate.
clear -Hew ; omega.
destruct (andb_prop _ _ Bx) as (H1, _).
generalize (Zeq_bool_eq _ _ H1).
-rewrite Z_of_nat_S_digits2_Pnat.
+rewrite Zpos_digits2_pos.
unfold FLT_exp, emin.
-change Fcalc_digits.radix2 with radix2.
generalize (Zdigits radix2 (Zpos mx)).
clear.
intros ; zify ; omega.
@@ -500,9 +536,9 @@ simpl.
apply f_equal.
destruct (andb_prop _ _ Bx) as (H1, _).
generalize (Zeq_bool_eq _ _ H1).
-rewrite Z_of_nat_S_digits2_Pnat.
+rewrite Zpos_digits2_pos.
unfold FLT_exp, emin, prec.
-change Fcalc_digits.radix2 with radix2.
+apply -> Z.lt_sub_0 in Hm.
generalize (Zdigits_le_Zpower radix2 _ (Zpos mx) Hm).
generalize (Zdigits radix2 (Zpos mx)).
clear.
@@ -536,6 +572,7 @@ now rewrite He1 in Jx.
intros px Hm Jx _.
rewrite Zle_bool_false.
now rewrite <- He1.
+apply <- Z.lt_sub_0.
now rewrite <- Hm.
intros px Hm _ _.
apply False_ind.
@@ -556,7 +593,7 @@ intros p Hm Jx Cx.
rewrite <- Hm.
rewrite Zle_bool_true.
now ring_simplify (mx + 2^mw - 2^mw)%Z (ex + emin - 1 - emin + 1)%Z.
-now apply (Zplus_le_compat_r 0).
+now ring_simplify.
intros p Hm.
apply False_ind.
clear -Bm Hm ; zify ; omega.
@@ -567,6 +604,8 @@ End Binary_Bits.
(** Specialization for IEEE single precision operations *)
Section B32_Bits.
+Implicit Arguments B754_nan [[prec] [emax]].
+
Definition binary32 := binary_float 24 128.
Let Hprec : (0 < 24)%Z.
@@ -577,12 +616,28 @@ Let Hprec_emax : (24 < 128)%Z.
apply refl_equal.
Qed.
-Definition b32_opp := Bopp 24 128.
-Definition b32_plus := Bplus _ _ Hprec Hprec_emax.
-Definition b32_minus := Bminus _ _ Hprec Hprec_emax.
-Definition b32_mult := Bmult _ _ Hprec Hprec_emax.
-Definition b32_div := Bdiv _ _ Hprec Hprec_emax.
-Definition b32_sqrt := Bsqrt _ _ Hprec Hprec_emax.
+Definition default_nan_pl32 : bool * nan_pl 24 :=
+ (false, exist _ (iter_nat 22 _ xO xH) (refl_equal true)).
+
+Definition unop_nan_pl32 (f : binary32) : bool * nan_pl 24 :=
+ match f with
+ | B754_nan s pl => (s, pl)
+ | _ => default_nan_pl32
+ end.
+
+Definition binop_nan_pl32 (f1 f2 : binary32) : bool * nan_pl 24 :=
+ match f1, f2 with
+ | B754_nan s1 pl1, _ => (s1, pl1)
+ | _, B754_nan s2 pl2 => (s2, pl2)
+ | _, _ => default_nan_pl32
+ end.
+
+Definition b32_opp := Bopp 24 128 pair.
+Definition b32_plus := Bplus _ _ Hprec Hprec_emax binop_nan_pl32.
+Definition b32_minus := Bminus _ _ Hprec Hprec_emax binop_nan_pl32.
+Definition b32_mult := Bmult _ _ Hprec Hprec_emax binop_nan_pl32.
+Definition b32_div := Bdiv _ _ Hprec Hprec_emax binop_nan_pl32.
+Definition b32_sqrt := Bsqrt _ _ Hprec Hprec_emax unop_nan_pl32.
Definition b32_of_bits : Z -> binary32 := binary_float_of_bits 23 8 (refl_equal _) (refl_equal _) (refl_equal _).
Definition bits_of_b32 : binary32 -> Z := bits_of_binary_float 23 8.
@@ -592,6 +647,8 @@ End B32_Bits.
(** Specialization for IEEE double precision operations *)
Section B64_Bits.
+Implicit Arguments B754_nan [[prec] [emax]].
+
Definition binary64 := binary_float 53 1024.
Let Hprec : (0 < 53)%Z.
@@ -602,12 +659,28 @@ Let Hprec_emax : (53 < 1024)%Z.
apply refl_equal.
Qed.
-Definition b64_opp := Bopp 53 1024.
-Definition b64_plus := Bplus _ _ Hprec Hprec_emax.
-Definition b64_minus := Bminus _ _ Hprec Hprec_emax.
-Definition b64_mult := Bmult _ _ Hprec Hprec_emax.
-Definition b64_div := Bdiv _ _ Hprec Hprec_emax.
-Definition b64_sqrt := Bsqrt _ _ Hprec Hprec_emax.
+Definition default_nan_pl64 : bool * nan_pl 53 :=
+ (false, exist _ (iter_nat 51 _ xO xH) (refl_equal true)).
+
+Definition unop_nan_pl64 (f : binary64) : bool * nan_pl 53 :=
+ match f with
+ | B754_nan s pl => (s, pl)
+ | _ => default_nan_pl64
+ end.
+
+Definition binop_nan_pl64 (pl1 pl2 : binary64) : bool * nan_pl 53 :=
+ match pl1, pl2 with
+ | B754_nan s1 pl1, _ => (s1, pl1)
+ | _, B754_nan s2 pl2 => (s2, pl2)
+ | _, _ => default_nan_pl64
+ end.
+
+Definition b64_opp := Bopp 53 1024 pair.
+Definition b64_plus := Bplus _ _ Hprec Hprec_emax binop_nan_pl64.
+Definition b64_minus := Bminus _ _ Hprec Hprec_emax binop_nan_pl64.
+Definition b64_mult := Bmult _ _ Hprec Hprec_emax binop_nan_pl64.
+Definition b64_div := Bdiv _ _ Hprec Hprec_emax binop_nan_pl64.
+Definition b64_sqrt := Bsqrt _ _ Hprec Hprec_emax unop_nan_pl64.
Definition b64_of_bits : Z -> binary64 := binary_float_of_bits 52 11 (refl_equal _) (refl_equal _) (refl_equal _).
Definition bits_of_b64 : binary64 -> Z := bits_of_binary_float 52 11.
diff --git a/flocq/Appli/Fappli_double_round.v b/flocq/Appli/Fappli_double_round.v
new file mode 100644
index 00000000..f83abc47
--- /dev/null
+++ b/flocq/Appli/Fappli_double_round.v
@@ -0,0 +1,4554 @@
+(** * Conditions for innocuous double rounding. *)
+
+Require Import Fcore_Raux.
+Require Import Fcore_defs.
+Require Import Fcore_generic_fmt.
+Require Import Fcalc_ops.
+Require Import Fcore_ulp.
+
+Require Import Psatz.
+
+Open Scope R_scope.
+
+Section Double_round.
+
+Variable beta : radix.
+Notation bpow e := (bpow beta e).
+Notation ln_beta x := (ln_beta beta x).
+
+Definition double_round_eq fexp1 fexp2 choice1 choice2 x :=
+ round beta fexp1 (Znearest choice1) (round beta fexp2 (Znearest choice2) x)
+ = round beta fexp1 (Znearest choice1) x.
+
+(** A little tactic to simplify terms of the form [bpow a * bpow b]. *)
+Ltac bpow_simplify :=
+ (* bpow ex * bpow ey ~~> bpow (ex + ey) *)
+ repeat
+ match goal with
+ | |- context [(Fcore_Raux.bpow _ _ * Fcore_Raux.bpow _ _)] =>
+ rewrite <- bpow_plus
+ | |- context [(?X1 * Fcore_Raux.bpow _ _ * Fcore_Raux.bpow _ _)] =>
+ rewrite (Rmult_assoc X1); rewrite <- bpow_plus
+ | |- context [(?X1 * (?X2 * Fcore_Raux.bpow _ _) * Fcore_Raux.bpow _ _)] =>
+ rewrite <- (Rmult_assoc X1 X2); rewrite (Rmult_assoc (X1 * X2));
+ rewrite <- bpow_plus
+ end;
+ (* ring_simplify arguments of bpow *)
+ repeat
+ match goal with
+ | |- context [(Fcore_Raux.bpow _ ?X)] =>
+ progress ring_simplify X
+ end;
+ (* bpow 0 ~~> 1 *)
+ change (Fcore_Raux.bpow _ 0) with 1;
+ repeat
+ match goal with
+ | |- context [(_ * 1)] =>
+ rewrite Rmult_1_r
+ end.
+
+Definition midp (fexp : Z -> Z) (x : R) :=
+ round beta fexp Zfloor x + / 2 * ulp beta fexp x.
+
+Definition midp' (fexp : Z -> Z) (x : R) :=
+ round beta fexp Zceil x - / 2 * ulp beta fexp x.
+
+Lemma double_round_lt_mid_further_place' :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ forall x,
+ 0 < x ->
+ (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
+ x < bpow (ln_beta x) - / 2 * ulp beta fexp2 x ->
+ x < midp fexp1 x - / 2 * ulp beta fexp2 x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x.
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hx1.
+unfold double_round_eq.
+set (x' := round beta fexp1 Zfloor x).
+intro Hx2'.
+assert (Hx2 : x - round beta fexp1 Zfloor x
+ < / 2 * (ulp beta fexp1 x - ulp beta fexp2 x)).
+{ now apply (Rplus_lt_reg_r (round beta fexp1 Zfloor x)); ring_simplify. }
+set (x'' := round beta fexp2 (Znearest choice2) x).
+assert (Hr1 : Rabs (x'' - x) <= / 2 * bpow (fexp2 (ln_beta x)));
+ [now unfold x''; apply ulp_half_error|].
+assert (Pxx' : 0 <= x - x').
+{ apply Rle_0_minus.
+ apply round_DN_pt.
+ exact Vfexp1. }
+assert (Hr2 : Rabs (x'' - x') < / 2 * bpow (fexp1 (ln_beta x))).
+{ replace (x'' - x') with (x'' - x + (x - x')) by ring.
+ apply (Rle_lt_trans _ _ _ (Rabs_triang _ _)).
+ replace (/ 2 * _) with (/ 2 * bpow (fexp2 (ln_beta x))
+ + (/ 2 * (bpow (fexp1 (ln_beta x))
+ - bpow (fexp2 (ln_beta x))))) by ring.
+ apply Rplus_le_lt_compat.
+ - exact Hr1.
+ - now rewrite Rabs_right; [|now apply Rle_ge]; apply Hx2. }
+destruct (Req_dec x'' 0) as [Zx''|Nzx''].
+- (* x'' = 0 *)
+ rewrite Zx'' in Hr1 |- *.
+ rewrite round_0; [|now apply valid_rnd_N].
+ unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ rewrite (Znearest_imp _ _ 0); [now simpl; rewrite Rmult_0_l|].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
+ [|now apply Rle_ge; apply bpow_ge_0].
+ rewrite <- Rabs_mult; rewrite Rmult_minus_distr_r.
+ rewrite Rmult_0_l.
+ bpow_simplify.
+ rewrite Rabs_minus_sym.
+ apply (Rle_lt_trans _ _ _ Hr1).
+ apply Rmult_lt_compat_l; [lra|].
+ apply bpow_lt.
+ omega.
+- (* x'' <> 0 *)
+ assert (Lx'' : ln_beta x'' = ln_beta x :> Z).
+ { apply Zle_antisym.
+ - apply ln_beta_le_bpow; [exact Nzx''|].
+ replace x'' with (x'' - x + x) by ring.
+ apply (Rle_lt_trans _ _ _ (Rabs_triang _ _)).
+ replace (bpow _) with (/ 2 * bpow (fexp2 (ln_beta x))
+ + (bpow (ln_beta x)
+ - / 2 * bpow (fexp2 (ln_beta x)))) by ring.
+ apply Rplus_le_lt_compat; [exact Hr1|].
+ now rewrite Rabs_right; [|apply Rle_ge; apply Rlt_le].
+ - unfold x'' in Nzx'' |- *.
+ now apply ln_beta_round_ge; [|apply valid_rnd_N|]. }
+ unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ rewrite Lx''.
+ rewrite (Znearest_imp _ _ (Zfloor (scaled_mantissa beta fexp1 x))).
+ + rewrite (Znearest_imp _ _ (Zfloor (scaled_mantissa beta fexp1 x)));
+ [reflexivity|].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
+ [|now apply Rle_ge; apply bpow_ge_0].
+ rewrite <- Rabs_mult.
+ rewrite Rmult_minus_distr_r.
+ fold x'.
+ bpow_simplify.
+ rewrite Rabs_right; [|now apply Rle_ge].
+ apply (Rlt_le_trans _ _ _ Hx2).
+ apply Rmult_le_compat_l; [lra|].
+ generalize (bpow_ge_0 beta (fexp2 (ln_beta x))).
+ unfold ulp, canonic_exp; lra.
+ + apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
+ [|now apply Rle_ge; apply bpow_ge_0].
+ rewrite <- Rabs_mult.
+ rewrite Rmult_minus_distr_r.
+ fold x'.
+ now bpow_simplify.
+Qed.
+
+Lemma double_round_lt_mid_further_place :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ forall x,
+ 0 < x ->
+ (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
+ (fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ x < midp fexp1 x - / 2 * ulp beta fexp2 x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x.
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1.
+intro Hx2'.
+assert (Hx2 : x - round beta fexp1 Zfloor x
+ < / 2 * (ulp beta fexp1 x - ulp beta fexp2 x)).
+{ now apply (Rplus_lt_reg_r (round beta fexp1 Zfloor x)); ring_simplify. }
+revert Hx2.
+unfold double_round_eq.
+set (x' := round beta fexp1 Zfloor x).
+intro Hx2.
+assert (Pxx' : 0 <= x - x').
+{ apply Rle_0_minus.
+ apply round_DN_pt.
+ exact Vfexp1. }
+assert (x < bpow (ln_beta x) - / 2 * bpow (fexp2 (ln_beta x)));
+ [|now apply double_round_lt_mid_further_place'].
+destruct (Req_dec x' 0) as [Zx'|Nzx'].
+- (* x' = 0 *)
+ rewrite Zx' in Hx2; rewrite Rminus_0_r in Hx2.
+ apply (Rlt_le_trans _ _ _ Hx2).
+ rewrite Rmult_minus_distr_l.
+ apply Rplus_le_compat_r.
+ apply (Rmult_le_reg_r (bpow (- ln_beta x))); [now apply bpow_gt_0|].
+ unfold ulp, canonic_exp; bpow_simplify.
+ rewrite <- (Rinv_r 2) at 3; [|lra].
+ rewrite Rmult_comm; apply Rmult_le_compat_r; [lra|].
+ apply Rle_trans with 1; [|lra].
+ change 1 with (bpow 0); apply bpow_le.
+ omega.
+- (* x' <> 0 *)
+ assert (Px' : 0 < x').
+ { assert (0 <= x'); [|lra].
+ unfold x'.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ [now apply bpow_gt_0|].
+ rewrite Rmult_0_l.
+ unfold round, F2R, canonic_exp; simpl; bpow_simplify.
+ change 0 with (Z2R 0); apply Z2R_le.
+ apply Zfloor_lub.
+ rewrite <- (Rabs_right x); [|now apply Rle_ge; apply Rlt_le].
+ rewrite scaled_mantissa_abs.
+ apply Rabs_pos. }
+ assert (Hx' : x' <= bpow (ln_beta x) - ulp beta fexp1 x).
+ { apply (Rplus_le_reg_r (ulp beta fexp1 x)); ring_simplify.
+ rewrite <- ulp_DN.
+ - change (round _ _ _ _) with x'.
+ apply succ_le_bpow.
+ + exact Px'.
+ + change x' with (round beta fexp1 Zfloor x).
+ now apply generic_format_round; [|apply valid_rnd_DN].
+ + apply Rle_lt_trans with x.
+ * now apply round_DN_pt.
+ * rewrite <- (Rabs_right x) at 1; [|now apply Rle_ge; apply Rlt_le].
+ apply bpow_ln_beta_gt.
+ - exact Vfexp1.
+ - exact Px'. }
+ fold (canonic_exp beta fexp2 x); fold (ulp beta fexp2 x).
+ assert (/ 2 * ulp beta fexp1 x <= ulp beta fexp1 x); [|lra].
+ rewrite <- (Rmult_1_l (ulp _ _ _)) at 2.
+ apply Rmult_le_compat_r; [|lra].
+ apply bpow_ge_0.
+Qed.
+
+Lemma double_round_lt_mid_same_place :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 ->
+ forall (choice1 choice2 : Z -> bool),
+ forall x,
+ 0 < x ->
+ (fexp2 (ln_beta x) = fexp1 (ln_beta x))%Z ->
+ x < midp fexp1 x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x.
+Proof.
+intros fexp1 fexp2 Vfexp1 choice1 choice2 x Px Hf2f1.
+intro Hx'.
+assert (Hx : x - round beta fexp1 Zfloor x < / 2 * ulp beta fexp1 x).
+{ now apply (Rplus_lt_reg_r (round beta fexp1 Zfloor x)); ring_simplify. }
+revert Hx.
+unfold double_round_eq.
+set (x' := round beta fexp1 Zfloor x).
+intro Hx.
+assert (Pxx' : 0 <= x - x').
+{ apply Rle_0_minus.
+ apply round_DN_pt.
+ exact Vfexp1. }
+assert (H : Rabs (x * bpow (- fexp1 (ln_beta x)) -
+ Z2R (Zfloor (x * bpow (- fexp1 (ln_beta x))))) < / 2).
+{ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ unfold scaled_mantissa, canonic_exp in Hx.
+ rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
+ [|now apply Rle_ge; apply bpow_ge_0].
+ rewrite <- Rabs_mult.
+ rewrite Rmult_minus_distr_r.
+ bpow_simplify.
+ apply Rabs_lt.
+ change (Z2R _ * _) with x'.
+ split.
+ - apply Rlt_le_trans with 0; [|exact Pxx'].
+ rewrite <- Ropp_0.
+ apply Ropp_lt_contravar.
+ rewrite <- (Rmult_0_r (/ 2)).
+ apply Rmult_lt_compat_l; [lra|].
+ apply bpow_gt_0.
+ - exact Hx. }
+unfold round at 2.
+unfold F2R, scaled_mantissa, canonic_exp; simpl.
+rewrite Hf2f1.
+rewrite (Znearest_imp _ _ (Zfloor (scaled_mantissa beta fexp1 x))).
+- rewrite round_generic.
+ + unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ now rewrite (Znearest_imp _ _ (Zfloor (x * bpow (- fexp1 (ln_beta x))))).
+ + now apply valid_rnd_N.
+ + fold (canonic_exp beta fexp1 x).
+ change (Z2R _ * bpow _) with (round beta fexp1 Zfloor x).
+ apply generic_format_round.
+ exact Vfexp1.
+ now apply valid_rnd_DN.
+- now unfold scaled_mantissa, canonic_exp.
+Qed.
+
+Lemma double_round_lt_mid :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ forall x,
+ 0 < x ->
+ (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z ->
+ (fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ x < midp fexp1 x ->
+ ((fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
+ x < midp fexp1 x - / 2 * ulp beta fexp2 x) ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x.
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1 Hx Hx'.
+destruct (Zle_or_lt (fexp1 (ln_beta x)) (fexp2 (ln_beta x))) as [Hf2'|Hf2'].
+- (* fexp1 (ln_beta x) <= fexp2 (ln_beta x) *)
+ assert (Hf2'' : (fexp2 (ln_beta x) = fexp1 (ln_beta x) :> Z)%Z); [omega|].
+ now apply double_round_lt_mid_same_place.
+- (* fexp2 (ln_beta x) < fexp1 (ln_beta x) *)
+ assert (Hf2'' : (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z); [omega|].
+ generalize (Hx' Hf2''); intro Hx''.
+ now apply double_round_lt_mid_further_place.
+Qed.
+
+Lemma double_round_gt_mid_further_place' :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ forall x,
+ 0 < x ->
+ (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
+ round beta fexp2 (Znearest choice2) x < bpow (ln_beta x) ->
+ midp' fexp1 x + / 2 * ulp beta fexp2 x < x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x.
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1.
+intros Hx1 Hx2'.
+assert (Hx2 : round beta fexp1 Zceil x - x
+ < / 2 * (ulp beta fexp1 x - ulp beta fexp2 x)).
+{ apply (Rplus_lt_reg_r (- / 2 * ulp beta fexp1 x + x
+ + / 2 * ulp beta fexp2 x)); ring_simplify.
+ now unfold midp' in Hx2'. }
+revert Hx1 Hx2.
+unfold double_round_eq.
+set (x' := round beta fexp1 Zceil x).
+set (x'' := round beta fexp2 (Znearest choice2) x).
+intros Hx1 Hx2.
+assert (Hr1 : Rabs (x'' - x) <= / 2 * bpow (fexp2 (ln_beta x)));
+ [now unfold x''; apply ulp_half_error|].
+assert (Px'x : 0 <= x' - x).
+{ apply Rle_0_minus.
+ apply round_UP_pt.
+ exact Vfexp1. }
+assert (Hr2 : Rabs (x'' - x') < / 2 * bpow (fexp1 (ln_beta x))).
+{ replace (x'' - x') with (x'' - x + (x - x')) by ring.
+ apply (Rle_lt_trans _ _ _ (Rabs_triang _ _)).
+ replace (/ 2 * _) with (/ 2 * bpow (fexp2 (ln_beta x))
+ + (/ 2 * (bpow (fexp1 (ln_beta x))
+ - bpow (fexp2 (ln_beta x))))) by ring.
+ apply Rplus_le_lt_compat.
+ - exact Hr1.
+ - rewrite Rabs_minus_sym.
+ now rewrite Rabs_right; [|now apply Rle_ge]; apply Hx2. }
+destruct (Req_dec x'' 0) as [Zx''|Nzx''].
+- (* x'' = 0 *)
+ rewrite Zx'' in Hr1 |- *.
+ rewrite round_0; [|now apply valid_rnd_N].
+ unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ rewrite (Znearest_imp _ _ 0); [now simpl; rewrite Rmult_0_l|].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
+ [|now apply Rle_ge; apply bpow_ge_0].
+ rewrite <- Rabs_mult; rewrite Rmult_minus_distr_r.
+ rewrite Rmult_0_l.
+ bpow_simplify.
+ rewrite Rabs_minus_sym.
+ apply (Rle_lt_trans _ _ _ Hr1).
+ apply Rmult_lt_compat_l; [lra|].
+ apply bpow_lt.
+ omega.
+- (* x'' <> 0 *)
+ assert (Lx'' : ln_beta x'' = ln_beta x :> Z).
+ { apply Zle_antisym.
+ - apply ln_beta_le_bpow; [exact Nzx''|].
+ rewrite Rabs_right; [exact Hx1|apply Rle_ge].
+ apply round_ge_generic.
+ + exact Vfexp2.
+ + now apply valid_rnd_N.
+ + apply generic_format_0.
+ + now apply Rlt_le.
+ - unfold x'' in Nzx'' |- *.
+ now apply ln_beta_round_ge; [|apply valid_rnd_N|]. }
+ unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ rewrite Lx''.
+ rewrite (Znearest_imp _ _ (Zceil (scaled_mantissa beta fexp1 x))).
+ + rewrite (Znearest_imp _ _ (Zceil (scaled_mantissa beta fexp1 x)));
+ [reflexivity|].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
+ [|now apply Rle_ge; apply bpow_ge_0].
+ rewrite <- Rabs_mult.
+ rewrite Rmult_minus_distr_r.
+ fold x'.
+ bpow_simplify.
+ rewrite Rabs_minus_sym.
+ rewrite Rabs_right; [|now apply Rle_ge].
+ apply (Rlt_le_trans _ _ _ Hx2).
+ apply Rmult_le_compat_l; [lra|].
+ generalize (bpow_ge_0 beta (fexp2 (ln_beta x))).
+ unfold ulp, canonic_exp; lra.
+ + apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
+ [|now apply Rle_ge; apply bpow_ge_0].
+ rewrite <- Rabs_mult.
+ rewrite Rmult_minus_distr_r.
+ fold x'.
+ now bpow_simplify.
+Qed.
+
+Lemma double_round_gt_mid_further_place :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ forall x,
+ 0 < x ->
+ (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
+ (fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ midp' fexp1 x + / 2 * ulp beta fexp2 x < x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x.
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1 Hx2'.
+assert (Hx2 : round beta fexp1 Zceil x - x
+ < / 2 * (ulp beta fexp1 x - ulp beta fexp2 x)).
+{ apply (Rplus_lt_reg_r (- / 2 * ulp beta fexp1 x + x
+ + / 2 * ulp beta fexp2 x)); ring_simplify.
+ now unfold midp' in Hx2'. }
+revert Hx2.
+unfold double_round_eq.
+set (x' := round beta fexp1 Zfloor x).
+intro Hx2.
+set (x'' := round beta fexp2 (Znearest choice2) x).
+destruct (Rlt_or_le x'' (bpow (ln_beta x))) as [Hx''|Hx''];
+ [now apply double_round_gt_mid_further_place'|].
+(* bpow (ln_beta x) <= x'' *)
+assert (Hx''pow : x'' = bpow (ln_beta x)).
+{ assert (H'x'' : x'' < bpow (ln_beta x) + / 2 * ulp beta fexp2 x).
+ { apply Rle_lt_trans with (x + / 2 * ulp beta fexp2 x).
+ - apply (Rplus_le_reg_r (- x)); ring_simplify.
+ apply Rabs_le_inv.
+ apply ulp_half_error.
+ exact Vfexp2.
+ - apply Rplus_lt_compat_r.
+ rewrite <- Rabs_right at 1; [|now apply Rle_ge; apply Rlt_le].
+ apply bpow_ln_beta_gt. }
+ apply Rle_antisym; [|exact Hx''].
+ unfold x'', round, F2R, scaled_mantissa, canonic_exp; simpl.
+ apply (Rmult_le_reg_r (bpow (- fexp2 (ln_beta x)))); [now apply bpow_gt_0|].
+ bpow_simplify.
+ rewrite <- (Z2R_Zpower _ (_ - _)); [|omega].
+ apply Z2R_le.
+ apply Zlt_succ_le; unfold Z.succ.
+ apply lt_Z2R.
+ rewrite Z2R_plus; rewrite Z2R_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (fexp2 (ln_beta x)))); [now apply bpow_gt_0|].
+ rewrite Rmult_plus_distr_r; rewrite Rmult_1_l.
+ bpow_simplify.
+ apply (Rlt_le_trans _ _ _ H'x'').
+ apply Rplus_le_compat_l.
+ rewrite <- (Rmult_1_l (Fcore_Raux.bpow _ _)).
+ apply Rmult_le_compat_r; [now apply bpow_ge_0|].
+ lra. }
+assert (Hr : Rabs (x - x'') < / 2 * ulp beta fexp1 x).
+{ apply Rle_lt_trans with (/ 2 * ulp beta fexp2 x).
+ - rewrite Rabs_minus_sym.
+ apply ulp_half_error.
+ exact Vfexp2.
+ - apply Rmult_lt_compat_l; [lra|].
+ unfold ulp, canonic_exp; apply bpow_lt.
+ omega. }
+unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+assert (Hf : (0 <= ln_beta x - fexp1 (ln_beta x''))%Z).
+{ rewrite Hx''pow.
+ rewrite ln_beta_bpow.
+ assert (fexp1 (ln_beta x + 1) <= ln_beta x)%Z; [|omega].
+ destruct (Zle_or_lt (ln_beta x) (fexp1 (ln_beta x))) as [Hle|Hlt];
+ [|now apply Vfexp1].
+ assert (H : (ln_beta x = fexp1 (ln_beta x) :> Z)%Z);
+ [now apply Zle_antisym|].
+ rewrite H.
+ now apply Vfexp1. }
+rewrite (Znearest_imp _ _ (beta ^ (ln_beta x - fexp1 (ln_beta x'')))%Z).
+- rewrite (Znearest_imp _ _ (beta ^ (ln_beta x - fexp1 (ln_beta x)))%Z).
+ + rewrite Z2R_Zpower; [|exact Hf].
+ rewrite Z2R_Zpower; [|omega].
+ now bpow_simplify.
+ + rewrite Z2R_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
+ [|now apply Rle_ge; apply bpow_ge_0].
+ rewrite <- Rabs_mult.
+ rewrite Rmult_minus_distr_r.
+ bpow_simplify.
+ rewrite <- Hx''pow; exact Hr.
+- rewrite Z2R_Zpower; [|exact Hf].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x'')))); [now apply bpow_gt_0|].
+ rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
+ [|now apply Rle_ge; apply bpow_ge_0].
+ rewrite <- Rabs_mult.
+ rewrite Rmult_minus_distr_r.
+ bpow_simplify.
+ rewrite Rminus_diag_eq; [|exact Hx''pow].
+ rewrite Rabs_R0.
+ rewrite <- (Rmult_0_r (/ 2)).
+ apply Rmult_lt_compat_l; [lra|apply bpow_gt_0].
+Qed.
+
+Lemma double_round_gt_mid_same_place :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 ->
+ forall (choice1 choice2 : Z -> bool),
+ forall x,
+ 0 < x ->
+ (fexp2 (ln_beta x) = fexp1 (ln_beta x))%Z ->
+ midp' fexp1 x < x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x.
+Proof.
+intros fexp1 fexp2 Vfexp1 choice1 choice2 x Px Hf2f1 Hx'.
+assert (Hx : round beta fexp1 Zceil x - x < / 2 * ulp beta fexp1 x).
+{ apply (Rplus_lt_reg_r (- / 2 * ulp beta fexp1 x + x)); ring_simplify.
+ now unfold midp' in Hx'. }
+assert (H : Rabs (Z2R (Zceil (x * bpow (- fexp1 (ln_beta x))))
+ - x * bpow (- fexp1 (ln_beta x))) < / 2).
+{ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ unfold scaled_mantissa, canonic_exp in Hx.
+ rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
+ [|now apply Rle_ge; apply bpow_ge_0].
+ rewrite <- Rabs_mult.
+ rewrite Rmult_minus_distr_r.
+ bpow_simplify.
+ apply Rabs_lt.
+ split.
+ - apply Rlt_le_trans with 0.
+ + rewrite <- Ropp_0; apply Ropp_lt_contravar.
+ rewrite <- (Rmult_0_r (/ 2)).
+ apply Rmult_lt_compat_l; [lra|].
+ apply bpow_gt_0.
+ + apply Rle_0_minus.
+ apply round_UP_pt.
+ exact Vfexp1.
+ - exact Hx. }
+unfold double_round_eq, round at 2.
+unfold F2R, scaled_mantissa, canonic_exp; simpl.
+rewrite Hf2f1.
+rewrite (Znearest_imp _ _ (Zceil (scaled_mantissa beta fexp1 x))).
+- rewrite round_generic.
+ + unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ now rewrite (Znearest_imp _ _ (Zceil (x * bpow (- fexp1 (ln_beta x)))));
+ [|rewrite Rabs_minus_sym].
+ + now apply valid_rnd_N.
+ + fold (canonic_exp beta fexp1 x).
+ change (Z2R _ * bpow _) with (round beta fexp1 Zceil x).
+ apply generic_format_round.
+ exact Vfexp1.
+ now apply valid_rnd_UP.
+- now rewrite Rabs_minus_sym.
+Qed.
+
+Lemma double_round_gt_mid :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ forall x,
+ 0 < x ->
+ (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z ->
+ (fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ midp' fexp1 x < x ->
+ ((fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
+ midp' fexp1 x + / 2 * ulp beta fexp2 x < x) ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x.
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1 Hx Hx'.
+destruct (Zle_or_lt (fexp1 (ln_beta x)) (fexp2 (ln_beta x))) as [Hf2'|Hf2'].
+- (* fexp1 (ln_beta x) <= fexp2 (ln_beta x) *)
+ assert (Hf2'' : (fexp2 (ln_beta x) = fexp1 (ln_beta x) :> Z)%Z); [omega|].
+ now apply double_round_gt_mid_same_place.
+- (* fexp2 (ln_beta x) < fexp1 (ln_beta x) *)
+ assert (Hf2'' : (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z); [omega|].
+ generalize (Hx' Hf2''); intro Hx''.
+ now apply double_round_gt_mid_further_place.
+Qed.
+
+Section Double_round_mult.
+
+Lemma ln_beta_mult_disj :
+ forall x y,
+ x <> 0 -> y <> 0 ->
+ ((ln_beta (x * y) = (ln_beta x + ln_beta y - 1)%Z :> Z)
+ \/ (ln_beta (x * y) = (ln_beta x + ln_beta y)%Z :> Z)).
+Proof.
+intros x y Zx Zy.
+destruct (ln_beta_mult beta x y Zx Zy).
+omega.
+Qed.
+
+Definition double_round_mult_hyp fexp1 fexp2 :=
+ (forall ex ey, (fexp2 (ex + ey) <= fexp1 ex + fexp1 ey)%Z)
+ /\ (forall ex ey, (fexp2 (ex + ey - 1) <= fexp1 ex + fexp1 ey)%Z).
+
+Lemma double_round_mult_aux :
+ forall (fexp1 fexp2 : Z -> Z),
+ double_round_mult_hyp fexp1 fexp2 ->
+ forall x y,
+ generic_format beta fexp1 x -> generic_format beta fexp1 y ->
+ generic_format beta fexp2 (x * y).
+Proof.
+intros fexp1 fexp2 Hfexp x y Fx Fy.
+destruct (Req_dec x 0) as [Zx|Zx].
+- (* x = 0 *)
+ rewrite Zx.
+ rewrite Rmult_0_l.
+ now apply generic_format_0.
+- (* x <> 0 *)
+ destruct (Req_dec y 0) as [Zy|Zy].
+ + (* y = 0 *)
+ rewrite Zy.
+ rewrite Rmult_0_r.
+ now apply generic_format_0.
+ + (* y <> 0 *)
+ revert Fx Fy.
+ unfold generic_format.
+ unfold canonic_exp.
+ set (mx := Ztrunc (scaled_mantissa beta fexp1 x)).
+ set (my := Ztrunc (scaled_mantissa beta fexp1 y)).
+ unfold F2R; simpl.
+ intros Fx Fy.
+ set (fxy := Float beta (mx * my) (fexp1 (ln_beta x) + fexp1 (ln_beta y))).
+ assert (Hxy : x * y = F2R fxy).
+ { unfold fxy, F2R; simpl.
+ rewrite bpow_plus.
+ rewrite Z2R_mult.
+ rewrite Fx, Fy at 1.
+ ring. }
+ apply generic_format_F2R' with (f := fxy); [now rewrite Hxy|].
+ intros _.
+ unfold canonic_exp, fxy; simpl.
+ destruct Hfexp as (Hfexp1, Hfexp2).
+ now destruct (ln_beta_mult_disj x y Zx Zy) as [Lxy|Lxy]; rewrite Lxy.
+Qed.
+
+Variable rnd : R -> Z.
+Context { valid_rnd : Valid_rnd rnd }.
+
+Theorem double_round_mult :
+ forall (fexp1 fexp2 : Z -> Z),
+ double_round_mult_hyp fexp1 fexp2 ->
+ forall x y,
+ generic_format beta fexp1 x -> generic_format beta fexp1 y ->
+ round beta fexp1 rnd (round beta fexp2 rnd (x * y))
+ = round beta fexp1 rnd (x * y).
+Proof.
+intros fexp1 fexp2 Hfexp x y Fx Fy.
+assert (Hxy : round beta fexp2 rnd (x * y) = x * y).
+{ apply round_generic; [assumption|].
+ now apply (double_round_mult_aux fexp1 fexp2). }
+now rewrite Hxy at 1.
+Qed.
+
+Section Double_round_mult_FLX.
+
+Require Import Fcore_FLX.
+
+Variable prec : Z.
+Variable prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Theorem double_round_mult_FLX :
+ (2 * prec <= prec')%Z ->
+ forall x y,
+ FLX_format beta prec x -> FLX_format beta prec y ->
+ round beta (FLX_exp prec) rnd (round beta (FLX_exp prec') rnd (x * y))
+ = round beta (FLX_exp prec) rnd (x * y).
+Proof.
+intros Hprec x y Fx Fy.
+apply double_round_mult;
+ [|now apply generic_format_FLX|now apply generic_format_FLX].
+unfold double_round_mult_hyp; split; intros ex ey; unfold FLX_exp;
+omega.
+Qed.
+
+End Double_round_mult_FLX.
+
+Section Double_round_mult_FLT.
+
+Require Import Fcore_FLX.
+Require Import Fcore_FLT.
+
+Variable emin prec : Z.
+Variable emin' prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Theorem double_round_mult_FLT :
+ (emin' <= 2 * emin)%Z -> (2 * prec <= prec')%Z ->
+ forall x y,
+ FLT_format beta emin prec x -> FLT_format beta emin prec y ->
+ round beta (FLT_exp emin prec) rnd
+ (round beta (FLT_exp emin' prec') rnd (x * y))
+ = round beta (FLT_exp emin prec) rnd (x * y).
+Proof.
+intros Hemin Hprec x y Fx Fy.
+apply double_round_mult;
+ [|now apply generic_format_FLT|now apply generic_format_FLT].
+unfold double_round_mult_hyp; split; intros ex ey;
+unfold FLT_exp;
+generalize (Zmax_spec (ex + ey - prec') emin');
+generalize (Zmax_spec (ex + ey - 1 - prec') emin');
+generalize (Zmax_spec (ex - prec) emin);
+generalize (Zmax_spec (ey - prec) emin);
+omega.
+Qed.
+
+End Double_round_mult_FLT.
+
+Section Double_round_mult_FTZ.
+
+Require Import Fcore_FTZ.
+
+Variable emin prec : Z.
+Variable emin' prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Theorem double_round_mult_FTZ :
+ (emin' + prec' <= 2 * emin + prec)%Z ->
+ (2 * prec <= prec')%Z ->
+ forall x y,
+ FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
+ round beta (FTZ_exp emin prec) rnd
+ (round beta (FTZ_exp emin' prec') rnd (x * y))
+ = round beta (FTZ_exp emin prec) rnd (x * y).
+Proof.
+intros Hemin Hprec x y Fx Fy.
+apply double_round_mult;
+ [|now apply generic_format_FTZ|now apply generic_format_FTZ].
+unfold double_round_mult_hyp; split; intros ex ey;
+unfold FTZ_exp;
+unfold Prec_gt_0 in *;
+destruct (Z.ltb_spec (ex + ey - prec') emin');
+destruct (Z.ltb_spec (ex - prec) emin);
+destruct (Z.ltb_spec (ey - prec) emin);
+destruct (Z.ltb_spec (ex + ey - 1 - prec') emin');
+omega.
+Qed.
+
+End Double_round_mult_FTZ.
+
+End Double_round_mult.
+
+Section Double_round_plus.
+
+Lemma ln_beta_plus_disj :
+ forall x y,
+ 0 < y -> y <= x ->
+ ((ln_beta (x + y) = ln_beta x :> Z)
+ \/ (ln_beta (x + y) = (ln_beta x + 1)%Z :> Z)).
+Proof.
+intros x y Py Hxy.
+destruct (ln_beta_plus beta x y Py Hxy).
+omega.
+Qed.
+
+Lemma ln_beta_plus_separated :
+ forall fexp : Z -> Z,
+ forall x y,
+ 0 < x -> 0 <= y ->
+ generic_format beta fexp x ->
+ (ln_beta y <= fexp (ln_beta x))%Z ->
+ (ln_beta (x + y) = ln_beta x :> Z).
+Proof.
+intros fexp x y Px Nny Fx Hsep.
+destruct (Req_dec y 0) as [Zy|Nzy].
+- (* y = 0 *)
+ now rewrite Zy; rewrite Rplus_0_r.
+- (* y <> 0 *)
+ apply (ln_beta_succ beta fexp); [assumption|assumption|].
+ split; [assumption|].
+ unfold ulp, canonic_exp.
+ destruct (ln_beta y) as (ey, Hey); simpl in *.
+ apply Rlt_le_trans with (bpow ey).
+ + now rewrite <- (Rabs_right y); [apply Hey|apply Rle_ge].
+ + now apply bpow_le.
+Qed.
+
+Lemma ln_beta_minus_disj :
+ forall x y,
+ 0 < x -> 0 < y ->
+ (ln_beta y <= ln_beta x - 2)%Z ->
+ ((ln_beta (x - y) = ln_beta x :> Z)
+ \/ (ln_beta (x - y) = (ln_beta x - 1)%Z :> Z)).
+Proof.
+intros x y Px Py Hln.
+assert (Hxy : y < x); [now apply (ln_beta_lt_pos beta); [| |omega]|].
+generalize (ln_beta_minus beta x y Py Hxy); intro Hln2.
+generalize (ln_beta_minus_lb beta x y Px Py Hln); intro Hln3.
+omega.
+Qed.
+
+Lemma ln_beta_minus_separated :
+ forall fexp : Z -> Z, Valid_exp fexp ->
+ forall x y,
+ 0 < x -> 0 < y -> y < x ->
+ bpow (ln_beta x - 1) < x ->
+ generic_format beta fexp x -> (ln_beta y <= fexp (ln_beta x))%Z ->
+ (ln_beta (x - y) = ln_beta x :> Z).
+Proof.
+intros fexp Vfexp x y Px Py Yltx Xgtpow Fx Ly.
+apply ln_beta_unique.
+split.
+- apply Rabs_ge; right.
+ assert (Hy : y < ulp beta fexp (bpow (ln_beta x - 1))).
+ { unfold ulp, canonic_exp.
+ rewrite ln_beta_bpow.
+ replace (_ + _)%Z with (ln_beta x : Z) by ring.
+ rewrite <- (Rabs_right y); [|now apply Rle_ge; apply Rlt_le].
+ apply Rlt_le_trans with (bpow (ln_beta y)).
+ - apply bpow_ln_beta_gt.
+ - now apply bpow_le. }
+ apply (Rplus_le_reg_r y); ring_simplify.
+ apply Rle_trans with (bpow (ln_beta x - 1)
+ + ulp beta fexp (bpow (ln_beta x - 1))).
+ + now apply Rplus_le_compat_l; apply Rlt_le.
+ + apply succ_le_lt; [|exact Fx|now split; [apply bpow_gt_0|]].
+ apply (generic_format_bpow beta fexp (ln_beta x - 1)).
+ replace (_ + _)%Z with (ln_beta x : Z) by ring.
+ assert (fexp (ln_beta x) < ln_beta x)%Z; [|omega].
+ now apply ln_beta_generic_gt; [|now apply Rgt_not_eq|].
+- rewrite Rabs_right.
+ + apply Rlt_trans with x.
+ * rewrite <- (Rplus_0_r x) at 2.
+ apply Rplus_lt_compat_l.
+ rewrite <- Ropp_0.
+ now apply Ropp_lt_contravar.
+ * apply Rabs_lt_inv.
+ apply bpow_ln_beta_gt.
+ + lra.
+Qed.
+
+Definition double_round_plus_hyp fexp1 fexp2 :=
+ (forall ex ey, (fexp1 (ex + 1) - 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
+ /\ (forall ex ey, (fexp1 (ex - 1) + 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
+ /\ (forall ex ey, (fexp1 ex - 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
+ /\ (forall ex ey, (ex - 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z).
+
+Lemma double_round_plus_aux0_aux_aux :
+ forall (fexp1 fexp2 : Z -> Z),
+ forall x y,
+ (fexp1 (ln_beta x) <= fexp1 (ln_beta y))%Z ->
+ (fexp2 (ln_beta (x + y))%Z <= fexp1 (ln_beta x))%Z ->
+ (fexp2 (ln_beta (x + y))%Z <= fexp1 (ln_beta y))%Z ->
+ generic_format beta fexp1 x -> generic_format beta fexp1 y ->
+ generic_format beta fexp2 (x + y).
+Proof.
+intros fexp1 fexp2 x y Oxy Hlnx Hlny Fx Fy.
+destruct (Req_dec x 0) as [Zx|Nzx].
+- (* x = 0 *)
+ rewrite Zx, Rplus_0_l in Hlny |- *.
+ now apply (generic_inclusion_ln_beta beta fexp1).
+- (* x <> 0 *)
+ destruct (Req_dec y 0) as [Zy|Nzy].
+ + (* y = 0 *)
+ rewrite Zy, Rplus_0_r in Hlnx |- *.
+ now apply (generic_inclusion_ln_beta beta fexp1).
+ + (* y <> 0 *)
+ revert Fx Fy.
+ unfold generic_format at -3, canonic_exp, F2R; simpl.
+ set (mx := Ztrunc (scaled_mantissa beta fexp1 x)).
+ set (my := Ztrunc (scaled_mantissa beta fexp1 y)).
+ intros Fx Fy.
+ set (fxy := Float beta (mx + my * (beta ^ (fexp1 (ln_beta y)
+ - fexp1 (ln_beta x))))
+ (fexp1 (ln_beta x))).
+ assert (Hxy : x + y = F2R fxy).
+ { unfold fxy, F2R; simpl.
+ rewrite Z2R_plus.
+ rewrite Rmult_plus_distr_r.
+ rewrite <- Fx.
+ rewrite Z2R_mult.
+ rewrite Z2R_Zpower; [|omega].
+ bpow_simplify.
+ now rewrite <- Fy. }
+ apply generic_format_F2R' with (f := fxy); [now rewrite Hxy|].
+ intros _.
+ now unfold canonic_exp, fxy; simpl.
+Qed.
+
+Lemma double_round_plus_aux0_aux :
+ forall (fexp1 fexp2 : Z -> Z),
+ forall x y,
+ (fexp2 (ln_beta (x + y))%Z <= fexp1 (ln_beta x))%Z ->
+ (fexp2 (ln_beta (x + y))%Z <= fexp1 (ln_beta y))%Z ->
+ generic_format beta fexp1 x -> generic_format beta fexp1 y ->
+ generic_format beta fexp2 (x + y).
+Proof.
+intros fexp1 fexp2 x y Hlnx Hlny Fx Fy.
+destruct (Z.le_gt_cases (fexp1 (ln_beta x)) (fexp1 (ln_beta y))) as [Hle|Hgt].
+- now apply (double_round_plus_aux0_aux_aux fexp1).
+- rewrite Rplus_comm in Hlnx, Hlny |- *.
+ now apply (double_round_plus_aux0_aux_aux fexp1); [omega| | | |].
+Qed.
+
+(* fexp1 (ln_beta x) - 1 <= ln_beta y :
+ * addition is exact in the largest precision (fexp2). *)
+Lemma double_round_plus_aux0 :
+ forall (fexp1 fexp2 : Z -> Z), Valid_exp fexp1 ->
+ double_round_plus_hyp fexp1 fexp2 ->
+ forall x y,
+ (0 < x)%R -> (0 < y)%R -> (y <= x)%R ->
+ (fexp1 (ln_beta x) - 1 <= ln_beta y)%Z ->
+ generic_format beta fexp1 x -> generic_format beta fexp1 y ->
+ generic_format beta fexp2 (x + y).
+Proof.
+intros fexp1 fexp2 Vfexp1 Hexp x y Px Py Hyx Hln Fx Fy.
+assert (Nny : (0 <= y)%R); [now apply Rlt_le|].
+destruct Hexp as (_,(Hexp2,(Hexp3,Hexp4))).
+destruct (Z.le_gt_cases (ln_beta y) (fexp1 (ln_beta x))) as [Hle|Hgt].
+- (* ln_beta y <= fexp1 (ln_beta x) *)
+ assert (Lxy : ln_beta (x + y) = ln_beta x :> Z);
+ [now apply (ln_beta_plus_separated fexp1)|].
+ apply (double_round_plus_aux0_aux fexp1);
+ [| |assumption|assumption]; rewrite Lxy.
+ + now apply Hexp4; omega.
+ + now apply Hexp3; omega.
+- (* fexp1 (ln_beta x) < ln_beta y *)
+ apply (double_round_plus_aux0_aux fexp1); [| |assumption|assumption].
+ destruct (ln_beta_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
+ + now apply Hexp4; omega.
+ + apply Hexp2; apply (ln_beta_le beta y x Py) in Hyx.
+ replace (_ - _)%Z with (ln_beta x : Z) by ring.
+ omega.
+ + destruct (ln_beta_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
+ * now apply Hexp3; omega.
+ * apply Hexp2.
+ replace (_ - _)%Z with (ln_beta x : Z) by ring.
+ omega.
+Qed.
+
+Lemma double_round_plus_aux1_aux :
+ forall k, (0 < k)%Z ->
+ forall (fexp : Z -> Z),
+ forall x y,
+ 0 < x -> 0 < y ->
+ (ln_beta y <= fexp (ln_beta x) - k)%Z ->
+ (ln_beta (x + y) = ln_beta x :> Z) ->
+ generic_format beta fexp x ->
+ 0 < (x + y) - round beta fexp Zfloor (x + y) < bpow (fexp (ln_beta x) - k).
+Proof.
+assert (Hbeta : (2 <= beta)%Z).
+{ destruct beta as (beta_val,beta_prop).
+ now apply Zle_bool_imp_le. }
+intros k Hk fexp x y Px Py Hln Hlxy Fx.
+revert Fx.
+unfold round, generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
+rewrite Hlxy.
+set (mx := Ztrunc (x * bpow (- fexp (ln_beta x)))).
+intros Fx.
+assert (R : (x + y) * bpow (- fexp (ln_beta x))
+ = Z2R mx + y * bpow (- fexp (ln_beta x))).
+{ rewrite Fx at 1.
+ rewrite Rmult_plus_distr_r.
+ now bpow_simplify. }
+rewrite R.
+assert (LB : 0 < y * bpow (- fexp (ln_beta x))).
+{ rewrite <- (Rmult_0_r y).
+ now apply Rmult_lt_compat_l; [|apply bpow_gt_0]. }
+assert (UB : y * bpow (- fexp (ln_beta x)) < / Z2R (beta ^ k)).
+{ apply Rlt_le_trans with (bpow (ln_beta y) * bpow (- fexp (ln_beta x))).
+ - apply Rmult_lt_compat_r; [now apply bpow_gt_0|].
+ rewrite <- (Rabs_right y) at 1; [|now apply Rle_ge; apply Rlt_le].
+ apply bpow_ln_beta_gt.
+ - apply Rle_trans with (bpow (fexp (ln_beta x) - k)
+ * bpow (- fexp (ln_beta x)))%R.
+ + apply Rmult_le_compat_r; [now apply bpow_ge_0|].
+ now apply bpow_le.
+ + bpow_simplify.
+ rewrite bpow_opp.
+ destruct k.
+ * omega.
+ * simpl; unfold Fcore_Raux.bpow, Z.pow_pos.
+ now apply Rle_refl.
+ * casetype False; apply (Zlt_irrefl 0).
+ apply (Zlt_trans _ _ _ Hk).
+ apply Zlt_neg_0. }
+rewrite (Zfloor_imp mx).
+{ split; ring_simplify.
+ - apply (Rmult_lt_reg_r (bpow (- fexp (ln_beta x)))); [now apply bpow_gt_0|].
+ rewrite Rmult_minus_distr_r, Rmult_0_l.
+ bpow_simplify.
+ rewrite R; ring_simplify.
+ now apply Rmult_lt_0_compat; [|apply bpow_gt_0].
+ - apply (Rmult_lt_reg_r (bpow (- fexp (ln_beta x)))); [now apply bpow_gt_0|].
+ rewrite Rmult_minus_distr_r.
+ bpow_simplify.
+ rewrite R; ring_simplify.
+ apply (Rlt_le_trans _ _ _ UB).
+ rewrite bpow_opp.
+ apply Rinv_le; [now apply bpow_gt_0|].
+ now rewrite Z2R_Zpower; [right|omega]. }
+split.
+- rewrite <- Rplus_0_r at 1; apply Rplus_le_compat_l.
+ now apply Rlt_le.
+- rewrite Z2R_plus; apply Rplus_lt_compat_l.
+ apply (Rmult_lt_reg_r (bpow (fexp (ln_beta x)))); [now apply bpow_gt_0|].
+ rewrite Rmult_1_l.
+ bpow_simplify.
+ apply Rlt_trans with (bpow (ln_beta y)).
+ + rewrite <- Rabs_right at 1; [|now apply Rle_ge; apply Rlt_le].
+ apply bpow_ln_beta_gt.
+ + apply bpow_lt; omega.
+Qed.
+
+(* ln_beta y <= fexp1 (ln_beta x) - 2 : double_round_lt_mid applies. *)
+Lemma double_round_plus_aux1 :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < x -> 0 < y ->
+ (ln_beta y <= fexp1 (ln_beta x) - 2)%Z ->
+ generic_format beta fexp1 x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+Proof.
+assert (Hbeta : (2 <= beta)%Z).
+{ destruct beta as (beta_val,beta_prop).
+ now apply Zle_bool_imp_le. }
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Hly Fx.
+assert (Lxy : ln_beta (x + y) = ln_beta x :> Z);
+ [now apply (ln_beta_plus_separated fexp1); [|apply Rlt_le| |omega]|].
+destruct Hexp as (_,(_,(_,Hexp4))).
+assert (Hf2 : (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z);
+ [now apply Hexp4; omega|].
+assert (Bpow2 : bpow (- 2) <= / 2 * / 2).
+{ unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ rewrite <- Rinv_mult_distr; [|lra|lra].
+ apply Rinv_le; [lra|].
+ change 4 with (Z2R (2 * 2)); apply Z2R_le; rewrite Zmult_1_r.
+ now apply Zmult_le_compat; omega. }
+assert (P2 : (0 < 2)%Z) by omega.
+unfold double_round_eq.
+apply double_round_lt_mid.
+- exact Vfexp1.
+- exact Vfexp2.
+- lra.
+- now rewrite Lxy.
+- rewrite Lxy.
+ assert (fexp1 (ln_beta x) < ln_beta x)%Z; [|omega].
+ now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+- unfold midp.
+ apply (Rplus_lt_reg_r (- round beta fexp1 Zfloor (x + y))).
+ apply (Rlt_le_trans _ _ _ (proj2 (double_round_plus_aux1_aux 2 P2 fexp1 x y Px
+ Py Hly Lxy Fx))).
+ ring_simplify.
+ unfold ulp, canonic_exp; rewrite Lxy.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ bpow_simplify.
+ apply (Rle_trans _ _ _ Bpow2).
+ rewrite <- (Rmult_1_r (/ 2)) at 3.
+ apply Rmult_le_compat_l; lra.
+- unfold ulp, round, F2R, scaled_mantissa, canonic_exp; simpl; rewrite Lxy.
+ intro Hf2'.
+ apply (Rmult_lt_reg_r (bpow (- fexp1 (ln_beta x))));
+ [now apply bpow_gt_0|].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ bpow_simplify.
+ apply (Rplus_lt_reg_r (- round beta fexp1 Zfloor (x + y))).
+ unfold midp; ring_simplify.
+ apply (Rlt_le_trans _ _ _ (proj2 (double_round_plus_aux1_aux 2 P2 fexp1 x y Px
+ Py Hly Lxy Fx))).
+ apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ unfold ulp, canonic_exp; rewrite Lxy, Rmult_minus_distr_r; bpow_simplify.
+ apply (Rle_trans _ _ _ Bpow2).
+ rewrite <- (Rmult_1_r (/ 2)) at 3; rewrite <- Rmult_minus_distr_l.
+ apply Rmult_le_compat_l; [lra|].
+ apply (Rplus_le_reg_r (- 1)); ring_simplify.
+ replace (_ - _) with (- (/ 2)) by lra.
+ apply Ropp_le_contravar.
+ { apply Rle_trans with (bpow (- 1)).
+ - apply bpow_le; omega.
+ - unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ apply Rinv_le; [lra|].
+ change 2 with (Z2R 2); apply Z2R_le; omega. }
+Qed.
+
+(* double_round_plus_aux{0,1} together *)
+Lemma double_round_plus_aux2 :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < x -> 0 < y -> y <= x ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Hyx Fx Fy.
+unfold double_round_eq.
+destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta x) - 2)) as [Hly|Hly].
+- (* ln_beta y <= fexp1 (ln_beta x) - 2 *)
+ now apply double_round_plus_aux1.
+- (* fexp1 (ln_beta x) - 2 < ln_beta y *)
+ rewrite (round_generic beta fexp2).
+ + reflexivity.
+ + now apply valid_rnd_N.
+ + assert (Hf1 : (fexp1 (ln_beta x) - 1 <= ln_beta y)%Z); [omega|].
+ now apply (double_round_plus_aux0 fexp1).
+Qed.
+
+Lemma double_round_plus_aux :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 <= x -> 0 <= y ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Nnx Nny Fx Fy.
+unfold double_round_eq.
+destruct (Req_dec x 0) as [Zx|Nzx].
+- (* x = 0 *)
+ destruct Hexp as (_,(_,(_,Hexp4))).
+ rewrite Zx; rewrite Rplus_0_l.
+ rewrite (round_generic beta fexp2).
+ + reflexivity.
+ + now apply valid_rnd_N.
+ + apply (generic_inclusion_ln_beta beta fexp1).
+ now intros _; apply Hexp4; omega.
+ exact Fy.
+- (* x <> 0 *)
+ destruct (Req_dec y 0) as [Zy|Nzy].
+ + (* y = 0 *)
+ destruct Hexp as (_,(_,(_,Hexp4))).
+ rewrite Zy; rewrite Rplus_0_r.
+ rewrite (round_generic beta fexp2).
+ * reflexivity.
+ * now apply valid_rnd_N.
+ * apply (generic_inclusion_ln_beta beta fexp1).
+ now intros _; apply Hexp4; omega.
+ exact Fx.
+ + (* y <> 0 *)
+ assert (Px : 0 < x); [lra|].
+ assert (Py : 0 < y); [lra|].
+ destruct (Rlt_or_le x y) as [H|H].
+ * (* x < y *)
+ apply Rlt_le in H.
+ rewrite Rplus_comm.
+ now apply double_round_plus_aux2.
+ * now apply double_round_plus_aux2.
+Qed.
+
+Lemma double_round_minus_aux0_aux :
+ forall (fexp1 fexp2 : Z -> Z),
+ forall x y,
+ (fexp2 (ln_beta (x - y))%Z <= fexp1 (ln_beta x))%Z ->
+ (fexp2 (ln_beta (x - y))%Z <= fexp1 (ln_beta y))%Z ->
+ generic_format beta fexp1 x -> generic_format beta fexp1 y ->
+ generic_format beta fexp2 (x - y).
+Proof.
+intros fexp1 fexp2 x y.
+replace (x - y)%R with (x + (- y))%R; [|ring].
+intros Hlnx Hlny Fx Fy.
+rewrite <- (ln_beta_opp beta y) in Hlny.
+apply generic_format_opp in Fy.
+now apply (double_round_plus_aux0_aux fexp1).
+Qed.
+
+(* fexp1 (ln_beta x) - 1 <= ln_beta y :
+ * substraction is exact in the largest precision (fexp2). *)
+Lemma double_round_minus_aux0 :
+ forall (fexp1 fexp2 : Z -> Z),
+ double_round_plus_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < y -> y < x ->
+ (fexp1 (ln_beta x) - 1 <= ln_beta y)%Z ->
+ generic_format beta fexp1 x -> generic_format beta fexp1 y ->
+ generic_format beta fexp2 (x - y).
+Proof.
+intros fexp1 fexp2 Hexp x y Py Hyx Hln Fx Fy.
+assert (Px := Rlt_trans 0 y x Py Hyx).
+destruct Hexp as (Hexp1,(_,(Hexp3,Hexp4))).
+assert (Lyx : (ln_beta y <= ln_beta x)%Z);
+ [now apply ln_beta_le; [|apply Rlt_le]|].
+destruct (Z.lt_ge_cases (ln_beta x - 2) (ln_beta y)) as [Hlt|Hge].
+- (* ln_beta x - 2 < ln_beta y *)
+ assert (Hor : (ln_beta y = ln_beta x :> Z)
+ \/ (ln_beta y = ln_beta x - 1 :> Z)%Z); [omega|].
+ destruct Hor as [Heq|Heqm1].
+ + (* ln_beta y = ln_beta x *)
+ apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+ * apply Hexp4.
+ apply Zle_trans with (ln_beta (x - y)); [omega|].
+ now apply ln_beta_minus.
+ * rewrite Heq.
+ apply Hexp4.
+ apply Zle_trans with (ln_beta (x - y)); [omega|].
+ now apply ln_beta_minus.
+ + (* ln_beta y = ln_beta x - 1 *)
+ apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+ * apply Hexp4.
+ apply Zle_trans with (ln_beta (x - y)); [omega|].
+ now apply ln_beta_minus.
+ * rewrite Heqm1.
+ apply Hexp4.
+ apply Zplus_le_compat_r.
+ now apply ln_beta_minus.
+- (* ln_beta y <= ln_beta x - 2 *)
+ destruct (ln_beta_minus_disj x y Px Py Hge) as [Lxmy|Lxmy].
+ + (* ln_beta (x - y) = ln_beta x *)
+ apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+ * apply Hexp4.
+ omega.
+ * now rewrite Lxmy; apply Hexp3.
+ + (* ln_beta (x - y) = ln_beta x - 1 *)
+ apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy];
+ rewrite Lxmy.
+ * apply Hexp1.
+ replace (_ + _)%Z with (ln_beta x : Z); [|ring].
+ now apply Zle_trans with (ln_beta y).
+ * apply Hexp1.
+ now replace (_ + _)%Z with (ln_beta x : Z); [|ring].
+Qed.
+
+(* ln_beta y <= fexp1 (ln_beta x) - 2,
+ * fexp1 (ln_beta (x - y)) - 1 <= ln_beta y :
+ * substraction is exact in the largest precision (fexp2). *)
+Lemma double_round_minus_aux1 :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ double_round_plus_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < y -> y < x ->
+ (ln_beta y <= fexp1 (ln_beta x) - 2)%Z ->
+ (fexp1 (ln_beta (x - y)) - 1 <= ln_beta y)%Z ->
+ generic_format beta fexp1 x -> generic_format beta fexp1 y ->
+ generic_format beta fexp2 (x - y).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 Hexp x y Py Hyx Hln Hln' Fx Fy.
+assert (Px := Rlt_trans 0 y x Py Hyx).
+destruct Hexp as (Hexp1,(Hexp2,(Hexp3,Hexp4))).
+assert (Lyx : (ln_beta y <= ln_beta x)%Z);
+ [now apply ln_beta_le; [|apply Rlt_le]|].
+assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+- apply Zle_trans with (fexp1 (ln_beta (x - y))).
+ + apply Hexp4; omega.
+ + omega.
+- now apply Hexp3.
+Qed.
+
+Lemma double_round_minus_aux2_aux :
+ forall (fexp : Z -> Z),
+ Valid_exp fexp ->
+ forall x y,
+ 0 < y -> y < x ->
+ (ln_beta y <= fexp (ln_beta x) - 1)%Z ->
+ generic_format beta fexp x ->
+ generic_format beta fexp y ->
+ round beta fexp Zceil (x - y) - (x - y) <= y.
+Proof.
+intros fexp Vfexp x y Py Hxy Hly Fx Fy.
+assert (Px := Rlt_trans 0 y x Py Hxy).
+revert Fx.
+unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
+set (mx := Ztrunc (x * bpow (- fexp (ln_beta x)))).
+intro Fx.
+assert (Hfx : (fexp (ln_beta x) < ln_beta x)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfy : (fexp (ln_beta y) < ln_beta y)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+destruct (Rlt_or_le (bpow (ln_beta x - 1)) x) as [Hx|Hx].
+- (* bpow (ln_beta x - 1) < x *)
+ assert (Lxy : ln_beta (x - y) = ln_beta x :> Z);
+ [now apply (ln_beta_minus_separated fexp); [| | | | | |omega]|].
+ assert (Rxy : round beta fexp Zceil (x - y) = x).
+ { unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ rewrite Lxy.
+ apply eq_sym; rewrite Fx at 1; apply eq_sym.
+ apply Rmult_eq_compat_r.
+ apply f_equal.
+ rewrite Fx at 1.
+ rewrite Rmult_minus_distr_r.
+ bpow_simplify.
+ apply Zceil_imp.
+ split.
+ - unfold Zminus; rewrite Z2R_plus.
+ apply Rplus_lt_compat_l.
+ apply Ropp_lt_contravar; simpl.
+ apply (Rmult_lt_reg_r (bpow (fexp (ln_beta x))));
+ [now apply bpow_gt_0|].
+ rewrite Rmult_1_l; bpow_simplify.
+ apply Rlt_le_trans with (bpow (ln_beta y)).
+ + rewrite <- Rabs_right at 1; [|now apply Rle_ge; apply Rlt_le].
+ apply bpow_ln_beta_gt.
+ + apply bpow_le.
+ omega.
+ - rewrite <- (Rplus_0_r (Z2R _)) at 2.
+ apply Rplus_le_compat_l.
+ rewrite <- Ropp_0; apply Ropp_le_contravar.
+ rewrite <- (Rmult_0_r y).
+ apply Rmult_le_compat_l; [now apply Rlt_le|].
+ now apply bpow_ge_0. }
+ rewrite Rxy; ring_simplify.
+ apply Rle_refl.
+- (* x <= bpow (ln_beta x - 1) *)
+ assert (Xpow : x = bpow (ln_beta x - 1)).
+ { apply Rle_antisym; [exact Hx|].
+ destruct (ln_beta x) as (ex, Hex); simpl.
+ rewrite <- (Rabs_right x); [|now apply Rle_ge; apply Rlt_le].
+ apply Hex.
+ now apply Rgt_not_eq. }
+ assert (Lxy : (ln_beta (x - y) = ln_beta x - 1 :> Z)%Z).
+ { apply Zle_antisym.
+ - apply ln_beta_le_bpow.
+ + apply Rminus_eq_contra.
+ now intro Hx'; rewrite Hx' in Hxy; apply (Rlt_irrefl y).
+ + rewrite Rabs_right; lra.
+ - apply (ln_beta_minus_lb beta x y Px Py).
+ omega. }
+ assert (Hfx1 : (fexp (ln_beta x - 1) < ln_beta x - 1)%Z);
+ [now apply (valid_exp_large fexp (ln_beta y)); [|omega]|].
+ assert (Rxy : round beta fexp Zceil (x - y) <= x).
+ { rewrite Xpow at 2.
+ unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ rewrite Lxy.
+ apply (Rmult_le_reg_r (bpow (- fexp (ln_beta x - 1)%Z)));
+ [now apply bpow_gt_0|].
+ bpow_simplify.
+ rewrite <- (Z2R_Zpower beta (_ - _ - _)); [|omega].
+ apply Z2R_le.
+ apply Zceil_glb.
+ rewrite Z2R_Zpower; [|omega].
+ rewrite Xpow at 1.
+ rewrite Rmult_minus_distr_r.
+ bpow_simplify.
+ rewrite <- (Rplus_0_r (bpow _)) at 2.
+ apply Rplus_le_compat_l.
+ rewrite <- Ropp_0; apply Ropp_le_contravar.
+ rewrite <- (Rmult_0_r y).
+ apply Rmult_le_compat_l; [now apply Rlt_le|].
+ now apply bpow_ge_0. }
+ lra.
+Qed.
+
+(* ln_beta y <= fexp1 (ln_beta x) - 2 :
+ * ln_beta y <= fexp1 (ln_beta (x - y)) - 2 :
+ * double_round_gt_mid applies. *)
+Lemma double_round_minus_aux2 :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < y -> y < x ->
+ (ln_beta y <= fexp1 (ln_beta x) - 2)%Z ->
+ (ln_beta y <= fexp1 (ln_beta (x - y)) - 2)%Z ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+Proof.
+assert (Hbeta : (2 <= beta)%Z).
+{ destruct beta as (beta_val,beta_prop).
+ now apply Zle_bool_imp_le. }
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hxy Hly Hly' Fx Fy.
+assert (Px := Rlt_trans 0 y x Py Hxy).
+destruct Hexp as (_,(_,(_,Hexp4))).
+assert (Hf2 : (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z);
+ [now apply Hexp4; omega|].
+assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Bpow2 : bpow (- 2) <= / 2 * / 2).
+{ unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ rewrite <- Rinv_mult_distr; [|lra|lra].
+ apply Rinv_le; [lra|].
+ change 4 with (Z2R (2 * 2)); apply Z2R_le; rewrite Zmult_1_r.
+ now apply Zmult_le_compat; omega. }
+assert (Ly : y < bpow (ln_beta y)).
+{ apply Rabs_lt_inv.
+ apply bpow_ln_beta_gt. }
+unfold double_round_eq.
+apply double_round_gt_mid.
+- exact Vfexp1.
+- exact Vfexp2.
+- lra.
+- apply Hexp4; omega.
+- assert (fexp1 (ln_beta (x - y)) < ln_beta (x - y))%Z; [|omega].
+ apply (valid_exp_large fexp1 (ln_beta x - 1)).
+ + apply (valid_exp_large fexp1 (ln_beta y)); [|omega].
+ now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+ + now apply ln_beta_minus_lb; [| |omega].
+- unfold midp'.
+ apply (Rplus_lt_reg_r (/ 2 * ulp beta fexp1 (x - y) - (x - y))).
+ ring_simplify.
+ replace (_ + _) with (round beta fexp1 Zceil (x - y) - (x - y)) by ring.
+ apply Rlt_le_trans with (bpow (fexp1 (ln_beta (x - y)) - 2)).
+ + apply Rle_lt_trans with y;
+ [now apply double_round_minus_aux2_aux; try assumption; omega|].
+ apply (Rlt_le_trans _ _ _ Ly).
+ now apply bpow_le.
+ + unfold ulp, canonic_exp.
+ replace (_ - 2)%Z with (fexp1 (ln_beta (x - y)) - 1 - 1)%Z by ring.
+ unfold Zminus at 1; rewrite bpow_plus.
+ rewrite Rmult_comm.
+ apply Rmult_le_compat.
+ * now apply bpow_ge_0.
+ * now apply bpow_ge_0.
+ * unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ rewrite Zmult_1_r; apply Rinv_le.
+ lra.
+ now change 2 with (Z2R 2); apply Z2R_le.
+ * apply bpow_le; omega.
+- intro Hf2'.
+ unfold midp'.
+ apply (Rplus_lt_reg_r (/ 2 * ulp beta fexp1 (x - y) - (x - y)
+ - / 2 * ulp beta fexp2 (x - y))).
+ ring_simplify.
+ replace (_ + _) with (round beta fexp1 Zceil (x - y) - (x - y)) by ring.
+ apply Rle_lt_trans with y;
+ [now apply double_round_minus_aux2_aux; try assumption; omega|].
+ apply (Rlt_le_trans _ _ _ Ly).
+ apply Rle_trans with (bpow (fexp1 (ln_beta (x - y)) - 2));
+ [now apply bpow_le|].
+ replace (_ - 2)%Z with (fexp1 (ln_beta (x - y)) - 1 - 1)%Z by ring.
+ unfold Zminus at 1; rewrite bpow_plus.
+ rewrite <- Rmult_minus_distr_l.
+ rewrite Rmult_comm; apply Rmult_le_compat.
+ + apply bpow_ge_0.
+ + apply bpow_ge_0.
+ + unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ rewrite Zmult_1_r; apply Rinv_le; [lra|].
+ now change 2 with (Z2R 2); apply Z2R_le.
+ + unfold ulp, canonic_exp.
+ apply (Rplus_le_reg_r (bpow (fexp2 (ln_beta (x - y))))); ring_simplify.
+ apply Rle_trans with (2 * bpow (fexp1 (ln_beta (x - y)) - 1)).
+ * rewrite Rmult_plus_distr_r; rewrite Rmult_1_l.
+ apply Rplus_le_compat_l.
+ now apply bpow_le.
+ * unfold Zminus; rewrite bpow_plus.
+ rewrite Rmult_comm; rewrite Rmult_assoc.
+ rewrite <- Rmult_1_r.
+ apply Rmult_le_compat_l; [now apply bpow_ge_0|].
+ unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ rewrite Zmult_1_r.
+ rewrite <- (Rinv_r 2) at 3; [|lra].
+ rewrite Rmult_comm; apply Rmult_le_compat_l; [lra|].
+ apply Rinv_le; [lra|].
+ now change 2 with (Z2R 2); apply Z2R_le.
+Qed.
+
+(* double_round_minus_aux{0,1,2} together *)
+Lemma double_round_minus_aux3 :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < y -> y <= x ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hyx Fx Fy.
+assert (Px := Rlt_le_trans 0 y x Py Hyx).
+unfold double_round_eq.
+destruct (Req_dec y x) as [Hy|Hy].
+- (* y = x *)
+ rewrite Hy; replace (x - x) with 0 by ring.
+ rewrite round_0.
+ + reflexivity.
+ + now apply valid_rnd_N.
+- (* y < x *)
+ assert (Hyx' : y < x); [lra|].
+ destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta x) - 2)) as [Hly|Hly].
+ + (* ln_beta y <= fexp1 (ln_beta x) - 2 *)
+ destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta (x - y)) - 2))
+ as [Hly'|Hly'].
+ * (* ln_beta y <= fexp1 (ln_beta (x - y)) - 2 *)
+ now apply double_round_minus_aux2.
+ * (* fexp1 (ln_beta (x - y)) - 2 < ln_beta y *)
+ { rewrite (round_generic beta fexp2).
+ - reflexivity.
+ - now apply valid_rnd_N.
+ - assert (Hf1 : (fexp1 (ln_beta (x - y)) - 1 <= ln_beta y)%Z); [omega|].
+ now apply (double_round_minus_aux1 fexp1). }
+ + rewrite (round_generic beta fexp2).
+ * reflexivity.
+ * now apply valid_rnd_N.
+ * assert (Hf1 : (fexp1 (ln_beta x) - 1 <= ln_beta y)%Z); [omega|].
+ now apply (double_round_minus_aux0 fexp1).
+Qed.
+
+Lemma double_round_minus_aux :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 <= x -> 0 <= y ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Nnx Nny Fx Fy.
+unfold double_round_eq.
+destruct (Req_dec x 0) as [Zx|Nzx].
+- (* x = 0 *)
+ rewrite Zx; unfold Rminus; rewrite Rplus_0_l.
+ do 3 rewrite round_N_opp.
+ rewrite (round_generic beta fexp2).
+ * reflexivity.
+ * now apply valid_rnd_N.
+ * apply (generic_inclusion_ln_beta beta fexp1).
+ destruct Hexp as (_,(_,(_,Hexp4))).
+ now intros _; apply Hexp4; omega.
+ exact Fy.
+- (* x <> 0 *)
+ destruct (Req_dec y 0) as [Zy|Nzy].
+ + (* y = 0 *)
+ rewrite Zy; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
+ rewrite (round_generic beta fexp2).
+ * reflexivity.
+ * now apply valid_rnd_N.
+ * apply (generic_inclusion_ln_beta beta fexp1).
+ destruct Hexp as (_,(_,(_,Hexp4))).
+ now intros _; apply Hexp4; omega.
+ exact Fx.
+ + (* y <> 0 *)
+ assert (Px : 0 < x); [lra|].
+ assert (Py : 0 < y); [lra|].
+ destruct (Rlt_or_le x y) as [H|H].
+ * (* x < y *)
+ apply Rlt_le in H.
+ replace (x - y) with (- (y - x)) by ring.
+ do 3 rewrite round_N_opp.
+ apply Ropp_eq_compat.
+ now apply double_round_minus_aux3.
+ * (* y <= x *)
+ now apply double_round_minus_aux3.
+Qed.
+
+Lemma double_round_plus :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_hyp fexp1 fexp2 ->
+ forall x y,
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Fx Fy.
+unfold double_round_eq.
+destruct (Rlt_or_le x 0) as [Sx|Sx]; destruct (Rlt_or_le y 0) as [Sy|Sy].
+- (* x < 0, y < 0 *)
+ replace (x + y) with (- (- x - y)); [|ring].
+ do 3 rewrite round_N_opp.
+ apply Ropp_eq_compat.
+ assert (Px : 0 <= - x); [lra|].
+ assert (Py : 0 <= - y); [lra|].
+ apply generic_format_opp in Fx.
+ apply generic_format_opp in Fy.
+ now apply double_round_plus_aux.
+- (* x < 0, 0 <= y *)
+ replace (x + y) with (y - (- x)); [|ring].
+ assert (Px : 0 <= - x); [lra|].
+ apply generic_format_opp in Fx.
+ now apply double_round_minus_aux.
+- (* 0 <= x, y < 0 *)
+ replace (x + y) with (x - (- y)); [|ring].
+ assert (Py : 0 <= - y); [lra|].
+ apply generic_format_opp in Fy.
+ now apply double_round_minus_aux.
+- (* 0 <= x, 0 <= y *)
+ now apply double_round_plus_aux.
+Qed.
+
+Lemma double_round_minus :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_hyp fexp1 fexp2 ->
+ forall x y,
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Fx Fy.
+unfold Rminus.
+apply generic_format_opp in Fy.
+now apply double_round_plus.
+Qed.
+
+Section Double_round_plus_FLX.
+
+Require Import Fcore_FLX.
+
+Variable prec : Z.
+Variable prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FLX_double_round_plus_hyp :
+ (2 * prec + 1 <= prec')%Z ->
+ double_round_plus_hyp (FLX_exp prec) (FLX_exp prec').
+Proof.
+intros Hprec.
+unfold FLX_exp.
+unfold double_round_plus_hyp; split; [|split; [|split]];
+intros ex ey; try omega.
+unfold Prec_gt_0 in prec_gt_0_.
+omega.
+Qed.
+
+Theorem double_round_plus_FLX :
+ forall choice1 choice2,
+ (2 * prec + 1 <= prec')%Z ->
+ forall x y,
+ FLX_format beta prec x -> FLX_format beta prec y ->
+ double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x + y).
+Proof.
+intros choice1 choice2 Hprec x y Fx Fy.
+apply double_round_plus.
+- now apply FLX_exp_valid.
+- now apply FLX_exp_valid.
+- now apply FLX_double_round_plus_hyp.
+- now apply generic_format_FLX.
+- now apply generic_format_FLX.
+Qed.
+
+Theorem double_round_minus_FLX :
+ forall choice1 choice2,
+ (2 * prec + 1 <= prec')%Z ->
+ forall x y,
+ FLX_format beta prec x -> FLX_format beta prec y ->
+ double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x - y).
+Proof.
+intros choice1 choice2 Hprec x y Fx Fy.
+apply double_round_minus.
+- now apply FLX_exp_valid.
+- now apply FLX_exp_valid.
+- now apply FLX_double_round_plus_hyp.
+- now apply generic_format_FLX.
+- now apply generic_format_FLX.
+Qed.
+
+End Double_round_plus_FLX.
+
+Section Double_round_plus_FLT.
+
+Require Import Fcore_FLX.
+Require Import Fcore_FLT.
+
+Variable emin prec : Z.
+Variable emin' prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FLT_double_round_plus_hyp :
+ (emin' <= emin)%Z -> (2 * prec + 1 <= prec')%Z ->
+ double_round_plus_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
+Proof.
+intros Hemin Hprec.
+unfold FLT_exp.
+unfold double_round_plus_hyp; split; [|split; [|split]]; intros ex ey.
+- generalize (Zmax_spec (ex + 1 - prec) emin).
+ generalize (Zmax_spec (ex - prec') emin').
+ generalize (Zmax_spec (ey - prec) emin).
+ omega.
+- generalize (Zmax_spec (ex - 1 - prec) emin).
+ generalize (Zmax_spec (ex - prec') emin').
+ generalize (Zmax_spec (ey - prec) emin).
+ omega.
+- generalize (Zmax_spec (ex - prec) emin).
+ generalize (Zmax_spec (ex - prec') emin').
+ generalize (Zmax_spec (ey - prec) emin).
+ omega.
+- unfold Prec_gt_0 in prec_gt_0_.
+ generalize (Zmax_spec (ex - prec') emin').
+ generalize (Zmax_spec (ey - prec) emin).
+ omega.
+Qed.
+
+Theorem double_round_plus_FLT :
+ forall choice1 choice2,
+ (emin' <= emin)%Z -> (2 * prec + 1 <= prec')%Z ->
+ forall x y,
+ FLT_format beta emin prec x -> FLT_format beta emin prec y ->
+ double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ choice1 choice2 (x + y).
+Proof.
+intros choice1 choice2 Hemin Hprec x y Fx Fy.
+apply double_round_plus.
+- now apply FLT_exp_valid.
+- now apply FLT_exp_valid.
+- now apply FLT_double_round_plus_hyp.
+- now apply generic_format_FLT.
+- now apply generic_format_FLT.
+Qed.
+
+Theorem double_round_minus_FLT :
+ forall choice1 choice2,
+ (emin' <= emin)%Z -> (2 * prec + 1 <= prec')%Z ->
+ forall x y,
+ FLT_format beta emin prec x -> FLT_format beta emin prec y ->
+ double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ choice1 choice2 (x - y).
+Proof.
+intros choice1 choice2 Hemin Hprec x y Fx Fy.
+apply double_round_minus.
+- now apply FLT_exp_valid.
+- now apply FLT_exp_valid.
+- now apply FLT_double_round_plus_hyp.
+- now apply generic_format_FLT.
+- now apply generic_format_FLT.
+Qed.
+
+End Double_round_plus_FLT.
+
+Section Double_round_plus_FTZ.
+
+Require Import Fcore_FLX.
+Require Import Fcore_FTZ.
+
+Variable emin prec : Z.
+Variable emin' prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FTZ_double_round_plus_hyp :
+ (emin' + prec' <= emin + 1)%Z -> (2 * prec + 1 <= prec')%Z ->
+ double_round_plus_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
+Proof.
+intros Hemin Hprec.
+unfold FTZ_exp.
+unfold Prec_gt_0 in *.
+unfold double_round_plus_hyp; split; [|split; [|split]]; intros ex ey.
+- destruct (Z.ltb_spec (ex + 1 - prec) emin);
+ destruct (Z.ltb_spec (ex - prec') emin');
+ destruct (Z.ltb_spec (ey - prec) emin);
+ omega.
+- destruct (Z.ltb_spec (ex - 1 - prec) emin);
+ destruct (Z.ltb_spec (ex - prec') emin');
+ destruct (Z.ltb_spec (ey - prec) emin);
+ omega.
+- destruct (Z.ltb_spec (ex - prec) emin);
+ destruct (Z.ltb_spec (ex - prec') emin');
+ destruct (Z.ltb_spec (ey - prec) emin);
+ omega.
+- destruct (Z.ltb_spec (ex - prec') emin');
+ destruct (Z.ltb_spec (ey - prec) emin);
+ omega.
+Qed.
+
+Theorem double_round_plus_FTZ :
+ forall choice1 choice2,
+ (emin' + prec' <= emin + 1)%Z -> (2 * prec + 1 <= prec')%Z ->
+ forall x y,
+ FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
+ double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ choice1 choice2 (x + y).
+Proof.
+intros choice1 choice2 Hemin Hprec x y Fx Fy.
+apply double_round_plus.
+- now apply FTZ_exp_valid.
+- now apply FTZ_exp_valid.
+- now apply FTZ_double_round_plus_hyp.
+- now apply generic_format_FTZ.
+- now apply generic_format_FTZ.
+Qed.
+
+Theorem double_round_minus_FTZ :
+ forall choice1 choice2,
+ (emin' + prec' <= emin + 1)%Z -> (2 * prec + 1 <= prec')%Z ->
+ forall x y,
+ FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
+ double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ choice1 choice2 (x - y).
+Proof.
+intros choice1 choice2 Hemin Hprec x y Fx Fy.
+apply double_round_minus.
+- now apply FTZ_exp_valid.
+- now apply FTZ_exp_valid.
+- now apply FTZ_double_round_plus_hyp.
+- now apply generic_format_FTZ.
+- now apply generic_format_FTZ.
+Qed.
+
+End Double_round_plus_FTZ.
+
+Section Double_round_plus_beta_ge_3.
+
+Definition double_round_plus_beta_ge_3_hyp fexp1 fexp2 :=
+ (forall ex ey, (fexp1 (ex + 1) <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
+ /\ (forall ex ey, (fexp1 (ex - 1) + 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
+ /\ (forall ex ey, (fexp1 ex <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
+ /\ (forall ex ey, (ex - 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z).
+
+(* fexp1 (ln_beta x) <= ln_beta y :
+ * addition is exact in the largest precision (fexp2). *)
+Lemma double_round_plus_beta_ge_3_aux0 :
+ forall (fexp1 fexp2 : Z -> Z), Valid_exp fexp1 ->
+ double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ forall x y,
+ (0 < y)%R -> (y <= x)%R ->
+ (fexp1 (ln_beta x) <= ln_beta y)%Z ->
+ generic_format beta fexp1 x -> generic_format beta fexp1 y ->
+ generic_format beta fexp2 (x + y).
+Proof.
+intros fexp1 fexp2 Vfexp1 Hexp x y Py Hyx Hln Fx Fy.
+assert (Px := Rlt_le_trans 0 y x Py Hyx).
+assert (Nny : (0 <= y)%R); [now apply Rlt_le|].
+destruct Hexp as (_,(Hexp2,(Hexp3,Hexp4))).
+destruct (Z.le_gt_cases (ln_beta y) (fexp1 (ln_beta x))) as [Hle|Hgt].
+- (* ln_beta y <= fexp1 (ln_beta x) *)
+ assert (Lxy : ln_beta (x + y) = ln_beta x :> Z);
+ [now apply (ln_beta_plus_separated fexp1)|].
+ apply (double_round_plus_aux0_aux fexp1);
+ [| |assumption|assumption]; rewrite Lxy.
+ + now apply Hexp4; omega.
+ + now apply Hexp3; omega.
+- (* fexp1 (ln_beta x) < ln_beta y *)
+ apply (double_round_plus_aux0_aux fexp1); [| |assumption|assumption].
+ destruct (ln_beta_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
+ + now apply Hexp4; omega.
+ + apply Hexp2; apply (ln_beta_le beta y x Py) in Hyx.
+ replace (_ - _)%Z with (ln_beta x : Z) by ring.
+ omega.
+ + destruct (ln_beta_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
+ * now apply Hexp3; omega.
+ * apply Hexp2.
+ replace (_ - _)%Z with (ln_beta x : Z) by ring.
+ omega.
+Qed.
+
+(* ln_beta y <= fexp1 (ln_beta x) - 1 : double_round_lt_mid applies. *)
+Lemma double_round_plus_beta_ge_3_aux1 :
+ (3 <= beta)%Z ->
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < x -> 0 < y ->
+ (ln_beta y <= fexp1 (ln_beta x) - 1)%Z ->
+ generic_format beta fexp1 x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+Proof.
+intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Hly Fx.
+assert (Lxy : ln_beta (x + y) = ln_beta x :> Z);
+ [now apply (ln_beta_plus_separated fexp1); [|apply Rlt_le| |omega]|].
+destruct Hexp as (_,(_,(_,Hexp4))).
+assert (Hf2 : (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z);
+ [now apply Hexp4; omega|].
+assert (Bpow3 : bpow (- 1) <= / 3).
+{ unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ rewrite Zmult_1_r.
+ apply Rinv_le; [lra|].
+ now change 3 with (Z2R 3); apply Z2R_le. }
+assert (P1 : (0 < 1)%Z) by omega.
+unfold double_round_eq.
+apply double_round_lt_mid.
+- exact Vfexp1.
+- exact Vfexp2.
+- lra.
+- now rewrite Lxy.
+- rewrite Lxy.
+ assert (fexp1 (ln_beta x) < ln_beta x)%Z; [|omega].
+ now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+- unfold midp.
+ apply (Rplus_lt_reg_r (- round beta fexp1 Zfloor (x + y))).
+ apply (Rlt_le_trans _ _ _ (proj2 (double_round_plus_aux1_aux 1 P1 fexp1 x y Px
+ Py Hly Lxy Fx))).
+ ring_simplify.
+ unfold ulp, canonic_exp; rewrite Lxy.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ [now apply bpow_gt_0|].
+ bpow_simplify.
+ apply (Rle_trans _ _ _ Bpow3); lra.
+- unfold ulp, round, F2R, scaled_mantissa, canonic_exp; simpl; rewrite Lxy.
+ intro Hf2'.
+ unfold midp.
+ apply (Rplus_lt_reg_r (- round beta fexp1 Zfloor (x + y))); ring_simplify.
+ rewrite <- Rmult_minus_distr_l.
+ apply (Rlt_le_trans _ _ _ (proj2 (double_round_plus_aux1_aux 1 P1 fexp1 x y Px
+ Py Hly Lxy Fx))).
+ unfold ulp, canonic_exp; rewrite Lxy.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ [now apply bpow_gt_0|].
+ rewrite (Rmult_assoc (/ 2)).
+ rewrite Rmult_minus_distr_r.
+ bpow_simplify.
+ apply (Rle_trans _ _ _ Bpow3).
+ apply Rle_trans with (/ 2 * (2 / 3)); [lra|].
+ apply Rmult_le_compat_l; [lra|].
+ apply (Rplus_le_reg_r (- 1)); ring_simplify.
+ replace (_ - _) with (- (/ 3)) by lra.
+ apply Ropp_le_contravar.
+ now apply Rle_trans with (bpow (- 1)); [apply bpow_le; omega|].
+Qed.
+
+(* double_round_plus_beta_ge_3_aux{0,1} together *)
+Lemma double_round_plus_beta_ge_3_aux2 :
+ (3 <= beta)%Z ->
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < y -> y <= x ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+Proof.
+intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hyx Fx Fy.
+assert (Px := Rlt_le_trans 0 y x Py Hyx).
+unfold double_round_eq.
+destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta x) - 1)) as [Hly|Hly].
+- (* ln_beta y <= fexp1 (ln_beta x) - 1 *)
+ now apply double_round_plus_beta_ge_3_aux1.
+- (* fexp1 (ln_beta x) - 1 < ln_beta y *)
+ rewrite (round_generic beta fexp2).
+ + reflexivity.
+ + now apply valid_rnd_N.
+ + assert (Hf1 : (fexp1 (ln_beta x) <= ln_beta y)%Z); [omega|].
+ now apply (double_round_plus_beta_ge_3_aux0 fexp1).
+Qed.
+
+Lemma double_round_plus_beta_ge_3_aux :
+ (3 <= beta)%Z ->
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 <= x -> 0 <= y ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+Proof.
+intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Nnx Nny Fx Fy.
+unfold double_round_eq.
+destruct (Req_dec x 0) as [Zx|Nzx].
+- (* x = 0 *)
+ destruct Hexp as (_,(_,(_,Hexp4))).
+ rewrite Zx; rewrite Rplus_0_l.
+ rewrite (round_generic beta fexp2).
+ + reflexivity.
+ + now apply valid_rnd_N.
+ + apply (generic_inclusion_ln_beta beta fexp1).
+ now intros _; apply Hexp4; omega.
+ exact Fy.
+- (* x <> 0 *)
+ destruct (Req_dec y 0) as [Zy|Nzy].
+ + (* y = 0 *)
+ destruct Hexp as (_,(_,(_,Hexp4))).
+ rewrite Zy; rewrite Rplus_0_r.
+ rewrite (round_generic beta fexp2).
+ * reflexivity.
+ * now apply valid_rnd_N.
+ * apply (generic_inclusion_ln_beta beta fexp1).
+ now intros _; apply Hexp4; omega.
+ exact Fx.
+ + (* y <> 0 *)
+ assert (Px : 0 < x); [lra|].
+ assert (Py : 0 < y); [lra|].
+ destruct (Rlt_or_le x y) as [H|H].
+ * (* x < y *)
+ apply Rlt_le in H.
+ rewrite Rplus_comm.
+ now apply double_round_plus_beta_ge_3_aux2.
+ * now apply double_round_plus_beta_ge_3_aux2.
+Qed.
+
+(* fexp1 (ln_beta x) <= ln_beta y :
+ * substraction is exact in the largest precision (fexp2). *)
+Lemma double_round_minus_beta_ge_3_aux0 :
+ forall (fexp1 fexp2 : Z -> Z),
+ double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < y -> y < x ->
+ (fexp1 (ln_beta x) <= ln_beta y)%Z ->
+ generic_format beta fexp1 x -> generic_format beta fexp1 y ->
+ generic_format beta fexp2 (x - y).
+Proof.
+intros fexp1 fexp2 Hexp x y Py Hyx Hln Fx Fy.
+assert (Px := Rlt_trans 0 y x Py Hyx).
+destruct Hexp as (Hexp1,(_,(Hexp3,Hexp4))).
+assert (Lyx : (ln_beta y <= ln_beta x)%Z);
+ [now apply ln_beta_le; [|apply Rlt_le]|].
+destruct (Z.lt_ge_cases (ln_beta x - 2) (ln_beta y)) as [Hlt|Hge].
+- (* ln_beta x - 2 < ln_beta y *)
+ assert (Hor : (ln_beta y = ln_beta x :> Z)
+ \/ (ln_beta y = ln_beta x - 1 :> Z)%Z); [omega|].
+ destruct Hor as [Heq|Heqm1].
+ + (* ln_beta y = ln_beta x *)
+ apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+ * apply Hexp4.
+ apply Zle_trans with (ln_beta (x - y)); [omega|].
+ now apply ln_beta_minus.
+ * rewrite Heq.
+ apply Hexp4.
+ apply Zle_trans with (ln_beta (x - y)); [omega|].
+ now apply ln_beta_minus.
+ + (* ln_beta y = ln_beta x - 1 *)
+ apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+ * apply Hexp4.
+ apply Zle_trans with (ln_beta (x - y)); [omega|].
+ now apply ln_beta_minus.
+ * rewrite Heqm1.
+ apply Hexp4.
+ apply Zplus_le_compat_r.
+ now apply ln_beta_minus.
+- (* ln_beta y <= ln_beta x - 2 *)
+ destruct (ln_beta_minus_disj x y Px Py Hge) as [Lxmy|Lxmy].
+ + (* ln_beta (x - y) = ln_beta x *)
+ apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+ * apply Hexp4.
+ omega.
+ * now rewrite Lxmy; apply Hexp3.
+ + (* ln_beta (x - y) = ln_beta x - 1 *)
+ apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy];
+ rewrite Lxmy.
+ * apply Hexp1.
+ replace (_ + _)%Z with (ln_beta x : Z); [|ring].
+ now apply Zle_trans with (ln_beta y).
+ * apply Hexp1.
+ now replace (_ + _)%Z with (ln_beta x : Z); [|ring].
+Qed.
+
+(* ln_beta y <= fexp1 (ln_beta x) - 1,
+ * fexp1 (ln_beta (x - y)) <= ln_beta y :
+ * substraction is exact in the largest precision (fexp2). *)
+Lemma double_round_minus_beta_ge_3_aux1 :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < y -> y < x ->
+ (ln_beta y <= fexp1 (ln_beta x) - 1)%Z ->
+ (fexp1 (ln_beta (x - y)) <= ln_beta y)%Z ->
+ generic_format beta fexp1 x -> generic_format beta fexp1 y ->
+ generic_format beta fexp2 (x - y).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 Hexp x y Py Hyx Hln Hln' Fx Fy.
+assert (Px := Rlt_trans 0 y x Py Hyx).
+destruct Hexp as (Hexp1,(Hexp2,(Hexp3,Hexp4))).
+assert (Lyx : (ln_beta y <= ln_beta x)%Z);
+ [now apply ln_beta_le; [|apply Rlt_le]|].
+assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+- apply Zle_trans with (fexp1 (ln_beta (x - y))).
+ + apply Hexp4; omega.
+ + omega.
+- now apply Hexp3.
+Qed.
+
+(* ln_beta y <= fexp1 (ln_beta x) - 1 :
+ * ln_beta y <= fexp1 (ln_beta (x - y)) - 1 :
+ * double_round_gt_mid applies. *)
+Lemma double_round_minus_beta_ge_3_aux2 :
+ (3 <= beta)%Z ->
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < y -> y < x ->
+ (ln_beta y <= fexp1 (ln_beta x) - 1)%Z ->
+ (ln_beta y <= fexp1 (ln_beta (x - y)) - 1)%Z ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+Proof.
+intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hxy Hly Hly' Fx Fy.
+assert (Px := Rlt_trans 0 y x Py Hxy).
+destruct Hexp as (_,(_,(_,Hexp4))).
+assert (Hf2 : (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z);
+ [now apply Hexp4; omega|].
+assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Bpow3 : bpow (- 1) <= / 3).
+{ unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ rewrite Zmult_1_r.
+ apply Rinv_le; [lra|].
+ now change 3 with (Z2R 3); apply Z2R_le. }
+assert (Ly : y < bpow (ln_beta y)).
+{ apply Rabs_lt_inv.
+ apply bpow_ln_beta_gt. }
+unfold double_round_eq.
+apply double_round_gt_mid.
+- exact Vfexp1.
+- exact Vfexp2.
+- lra.
+- apply Hexp4; omega.
+- assert (fexp1 (ln_beta (x - y)) < ln_beta (x - y))%Z; [|omega].
+ apply (valid_exp_large fexp1 (ln_beta x - 1)).
+ + apply (valid_exp_large fexp1 (ln_beta y)); [|omega].
+ now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+ + now apply ln_beta_minus_lb; [| |omega].
+- unfold midp'.
+ apply (Rplus_lt_reg_r (/ 2 * ulp beta fexp1 (x - y) - (x - y))).
+ ring_simplify.
+ replace (_ + _) with (round beta fexp1 Zceil (x - y) - (x - y)) by ring.
+ apply Rlt_le_trans with (bpow (fexp1 (ln_beta (x - y)) - 1)).
+ + apply Rle_lt_trans with y;
+ [now apply double_round_minus_aux2_aux|].
+ apply (Rlt_le_trans _ _ _ Ly).
+ now apply bpow_le.
+ + unfold ulp, canonic_exp.
+ unfold Zminus at 1; rewrite bpow_plus.
+ rewrite Rmult_comm.
+ apply Rmult_le_compat_r; [now apply bpow_ge_0|].
+ unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ rewrite Zmult_1_r; apply Rinv_le; [lra|].
+ now change 2 with (Z2R 2); apply Z2R_le; omega.
+- intro Hf2'.
+ unfold midp'.
+ apply (Rplus_lt_reg_r (/ 2 * (ulp beta fexp1 (x - y)
+ - ulp beta fexp2 (x - y)) - (x - y))).
+ ring_simplify; rewrite <- Rmult_minus_distr_l.
+ replace (_ + _) with (round beta fexp1 Zceil (x - y) - (x - y)) by ring.
+ apply Rle_lt_trans with y;
+ [now apply double_round_minus_aux2_aux|].
+ apply (Rlt_le_trans _ _ _ Ly).
+ apply Rle_trans with (bpow (fexp1 (ln_beta (x - y)) - 1));
+ [now apply bpow_le|].
+ unfold ulp, canonic_exp.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta (x - y)))));
+ [now apply bpow_gt_0|].
+ rewrite Rmult_assoc.
+ rewrite Rmult_minus_distr_r.
+ bpow_simplify.
+ apply Rle_trans with (/ 3).
+ + unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ rewrite Zmult_1_r; apply Rinv_le; [lra|].
+ now change 3 with (Z2R 3); apply Z2R_le.
+ + replace (/ 3) with (/ 2 * (2 / 3)) by field.
+ apply Rmult_le_compat_l; [lra|].
+ apply (Rplus_le_reg_r (- 1)); ring_simplify.
+ replace (_ - _) with (- / 3) by field.
+ apply Ropp_le_contravar.
+ apply Rle_trans with (bpow (- 1)).
+ * apply bpow_le; omega.
+ * unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ rewrite Zmult_1_r; apply Rinv_le; [lra|].
+ now change 3 with (Z2R 3); apply Z2R_le.
+Qed.
+
+(* double_round_minus_aux{0,1,2} together *)
+Lemma double_round_minus_beta_ge_3_aux3 :
+ (3 <= beta)%Z ->
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < y -> y <= x ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+Proof.
+intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hyx Fx Fy.
+assert (Px := Rlt_le_trans 0 y x Py Hyx).
+unfold double_round_eq.
+destruct (Req_dec y x) as [Hy|Hy].
+- (* y = x *)
+ rewrite Hy; replace (x - x) with 0 by ring.
+ rewrite round_0.
+ + reflexivity.
+ + now apply valid_rnd_N.
+- (* y < x *)
+ assert (Hyx' : y < x); [lra|].
+ destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta x) - 1)) as [Hly|Hly].
+ + (* ln_beta y <= fexp1 (ln_beta x) - 1 *)
+ destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta (x - y)) - 1))
+ as [Hly'|Hly'].
+ * (* ln_beta y <= fexp1 (ln_beta (x - y)) - 1 *)
+ now apply double_round_minus_beta_ge_3_aux2.
+ * (* fexp1 (ln_beta (x - y)) - 1 < ln_beta y *)
+ { rewrite (round_generic beta fexp2).
+ - reflexivity.
+ - now apply valid_rnd_N.
+ - assert (Hf1 : (fexp1 (ln_beta (x - y)) <= ln_beta y)%Z); [omega|].
+ now apply (double_round_minus_beta_ge_3_aux1 fexp1). }
+ + rewrite (round_generic beta fexp2).
+ * reflexivity.
+ * now apply valid_rnd_N.
+ * assert (Hf1 : (fexp1 (ln_beta x) <= ln_beta y)%Z); [omega|].
+ now apply (double_round_minus_beta_ge_3_aux0 fexp1).
+Qed.
+
+Lemma double_round_minus_beta_ge_3_aux :
+ (3 <= beta)%Z ->
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 <= x -> 0 <= y ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+Proof.
+intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Nnx Nny Fx Fy.
+unfold double_round_eq.
+destruct (Req_dec x 0) as [Zx|Nzx].
+- (* x = 0 *)
+ rewrite Zx; unfold Rminus; rewrite Rplus_0_l.
+ do 3 rewrite round_N_opp.
+ rewrite (round_generic beta fexp2).
+ * reflexivity.
+ * now apply valid_rnd_N.
+ * apply (generic_inclusion_ln_beta beta fexp1).
+ destruct Hexp as (_,(_,(_,Hexp4))).
+ now intros _; apply Hexp4; omega.
+ exact Fy.
+- (* x <> 0 *)
+ destruct (Req_dec y 0) as [Zy|Nzy].
+ + (* y = 0 *)
+ rewrite Zy; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
+ rewrite (round_generic beta fexp2).
+ * reflexivity.
+ * now apply valid_rnd_N.
+ * apply (generic_inclusion_ln_beta beta fexp1).
+ destruct Hexp as (_,(_,(_,Hexp4))).
+ now intros _; apply Hexp4; omega.
+ exact Fx.
+ + (* y <> 0 *)
+ assert (Px : 0 < x); [lra|].
+ assert (Py : 0 < y); [lra|].
+ destruct (Rlt_or_le x y) as [H|H].
+ * (* x < y *)
+ apply Rlt_le in H.
+ replace (x - y) with (- (y - x)) by ring.
+ do 3 rewrite round_N_opp.
+ apply Ropp_eq_compat.
+ now apply double_round_minus_beta_ge_3_aux3.
+ * (* y <= x *)
+ now apply double_round_minus_beta_ge_3_aux3.
+Qed.
+
+Lemma double_round_plus_beta_ge_3 :
+ (3 <= beta)%Z ->
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ forall x y,
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+Proof.
+intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Fx Fy.
+unfold double_round_eq.
+destruct (Rlt_or_le x 0) as [Sx|Sx]; destruct (Rlt_or_le y 0) as [Sy|Sy].
+- (* x < 0, y < 0 *)
+ replace (x + y) with (- (- x - y)); [|ring].
+ do 3 rewrite round_N_opp.
+ apply Ropp_eq_compat.
+ assert (Px : 0 <= - x); [lra|].
+ assert (Py : 0 <= - y); [lra|].
+ apply generic_format_opp in Fx.
+ apply generic_format_opp in Fy.
+ now apply double_round_plus_beta_ge_3_aux.
+- (* x < 0, 0 <= y *)
+ replace (x + y) with (y - (- x)); [|ring].
+ assert (Px : 0 <= - x); [lra|].
+ apply generic_format_opp in Fx.
+ now apply double_round_minus_beta_ge_3_aux.
+- (* 0 <= x, y < 0 *)
+ replace (x + y) with (x - (- y)); [|ring].
+ assert (Py : 0 <= - y); [lra|].
+ apply generic_format_opp in Fy.
+ now apply double_round_minus_beta_ge_3_aux.
+- (* 0 <= x, 0 <= y *)
+ now apply double_round_plus_beta_ge_3_aux.
+Qed.
+
+Lemma double_round_minus_beta_ge_3 :
+ (3 <= beta)%Z ->
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ forall x y,
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+Proof.
+intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Fx Fy.
+unfold Rminus.
+apply generic_format_opp in Fy.
+now apply double_round_plus_beta_ge_3.
+Qed.
+
+Section Double_round_plus_beta_ge_3_FLX.
+
+Require Import Fcore_FLX.
+
+Variable prec : Z.
+Variable prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FLX_double_round_plus_beta_ge_3_hyp :
+ (2 * prec <= prec')%Z ->
+ double_round_plus_beta_ge_3_hyp (FLX_exp prec) (FLX_exp prec').
+Proof.
+intros Hprec.
+unfold FLX_exp.
+unfold double_round_plus_beta_ge_3_hyp; split; [|split; [|split]];
+intros ex ey; try omega.
+unfold Prec_gt_0 in prec_gt_0_.
+omega.
+Qed.
+
+Theorem double_round_plus_beta_ge_3_FLX :
+ (3 <= beta)%Z ->
+ forall choice1 choice2,
+ (2 * prec <= prec')%Z ->
+ forall x y,
+ FLX_format beta prec x -> FLX_format beta prec y ->
+ double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x + y).
+Proof.
+intros Hbeta choice1 choice2 Hprec x y Fx Fy.
+apply double_round_plus_beta_ge_3.
+- exact Hbeta.
+- now apply FLX_exp_valid.
+- now apply FLX_exp_valid.
+- now apply FLX_double_round_plus_beta_ge_3_hyp.
+- now apply generic_format_FLX.
+- now apply generic_format_FLX.
+Qed.
+
+Theorem double_round_minus_beta_ge_3_FLX :
+ (3 <= beta)%Z ->
+ forall choice1 choice2,
+ (2 * prec <= prec')%Z ->
+ forall x y,
+ FLX_format beta prec x -> FLX_format beta prec y ->
+ double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x - y).
+Proof.
+intros Hbeta choice1 choice2 Hprec x y Fx Fy.
+apply double_round_minus_beta_ge_3.
+- exact Hbeta.
+- now apply FLX_exp_valid.
+- now apply FLX_exp_valid.
+- now apply FLX_double_round_plus_beta_ge_3_hyp.
+- now apply generic_format_FLX.
+- now apply generic_format_FLX.
+Qed.
+
+End Double_round_plus_beta_ge_3_FLX.
+
+Section Double_round_plus_beta_ge_3_FLT.
+
+Require Import Fcore_FLX.
+Require Import Fcore_FLT.
+
+Variable emin prec : Z.
+Variable emin' prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FLT_double_round_plus_beta_ge_3_hyp :
+ (emin' <= emin)%Z -> (2 * prec <= prec')%Z ->
+ double_round_plus_beta_ge_3_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
+Proof.
+intros Hemin Hprec.
+unfold FLT_exp.
+unfold double_round_plus_beta_ge_3_hyp; split; [|split; [|split]]; intros ex ey.
+- generalize (Zmax_spec (ex + 1 - prec) emin).
+ generalize (Zmax_spec (ex - prec') emin').
+ generalize (Zmax_spec (ey - prec) emin).
+ omega.
+- generalize (Zmax_spec (ex - 1 - prec) emin).
+ generalize (Zmax_spec (ex - prec') emin').
+ generalize (Zmax_spec (ey - prec) emin).
+ omega.
+- generalize (Zmax_spec (ex - prec) emin).
+ generalize (Zmax_spec (ex - prec') emin').
+ generalize (Zmax_spec (ey - prec) emin).
+ omega.
+- unfold Prec_gt_0 in prec_gt_0_.
+ generalize (Zmax_spec (ex - prec') emin').
+ generalize (Zmax_spec (ey - prec) emin).
+ omega.
+Qed.
+
+Theorem double_round_plus_beta_ge_3_FLT :
+ (3 <= beta)%Z ->
+ forall choice1 choice2,
+ (emin' <= emin)%Z -> (2 * prec <= prec')%Z ->
+ forall x y,
+ FLT_format beta emin prec x -> FLT_format beta emin prec y ->
+ double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ choice1 choice2 (x + y).
+Proof.
+intros Hbeta choice1 choice2 Hemin Hprec x y Fx Fy.
+apply double_round_plus_beta_ge_3.
+- exact Hbeta.
+- now apply FLT_exp_valid.
+- now apply FLT_exp_valid.
+- now apply FLT_double_round_plus_beta_ge_3_hyp.
+- now apply generic_format_FLT.
+- now apply generic_format_FLT.
+Qed.
+
+Theorem double_round_minus_beta_ge_3_FLT :
+ (3 <= beta)%Z ->
+ forall choice1 choice2,
+ (emin' <= emin)%Z -> (2 * prec <= prec')%Z ->
+ forall x y,
+ FLT_format beta emin prec x -> FLT_format beta emin prec y ->
+ double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ choice1 choice2 (x - y).
+Proof.
+intros Hbeta choice1 choice2 Hemin Hprec x y Fx Fy.
+apply double_round_minus_beta_ge_3.
+- exact Hbeta.
+- now apply FLT_exp_valid.
+- now apply FLT_exp_valid.
+- now apply FLT_double_round_plus_beta_ge_3_hyp.
+- now apply generic_format_FLT.
+- now apply generic_format_FLT.
+Qed.
+
+End Double_round_plus_beta_ge_3_FLT.
+
+Section Double_round_plus_beta_ge_3_FTZ.
+
+Require Import Fcore_FLX.
+Require Import Fcore_FTZ.
+
+Variable emin prec : Z.
+Variable emin' prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FTZ_double_round_plus_beta_ge_3_hyp :
+ (emin' + prec' <= emin + 1)%Z -> (2 * prec <= prec')%Z ->
+ double_round_plus_beta_ge_3_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
+Proof.
+intros Hemin Hprec.
+unfold FTZ_exp.
+unfold Prec_gt_0 in *.
+unfold double_round_plus_beta_ge_3_hyp; split; [|split; [|split]]; intros ex ey.
+- destruct (Z.ltb_spec (ex + 1 - prec) emin);
+ destruct (Z.ltb_spec (ex - prec') emin');
+ destruct (Z.ltb_spec (ey - prec) emin);
+ omega.
+- destruct (Z.ltb_spec (ex - 1 - prec) emin);
+ destruct (Z.ltb_spec (ex - prec') emin');
+ destruct (Z.ltb_spec (ey - prec) emin);
+ omega.
+- destruct (Z.ltb_spec (ex - prec) emin);
+ destruct (Z.ltb_spec (ex - prec') emin');
+ destruct (Z.ltb_spec (ey - prec) emin);
+ omega.
+- destruct (Z.ltb_spec (ex - prec') emin');
+ destruct (Z.ltb_spec (ey - prec) emin);
+ omega.
+Qed.
+
+Theorem double_round_plus_beta_ge_3_FTZ :
+ (3 <= beta)%Z ->
+ forall choice1 choice2,
+ (emin' + prec' <= emin + 1)%Z -> (2 * prec <= prec')%Z ->
+ forall x y,
+ FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
+ double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ choice1 choice2 (x + y).
+Proof.
+intros Hbeta choice1 choice2 Hemin Hprec x y Fx Fy.
+apply double_round_plus_beta_ge_3.
+- exact Hbeta.
+- now apply FTZ_exp_valid.
+- now apply FTZ_exp_valid.
+- now apply FTZ_double_round_plus_beta_ge_3_hyp.
+- now apply generic_format_FTZ.
+- now apply generic_format_FTZ.
+Qed.
+
+Theorem double_round_minus_beta_ge_3_FTZ :
+ (3 <= beta)%Z ->
+ forall choice1 choice2,
+ (emin' + prec' <= emin + 1)%Z -> (2 * prec <= prec')%Z ->
+ forall x y,
+ FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
+ double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ choice1 choice2 (x - y).
+Proof.
+intros Hbeta choice1 choice2 Hemin Hprec x y Fx Fy.
+apply double_round_minus_beta_ge_3.
+- exact Hbeta.
+- now apply FTZ_exp_valid.
+- now apply FTZ_exp_valid.
+- now apply FTZ_double_round_plus_beta_ge_3_hyp.
+- now apply generic_format_FTZ.
+- now apply generic_format_FTZ.
+Qed.
+
+End Double_round_plus_beta_ge_3_FTZ.
+
+End Double_round_plus_beta_ge_3.
+
+End Double_round_plus.
+
+Lemma double_round_mid_cases :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ forall x,
+ 0 < x ->
+ (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
+ (fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ (Rabs (x - midp fexp1 x) <= / 2 * (ulp beta fexp2 x) ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x) ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x.
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1.
+unfold double_round_eq, midp.
+set (rd := round beta fexp1 Zfloor x).
+set (u1 := ulp beta fexp1 x).
+set (u2 := ulp beta fexp2 x).
+intros Cmid.
+destruct (generic_format_EM beta fexp1 x) as [Fx|Nfx].
+- (* generic_format beta fexp1 x *)
+ rewrite (round_generic beta fexp2); [reflexivity|now apply valid_rnd_N|].
+ now apply (generic_inclusion_ln_beta beta fexp1); [omega|].
+- (* ~ generic_format beta fexp1 x *)
+ assert (Hceil : round beta fexp1 Zceil x = rd + u1);
+ [now apply ulp_DN_UP|].
+ assert (Hf2' : (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z); [omega|].
+ destruct (Rlt_or_le (x - rd) (/ 2 * (u1 - u2))).
+ + (* x - rd < / 2 * (u1 - u2) *)
+ apply double_round_lt_mid_further_place; try assumption.
+ unfold midp. fold rd; fold u1; fold u2.
+ apply (Rplus_lt_reg_r (- rd)); ring_simplify.
+ now rewrite <- Rmult_minus_distr_l.
+ + (* / 2 * (u1 - u2) <= x - rd *)
+ { destruct (Rlt_or_le (/ 2 * (u1 + u2)) (x - rd)).
+ - (* / 2 * (u1 + u2) < x - rd *)
+ assert (round beta fexp1 Zceil x - x
+ < / 2 * (ulp beta fexp1 x - ulp beta fexp2 x)).
+ { rewrite Hceil; fold u1; fold u2.
+ lra. }
+ apply double_round_gt_mid_further_place; try assumption.
+ unfold midp'; lra.
+ - (* x - rd <= / 2 * (u1 + u2) *)
+ apply Cmid, Rabs_le; split; lra. }
+Qed.
+
+Section Double_round_sqrt.
+
+Definition double_round_sqrt_hyp fexp1 fexp2 :=
+ (forall ex, (2 * fexp1 ex <= fexp1 (2 * ex))%Z)
+ /\ (forall ex, (2 * fexp1 ex <= fexp1 (2 * ex - 1))%Z)
+ /\ (forall ex, (fexp1 (2 * ex) < 2 * ex)%Z ->
+ (fexp2 ex + ex <= 2 * fexp1 ex - 2)%Z).
+
+Lemma ln_beta_sqrt_disj :
+ forall x,
+ 0 < x ->
+ (ln_beta x = 2 * ln_beta (sqrt x) - 1 :> Z)%Z
+ \/ (ln_beta x = 2 * ln_beta (sqrt x) :> Z)%Z.
+Proof.
+intros x Px.
+generalize (ln_beta_sqrt beta x Px).
+intro H.
+omega.
+Qed.
+
+Lemma double_round_sqrt_aux :
+ forall fexp1 fexp2 : Z -> Z,
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ double_round_sqrt_hyp fexp1 fexp2 ->
+ forall x,
+ 0 < x ->
+ (fexp2 (ln_beta (sqrt x)) <= fexp1 (ln_beta (sqrt x)) - 1)%Z ->
+ generic_format beta fexp1 x ->
+ / 2 * ulp beta fexp2 (sqrt x) < Rabs (sqrt x - midp fexp1 (sqrt x)).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 Hexp x Px Hf2 Fx.
+assert (Hbeta : (2 <= beta)%Z).
+{ destruct beta as (beta_val,beta_prop).
+ now apply Zle_bool_imp_le. }
+set (a := round beta fexp1 Zfloor (sqrt x)).
+set (u1 := ulp beta fexp1 (sqrt x)).
+set (u2 := ulp beta fexp2 (sqrt x)).
+set (b := / 2 * (u1 - u2)).
+set (b' := / 2 * (u1 + u2)).
+apply Rnot_ge_lt; intro H; apply Rge_le in H.
+assert (Fa : generic_format beta fexp1 a).
+{ unfold a.
+ apply generic_format_round.
+ - exact Vfexp1.
+ - now apply valid_rnd_DN. }
+revert Fa; revert Fx.
+unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
+set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
+set (ma := Ztrunc (a * bpow (- fexp1 (ln_beta a)))).
+intros Fx Fa.
+assert (Nna : 0 <= a).
+{ rewrite <- (round_0 beta fexp1 Zfloor).
+ unfold a; apply round_le.
+ - exact Vfexp1.
+ - now apply valid_rnd_DN.
+ - apply sqrt_pos. }
+assert (Phu1 : 0 < / 2 * u1).
+{ apply Rmult_lt_0_compat; [lra|apply bpow_gt_0]. }
+assert (Phu2 : 0 < / 2 * u2).
+{ apply Rmult_lt_0_compat; [lra|apply bpow_gt_0]. }
+assert (Pb : 0 < b).
+{ unfold b.
+ rewrite <- (Rmult_0_r (/ 2)).
+ apply Rmult_lt_compat_l; [lra|].
+ apply Rlt_Rminus.
+ unfold u2, u1, ulp, canonic_exp.
+ apply bpow_lt.
+ omega. }
+assert (Pb' : 0 < b').
+{ now unfold b'; rewrite Rmult_plus_distr_l; apply Rplus_lt_0_compat. }
+assert (Hr : sqrt x <= a + b').
+{ unfold b'; apply (Rplus_le_reg_r (- / 2 * u1 - a)); ring_simplify.
+ replace (_ - _) with (sqrt x - (a + / 2 * u1)) by ring.
+ now apply Rabs_le_inv. }
+assert (Hl : a + b <= sqrt x).
+{ unfold b; apply (Rplus_le_reg_r (- / 2 * u1 - a)); ring_simplify.
+ replace (_ + sqrt _) with (sqrt x - (a + / 2 * u1)) by ring.
+ rewrite Ropp_mult_distr_l_reverse.
+ now apply Rabs_le_inv in H; destruct H. }
+assert (Hf1 : (2 * fexp1 (ln_beta (sqrt x)) <= fexp1 (ln_beta (x)))%Z);
+ [destruct (ln_beta_sqrt_disj x Px) as [H'|H']; rewrite H'; apply Hexp|].
+assert (Hlx : (fexp1 (2 * ln_beta (sqrt x)) < 2 * ln_beta (sqrt x))%Z).
+{ destruct (ln_beta_sqrt_disj x Px) as [Hlx|Hlx].
+ - apply (valid_exp_large fexp1 (ln_beta x)); [|omega].
+ now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+ - rewrite <- Hlx.
+ now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]. }
+assert (Hsl : a * a + u1 * a - u2 * a + b * b <= x).
+{ replace (_ + _) with ((a + b) * (a + b)); [|now unfold b; field].
+ rewrite <- sqrt_def; [|now apply Rlt_le].
+ assert (H' : 0 <= a + b); [now apply Rlt_le, Rplus_le_lt_0_compat|].
+ now apply Rmult_le_compat. }
+assert (Hsr : x <= a * a + u1 * a + u2 * a + b' * b').
+{ replace (_ + _) with ((a + b') * (a + b')); [|now unfold b'; field].
+ rewrite <- (sqrt_def x); [|now apply Rlt_le].
+ assert (H' : 0 <= sqrt x); [now apply sqrt_pos|].
+ now apply Rmult_le_compat. }
+destruct (Req_dec a 0) as [Za|Nza].
+- (* a = 0 *)
+ apply (Rlt_irrefl 0).
+ apply Rlt_le_trans with (b * b); [now apply Rmult_lt_0_compat|].
+ apply Rle_trans with x.
+ + revert Hsl; unfold Rminus; rewrite Za; do 3 rewrite Rmult_0_r.
+ now rewrite Ropp_0; do 3 rewrite Rplus_0_l.
+ + rewrite Fx.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ [now apply bpow_gt_0|].
+ rewrite Rmult_0_l; bpow_simplify.
+ unfold mx.
+ rewrite Ztrunc_floor;
+ [|now apply Rmult_le_pos; [apply Rlt_le|apply bpow_ge_0]].
+ apply Req_le.
+ change 0 with (Z2R 0); apply f_equal.
+ apply Zfloor_imp.
+ split; [now apply Rmult_le_pos; [apply Rlt_le|apply bpow_ge_0]|simpl].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ rewrite Rmult_1_l; bpow_simplify.
+ apply Rlt_le_trans with (bpow (2 * fexp1 (ln_beta (sqrt x))));
+ [|now apply bpow_le].
+ change 2%Z with (1 + 1)%Z; rewrite Zmult_plus_distr_l; rewrite Zmult_1_l.
+ rewrite bpow_plus.
+ rewrite <- (sqrt_def x) at 1; [|now apply Rlt_le].
+ assert (sqrt x < bpow (fexp1 (ln_beta (sqrt x))));
+ [|now apply Rmult_lt_compat; [apply sqrt_pos|apply sqrt_pos| |]].
+ apply (Rle_lt_trans _ _ _ Hr); rewrite Za; rewrite Rplus_0_l.
+ unfold b'; change (bpow _) with u1.
+ apply Rlt_le_trans with (/ 2 * (u1 + u1)); [|lra].
+ apply Rmult_lt_compat_l; [lra|]; apply Rplus_lt_compat_l.
+ unfold u2, u1, ulp, canonic_exp; apply bpow_lt; omega.
+- (* a <> 0 *)
+ assert (Pa : 0 < a); [lra|].
+ assert (Hla : (ln_beta a = ln_beta (sqrt x) :> Z)).
+ { unfold a; apply ln_beta_round_DN.
+ - exact Vfexp1.
+ - now fold a. }
+ assert (Hl' : 0 < - (u2 * a) + b * b).
+ { apply (Rplus_lt_reg_r (u2 * a)); ring_simplify.
+ unfold b; ring_simplify.
+ apply (Rplus_lt_reg_r (/ 2 * u2 * u1)); field_simplify.
+ replace (_ / 2) with (u2 * (a + / 2 * u1)) by field.
+ replace (_ / 8) with (/ 4 * (u2 ^ 2 + u1 ^ 2)) by field.
+ apply Rlt_le_trans with (u2 * bpow (ln_beta (sqrt x))).
+ - apply Rmult_lt_compat_l; [now unfold u2, ulp; apply bpow_gt_0|].
+ unfold u1, ulp, canonic_exp; rewrite <- Hla.
+ apply Rlt_le_trans with (a + ulp beta fexp1 a).
+ + apply Rplus_lt_compat_l.
+ rewrite <- (Rmult_1_l (ulp _ _ _)).
+ apply Rmult_lt_compat_r; [apply bpow_gt_0|lra].
+ + apply (succ_le_bpow _ _ _ _ Pa Fa).
+ apply Rabs_lt_inv, bpow_ln_beta_gt.
+ - apply Rle_trans with (bpow (- 2) * u1 ^ 2).
+ + unfold pow; rewrite Rmult_1_r.
+ unfold u1, u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
+ now apply Hexp.
+ + apply Rmult_le_compat.
+ * apply bpow_ge_0.
+ * apply pow2_ge_0.
+ * unfold Fcore_Raux.bpow, Z.pow_pos; simpl; rewrite Zmult_1_r.
+ apply Rinv_le; [lra|].
+ change 4 with (Z2R (2 * 2)%Z); apply Z2R_le, Zmult_le_compat; omega.
+ * rewrite <- (Rplus_0_l (u1 ^ 2)) at 1; apply Rplus_le_compat_r.
+ apply pow2_ge_0. }
+ assert (Hr' : x <= a * a + u1 * a).
+ { rewrite Hla in Fa.
+ rewrite <- Rmult_plus_distr_r.
+ unfold u1, ulp, canonic_exp.
+ rewrite <- (Rmult_1_l (bpow _)); rewrite Fa; rewrite <- Rmult_plus_distr_r.
+ rewrite <- Rmult_assoc; rewrite (Rmult_comm _ (Z2R ma)).
+ rewrite <- (Rmult_assoc (Z2R ma)); bpow_simplify.
+ apply (Rmult_le_reg_r (bpow (- 2 * fexp1 (ln_beta (sqrt x)))));
+ [now apply bpow_gt_0|bpow_simplify].
+ rewrite Fx at 1; bpow_simplify.
+ rewrite <- Z2R_Zpower; [|omega].
+ change 1 with (Z2R 1); rewrite <- Z2R_plus; do 2 rewrite <- Z2R_mult.
+ apply Z2R_le, Zlt_succ_le, lt_Z2R.
+ unfold Z.succ; rewrite Z2R_plus; do 2 rewrite Z2R_mult; rewrite Z2R_plus.
+ rewrite Z2R_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (2 * fexp1 (ln_beta (sqrt x)))));
+ [now apply bpow_gt_0|bpow_simplify].
+ rewrite <- Fx.
+ change 2%Z with (1 + 1)%Z; rewrite Zmult_plus_distr_l; rewrite Zmult_1_l.
+ rewrite bpow_plus; simpl.
+ replace (_ * _) with (a * a + u1 * a + u1 * u1);
+ [|unfold u1, ulp, canonic_exp; rewrite Fa; ring].
+ apply (Rle_lt_trans _ _ _ Hsr).
+ rewrite Rplus_assoc; apply Rplus_lt_compat_l.
+ apply (Rplus_lt_reg_r (- b' * b' + / 2 * u1 * u2)); ring_simplify.
+ replace (_ + _) with ((a + / 2 * u1) * u2) by ring.
+ apply Rlt_le_trans with (bpow (ln_beta (sqrt x)) * u2).
+ - apply Rmult_lt_compat_r; [now unfold u2, ulp; apply bpow_gt_0|].
+ apply Rlt_le_trans with (a + u1); [lra|].
+ unfold u1.
+ rewrite <- ulp_DN; [|exact Vfexp1|exact Pa]; fold a.
+ apply succ_le_bpow.
+ + exact Pa.
+ + now apply round_DN_pt.
+ + apply Rle_lt_trans with (sqrt x).
+ * now apply round_DN_pt.
+ * apply Rabs_lt_inv.
+ apply bpow_ln_beta_gt.
+ - apply Rle_trans with (/ 2 * u1 ^ 2).
+ + apply Rle_trans with (bpow (- 2) * u1 ^ 2).
+ * unfold pow; rewrite Rmult_1_r.
+ unfold u2, u1, ulp, canonic_exp.
+ bpow_simplify.
+ apply bpow_le.
+ rewrite Zplus_comm.
+ now apply Hexp.
+ * apply Rmult_le_compat_r; [now apply pow2_ge_0|].
+ unfold Fcore_Raux.bpow; simpl; unfold Z.pow_pos; simpl.
+ rewrite Zmult_1_r.
+ apply Rinv_le; [lra|].
+ change 2 with (Z2R 2); apply Z2R_le.
+ rewrite <- (Zmult_1_l 2).
+ apply Zmult_le_compat; omega.
+ + assert (u2 ^ 2 < u1 ^ 2); [|unfold b'; lra].
+ unfold pow; do 2 rewrite Rmult_1_r.
+ assert (H' : 0 <= u2); [unfold u2, ulp; apply bpow_ge_0|].
+ assert (u2 < u1); [|now apply Rmult_lt_compat].
+ unfold u1, u2, ulp, canonic_exp; apply bpow_lt; omega. }
+ apply (Rlt_irrefl (a * a + u1 * a)).
+ apply Rlt_le_trans with (a * a + u1 * a - u2 * a + b * b).
+ + rewrite <- (Rplus_0_r (a * a + _)) at 1.
+ unfold Rminus; rewrite (Rplus_assoc _ _ (b * b)).
+ now apply Rplus_lt_compat_l.
+ + now apply Rle_trans with x.
+Qed.
+
+(* --> Fcore_Raux *)
+Lemma sqrt_neg : forall x, x <= 0 -> sqrt x = 0.
+Proof.
+intros x Npx.
+destruct (Req_dec x 0) as [Zx|Nzx].
+- (* x = 0 *)
+ rewrite Zx.
+ exact sqrt_0.
+- (* x < 0 *)
+ unfold sqrt.
+ destruct Rcase_abs.
+ + reflexivity.
+ + casetype False.
+ now apply Nzx, Rle_antisym; [|apply Rge_le].
+Qed.
+
+Lemma double_round_sqrt :
+ forall fexp1 fexp2 : Z -> Z,
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_sqrt_hyp fexp1 fexp2 ->
+ forall x,
+ generic_format beta fexp1 x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (sqrt x).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x Fx.
+unfold double_round_eq.
+destruct (Rle_or_lt x 0) as [Npx|Px].
+- (* x <= 0 *)
+ rewrite (sqrt_neg _ Npx).
+ now rewrite round_0; [|apply valid_rnd_N].
+- (* 0 < x *)
+ assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
+ [now apply ln_beta_generic_gt; try assumption; lra|].
+ assert (Hfsx : (fexp1 (ln_beta (sqrt x)) < ln_beta (sqrt x))%Z).
+ { destruct (Rle_or_lt x 1) as [Hx|Hx].
+ - (* x <= 1 *)
+ apply (valid_exp_large fexp1 (ln_beta x)); [exact Hfx|].
+ apply ln_beta_le; [exact Px|].
+ rewrite <- (sqrt_def x) at 1; [|lra].
+ rewrite <- Rmult_1_r.
+ apply Rmult_le_compat_l.
+ + apply sqrt_pos.
+ + rewrite <- sqrt_1.
+ now apply sqrt_le_1_alt.
+ - (* 1 < x *)
+ generalize ((proj1 (proj2 Hexp)) 1%Z).
+ replace (_ - 1)%Z with 1%Z by ring.
+ intro Hexp10.
+ assert (Hf0 : (fexp1 1 < 1)%Z); [omega|clear Hexp10].
+ apply (valid_exp_large fexp1 1); [exact Hf0|].
+ apply ln_beta_ge_bpow.
+ rewrite Zeq_minus; [|reflexivity].
+ unfold Fcore_Raux.bpow; simpl.
+ apply Rabs_ge; right.
+ rewrite <- sqrt_1.
+ apply sqrt_le_1_alt.
+ now apply Rlt_le. }
+ assert (Hf2 : (fexp2 (ln_beta (sqrt x)) <= fexp1 (ln_beta (sqrt x)) - 1)%Z).
+ { assert (H : (fexp1 (2 * ln_beta (sqrt x)) < 2 * ln_beta (sqrt x))%Z).
+ { destruct (ln_beta_sqrt_disj x Px) as [Hlx|Hlx].
+ - apply (valid_exp_large fexp1 (ln_beta x)); [|omega].
+ now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+ - rewrite <- Hlx.
+ now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]. }
+ generalize ((proj2 (proj2 Hexp)) (ln_beta (sqrt x)) H).
+ omega. }
+ apply double_round_mid_cases.
+ + exact Vfexp1.
+ + exact Vfexp2.
+ + now apply sqrt_lt_R0.
+ + omega.
+ + omega.
+ + intros Hmid; casetype False; apply (Rle_not_lt _ _ Hmid).
+ apply (double_round_sqrt_aux fexp1 fexp2 Vfexp1 Vfexp2 Hexp x Px Hf2 Fx).
+Qed.
+
+Section Double_round_sqrt_FLX.
+
+Require Import Fcore_FLX.
+
+Variable prec : Z.
+Variable prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FLX_double_round_sqrt_hyp :
+ (2 * prec + 2 <= prec')%Z ->
+ double_round_sqrt_hyp (FLX_exp prec) (FLX_exp prec').
+Proof.
+intros Hprec.
+unfold FLX_exp.
+unfold Prec_gt_0 in prec_gt_0_.
+unfold double_round_sqrt_hyp; split; [|split]; intro ex; omega.
+Qed.
+
+Theorem double_round_sqrt_FLX :
+ forall choice1 choice2,
+ (2 * prec + 2 <= prec')%Z ->
+ forall x,
+ FLX_format beta prec x ->
+ double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (sqrt x).
+Proof.
+intros choice1 choice2 Hprec x Fx.
+apply double_round_sqrt.
+- now apply FLX_exp_valid.
+- now apply FLX_exp_valid.
+- now apply FLX_double_round_sqrt_hyp.
+- now apply generic_format_FLX.
+Qed.
+
+End Double_round_sqrt_FLX.
+
+Section Double_round_sqrt_FLT.
+
+Require Import Fcore_FLX.
+Require Import Fcore_FLT.
+
+Variable emin prec : Z.
+Variable emin' prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FLT_double_round_sqrt_hyp :
+ (emin <= 0)%Z ->
+ ((emin' <= emin - prec - 2)%Z
+ \/ (2 * emin' <= emin - 4 * prec - 2)%Z) ->
+ (2 * prec + 2 <= prec')%Z ->
+ double_round_sqrt_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
+Proof.
+intros Hemin Heminprec Hprec.
+unfold FLT_exp.
+unfold Prec_gt_0 in prec_gt_0_.
+unfold double_round_sqrt_hyp; split; [|split]; intros ex.
+- generalize (Zmax_spec (ex - prec) emin).
+ generalize (Zmax_spec (2 * ex - prec) emin).
+ omega.
+- generalize (Zmax_spec (ex - prec) emin).
+ generalize (Zmax_spec (2 * ex - 1 - prec) emin).
+ omega.
+- generalize (Zmax_spec (2 * ex - prec) emin).
+ generalize (Zmax_spec (ex - prec') emin').
+ generalize (Zmax_spec (ex - prec) emin).
+ omega.
+Qed.
+
+Theorem double_round_sqrt_FLT :
+ forall choice1 choice2,
+ (emin <= 0)%Z ->
+ ((emin' <= emin - prec - 2)%Z
+ \/ (2 * emin' <= emin - 4 * prec - 2)%Z) ->
+ (2 * prec + 2 <= prec')%Z ->
+ forall x,
+ FLT_format beta emin prec x ->
+ double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ choice1 choice2 (sqrt x).
+Proof.
+intros choice1 choice2 Hemin Heminprec Hprec x Fx.
+apply double_round_sqrt.
+- now apply FLT_exp_valid.
+- now apply FLT_exp_valid.
+- now apply FLT_double_round_sqrt_hyp.
+- now apply generic_format_FLT.
+Qed.
+
+End Double_round_sqrt_FLT.
+
+Section Double_round_sqrt_FTZ.
+
+Require Import Fcore_FLX.
+Require Import Fcore_FTZ.
+
+Variable emin prec : Z.
+Variable emin' prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FTZ_double_round_sqrt_hyp :
+ (2 * (emin' + prec') <= emin + prec <= 1)%Z ->
+ (2 * prec + 2 <= prec')%Z ->
+ double_round_sqrt_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
+Proof.
+intros Hemin Hprec.
+unfold FTZ_exp.
+unfold Prec_gt_0 in *.
+unfold double_round_sqrt_hyp; split; [|split]; intros ex.
+- destruct (Z.ltb_spec (ex - prec) emin);
+ destruct (Z.ltb_spec (2 * ex - prec) emin);
+ omega.
+- destruct (Z.ltb_spec (ex - prec) emin);
+ destruct (Z.ltb_spec (2 * ex - 1 - prec) emin);
+ omega.
+- intro H.
+ destruct (Zle_or_lt emin (2 * ex - prec)) as [H'|H'].
+ + destruct (Z.ltb_spec (ex - prec') emin');
+ destruct (Z.ltb_spec (ex - prec) emin);
+ omega.
+ + casetype False.
+ rewrite (Zlt_bool_true _ _ H') in H.
+ omega.
+Qed.
+
+Theorem double_round_sqrt_FTZ :
+ (4 <= beta)%Z ->
+ forall choice1 choice2,
+ (2 * (emin' + prec') <= emin + prec <= 1)%Z ->
+ (2 * prec + 2 <= prec')%Z ->
+ forall x,
+ FTZ_format beta emin prec x ->
+ double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ choice1 choice2 (sqrt x).
+Proof.
+intros Hbeta choice1 choice2 Hemin Hprec x Fx.
+apply double_round_sqrt.
+- now apply FTZ_exp_valid.
+- now apply FTZ_exp_valid.
+- now apply FTZ_double_round_sqrt_hyp.
+- now apply generic_format_FTZ.
+Qed.
+
+End Double_round_sqrt_FTZ.
+
+Section Double_round_sqrt_beta_ge_4.
+
+Definition double_round_sqrt_beta_ge_4_hyp fexp1 fexp2 :=
+ (forall ex, (2 * fexp1 ex <= fexp1 (2 * ex))%Z)
+ /\ (forall ex, (2 * fexp1 ex <= fexp1 (2 * ex - 1))%Z)
+ /\ (forall ex, (fexp1 (2 * ex) < 2 * ex)%Z ->
+ (fexp2 ex + ex <= 2 * fexp1 ex - 1)%Z).
+
+Lemma double_round_sqrt_beta_ge_4_aux :
+ (4 <= beta)%Z ->
+ forall fexp1 fexp2 : Z -> Z,
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ double_round_sqrt_beta_ge_4_hyp fexp1 fexp2 ->
+ forall x,
+ 0 < x ->
+ (fexp2 (ln_beta (sqrt x)) <= fexp1 (ln_beta (sqrt x)) - 1)%Z ->
+ generic_format beta fexp1 x ->
+ / 2 * ulp beta fexp2 (sqrt x) < Rabs (sqrt x - midp fexp1 (sqrt x)).
+Proof.
+intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 Hexp x Px Hf2 Fx.
+set (a := round beta fexp1 Zfloor (sqrt x)).
+set (u1 := ulp beta fexp1 (sqrt x)).
+set (u2 := ulp beta fexp2 (sqrt x)).
+set (b := / 2 * (u1 - u2)).
+set (b' := / 2 * (u1 + u2)).
+apply Rnot_ge_lt; intro H; apply Rge_le in H.
+assert (Fa : generic_format beta fexp1 a).
+{ unfold a.
+ apply generic_format_round.
+ - exact Vfexp1.
+ - now apply valid_rnd_DN. }
+revert Fa; revert Fx.
+unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
+set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
+set (ma := Ztrunc (a * bpow (- fexp1 (ln_beta a)))).
+intros Fx Fa.
+assert (Nna : 0 <= a).
+{ rewrite <- (round_0 beta fexp1 Zfloor).
+ unfold a; apply round_le.
+ - exact Vfexp1.
+ - now apply valid_rnd_DN.
+ - apply sqrt_pos. }
+assert (Phu1 : 0 < / 2 * u1).
+{ apply Rmult_lt_0_compat; [lra|apply bpow_gt_0]. }
+assert (Phu2 : 0 < / 2 * u2).
+{ apply Rmult_lt_0_compat; [lra|apply bpow_gt_0]. }
+assert (Pb : 0 < b).
+{ unfold b.
+ rewrite <- (Rmult_0_r (/ 2)).
+ apply Rmult_lt_compat_l; [lra|].
+ apply Rlt_Rminus.
+ unfold u2, u1, ulp, canonic_exp.
+ apply bpow_lt.
+ omega. }
+assert (Pb' : 0 < b').
+{ now unfold b'; rewrite Rmult_plus_distr_l; apply Rplus_lt_0_compat. }
+assert (Hr : sqrt x <= a + b').
+{ unfold b'; apply (Rplus_le_reg_r (- / 2 * u1 - a)); ring_simplify.
+ replace (_ - _) with (sqrt x - (a + / 2 * u1)) by ring.
+ now apply Rabs_le_inv. }
+assert (Hl : a + b <= sqrt x).
+{ unfold b; apply (Rplus_le_reg_r (- / 2 * u1 - a)); ring_simplify.
+ replace (_ + sqrt _) with (sqrt x - (a + / 2 * u1)) by ring.
+ rewrite Ropp_mult_distr_l_reverse.
+ now apply Rabs_le_inv in H; destruct H. }
+assert (Hf1 : (2 * fexp1 (ln_beta (sqrt x)) <= fexp1 (ln_beta (x)))%Z);
+ [destruct (ln_beta_sqrt_disj x Px) as [H'|H']; rewrite H'; apply Hexp|].
+assert (Hlx : (fexp1 (2 * ln_beta (sqrt x)) < 2 * ln_beta (sqrt x))%Z).
+{ destruct (ln_beta_sqrt_disj x Px) as [Hlx|Hlx].
+ - apply (valid_exp_large fexp1 (ln_beta x)); [|omega].
+ now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+ - rewrite <- Hlx.
+ now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]. }
+assert (Hsl : a * a + u1 * a - u2 * a + b * b <= x).
+{ replace (_ + _) with ((a + b) * (a + b)); [|now unfold b; field].
+ rewrite <- sqrt_def; [|now apply Rlt_le].
+ assert (H' : 0 <= a + b); [now apply Rlt_le, Rplus_le_lt_0_compat|].
+ now apply Rmult_le_compat. }
+assert (Hsr : x <= a * a + u1 * a + u2 * a + b' * b').
+{ replace (_ + _) with ((a + b') * (a + b')); [|now unfold b'; field].
+ rewrite <- (sqrt_def x); [|now apply Rlt_le].
+ assert (H' : 0 <= sqrt x); [now apply sqrt_pos|].
+ now apply Rmult_le_compat. }
+destruct (Req_dec a 0) as [Za|Nza].
+- (* a = 0 *)
+ apply (Rlt_irrefl 0).
+ apply Rlt_le_trans with (b * b); [now apply Rmult_lt_0_compat|].
+ apply Rle_trans with x.
+ + revert Hsl; unfold Rminus; rewrite Za; do 3 rewrite Rmult_0_r.
+ now rewrite Ropp_0; do 3 rewrite Rplus_0_l.
+ + rewrite Fx.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ [now apply bpow_gt_0|].
+ rewrite Rmult_0_l; bpow_simplify.
+ unfold mx.
+ rewrite Ztrunc_floor;
+ [|now apply Rmult_le_pos; [apply Rlt_le|apply bpow_ge_0]].
+ apply Req_le.
+ change 0 with (Z2R 0); apply f_equal.
+ apply Zfloor_imp.
+ split; [now apply Rmult_le_pos; [apply Rlt_le|apply bpow_ge_0]|simpl].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ rewrite Rmult_1_l; bpow_simplify.
+ apply Rlt_le_trans with (bpow (2 * fexp1 (ln_beta (sqrt x))));
+ [|now apply bpow_le].
+ change 2%Z with (1 + 1)%Z; rewrite Zmult_plus_distr_l; rewrite Zmult_1_l.
+ rewrite bpow_plus.
+ rewrite <- (sqrt_def x) at 1; [|now apply Rlt_le].
+ assert (sqrt x < bpow (fexp1 (ln_beta (sqrt x))));
+ [|now apply Rmult_lt_compat; [apply sqrt_pos|apply sqrt_pos| |]].
+ apply (Rle_lt_trans _ _ _ Hr); rewrite Za; rewrite Rplus_0_l.
+ unfold b'; change (bpow _) with u1.
+ apply Rlt_le_trans with (/ 2 * (u1 + u1)); [|lra].
+ apply Rmult_lt_compat_l; [lra|]; apply Rplus_lt_compat_l.
+ unfold u2, u1, ulp, canonic_exp; apply bpow_lt; omega.
+- (* a <> 0 *)
+ assert (Pa : 0 < a); [lra|].
+ assert (Hla : (ln_beta a = ln_beta (sqrt x) :> Z)).
+ { unfold a; apply ln_beta_round_DN.
+ - exact Vfexp1.
+ - now fold a. }
+ assert (Hl' : 0 < - (u2 * a) + b * b).
+ { apply (Rplus_lt_reg_r (u2 * a)); ring_simplify.
+ unfold b; ring_simplify.
+ apply (Rplus_lt_reg_r (/ 2 * u2 * u1)); field_simplify.
+ replace (_ / 2) with (u2 * (a + / 2 * u1)) by field.
+ replace (_ / 8) with (/ 4 * (u2 ^ 2 + u1 ^ 2)) by field.
+ apply Rlt_le_trans with (u2 * bpow (ln_beta (sqrt x))).
+ - apply Rmult_lt_compat_l; [now unfold u2, ulp; apply bpow_gt_0|].
+ unfold u1, ulp, canonic_exp; rewrite <- Hla.
+ apply Rlt_le_trans with (a + ulp beta fexp1 a).
+ + apply Rplus_lt_compat_l.
+ rewrite <- (Rmult_1_l (ulp _ _ _)).
+ apply Rmult_lt_compat_r; [apply bpow_gt_0|lra].
+ + apply (succ_le_bpow _ _ _ _ Pa Fa).
+ apply Rabs_lt_inv, bpow_ln_beta_gt.
+ - apply Rle_trans with (bpow (- 1) * u1 ^ 2).
+ + unfold pow; rewrite Rmult_1_r.
+ unfold u1, u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
+ now apply Hexp.
+ + apply Rmult_le_compat.
+ * apply bpow_ge_0.
+ * apply pow2_ge_0.
+ * unfold Fcore_Raux.bpow, Z.pow_pos; simpl; rewrite Zmult_1_r.
+ apply Rinv_le; [lra|].
+ now change 4 with (Z2R 4); apply Z2R_le.
+ * rewrite <- (Rplus_0_l (u1 ^ 2)) at 1; apply Rplus_le_compat_r.
+ apply pow2_ge_0. }
+ assert (Hr' : x <= a * a + u1 * a).
+ { rewrite Hla in Fa.
+ rewrite <- Rmult_plus_distr_r.
+ unfold u1, ulp, canonic_exp.
+ rewrite <- (Rmult_1_l (bpow _)); rewrite Fa; rewrite <- Rmult_plus_distr_r.
+ rewrite <- Rmult_assoc; rewrite (Rmult_comm _ (Z2R ma)).
+ rewrite <- (Rmult_assoc (Z2R ma)); bpow_simplify.
+ apply (Rmult_le_reg_r (bpow (- 2 * fexp1 (ln_beta (sqrt x)))));
+ [now apply bpow_gt_0|bpow_simplify].
+ rewrite Fx at 1; bpow_simplify.
+ rewrite <- Z2R_Zpower; [|omega].
+ change 1 with (Z2R 1); rewrite <- Z2R_plus; do 2 rewrite <- Z2R_mult.
+ apply Z2R_le, Zlt_succ_le, lt_Z2R.
+ unfold Z.succ; rewrite Z2R_plus; do 2 rewrite Z2R_mult; rewrite Z2R_plus.
+ rewrite Z2R_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (2 * fexp1 (ln_beta (sqrt x)))));
+ [now apply bpow_gt_0|bpow_simplify].
+ rewrite <- Fx.
+ change 2%Z with (1 + 1)%Z; rewrite Zmult_plus_distr_l; rewrite Zmult_1_l.
+ rewrite bpow_plus; simpl.
+ replace (_ * _) with (a * a + u1 * a + u1 * u1);
+ [|unfold u1, ulp, canonic_exp; rewrite Fa; ring].
+ apply (Rle_lt_trans _ _ _ Hsr).
+ rewrite Rplus_assoc; apply Rplus_lt_compat_l.
+ apply (Rplus_lt_reg_r (- b' * b' + / 2 * u1 * u2)); ring_simplify.
+ replace (_ + _) with ((a + / 2 * u1) * u2) by ring.
+ apply Rlt_le_trans with (bpow (ln_beta (sqrt x)) * u2).
+ - apply Rmult_lt_compat_r; [now unfold u2, ulp; apply bpow_gt_0|].
+ apply Rlt_le_trans with (a + u1); [lra|].
+ unfold u1.
+ rewrite <- ulp_DN; [|exact Vfexp1|exact Pa]; fold a.
+ apply succ_le_bpow.
+ + exact Pa.
+ + now apply round_DN_pt.
+ + apply Rle_lt_trans with (sqrt x).
+ * now apply round_DN_pt.
+ * apply Rabs_lt_inv.
+ apply bpow_ln_beta_gt.
+ - apply Rle_trans with (/ 2 * u1 ^ 2).
+ + apply Rle_trans with (bpow (- 1) * u1 ^ 2).
+ * unfold pow; rewrite Rmult_1_r.
+ unfold u2, u1, ulp, canonic_exp.
+ bpow_simplify.
+ apply bpow_le.
+ rewrite Zplus_comm.
+ now apply Hexp.
+ * apply Rmult_le_compat_r; [now apply pow2_ge_0|].
+ unfold Fcore_Raux.bpow; simpl; unfold Z.pow_pos; simpl.
+ rewrite Zmult_1_r.
+ apply Rinv_le; [lra|].
+ change 2 with (Z2R 2); apply Z2R_le; omega.
+ + assert (u2 ^ 2 < u1 ^ 2); [|unfold b'; lra].
+ unfold pow; do 2 rewrite Rmult_1_r.
+ assert (H' : 0 <= u2); [unfold u2, ulp; apply bpow_ge_0|].
+ assert (u2 < u1); [|now apply Rmult_lt_compat].
+ unfold u1, u2, ulp, canonic_exp; apply bpow_lt; omega. }
+ apply (Rlt_irrefl (a * a + u1 * a)).
+ apply Rlt_le_trans with (a * a + u1 * a - u2 * a + b * b).
+ + rewrite <- (Rplus_0_r (a * a + _)) at 1.
+ unfold Rminus; rewrite (Rplus_assoc _ _ (b * b)).
+ now apply Rplus_lt_compat_l.
+ + now apply Rle_trans with x.
+Qed.
+
+Lemma double_round_sqrt_beta_ge_4 :
+ (4 <= beta)%Z ->
+ forall fexp1 fexp2 : Z -> Z,
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_sqrt_beta_ge_4_hyp fexp1 fexp2 ->
+ forall x,
+ generic_format beta fexp1 x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (sqrt x).
+Proof.
+intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x Fx.
+unfold double_round_eq.
+destruct (Rle_or_lt x 0) as [Npx|Px].
+- (* x <= 0 *)
+ assert (Hs : sqrt x = 0).
+ { destruct (Req_dec x 0) as [Zx|Nzx].
+ - (* x = 0 *)
+ rewrite Zx.
+ exact sqrt_0.
+ - (* x < 0 *)
+ unfold sqrt.
+ destruct Rcase_abs.
+ + reflexivity.
+ + casetype False; lra. }
+ rewrite Hs.
+ rewrite round_0.
+ + reflexivity.
+ + now apply valid_rnd_N.
+- (* 0 < x *)
+ assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
+ [now apply ln_beta_generic_gt; try assumption; lra|].
+ assert (Hfsx : (fexp1 (ln_beta (sqrt x)) < ln_beta (sqrt x))%Z).
+ { destruct (Rle_or_lt x 1) as [Hx|Hx].
+ - (* x <= 1 *)
+ apply (valid_exp_large fexp1 (ln_beta x)); [exact Hfx|].
+ apply ln_beta_le; [exact Px|].
+ rewrite <- (sqrt_def x) at 1; [|lra].
+ rewrite <- Rmult_1_r.
+ apply Rmult_le_compat_l.
+ + apply sqrt_pos.
+ + rewrite <- sqrt_1.
+ now apply sqrt_le_1_alt.
+ - (* 1 < x *)
+ generalize ((proj1 (proj2 Hexp)) 1%Z).
+ replace (_ - 1)%Z with 1%Z by ring.
+ intro Hexp10.
+ assert (Hf0 : (fexp1 1 < 1)%Z); [omega|clear Hexp10].
+ apply (valid_exp_large fexp1 1); [exact Hf0|].
+ apply ln_beta_ge_bpow.
+ rewrite Zeq_minus; [|reflexivity].
+ unfold Fcore_Raux.bpow; simpl.
+ apply Rabs_ge; right.
+ rewrite <- sqrt_1.
+ apply sqrt_le_1_alt.
+ now apply Rlt_le. }
+ assert (Hf2 : (fexp2 (ln_beta (sqrt x)) <= fexp1 (ln_beta (sqrt x)) - 1)%Z).
+ { assert (H : (fexp1 (2 * ln_beta (sqrt x)) < 2 * ln_beta (sqrt x))%Z).
+ { destruct (ln_beta_sqrt_disj x Px) as [Hlx|Hlx].
+ - apply (valid_exp_large fexp1 (ln_beta x)); [|omega].
+ now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+ - rewrite <- Hlx.
+ now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]. }
+ generalize ((proj2 (proj2 Hexp)) (ln_beta (sqrt x)) H).
+ omega. }
+ apply double_round_mid_cases.
+ + exact Vfexp1.
+ + exact Vfexp2.
+ + now apply sqrt_lt_R0.
+ + omega.
+ + omega.
+ + intros Hmid; casetype False; apply (Rle_not_lt _ _ Hmid).
+ apply (double_round_sqrt_beta_ge_4_aux Hbeta fexp1 fexp2 Vfexp1 Vfexp2
+ Hexp x Px Hf2 Fx).
+Qed.
+
+Section Double_round_sqrt_beta_ge_4_FLX.
+
+Require Import Fcore_FLX.
+
+Variable prec : Z.
+Variable prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FLX_double_round_sqrt_beta_ge_4_hyp :
+ (2 * prec + 1 <= prec')%Z ->
+ double_round_sqrt_beta_ge_4_hyp (FLX_exp prec) (FLX_exp prec').
+Proof.
+intros Hprec.
+unfold FLX_exp.
+unfold Prec_gt_0 in prec_gt_0_.
+unfold double_round_sqrt_beta_ge_4_hyp; split; [|split]; intro ex; omega.
+Qed.
+
+Theorem double_round_sqrt_beta_ge_4_FLX :
+ (4 <= beta)%Z ->
+ forall choice1 choice2,
+ (2 * prec + 1 <= prec')%Z ->
+ forall x,
+ FLX_format beta prec x ->
+ double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (sqrt x).
+Proof.
+intros Hbeta choice1 choice2 Hprec x Fx.
+apply double_round_sqrt_beta_ge_4.
+- exact Hbeta.
+- now apply FLX_exp_valid.
+- now apply FLX_exp_valid.
+- now apply FLX_double_round_sqrt_beta_ge_4_hyp.
+- now apply generic_format_FLX.
+Qed.
+
+End Double_round_sqrt_beta_ge_4_FLX.
+
+Section Double_round_sqrt_beta_ge_4_FLT.
+
+Require Import Fcore_FLX.
+Require Import Fcore_FLT.
+
+Variable emin prec : Z.
+Variable emin' prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FLT_double_round_sqrt_beta_ge_4_hyp :
+ (emin <= 0)%Z ->
+ ((emin' <= emin - prec - 1)%Z
+ \/ (2 * emin' <= emin - 4 * prec)%Z) ->
+ (2 * prec + 1 <= prec')%Z ->
+ double_round_sqrt_beta_ge_4_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
+Proof.
+intros Hemin Heminprec Hprec.
+unfold FLT_exp.
+unfold Prec_gt_0 in prec_gt_0_.
+unfold double_round_sqrt_beta_ge_4_hyp; split; [|split]; intros ex.
+- generalize (Zmax_spec (ex - prec) emin).
+ generalize (Zmax_spec (2 * ex - prec) emin).
+ omega.
+- generalize (Zmax_spec (ex - prec) emin).
+ generalize (Zmax_spec (2 * ex - 1 - prec) emin).
+ omega.
+- generalize (Zmax_spec (2 * ex - prec) emin).
+ generalize (Zmax_spec (ex - prec') emin').
+ generalize (Zmax_spec (ex - prec) emin).
+ omega.
+Qed.
+
+Theorem double_round_sqrt_beta_ge_4_FLT :
+ (4 <= beta)%Z ->
+ forall choice1 choice2,
+ (emin <= 0)%Z ->
+ ((emin' <= emin - prec - 1)%Z
+ \/ (2 * emin' <= emin - 4 * prec)%Z) ->
+ (2 * prec + 1 <= prec')%Z ->
+ forall x,
+ FLT_format beta emin prec x ->
+ double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ choice1 choice2 (sqrt x).
+Proof.
+intros Hbeta choice1 choice2 Hemin Heminprec Hprec x Fx.
+apply double_round_sqrt_beta_ge_4.
+- exact Hbeta.
+- now apply FLT_exp_valid.
+- now apply FLT_exp_valid.
+- now apply FLT_double_round_sqrt_beta_ge_4_hyp.
+- now apply generic_format_FLT.
+Qed.
+
+End Double_round_sqrt_beta_ge_4_FLT.
+
+Section Double_round_sqrt_beta_ge_4_FTZ.
+
+Require Import Fcore_FLX.
+Require Import Fcore_FTZ.
+
+Variable emin prec : Z.
+Variable emin' prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FTZ_double_round_sqrt_beta_ge_4_hyp :
+ (2 * (emin' + prec') <= emin + prec <= 1)%Z ->
+ (2 * prec + 1 <= prec')%Z ->
+ double_round_sqrt_beta_ge_4_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
+Proof.
+intros Hemin Hprec.
+unfold FTZ_exp.
+unfold Prec_gt_0 in *.
+unfold double_round_sqrt_beta_ge_4_hyp; split; [|split]; intros ex.
+- destruct (Z.ltb_spec (ex - prec) emin);
+ destruct (Z.ltb_spec (2 * ex - prec) emin);
+ omega.
+- destruct (Z.ltb_spec (ex - prec) emin);
+ destruct (Z.ltb_spec (2 * ex - 1 - prec) emin);
+ omega.
+- intro H.
+ destruct (Zle_or_lt emin (2 * ex - prec)) as [H'|H'].
+ + destruct (Z.ltb_spec (ex - prec') emin');
+ destruct (Z.ltb_spec (ex - prec) emin);
+ omega.
+ + casetype False.
+ rewrite (Zlt_bool_true _ _ H') in H.
+ omega.
+Qed.
+
+Theorem double_round_sqrt_beta_ge_4_FTZ :
+ (4 <= beta)%Z ->
+ forall choice1 choice2,
+ (2 * (emin' + prec') <= emin + prec <= 1)%Z ->
+ (2 * prec + 1 <= prec')%Z ->
+ forall x,
+ FTZ_format beta emin prec x ->
+ double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ choice1 choice2 (sqrt x).
+Proof.
+intros Hbeta choice1 choice2 Hemin Hprec x Fx.
+apply double_round_sqrt_beta_ge_4.
+- exact Hbeta.
+- now apply FTZ_exp_valid.
+- now apply FTZ_exp_valid.
+- now apply FTZ_double_round_sqrt_beta_ge_4_hyp.
+- now apply generic_format_FTZ.
+Qed.
+
+End Double_round_sqrt_beta_ge_4_FTZ.
+
+End Double_round_sqrt_beta_ge_4.
+
+End Double_round_sqrt.
+
+Section Double_round_div.
+
+Lemma double_round_eq_mid_beta_even :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ (exists n, (beta = 2 * n :> Z)%Z) ->
+ forall x,
+ 0 < x ->
+ (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
+ (fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ x = midp fexp1 x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x.
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Ebeta x Px Hf2 Hf1.
+unfold double_round_eq.
+unfold midp.
+set (rd := round beta fexp1 Zfloor x).
+set (u := ulp beta fexp1 x).
+intro H; apply (Rplus_eq_compat_l (- rd)) in H.
+ring_simplify in H; revert H.
+rewrite Rplus_comm; fold (Rminus x rd).
+intro Xmid.
+destruct Ebeta as (n,Ebeta).
+assert (Hbeta : (2 <= beta)%Z).
+{ destruct beta as (beta_val,beta_prop).
+ now apply Zle_bool_imp_le. }
+apply (Rplus_eq_compat_l rd) in Xmid; ring_simplify in Xmid.
+rewrite (round_generic beta fexp2); [reflexivity|now apply valid_rnd_N|].
+set (f := Float beta (Zfloor (scaled_mantissa beta fexp2 rd)
+ + n * beta ^ (fexp1 (ln_beta x) - 1
+ - fexp2 (ln_beta x)))
+ (canonic_exp beta fexp2 x)).
+assert (Hf : F2R f = x).
+{ unfold f, F2R; simpl.
+ rewrite Z2R_plus.
+ rewrite Rmult_plus_distr_r.
+ rewrite Z2R_mult.
+ rewrite Z2R_Zpower; [|omega].
+ unfold canonic_exp at 2; bpow_simplify.
+ unfold Zminus; rewrite bpow_plus.
+ rewrite (Rmult_comm _ (bpow (- 1))).
+ rewrite <- (Rmult_assoc (Z2R n)).
+ change (bpow (- 1)) with (/ Z2R (beta * 1)).
+ rewrite Zmult_1_r.
+ rewrite Ebeta.
+ rewrite (Z2R_mult 2).
+ rewrite Rinv_mult_distr;
+ [|simpl; lra|change 0 with (Z2R 0); apply Z2R_neq; omega].
+ rewrite <- Rmult_assoc; rewrite (Rmult_comm (Z2R n));
+ rewrite (Rmult_assoc _ (Z2R n)).
+ rewrite Rinv_r;
+ [rewrite Rmult_1_r|change 0 with (Z2R 0); apply Z2R_neq; omega].
+ simpl; fold (canonic_exp beta fexp1 x); fold (ulp beta fexp1 x); fold u.
+ rewrite Xmid at 2.
+ apply f_equal2; [|reflexivity].
+ destruct (Req_dec rd 0) as [Zrd|Nzrd].
+ - (* rd = 0 *)
+ rewrite Zrd.
+ rewrite scaled_mantissa_0.
+ change 0 with (Z2R 0) at 1; rewrite Zfloor_Z2R.
+ now rewrite Rmult_0_l.
+ - (* rd <> 0 *)
+ assert (Nnrd : 0 <= rd).
+ { apply round_DN_pt.
+ - exact Vfexp1.
+ - apply generic_format_0.
+ - now apply Rlt_le. }
+ assert (Prd : 0 < rd); [lra|].
+ assert (Lrd : (ln_beta rd = ln_beta x :> Z)).
+ { apply Zle_antisym.
+ - apply ln_beta_le; [exact Prd|].
+ now apply round_DN_pt.
+ - apply ln_beta_round_ge.
+ + exact Vfexp1.
+ + now apply valid_rnd_DN.
+ + exact Nzrd. }
+ unfold scaled_mantissa.
+ unfold rd at 1.
+ unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ bpow_simplify.
+ rewrite Lrd.
+ rewrite <- (Z2R_Zpower _ (_ - _)); [|omega].
+ rewrite <- Z2R_mult.
+ rewrite (Zfloor_imp (Zfloor (x * bpow (- fexp1 (ln_beta x))) *
+ beta ^ (fexp1 (ln_beta x) - fexp2 (ln_beta x)))).
+ + rewrite Z2R_mult.
+ rewrite Z2R_Zpower; [|omega].
+ bpow_simplify.
+ now unfold rd.
+ + split; [now apply Rle_refl|].
+ rewrite Z2R_plus.
+ simpl; lra. }
+apply (generic_format_F2R' _ _ x f Hf).
+intros _.
+apply Zle_refl.
+Qed.
+
+Lemma double_round_really_zero :
+ forall (fexp1 fexp2 : Z -> Z),
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ forall x,
+ 0 < x ->
+ (ln_beta x <= fexp1 (ln_beta x) - 2)%Z ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x.
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf1.
+assert (Hlx : bpow (ln_beta x - 1) <= x < bpow (ln_beta x)).
+{ destruct (ln_beta x) as (ex,Hex); simpl.
+ rewrite <- (Rabs_right x); [|now apply Rle_ge; apply Rlt_le].
+ apply Hex.
+ now apply Rgt_not_eq. }
+unfold double_round_eq.
+rewrite (round_N_really_small_pos beta fexp1 _ x (ln_beta x)); [|exact Hlx|omega].
+set (x'' := round beta fexp2 (Znearest choice2) x).
+destruct (Req_dec x'' 0) as [Zx''|Nzx''];
+ [now rewrite Zx''; rewrite round_0; [|apply valid_rnd_N]|].
+destruct (Zle_or_lt (fexp2 (ln_beta x)) (ln_beta x)).
+- (* fexp2 (ln_beta x) <= ln_beta x *)
+ destruct (Rlt_or_le x'' (bpow (ln_beta x))).
+ + (* x'' < bpow (ln_beta x) *)
+ rewrite (round_N_really_small_pos beta fexp1 _ _ (ln_beta x));
+ [reflexivity|split; [|exact H0]|omega].
+ apply round_large_pos_ge_pow; [now apply valid_rnd_N| |now apply Hlx].
+ fold x''; assert (0 <= x''); [|lra]; unfold x''.
+ rewrite <- (round_0 beta fexp2 (Znearest choice2)).
+ now apply round_le; [|apply valid_rnd_N|apply Rlt_le].
+ + (* bpow (ln_beta x) <= x'' *)
+ assert (Hx'' : x'' = bpow (ln_beta x)).
+ { apply Rle_antisym; [|exact H0].
+ rewrite <- (round_generic beta fexp2 (Znearest choice2) (bpow _)).
+ - now apply round_le; [|apply valid_rnd_N|apply Rlt_le].
+ - now apply generic_format_bpow'. }
+ rewrite Hx''.
+ unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ rewrite ln_beta_bpow.
+ assert (Hf11 : (fexp1 (ln_beta x + 1) = fexp1 (ln_beta x) :> Z)%Z);
+ [apply Vfexp1; omega|].
+ rewrite Hf11.
+ apply (Rmult_eq_reg_r (bpow (- fexp1 (ln_beta x))));
+ [|now apply Rgt_not_eq; apply bpow_gt_0].
+ rewrite Rmult_0_l; bpow_simplify.
+ change 0 with (Z2R 0); apply f_equal.
+ apply Znearest_imp.
+ simpl; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
+ rewrite Rabs_right; [|now apply Rle_ge; apply bpow_ge_0].
+ apply Rle_lt_trans with (bpow (- 2)); [now apply bpow_le; omega|].
+ unfold Fcore_Raux.bpow, Z.pow_pos; simpl; rewrite Zmult_1_r.
+ assert (Hbeta : (2 <= beta)%Z).
+ { destruct beta as (beta_val,beta_prop); simpl.
+ now apply Zle_bool_imp_le. }
+ apply Rinv_lt_contravar.
+ * apply Rmult_lt_0_compat; [lra|].
+ rewrite Z2R_mult; apply Rmult_lt_0_compat; change 0 with (Z2R 0);
+ apply Z2R_lt; omega.
+ * change 2 with (Z2R 2); apply Z2R_lt.
+ apply (Zle_lt_trans _ _ _ Hbeta).
+ rewrite <- (Zmult_1_r beta) at 1.
+ apply Zmult_lt_compat_l; omega.
+- (* ln_beta x < fexp2 (ln_beta x) *)
+ casetype False; apply Nzx''.
+ now apply (round_N_really_small_pos beta _ _ _ (ln_beta x)).
+Qed.
+
+Lemma double_round_zero :
+ forall fexp1 fexp2 : Z -> Z,
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ forall x,
+ 0 < x ->
+ (fexp1 (ln_beta x) = ln_beta x + 1 :> Z)%Z ->
+ x < bpow (ln_beta x) - / 2 * ulp beta fexp2 x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x.
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf1.
+unfold double_round_eq.
+set (x'' := round beta fexp2 (Znearest choice2) x).
+set (u1 := ulp beta fexp1 x).
+set (u2 := ulp beta fexp2 x).
+intro Hx.
+assert (Hlx : bpow (ln_beta x - 1) <= x < bpow (ln_beta x)).
+{ destruct (ln_beta x) as (ex,Hex); simpl.
+ rewrite <- (Rabs_right x); [|now apply Rle_ge; apply Rlt_le].
+ apply Hex.
+ now apply Rgt_not_eq. }
+rewrite (round_N_really_small_pos beta fexp1 choice1 x (ln_beta x));
+ [|exact Hlx|omega].
+destruct (Req_dec x'' 0) as [Zx''|Nzx''];
+ [now rewrite Zx''; rewrite round_0; [reflexivity|apply valid_rnd_N]|].
+rewrite (round_N_really_small_pos beta _ _ x'' (ln_beta x));
+ [reflexivity| |omega].
+split.
+- apply round_large_pos_ge_pow.
+ + now apply valid_rnd_N.
+ + assert (0 <= x''); [|now fold x''; lra].
+ rewrite <- (round_0 beta fexp2 (Znearest choice2)).
+ now apply round_le; [|apply valid_rnd_N|apply Rlt_le].
+ + apply Rle_trans with (Rabs x);
+ [|now rewrite Rabs_right; [apply Rle_refl|apply Rle_ge; apply Rlt_le]].
+ destruct (ln_beta x) as (ex,Hex); simpl; apply Hex.
+ now apply Rgt_not_eq.
+- replace x'' with (x + (x'' - x)) by ring.
+ replace (bpow _) with (bpow (ln_beta x) - / 2 * u2 + / 2 * u2) by ring.
+ apply Rplus_lt_le_compat; [exact Hx|].
+ apply Rabs_le_inv.
+ now apply ulp_half_error.
+Qed.
+
+Lemma double_round_all_mid_cases :
+ forall fexp1 fexp2 : Z -> Z,
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ forall x,
+ 0 < x ->
+ (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
+ ((fexp1 (ln_beta x) = ln_beta x + 1 :> Z)%Z ->
+ bpow (ln_beta x) - / 2 * ulp beta fexp2 x <= x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x) ->
+ ((fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ midp fexp1 x - / 2 * ulp beta fexp2 x <= x < midp fexp1 x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x) ->
+ ((fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ x = midp fexp1 x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x) ->
+ ((fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ midp fexp1 x < x <= midp fexp1 x + / 2 * ulp beta fexp2 x ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x) ->
+ double_round_eq fexp1 fexp2 choice1 choice2 x.
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2.
+set (x' := round beta fexp1 Zfloor x).
+set (u1 := ulp beta fexp1 x).
+set (u2 := ulp beta fexp2 x).
+intros Cz Clt Ceq Cgt.
+destruct (Ztrichotomy (ln_beta x) (fexp1 (ln_beta x) - 1)) as [Hlt|[Heq|Hgt]].
+- (* ln_beta x < fexp1 (ln_beta x) - 1 *)
+ assert (H : (ln_beta x <= fexp1 (ln_beta x) - 2)%Z) by omega.
+ now apply double_round_really_zero.
+- (* ln_beta x = fexp1 (ln_beta x) - 1 *)
+ assert (H : (fexp1 (ln_beta x) = (ln_beta x + 1))%Z) by omega.
+ destruct (Rlt_or_le x (bpow (ln_beta x) - / 2 * u2)) as [Hlt'|Hge'].
+ + now apply double_round_zero.
+ + now apply Cz.
+- (* ln_beta x > fexp1 (ln_beta x) - 1 *)
+ assert (H : (fexp1 (ln_beta x) <= ln_beta x)%Z) by omega.
+ destruct (Rtotal_order x (midp fexp1 x)) as [Hlt'|[Heq'|Hgt']].
+ + (* x < midp fexp1 x *)
+ destruct (Rlt_or_le x (midp fexp1 x - / 2 * u2)) as [Hlt''|Hle''].
+ * now apply double_round_lt_mid_further_place; [| | |omega| |].
+ * now apply Clt; [|split].
+ + (* x = midp fexp1 x *)
+ now apply Ceq.
+ + (* x > midp fexp1 x *)
+ destruct (Rle_or_lt x (midp fexp1 x + / 2 * u2)) as [Hlt''|Hle''].
+ * now apply Cgt; [|split].
+ * { destruct (generic_format_EM beta fexp1 x) as [Fx|Nfx].
+ - (* generic_format beta fexp1 x *)
+ unfold double_round_eq; rewrite (round_generic beta fexp2);
+ [reflexivity|now apply valid_rnd_N|].
+ now apply (generic_inclusion_ln_beta beta fexp1); [omega|].
+ - (* ~ generic_format beta fexp1 x *)
+ assert (Hceil : round beta fexp1 Zceil x = x' + u1);
+ [now apply ulp_DN_UP|].
+ assert (Hf2' : (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z);
+ [omega|].
+ assert (midp' fexp1 x + / 2 * ulp beta fexp2 x < x);
+ [|now apply double_round_gt_mid_further_place].
+ revert Hle''; unfold midp, midp'; fold x'.
+ rewrite Hceil; fold u1; fold u2.
+ lra. }
+Qed.
+
+Lemma ln_beta_div_disj :
+ forall x y : R,
+ 0 < x -> 0 < y ->
+ ((ln_beta (x / y) = ln_beta x - ln_beta y :> Z)%Z
+ \/ (ln_beta (x / y) = ln_beta x - ln_beta y + 1 :> Z)%Z).
+Proof.
+intros x y Px Py.
+generalize (ln_beta_div beta x y Px Py).
+omega.
+Qed.
+
+Definition double_round_div_hyp fexp1 fexp2 :=
+ (forall ex, (fexp2 ex <= fexp1 ex - 1)%Z)
+ /\ (forall ex ey, (fexp1 ex < ex)%Z -> (fexp1 ey < ey)%Z ->
+ (fexp1 (ex - ey) <= ex - ey + 1)%Z ->
+ (fexp2 (ex - ey) <= fexp1 ex - ey)%Z)
+ /\ (forall ex ey, (fexp1 ex < ex)%Z -> (fexp1 ey < ey)%Z ->
+ (fexp1 (ex - ey + 1) <= ex - ey + 1 + 1)%Z ->
+ (fexp2 (ex - ey + 1) <= fexp1 ex - ey)%Z)
+ /\ (forall ex ey, (fexp1 ex < ex)%Z -> (fexp1 ey < ey)%Z ->
+ (fexp1 (ex - ey) <= ex - ey)%Z ->
+ (fexp2 (ex - ey) <= fexp1 (ex - ey)
+ + fexp1 ey - ey)%Z)
+ /\ (forall ex ey, (fexp1 ex < ex)%Z -> (fexp1 ey < ey)%Z ->
+ (fexp1 (ex - ey) = ex - ey + 1)%Z ->
+ (fexp2 (ex - ey) <= ex - ey - ey + fexp1 ey)%Z).
+
+Lemma double_round_div_aux0 :
+ forall fexp1 fexp2 : Z -> Z,
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_div_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < x -> 0 < y ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ fexp1 (ln_beta (x / y)) = (ln_beta (x / y) + 1)%Z ->
+ ~ (bpow (ln_beta (x / y)) - / 2 * ulp beta fexp2 (x / y) <= x / y).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Fx Fy Hf1.
+assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+set (p := bpow (ln_beta (x / y))).
+set (u2 := ulp beta fexp2 (x / y)).
+revert Fx Fy.
+unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
+set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
+set (my := Ztrunc (y * bpow (- fexp1 (ln_beta y)))).
+intros Fx Fy.
+intro Hl.
+assert (Hr : x / y < p);
+ [now apply Rabs_lt_inv; apply bpow_ln_beta_gt|].
+apply (Rlt_irrefl (p - / 2 * u2)).
+apply (Rle_lt_trans _ _ _ Hl).
+apply (Rmult_lt_reg_r y _ _ Py).
+unfold Rdiv; rewrite Rmult_assoc.
+rewrite Rinv_l; [|now apply Rgt_not_eq]; rewrite Rmult_1_r.
+destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - ln_beta (x / y)
+ - fexp1 (ln_beta y))%Z) as [He|He].
+- (* ln_beta (x / y) + fexp1 (ln_beta y) <= fexp1 (ln_beta x) *)
+ apply Rle_lt_trans with (p * y - p * bpow (fexp1 (ln_beta y))).
+ + rewrite Fx; rewrite Fy at 1.
+ rewrite <- Rmult_assoc.
+ rewrite (Rmult_comm p).
+ unfold p; bpow_simplify.
+ apply (Rmult_le_reg_r (bpow (- ln_beta (x / y) - fexp1 (ln_beta y))));
+ [now apply bpow_gt_0|].
+ rewrite Rmult_minus_distr_r.
+ bpow_simplify.
+ rewrite <- Z2R_Zpower; [|exact He].
+ rewrite <- Z2R_mult.
+ change 1 with (Z2R 1); rewrite <- Z2R_minus.
+ apply Z2R_le.
+ apply (Zplus_le_reg_r _ _ 1); ring_simplify.
+ apply Zlt_le_succ.
+ apply lt_Z2R.
+ rewrite Z2R_mult.
+ rewrite Z2R_Zpower; [|exact He].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta y) + ln_beta (x / y))));
+ [now apply bpow_gt_0|].
+ bpow_simplify.
+ rewrite <- Fx.
+ rewrite bpow_plus.
+ rewrite <- Rmult_assoc; rewrite <- Fy.
+ fold p.
+ apply (Rmult_lt_reg_r (/ y)); [now apply Rinv_0_lt_compat|].
+ field_simplify; lra.
+ + rewrite Rmult_minus_distr_r.
+ unfold Rminus; apply Rplus_lt_compat_l.
+ apply Ropp_lt_contravar.
+ apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
+ * rewrite <- (Rmult_1_l (u2 * _)).
+ rewrite Rmult_assoc.
+ { apply Rmult_lt_compat.
+ - lra.
+ - now apply Rmult_le_pos; [apply bpow_ge_0|apply Rlt_le].
+ - lra.
+ - apply Rmult_lt_compat_l; [now apply bpow_gt_0|].
+ apply Rabs_lt_inv.
+ apply bpow_ln_beta_gt. }
+ * unfold u2, p, ulp, canonic_exp; bpow_simplify; apply bpow_le.
+ apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
+ rewrite (Zplus_comm (- _)); fold (Zminus (ln_beta (x / y)) (ln_beta y)).
+ destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
+ [now apply Hexp; [| |rewrite <- Hxy]|].
+ replace (_ - _ + 1)%Z with ((ln_beta x + 1) - ln_beta y)%Z by ring.
+ apply Hexp.
+ { now assert (fexp1 (ln_beta x + 1) <= ln_beta x)%Z;
+ [apply valid_exp|omega]. }
+ { assumption. }
+ replace (_ + 1 - _)%Z with (ln_beta x - ln_beta y + 1)%Z by ring.
+ now rewrite <- Hxy.
+- (* fexp1 (ln_beta x) < ln_beta (x / y) + fexp1 (ln_beta y) *)
+ apply Rle_lt_trans with (p * y - bpow (fexp1 (ln_beta x))).
+ + rewrite Fx at 1; rewrite Fy at 1.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ [now apply bpow_gt_0|].
+ rewrite Rmult_minus_distr_r.
+ bpow_simplify.
+ rewrite (Rmult_comm p).
+ unfold p; bpow_simplify.
+ rewrite <- Z2R_Zpower; [|omega].
+ rewrite <- Z2R_mult.
+ change 1 with (Z2R 1); rewrite <- Z2R_minus.
+ apply Z2R_le.
+ apply (Zplus_le_reg_r _ _ 1); ring_simplify.
+ apply Zlt_le_succ.
+ apply lt_Z2R.
+ rewrite Z2R_mult.
+ rewrite Z2R_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x))));
+ [now apply bpow_gt_0|bpow_simplify].
+ rewrite <- Fx.
+ rewrite Zplus_comm; rewrite bpow_plus.
+ rewrite <- Rmult_assoc; rewrite <- Fy.
+ fold p.
+ apply (Rmult_lt_reg_r (/ y)); [now apply Rinv_0_lt_compat|].
+ field_simplify; lra.
+ + rewrite Rmult_minus_distr_r.
+ unfold Rminus; apply Rplus_lt_compat_l.
+ apply Ropp_lt_contravar.
+ apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
+ * rewrite <- (Rmult_1_l (u2 * _)).
+ rewrite Rmult_assoc.
+ { apply Rmult_lt_compat.
+ - lra.
+ - now apply Rmult_le_pos; [apply bpow_ge_0|apply Rlt_le].
+ - lra.
+ - apply Rmult_lt_compat_l; [now apply bpow_gt_0|].
+ apply Rabs_lt_inv.
+ apply bpow_ln_beta_gt. }
+ * unfold u2, p, ulp, canonic_exp; bpow_simplify; apply bpow_le.
+ apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
+ rewrite (Zplus_comm (- _)); fold (Zminus (ln_beta (x / y)) (ln_beta y)).
+ destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
+ apply Hexp; try assumption; rewrite <- Hxy; rewrite Hf1; apply Zle_refl.
+Qed.
+
+Lemma double_round_div_aux1 :
+ forall fexp1 fexp2 : Z -> Z,
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_div_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < x -> 0 < y ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ (fexp1 (ln_beta (x / y)) <= ln_beta (x / y))%Z ->
+ ~ (midp fexp1 (x / y) - / 2 * ulp beta fexp2 (x / y)
+ <= x / y
+ < midp fexp1 (x / y)).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Fx Fy Hf1.
+assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+cut (~ (/ 2 * (ulp beta fexp1 (x / y) - ulp beta fexp2 (x / y))
+ <= x / y - round beta fexp1 Zfloor (x / y)
+ < / 2 * ulp beta fexp1 (x / y))).
+{ intro H; intro H'; apply H; split.
+ - apply (Rplus_le_reg_l (round beta fexp1 Zfloor (x / y))).
+ ring_simplify.
+ apply H'.
+ - apply (Rplus_lt_reg_l (round beta fexp1 Zfloor (x / y))).
+ ring_simplify.
+ apply H'. }
+set (u1 := ulp beta fexp1 (x / y)).
+set (u2 := ulp beta fexp2 (x / y)).
+set (x' := round beta fexp1 Zfloor (x / y)).
+revert Fx Fy.
+unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
+set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
+set (my := Ztrunc (y * bpow (- fexp1 (ln_beta y)))).
+intros Fx Fy.
+intro Hlr.
+apply (Rlt_irrefl (/ 2 * (u1 - u2))).
+apply (Rle_lt_trans _ _ _ (proj1 Hlr)).
+apply (Rplus_lt_reg_r x'); ring_simplify.
+apply (Rmult_lt_reg_r y _ _ Py).
+unfold Rdiv; rewrite Rmult_assoc.
+rewrite Rinv_l; [|now apply Rgt_not_eq]; rewrite Rmult_1_r.
+rewrite Rmult_minus_distr_r; rewrite Rmult_plus_distr_r.
+apply (Rmult_lt_reg_l 2); [lra|].
+rewrite Rmult_minus_distr_l; rewrite Rmult_plus_distr_l.
+do 5 rewrite <- Rmult_assoc.
+rewrite Rinv_r; [|lra]; do 2 rewrite Rmult_1_l.
+destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - fexp1 (ln_beta (x / y))
+ - fexp1 (ln_beta y))%Z) as [He|He].
+- (* fexp1 (ln_beta (x / y)) + fexp1 (ln_beta y)) <= fexp1 (ln_beta x) *)
+ apply Rle_lt_trans with (2 * x' * y + u1 * y
+ - bpow (fexp1 (ln_beta (x / y))
+ + fexp1 (ln_beta y))).
+ + rewrite Fx at 1; rewrite Fy at 1 2.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta (x / y))
+ - fexp1 (ln_beta y))));
+ [now apply bpow_gt_0|].
+ rewrite Rmult_minus_distr_r; rewrite (Rmult_plus_distr_r (_ * _ * _)).
+ bpow_simplify.
+ replace (2 * x' * _ * _)
+ with (2 * Z2R my * x' * bpow (- fexp1 (ln_beta (x / y)))) by ring.
+ rewrite (Rmult_comm u1).
+ unfold x', u1, round, F2R, ulp, scaled_mantissa, canonic_exp; simpl.
+ bpow_simplify.
+ rewrite <- Z2R_Zpower; [|exact He].
+ change 2 with (Z2R 2).
+ do 4 rewrite <- Z2R_mult.
+ rewrite <- Z2R_plus.
+ change 1 with (Z2R 1); rewrite <- Z2R_minus.
+ apply Z2R_le.
+ apply (Zplus_le_reg_r _ _ 1); ring_simplify.
+ apply Zlt_le_succ.
+ apply lt_Z2R.
+ rewrite Z2R_plus.
+ do 4 rewrite Z2R_mult; simpl.
+ rewrite Z2R_Zpower; [|exact He].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta (x / y))
+ + fexp1 (ln_beta y))));
+ [now apply bpow_gt_0|bpow_simplify].
+ rewrite Rmult_assoc.
+ rewrite <- Fx.
+ rewrite (Rmult_plus_distr_r _ _ (Fcore_Raux.bpow _ _)).
+ rewrite Rmult_assoc.
+ rewrite bpow_plus.
+ rewrite <- (Rmult_assoc (Z2R (Zfloor _))).
+ change (Z2R (Zfloor _) * _) with x'.
+ do 2 rewrite (Rmult_comm _ (bpow (fexp1 (ln_beta y)))).
+ rewrite Rmult_assoc.
+ do 2 rewrite <- (Rmult_assoc (Z2R my)).
+ rewrite <- Fy.
+ change (bpow _) with u1.
+ apply (Rmult_lt_reg_l (/ 2)); [lra|].
+ rewrite Rmult_plus_distr_l.
+ do 4 rewrite <- Rmult_assoc.
+ rewrite Rinv_l; [|lra]; do 2 rewrite Rmult_1_l.
+ apply (Rplus_lt_reg_r (- y * x')); ring_simplify.
+ apply (Rmult_lt_reg_l (/ y)); [now apply Rinv_0_lt_compat|].
+ rewrite Rmult_minus_distr_l.
+ do 3 rewrite <- Rmult_assoc.
+ rewrite Rinv_l; [|now apply Rgt_not_eq]; do 2 rewrite Rmult_1_l.
+ now rewrite Rmult_comm.
+ + apply Rplus_lt_compat_l.
+ apply Ropp_lt_contravar.
+ apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
+ * { apply Rmult_lt_compat_l.
+ - apply bpow_gt_0.
+ - apply Rabs_lt_inv.
+ apply bpow_ln_beta_gt. }
+ * unfold u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
+ apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
+ rewrite <- Zplus_assoc; rewrite (Zplus_comm (- _)).
+ destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
+ [now apply Hexp; [| |rewrite <- Hxy]|].
+ replace (_ - _ + 1)%Z with ((ln_beta x + 1) - ln_beta y)%Z by ring.
+ apply Hexp.
+ { now assert (fexp1 (ln_beta x + 1) <= ln_beta x)%Z;
+ [apply valid_exp|omega]. }
+ { assumption. }
+ replace (_ + 1 - _)%Z with (ln_beta x - ln_beta y + 1)%Z by ring.
+ now rewrite <- Hxy.
+- (* fexp1 (ln_beta x) < fexp1 (ln_beta (x / y)) + fexp1 (ln_beta y) *)
+ apply Rle_lt_trans with (2 * x' * y + u1 * y - bpow (fexp1 (ln_beta x))).
+ + rewrite Fx at 1; rewrite Fy at 1 2.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ [now apply bpow_gt_0|].
+ rewrite Rmult_minus_distr_r; rewrite (Rmult_plus_distr_r (_ * _ * _)).
+ bpow_simplify.
+ replace (2 * x' * _ * _)
+ with (2 * Z2R my * x' * bpow (fexp1 (ln_beta y) - fexp1 (ln_beta x))) by ring.
+ rewrite (Rmult_comm u1).
+ unfold x', u1, round, F2R, ulp, scaled_mantissa, canonic_exp; simpl.
+ bpow_simplify.
+ rewrite <- (Z2R_Zpower _ (_ - _)%Z); [|omega].
+ change 2 with (Z2R 2).
+ do 5 rewrite <- Z2R_mult.
+ rewrite <- Z2R_plus.
+ change 1 with (Z2R 1); rewrite <- Z2R_minus.
+ apply Z2R_le.
+ apply (Zplus_le_reg_r _ _ 1); ring_simplify.
+ apply Zlt_le_succ.
+ apply lt_Z2R.
+ rewrite Z2R_plus.
+ do 5 rewrite Z2R_mult; simpl.
+ rewrite Z2R_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x))));
+ [now apply bpow_gt_0|].
+ rewrite Rmult_assoc.
+ rewrite <- Fx.
+ rewrite (Rmult_plus_distr_r _ _ (Fcore_Raux.bpow _ _)).
+ bpow_simplify.
+ rewrite Rmult_assoc.
+ rewrite bpow_plus.
+ rewrite <- (Rmult_assoc (Z2R (Zfloor _))).
+ change (Z2R (Zfloor _) * _) with x'.
+ do 2 rewrite (Rmult_comm _ (bpow (fexp1 (ln_beta y)))).
+ rewrite Rmult_assoc.
+ do 2 rewrite <- (Rmult_assoc (Z2R my)).
+ rewrite <- Fy.
+ change (bpow _) with u1.
+ apply (Rmult_lt_reg_l (/ 2)); [lra|].
+ rewrite Rmult_plus_distr_l.
+ do 4 rewrite <- Rmult_assoc.
+ rewrite Rinv_l; [|lra]; do 2 rewrite Rmult_1_l.
+ apply (Rplus_lt_reg_r (- y * x')); ring_simplify.
+ apply (Rmult_lt_reg_l (/ y)); [now apply Rinv_0_lt_compat|].
+ rewrite Rmult_minus_distr_l.
+ do 3 rewrite <- Rmult_assoc.
+ rewrite Rinv_l; [|now apply Rgt_not_eq]; do 2 rewrite Rmult_1_l.
+ now rewrite Rmult_comm.
+ + apply Rplus_lt_compat_l.
+ apply Ropp_lt_contravar.
+ apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
+ * { apply Rmult_lt_compat_l.
+ - apply bpow_gt_0.
+ - apply Rabs_lt_inv.
+ apply bpow_ln_beta_gt. }
+ * unfold u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
+ apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
+ rewrite (Zplus_comm (- _)).
+ destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
+ apply Hexp; try assumption; rewrite <- Hxy; omega.
+Qed.
+
+Lemma double_round_div_aux2 :
+ forall fexp1 fexp2 : Z -> Z,
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ double_round_div_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < x -> 0 < y ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ (fexp1 (ln_beta (x / y)) <= ln_beta (x / y))%Z ->
+ ~ (midp fexp1 (x / y)
+ < x / y
+ <= midp fexp1 (x / y) + / 2 * ulp beta fexp2 (x / y)).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Fx Fy Hf1.
+assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
+ [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+cut (~ (/ 2 * ulp beta fexp1 (x / y)
+ < x / y - round beta fexp1 Zfloor (x / y)
+ <= / 2 * (ulp beta fexp1 (x / y) + ulp beta fexp2 (x / y)))).
+{ intro H; intro H'; apply H; split.
+ - apply (Rplus_lt_reg_l (round beta fexp1 Zfloor (x / y))).
+ ring_simplify.
+ apply H'.
+ - apply (Rplus_le_reg_l (round beta fexp1 Zfloor (x / y))).
+ ring_simplify.
+ apply H'. }
+set (u1 := ulp beta fexp1 (x / y)).
+set (u2 := ulp beta fexp2 (x / y)).
+set (x' := round beta fexp1 Zfloor (x / y)).
+revert Fx Fy.
+unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
+set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
+set (my := Ztrunc (y * bpow (- fexp1 (ln_beta y)))).
+intros Fx Fy.
+intro Hlr.
+apply (Rlt_irrefl (/ 2 * (u1 + u2))).
+apply Rlt_le_trans with (x / y - x'); [|now apply Hlr].
+apply (Rplus_lt_reg_r x'); ring_simplify.
+apply (Rmult_lt_reg_r y _ _ Py).
+unfold Rdiv; rewrite Rmult_assoc.
+rewrite Rinv_l; [|now apply Rgt_not_eq]; rewrite Rmult_1_r.
+do 2 rewrite Rmult_plus_distr_r.
+apply (Rmult_lt_reg_l 2); [lra|].
+do 2 rewrite Rmult_plus_distr_l.
+do 5 rewrite <- Rmult_assoc.
+rewrite Rinv_r; [|lra]; do 2 rewrite Rmult_1_l.
+destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - fexp1 (ln_beta (x / y))
+ - fexp1 (ln_beta y))%Z) as [He|He].
+- (* fexp1 (ln_beta (x / y)) + fexp1 (ln_beta y) <= fexp1 (ln_beta x) *)
+ apply Rlt_le_trans with (u1 * y + bpow (fexp1 (ln_beta (x / y))
+ + fexp1 (ln_beta y))
+ + 2 * x' * y).
+ + apply Rplus_lt_compat_r, Rplus_lt_compat_l.
+ apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
+ * { apply Rmult_lt_compat_l.
+ - apply bpow_gt_0.
+ - apply Rabs_lt_inv.
+ apply bpow_ln_beta_gt. }
+ * unfold u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
+ apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
+ rewrite <- Zplus_assoc; rewrite (Zplus_comm (- _)).
+ destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
+ [now apply Hexp; [| |rewrite <- Hxy]|].
+ replace (_ - _ + 1)%Z with ((ln_beta x + 1) - ln_beta y)%Z by ring.
+ apply Hexp.
+ { now assert (fexp1 (ln_beta x + 1) <= ln_beta x)%Z;
+ [apply valid_exp|omega]. }
+ { assumption. }
+ replace (_ + 1 - _)%Z with (ln_beta x - ln_beta y + 1)%Z by ring.
+ now rewrite <- Hxy.
+ + apply Rge_le; rewrite Fx at 1; apply Rle_ge.
+ replace (u1 * y) with (u1 * (Z2R my * bpow (fexp1 (ln_beta y))));
+ [|now apply eq_sym; rewrite Fy at 1].
+ replace (2 * x' * y) with (2 * x' * (Z2R my * bpow (fexp1 (ln_beta y))));
+ [|now apply eq_sym; rewrite Fy at 1].
+ apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta (x / y))
+ - fexp1 (ln_beta y))));
+ [now apply bpow_gt_0|].
+ do 2 rewrite Rmult_plus_distr_r.
+ bpow_simplify.
+ rewrite (Rmult_comm u1).
+ unfold u1, ulp, canonic_exp; bpow_simplify.
+ rewrite (Rmult_assoc 2).
+ rewrite (Rmult_comm x').
+ rewrite (Rmult_assoc 2).
+ unfold x', round, F2R, scaled_mantissa, canonic_exp; simpl.
+ bpow_simplify.
+ rewrite <- (Z2R_Zpower _ (_ - _)%Z); [|exact He].
+ change 2 with (Z2R 2).
+ do 4 rewrite <- Z2R_mult.
+ change 1 with (Z2R 1); do 2 rewrite <- Z2R_plus.
+ apply Z2R_le.
+ rewrite Zplus_comm, Zplus_assoc.
+ apply Zlt_le_succ.
+ apply lt_Z2R.
+ rewrite Z2R_plus.
+ do 4 rewrite Z2R_mult; simpl.
+ rewrite Z2R_Zpower; [|exact He].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta y))));
+ [now apply bpow_gt_0|].
+ rewrite Rmult_plus_distr_r.
+ rewrite (Rmult_comm _ (Z2R _)).
+ do 2 rewrite Rmult_assoc.
+ rewrite <- Fy.
+ bpow_simplify.
+ unfold Zminus; rewrite bpow_plus.
+ rewrite (Rmult_assoc _ (Z2R mx)).
+ rewrite <- (Rmult_assoc (Z2R mx)).
+ rewrite <- Fx.
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta (x / y)))));
+ [now apply bpow_gt_0|].
+ rewrite Rmult_plus_distr_r.
+ bpow_simplify.
+ rewrite (Rmult_comm _ y).
+ do 2 rewrite Rmult_assoc.
+ change (Z2R _ * _) with x'.
+ change (bpow _) with u1.
+ apply (Rmult_lt_reg_l (/ 2)); [lra|].
+ rewrite Rmult_plus_distr_l.
+ do 4 rewrite <- Rmult_assoc.
+ rewrite Rinv_l; [|lra]; do 2 rewrite Rmult_1_l.
+ apply (Rplus_lt_reg_r (- y * x')); ring_simplify.
+ apply (Rmult_lt_reg_l (/ y)); [now apply Rinv_0_lt_compat|].
+ rewrite Rmult_plus_distr_l.
+ do 3 rewrite <- Rmult_assoc.
+ rewrite Ropp_mult_distr_r_reverse.
+ rewrite Ropp_mult_distr_l_reverse.
+ rewrite Rinv_l; [|now apply Rgt_not_eq]; do 2 rewrite Rmult_1_l.
+ rewrite (Rmult_comm (/ y)).
+ now rewrite (Rplus_comm (- x')).
+- (* fexp1 (ln_beta x) < fexp1 (ln_beta (x / y)) + fexp1 (ln_beta y) *)
+ apply Rlt_le_trans with (2 * x' * y + u1 * y + bpow (fexp1 (ln_beta x))).
+ + rewrite Rplus_comm, Rplus_assoc; do 2 apply Rplus_lt_compat_l.
+ apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
+ * apply Rmult_lt_compat_l.
+ now apply bpow_gt_0.
+ now apply Rabs_lt_inv; apply bpow_ln_beta_gt.
+ * unfold u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
+ apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
+ rewrite (Zplus_comm (- _)).
+ destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
+ apply Hexp; try assumption; rewrite <- Hxy; omega.
+ + apply Rge_le; rewrite Fx at 1; apply Rle_ge.
+ rewrite Fy at 1 2.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ [now apply bpow_gt_0|].
+ do 2 rewrite Rmult_plus_distr_r.
+ bpow_simplify.
+ replace (2 * x' * _ * _)
+ with (2 * Z2R my * x' * bpow (fexp1 (ln_beta y) - fexp1 (ln_beta x))) by ring.
+ rewrite (Rmult_comm u1).
+ unfold x', u1, round, F2R, ulp, scaled_mantissa, canonic_exp; simpl.
+ bpow_simplify.
+ rewrite <- (Z2R_Zpower _ (_ - _)%Z); [|omega].
+ change 2 with (Z2R 2).
+ do 5 rewrite <- Z2R_mult.
+ change 1 with (Z2R 1); do 2 rewrite <- Z2R_plus.
+ apply Z2R_le.
+ apply Zlt_le_succ.
+ apply lt_Z2R.
+ rewrite Z2R_plus.
+ do 5 rewrite Z2R_mult; simpl.
+ rewrite Z2R_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x))));
+ [now apply bpow_gt_0|].
+ rewrite (Rmult_assoc _ (Z2R mx)).
+ rewrite <- Fx.
+ rewrite Rmult_plus_distr_r.
+ bpow_simplify.
+ rewrite bpow_plus.
+ rewrite Rmult_assoc.
+ rewrite <- (Rmult_assoc (Z2R _)).
+ change (Z2R _ * bpow _) with x'.
+ do 2 rewrite (Rmult_comm _ (bpow (fexp1 (ln_beta y)))).
+ rewrite Rmult_assoc.
+ do 2 rewrite <- (Rmult_assoc (Z2R my)).
+ rewrite <- Fy.
+ change (bpow _) with u1.
+ apply (Rmult_lt_reg_l (/ 2)); [lra|].
+ rewrite Rmult_plus_distr_l.
+ do 4 rewrite <- Rmult_assoc.
+ rewrite Rinv_l; [|lra]; do 2 rewrite Rmult_1_l.
+ apply (Rplus_lt_reg_r (- y * x')); ring_simplify.
+ apply (Rmult_lt_reg_l (/ y)); [now apply Rinv_0_lt_compat|].
+ rewrite Rmult_plus_distr_l.
+ do 3 rewrite <- Rmult_assoc.
+ rewrite Ropp_mult_distr_r_reverse.
+ rewrite Ropp_mult_distr_l_reverse.
+ rewrite Rinv_l; [|now apply Rgt_not_eq]; do 2 rewrite Rmult_1_l.
+ rewrite (Rmult_comm (/ y)).
+ now rewrite (Rplus_comm (- x')).
+Qed.
+
+Lemma double_round_div_aux :
+ forall fexp1 fexp2 : Z -> Z,
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ (exists n, (beta = 2 * n :> Z)%Z) ->
+ double_round_div_hyp fexp1 fexp2 ->
+ forall x y,
+ 0 < x -> 0 < y ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x / y).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Ebeta Hexp x y Px Py Fx Fy.
+assert (Pxy : 0 < x / y).
+{ apply Rmult_lt_0_compat; [exact Px|].
+ now apply Rinv_0_lt_compat. }
+apply double_round_all_mid_cases.
+- exact Vfexp1.
+- exact Vfexp2.
+- exact Pxy.
+- apply Hexp.
+- intros Hf1 Hlxy.
+ casetype False.
+ now apply (double_round_div_aux0 fexp1 fexp2 _ _ choice1 choice2 Hexp x y).
+- intros Hf1 Hlxy.
+ casetype False.
+ now apply (double_round_div_aux1 fexp1 fexp2 _ _ choice1 choice2 Hexp x y).
+- intro H.
+ apply double_round_eq_mid_beta_even; try assumption.
+ apply Hexp.
+- intros Hf1 Hlxy.
+ casetype False.
+ now apply (double_round_div_aux2 fexp1 fexp2 _ _ choice1 choice2 Hexp x y).
+Qed.
+
+Lemma double_round_div :
+ forall fexp1 fexp2 : Z -> Z,
+ Valid_exp fexp1 -> Valid_exp fexp2 ->
+ forall (choice1 choice2 : Z -> bool),
+ (exists n, (beta = 2 * n :> Z)%Z) ->
+ double_round_div_hyp fexp1 fexp2 ->
+ forall x y,
+ y <> 0 ->
+ generic_format beta fexp1 x ->
+ generic_format beta fexp1 y ->
+ double_round_eq fexp1 fexp2 choice1 choice2 (x / y).
+Proof.
+intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Ebeta Hexp x y Nzy Fx Fy.
+unfold double_round_eq.
+destruct (Rtotal_order x 0) as [Nx|[Zx|Px]].
+- (* x < 0 *)
+ destruct (Rtotal_order y 0) as [Ny|[Zy|Py]].
+ + (* y < 0 *)
+ rewrite <- (Ropp_involutive x).
+ rewrite <- (Ropp_involutive y).
+ rewrite Ropp_div.
+ unfold Rdiv; rewrite <- Ropp_inv_permute; [|lra].
+ rewrite Ropp_mult_distr_r_reverse.
+ rewrite Ropp_involutive.
+ fold ((- x) / (- y)).
+ apply Ropp_lt_contravar in Nx.
+ apply Ropp_lt_contravar in Ny.
+ rewrite Ropp_0 in Nx, Ny.
+ apply generic_format_opp in Fx.
+ apply generic_format_opp in Fy.
+ now apply double_round_div_aux.
+ + (* y = 0 *)
+ now casetype False; apply Nzy.
+ + (* y > 0 *)
+ rewrite <- (Ropp_involutive x).
+ rewrite Ropp_div.
+ do 3 rewrite round_N_opp.
+ apply Ropp_eq_compat.
+ apply Ropp_lt_contravar in Nx.
+ rewrite Ropp_0 in Nx.
+ apply generic_format_opp in Fx.
+ now apply double_round_div_aux.
+- (* x = 0 *)
+ rewrite Zx.
+ unfold Rdiv; rewrite Rmult_0_l.
+ now rewrite round_0; [|apply valid_rnd_N].
+- (* x > 0 *)
+ destruct (Rtotal_order y 0) as [Ny|[Zy|Py]].
+ + (* y < 0 *)
+ rewrite <- (Ropp_involutive y).
+ unfold Rdiv; rewrite <- Ropp_inv_permute; [|lra].
+ rewrite Ropp_mult_distr_r_reverse.
+ do 3 rewrite round_N_opp.
+ apply Ropp_eq_compat.
+ apply Ropp_lt_contravar in Ny.
+ rewrite Ropp_0 in Ny.
+ apply generic_format_opp in Fy.
+ now apply double_round_div_aux.
+ + (* y = 0 *)
+ now casetype False; apply Nzy.
+ + (* y > 0 *)
+ now apply double_round_div_aux.
+Qed.
+
+Section Double_round_div_FLX.
+
+Require Import Fcore_FLX.
+
+Variable prec : Z.
+Variable prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FLX_double_round_div_hyp :
+ (2 * prec <= prec')%Z ->
+ double_round_div_hyp (FLX_exp prec) (FLX_exp prec').
+Proof.
+intros Hprec.
+unfold Prec_gt_0 in prec_gt_0_.
+unfold FLX_exp.
+unfold double_round_div_hyp.
+split; [now intro ex; omega|].
+split; [|split; [|split]]; intros ex ey; omega.
+Qed.
+
+Theorem double_round_div_FLX :
+ forall choice1 choice2,
+ (exists n, (beta = 2 * n :> Z)%Z) ->
+ (2 * prec <= prec')%Z ->
+ forall x y,
+ y <> 0 ->
+ FLX_format beta prec x -> FLX_format beta prec y ->
+ double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x / y).
+Proof.
+intros choice1 choice2 Ebeta Hprec x y Nzy Fx Fy.
+apply double_round_div.
+- now apply FLX_exp_valid.
+- now apply FLX_exp_valid.
+- exact Ebeta.
+- now apply FLX_double_round_div_hyp.
+- exact Nzy.
+- now apply generic_format_FLX.
+- now apply generic_format_FLX.
+Qed.
+
+End Double_round_div_FLX.
+
+Section Double_round_div_FLT.
+
+Require Import Fcore_FLX.
+Require Import Fcore_FLT.
+
+Variable emin prec : Z.
+Variable emin' prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FLT_double_round_div_hyp :
+ (emin' <= emin - prec - 2)%Z ->
+ (2 * prec <= prec')%Z ->
+ double_round_div_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
+Proof.
+intros Hemin Hprec.
+unfold FLT_exp.
+unfold Prec_gt_0 in prec_gt_0_.
+unfold double_round_div_hyp.
+split; [intro ex|split; [|split; [|split]]; intros ex ey].
+- generalize (Zmax_spec (ex - prec') emin').
+ generalize (Zmax_spec (ex - prec) emin).
+ omega.
+- generalize (Zmax_spec (ex - prec) emin).
+ generalize (Zmax_spec (ey - prec) emin).
+ generalize (Zmax_spec (ex - ey - prec) emin).
+ generalize (Zmax_spec (ex - ey - prec') emin').
+ omega.
+- generalize (Zmax_spec (ex - prec) emin).
+ generalize (Zmax_spec (ey - prec) emin).
+ generalize (Zmax_spec (ex - ey + 1 - prec) emin).
+ generalize (Zmax_spec (ex - ey + 1 - prec') emin').
+ omega.
+- generalize (Zmax_spec (ex - prec) emin).
+ generalize (Zmax_spec (ey - prec) emin).
+ generalize (Zmax_spec (ex - ey - prec) emin).
+ generalize (Zmax_spec (ex - ey - prec') emin').
+ omega.
+- generalize (Zmax_spec (ex - prec) emin).
+ generalize (Zmax_spec (ey - prec) emin).
+ generalize (Zmax_spec (ex - ey - prec) emin).
+ generalize (Zmax_spec (ex - ey - prec') emin').
+ omega.
+Qed.
+
+Theorem double_round_div_FLT :
+ forall choice1 choice2,
+ (exists n, (beta = 2 * n :> Z)%Z) ->
+ (emin' <= emin - prec - 2)%Z ->
+ (2 * prec <= prec')%Z ->
+ forall x y,
+ y <> 0 ->
+ FLT_format beta emin prec x -> FLT_format beta emin prec y ->
+ double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ choice1 choice2 (x / y).
+Proof.
+intros choice1 choice2 Ebeta Hemin Hprec x y Nzy Fx Fy.
+apply double_round_div.
+- now apply FLT_exp_valid.
+- now apply FLT_exp_valid.
+- exact Ebeta.
+- now apply FLT_double_round_div_hyp.
+- exact Nzy.
+- now apply generic_format_FLT.
+- now apply generic_format_FLT.
+Qed.
+
+End Double_round_div_FLT.
+
+Section Double_round_div_FTZ.
+
+Require Import Fcore_FLX.
+Require Import Fcore_FTZ.
+
+Variable emin prec : Z.
+Variable emin' prec' : Z.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+Context { prec_gt_0_' : Prec_gt_0 prec' }.
+
+Lemma FTZ_double_round_div_hyp :
+ (emin' + prec' <= emin - 1)%Z ->
+ (2 * prec <= prec')%Z ->
+ double_round_div_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
+Proof.
+intros Hemin Hprec.
+unfold FTZ_exp.
+unfold Prec_gt_0 in prec_gt_0_.
+unfold Prec_gt_0 in prec_gt_0_.
+unfold double_round_div_hyp.
+split; [intro ex|split; [|split; [|split]]; intros ex ey].
+- destruct (Z.ltb_spec (ex - prec') emin');
+ destruct (Z.ltb_spec (ex - prec) emin);
+ omega.
+- destruct (Z.ltb_spec (ex - prec) emin);
+ destruct (Z.ltb_spec (ey - prec) emin);
+ destruct (Z.ltb_spec (ex - ey - prec) emin);
+ destruct (Z.ltb_spec (ex - ey - prec') emin');
+ omega.
+- destruct (Z.ltb_spec (ex - prec) emin);
+ destruct (Z.ltb_spec (ey - prec) emin);
+ destruct (Z.ltb_spec (ex - ey + 1 - prec) emin);
+ destruct (Z.ltb_spec (ex - ey + 1 - prec') emin');
+ omega.
+- destruct (Z.ltb_spec (ex - prec) emin);
+ destruct (Z.ltb_spec (ey - prec) emin);
+ destruct (Z.ltb_spec (ex - ey - prec) emin);
+ destruct (Z.ltb_spec (ex - ey - prec') emin');
+ omega.
+- destruct (Z.ltb_spec (ex - prec) emin);
+ destruct (Z.ltb_spec (ey - prec) emin);
+ destruct (Z.ltb_spec (ex - ey - prec) emin);
+ destruct (Z.ltb_spec (ex - ey - prec') emin');
+ omega.
+Qed.
+
+Theorem double_round_div_FTZ :
+ forall choice1 choice2,
+ (exists n, (beta = 2 * n :> Z)%Z) ->
+ (emin' + prec' <= emin - 1)%Z ->
+ (2 * prec <= prec')%Z ->
+ forall x y,
+ y <> 0 ->
+ FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
+ double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ choice1 choice2 (x / y).
+Proof.
+intros choice1 choice2 Ebeta Hemin Hprec x y Nzy Fx Fy.
+apply double_round_div.
+- now apply FTZ_exp_valid.
+- now apply FTZ_exp_valid.
+- exact Ebeta.
+- now apply FTZ_double_round_div_hyp.
+- exact Nzy.
+- now apply generic_format_FTZ.
+- now apply generic_format_FTZ.
+Qed.
+
+End Double_round_div_FTZ.
+
+End Double_round_div.
+
+End Double_round.
diff --git a/flocq/Appli/Fappli_rnd_odd.v b/flocq/Appli/Fappli_rnd_odd.v
index b4a2c522..b3244589 100644
--- a/flocq/Appli/Fappli_rnd_odd.v
+++ b/flocq/Appli/Fappli_rnd_odd.v
@@ -802,7 +802,7 @@ apply Hz1.
Qed.
-Theorem round_odd_prop_pos:
+Theorem round_odd_prop_pos:
round beta fexp (Znearest choice) (round beta fexpe Zrnd_odd x) =
round beta fexp (Znearest choice) x.
Proof with auto with typeclass_instances.
@@ -945,7 +945,7 @@ Qed.
-Theorem round_odd_prop: forall x,
+Theorem round_odd_prop: forall x,
round beta fexp (Znearest choice) (round beta fexpe Zrnd_odd x) =
round beta fexp (Znearest choice) x.
Proof with auto with typeclass_instances.