aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/Core/Fcore_ulp.v
diff options
context:
space:
mode:
Diffstat (limited to 'flocq/Core/Fcore_ulp.v')
-rw-r--r--flocq/Core/Fcore_ulp.v1142
1 files changed, 1142 insertions, 0 deletions
diff --git a/flocq/Core/Fcore_ulp.v b/flocq/Core/Fcore_ulp.v
new file mode 100644
index 00000000..492fac6c
--- /dev/null
+++ b/flocq/Core/Fcore_ulp.v
@@ -0,0 +1,1142 @@
+(**
+This file is part of the Flocq formalization of floating-point
+arithmetic in Coq: http://flocq.gforge.inria.fr/
+
+Copyright (C) 2010-2011 Sylvie Boldo
+#<br />#
+Copyright (C) 2010-2011 Guillaume Melquiond
+
+This library is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+This library is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+COPYING file for more details.
+*)
+
+(** * Unit in the Last Place: our definition using fexp and its properties, successor and predecessor *)
+Require Import Fcore_Raux.
+Require Import Fcore_defs.
+Require Import Fcore_rnd.
+Require Import Fcore_generic_fmt.
+Require Import Fcore_float_prop.
+
+Section Fcore_ulp.
+
+Variable beta : radix.
+
+Notation bpow e := (bpow beta e).
+
+Variable fexp : Z -> Z.
+
+Context { valid_exp : Valid_exp fexp }.
+
+Definition ulp x := bpow (canonic_exp beta fexp x).
+
+Notation F := (generic_format beta fexp).
+
+Theorem ulp_opp :
+ forall x, ulp (- x) = ulp x.
+Proof.
+intros x.
+unfold ulp.
+now rewrite canonic_exp_opp.
+Qed.
+
+Theorem ulp_abs :
+ forall x, ulp (Rabs x) = ulp x.
+Proof.
+intros x.
+unfold ulp.
+now rewrite canonic_exp_abs.
+Qed.
+
+Theorem ulp_le_id:
+ forall x,
+ (0 < x)%R ->
+ F x ->
+ (ulp x <= x)%R.
+Proof.
+intros x Zx Fx.
+rewrite <- (Rmult_1_l (ulp x)).
+pattern x at 2; rewrite Fx.
+unfold F2R, ulp; simpl.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+replace 1%R with (Z2R (Zsucc 0)) by reflexivity.
+apply Z2R_le.
+apply Zlt_le_succ.
+apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+now rewrite <- Fx.
+Qed.
+
+Theorem ulp_le_abs:
+ forall x,
+ (x <> 0)%R ->
+ F x ->
+ (ulp x <= Rabs x)%R.
+Proof.
+intros x Zx Fx.
+rewrite <- ulp_abs.
+apply ulp_le_id.
+now apply Rabs_pos_lt.
+now apply generic_format_abs.
+Qed.
+
+Theorem ulp_DN_UP :
+ forall x, ~ F x ->
+ round beta fexp Zceil x = (round beta fexp Zfloor x + ulp x)%R.
+Proof.
+intros x Fx.
+unfold round, ulp. simpl.
+unfold F2R. simpl.
+rewrite Zceil_floor_neq.
+rewrite Z2R_plus. simpl.
+ring.
+intros H.
+apply Fx.
+unfold generic_format, F2R. simpl.
+rewrite <- H.
+rewrite Ztrunc_Z2R.
+rewrite H.
+now rewrite scaled_mantissa_mult_bpow.
+Qed.
+
+(** The successor of x is x + ulp x *)
+Theorem succ_le_bpow :
+ forall x e, (0 < x)%R -> F x ->
+ (x < bpow e)%R ->
+ (x + ulp x <= bpow e)%R.
+Proof.
+intros x e Zx Fx Hx.
+pattern x at 1 ; rewrite Fx.
+unfold ulp, F2R. simpl.
+pattern (bpow (canonic_exp beta fexp x)) at 2 ; rewrite <- Rmult_1_l.
+rewrite <- Rmult_plus_distr_r.
+change 1%R with (Z2R 1).
+rewrite <- Z2R_plus.
+change (F2R (Float beta (Ztrunc (scaled_mantissa beta fexp x) + 1) (canonic_exp beta fexp x)) <= bpow e)%R.
+apply F2R_p1_le_bpow.
+apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+now rewrite <- Fx.
+now rewrite <- Fx.
+Qed.
+
+Theorem ln_beta_succ :
+ forall x, (0 < x)%R -> F x ->
+ forall eps, (0 <= eps < ulp x)%R ->
+ ln_beta beta (x + eps) = ln_beta beta x :> Z.
+Proof.
+intros x Zx Fx eps Heps.
+destruct (ln_beta beta x) as (ex, He).
+simpl.
+specialize (He (Rgt_not_eq _ _ Zx)).
+apply ln_beta_unique.
+rewrite Rabs_pos_eq.
+rewrite Rabs_pos_eq in He.
+split.
+apply Rle_trans with (1 := proj1 He).
+pattern x at 1 ; rewrite <- Rplus_0_r.
+now apply Rplus_le_compat_l.
+apply Rlt_le_trans with (x + ulp x)%R.
+now apply Rplus_lt_compat_l.
+pattern x at 1 ; rewrite Fx.
+unfold ulp, F2R. simpl.
+pattern (bpow (canonic_exp beta fexp x)) at 2 ; rewrite <- Rmult_1_l.
+rewrite <- Rmult_plus_distr_r.
+change 1%R with (Z2R 1).
+rewrite <- Z2R_plus.
+change (F2R (Float beta (Ztrunc (scaled_mantissa beta fexp x) + 1) (canonic_exp beta fexp x)) <= bpow ex)%R.
+apply F2R_p1_le_bpow.
+apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+now rewrite <- Fx.
+now rewrite <- Fx.
+now apply Rlt_le.
+apply Rplus_le_le_0_compat.
+now apply Rlt_le.
+apply Heps.
+Qed.
+
+Theorem round_DN_succ :
+ forall x, (0 < x)%R -> F x ->
+ forall eps, (0 <= eps < ulp x)%R ->
+ round beta fexp Zfloor (x + eps) = x.
+Proof.
+intros x Zx Fx eps Heps.
+pattern x at 2 ; rewrite Fx.
+unfold round.
+unfold scaled_mantissa. simpl.
+unfold canonic_exp at 1 2.
+rewrite ln_beta_succ ; trivial.
+apply (f_equal (fun m => F2R (Float beta m _))).
+rewrite Ztrunc_floor.
+apply Zfloor_imp.
+split.
+apply (Rle_trans _ _ _ (Zfloor_lb _)).
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+pattern x at 1 ; rewrite <- Rplus_0_r.
+now apply Rplus_le_compat_l.
+apply Rlt_le_trans with ((x + ulp x) * bpow (- canonic_exp beta fexp x))%R.
+apply Rmult_lt_compat_r.
+apply bpow_gt_0.
+now apply Rplus_lt_compat_l.
+rewrite Rmult_plus_distr_r.
+rewrite Z2R_plus.
+apply Rplus_le_compat.
+pattern x at 1 3 ; rewrite Fx.
+unfold F2R. simpl.
+rewrite Rmult_assoc.
+rewrite <- bpow_plus.
+rewrite Zplus_opp_r.
+rewrite Rmult_1_r.
+rewrite Zfloor_Z2R.
+apply Rle_refl.
+unfold ulp.
+rewrite <- bpow_plus.
+rewrite Zplus_opp_r.
+apply Rle_refl.
+apply Rmult_le_pos.
+now apply Rlt_le.
+apply bpow_ge_0.
+Qed.
+
+Theorem generic_format_succ :
+ forall x, (0 < x)%R -> F x ->
+ F (x + ulp x).
+Proof.
+intros x Zx Fx.
+destruct (ln_beta beta x) as (ex, Ex).
+specialize (Ex (Rgt_not_eq _ _ Zx)).
+assert (Ex' := Ex).
+rewrite Rabs_pos_eq in Ex'.
+destruct (succ_le_bpow x ex) ; try easy.
+unfold generic_format, scaled_mantissa, canonic_exp.
+rewrite ln_beta_unique with beta (x + ulp x)%R ex.
+pattern x at 1 3 ; rewrite Fx.
+unfold ulp, scaled_mantissa.
+rewrite canonic_exp_fexp with (1 := Ex).
+unfold F2R. simpl.
+rewrite Rmult_plus_distr_r.
+rewrite Rmult_assoc.
+rewrite <- bpow_plus, Zplus_opp_r, Rmult_1_r.
+change (bpow 0) with (Z2R 1).
+rewrite <- Z2R_plus.
+rewrite Ztrunc_Z2R.
+rewrite Z2R_plus.
+rewrite Rmult_plus_distr_r.
+now rewrite Rmult_1_l.
+rewrite Rabs_pos_eq.
+split.
+apply Rle_trans with (1 := proj1 Ex').
+pattern x at 1 ; rewrite <- Rplus_0_r.
+apply Rplus_le_compat_l.
+apply bpow_ge_0.
+exact H.
+apply Rplus_le_le_0_compat.
+now apply Rlt_le.
+apply bpow_ge_0.
+rewrite H.
+apply generic_format_bpow.
+apply valid_exp.
+destruct (Zle_or_lt ex (fexp ex)) ; trivial.
+elim Rlt_not_le with (1 := Zx).
+rewrite Fx.
+replace (Ztrunc (scaled_mantissa beta fexp x)) with Z0.
+rewrite F2R_0.
+apply Rle_refl.
+unfold scaled_mantissa.
+rewrite canonic_exp_fexp with (1 := Ex).
+destruct (mantissa_small_pos beta fexp x ex) ; trivial.
+rewrite Ztrunc_floor.
+apply sym_eq.
+apply Zfloor_imp.
+split.
+now apply Rlt_le.
+exact H2.
+now apply Rlt_le.
+now apply Rlt_le.
+Qed.
+
+Theorem round_UP_succ :
+ forall x, (0 < x)%R -> F x ->
+ forall eps, (0 < eps <= ulp x)%R ->
+ round beta fexp Zceil (x + eps) = (x + ulp x)%R.
+Proof with auto with typeclass_instances.
+intros x Zx Fx eps (Heps1,[Heps2|Heps2]).
+assert (Heps: (0 <= eps < ulp x)%R).
+split.
+now apply Rlt_le.
+exact Heps2.
+assert (Hd := round_DN_succ x Zx Fx eps Heps).
+rewrite ulp_DN_UP.
+rewrite Hd.
+unfold ulp, canonic_exp.
+now rewrite ln_beta_succ.
+intros Fs.
+rewrite round_generic in Hd...
+apply Rgt_not_eq with (2 := Hd).
+pattern x at 2 ; rewrite <- Rplus_0_r.
+now apply Rplus_lt_compat_l.
+rewrite Heps2.
+apply round_generic...
+now apply generic_format_succ.
+Qed.
+
+Theorem succ_le_lt:
+ forall x y,
+ F x -> F y ->
+ (0 < x < y)%R ->
+ (x + ulp x <= y)%R.
+Proof with auto with typeclass_instances.
+intros x y Hx Hy H.
+case (Rle_or_lt (ulp x) (y-x)); intros H1.
+apply Rplus_le_reg_r with (-x)%R.
+now ring_simplify (x+ulp x + -x)%R.
+replace y with (x+(y-x))%R by ring.
+absurd (x < y)%R.
+2: apply H.
+apply Rle_not_lt; apply Req_le.
+rewrite <- round_DN_succ with (eps:=(y-x)%R); try easy.
+ring_simplify (x+(y-x))%R.
+apply sym_eq.
+apply round_generic...
+split; trivial.
+apply Rlt_le; now apply Rlt_Rminus.
+Qed.
+
+(** Error of a rounding, expressed in number of ulps *)
+Theorem ulp_error :
+ forall rnd { Zrnd : Valid_rnd rnd } x,
+ (Rabs (round beta fexp rnd x - x) < ulp x)%R.
+Proof with auto with typeclass_instances.
+intros rnd Zrnd x.
+destruct (generic_format_EM beta fexp x) as [Hx|Hx].
+(* x = rnd x *)
+rewrite round_generic...
+unfold Rminus.
+rewrite Rplus_opp_r, Rabs_R0.
+apply bpow_gt_0.
+(* x <> rnd x *)
+destruct (round_DN_or_UP beta fexp rnd x) as [H|H] ; rewrite H ; clear H.
+(* . *)
+rewrite Rabs_left1.
+rewrite Ropp_minus_distr.
+apply Rplus_lt_reg_r with (round beta fexp Zfloor x).
+rewrite <- ulp_DN_UP with (1 := Hx).
+ring_simplify.
+assert (Hu: (x <= round beta fexp Zceil x)%R).
+apply round_UP_pt...
+destruct Hu as [Hu|Hu].
+exact Hu.
+elim Hx.
+rewrite Hu.
+apply generic_format_round...
+apply Rle_minus.
+apply round_DN_pt...
+(* . *)
+rewrite Rabs_pos_eq.
+rewrite ulp_DN_UP with (1 := Hx).
+apply Rplus_lt_reg_r with (x - ulp x)%R.
+ring_simplify.
+assert (Hd: (round beta fexp Zfloor x <= x)%R).
+apply round_DN_pt...
+destruct Hd as [Hd|Hd].
+exact Hd.
+elim Hx.
+rewrite <- Hd.
+apply generic_format_round...
+apply Rle_0_minus.
+apply round_UP_pt...
+Qed.
+
+Theorem ulp_half_error :
+ forall choice x,
+ (Rabs (round beta fexp (Znearest choice) x - x) <= /2 * ulp x)%R.
+Proof with auto with typeclass_instances.
+intros choice x.
+destruct (generic_format_EM beta fexp x) as [Hx|Hx].
+(* x = rnd x *)
+rewrite round_generic...
+unfold Rminus.
+rewrite Rplus_opp_r, Rabs_R0.
+apply Rmult_le_pos.
+apply Rlt_le.
+apply Rinv_0_lt_compat.
+now apply (Z2R_lt 0 2).
+apply bpow_ge_0.
+(* x <> rnd x *)
+set (d := round beta fexp Zfloor x).
+destruct (round_N_pt beta fexp choice x) as (Hr1, Hr2).
+destruct (Rle_or_lt (x - d) (d + ulp x - x)) as [H|H].
+(* . rnd(x) = rndd(x) *)
+apply Rle_trans with (Rabs (d - x)).
+apply Hr2.
+apply (round_DN_pt beta fexp x).
+rewrite Rabs_left1.
+rewrite Ropp_minus_distr.
+apply Rmult_le_reg_r with 2%R.
+now apply (Z2R_lt 0 2).
+apply Rplus_le_reg_r with (d - x)%R.
+ring_simplify.
+apply Rle_trans with (1 := H).
+right. field.
+apply Rle_minus.
+apply (round_DN_pt beta fexp x).
+(* . rnd(x) = rndu(x) *)
+assert (Hu: (d + ulp x)%R = round beta fexp Zceil x).
+unfold d.
+now rewrite <- ulp_DN_UP.
+apply Rle_trans with (Rabs (d + ulp x - x)).
+apply Hr2.
+rewrite Hu.
+apply (round_UP_pt beta fexp x).
+rewrite Rabs_pos_eq.
+apply Rmult_le_reg_r with 2%R.
+now apply (Z2R_lt 0 2).
+apply Rplus_le_reg_r with (- (d + ulp x - x))%R.
+ring_simplify.
+apply Rlt_le.
+apply Rlt_le_trans with (1 := H).
+right. field.
+apply Rle_0_minus.
+rewrite Hu.
+apply (round_UP_pt beta fexp x).
+Qed.
+
+Theorem ulp_le :
+ forall { Hm : Monotone_exp fexp },
+ forall x y: R,
+ (0 < x)%R -> (x <= y)%R ->
+ (ulp x <= ulp y)%R.
+Proof.
+intros Hm x y Hx Hxy.
+apply bpow_le.
+apply Hm.
+now apply ln_beta_le.
+Qed.
+
+Theorem ulp_bpow :
+ forall e, ulp (bpow e) = bpow (fexp (e + 1)).
+intros e.
+unfold ulp.
+apply f_equal.
+apply canonic_exp_fexp.
+rewrite Rabs_pos_eq.
+split.
+ring_simplify (e + 1 - 1)%Z.
+apply Rle_refl.
+apply bpow_lt.
+apply Zlt_succ.
+apply bpow_ge_0.
+Qed.
+
+Theorem ulp_DN :
+ forall x,
+ (0 < round beta fexp Zfloor x)%R ->
+ ulp (round beta fexp Zfloor x) = ulp x.
+Proof.
+intros x Hd.
+unfold ulp.
+now rewrite canonic_exp_DN with (2 := Hd).
+Qed.
+
+Theorem ulp_error_f :
+ forall { Hm : Monotone_exp fexp } rnd { Zrnd : Valid_rnd rnd } x,
+ (round beta fexp rnd x <> 0)%R ->
+ (Rabs (round beta fexp rnd x - x) < ulp (round beta fexp rnd x))%R.
+Proof with auto with typeclass_instances.
+intros Hm rnd Zrnd x Hfx.
+case (round_DN_or_UP beta fexp rnd x); intros Hx.
+(* *)
+case (Rle_or_lt 0 (round beta fexp Zfloor x)).
+intros H; destruct H.
+rewrite Hx at 2.
+rewrite ulp_DN; trivial.
+apply ulp_error...
+rewrite Hx in Hfx; contradict Hfx; auto with real.
+intros H.
+apply Rlt_le_trans with (1:=ulp_error _ _).
+rewrite <- (ulp_opp x), <- (ulp_opp (round beta fexp rnd x)).
+apply ulp_le; trivial.
+apply Ropp_0_gt_lt_contravar; apply Rlt_gt.
+case (Rle_or_lt 0 x); trivial.
+intros H1; contradict H.
+apply Rle_not_lt.
+apply round_ge_generic...
+apply generic_format_0.
+apply Ropp_le_contravar; rewrite Hx.
+apply (round_DN_pt beta fexp x).
+(* *)
+rewrite Hx; case (Rle_or_lt 0 (round beta fexp Zceil x)).
+intros H; destruct H.
+apply Rlt_le_trans with (1:=ulp_error _ _).
+apply ulp_le; trivial.
+case (Rle_or_lt x 0); trivial.
+intros H1; contradict H.
+apply Rle_not_lt.
+apply round_le_generic...
+apply generic_format_0.
+apply round_UP_pt...
+rewrite Hx in Hfx; contradict Hfx; auto with real.
+intros H.
+rewrite <- (ulp_opp (round beta fexp Zceil x)).
+rewrite <- round_DN_opp.
+rewrite ulp_DN; trivial.
+replace (round beta fexp Zceil x - x)%R with (-((round beta fexp Zfloor (-x) - (-x))))%R.
+rewrite Rabs_Ropp.
+apply ulp_error...
+rewrite round_DN_opp; ring.
+rewrite round_DN_opp; apply Ropp_0_gt_lt_contravar; apply Rlt_gt; assumption.
+Qed.
+
+Theorem ulp_half_error_f :
+ forall { Hm : Monotone_exp fexp },
+ forall choice x,
+ (round beta fexp (Znearest choice) x <> 0)%R ->
+ (Rabs (round beta fexp (Znearest choice) x - x) <= /2 * ulp (round beta fexp (Znearest choice) x))%R.
+Proof with auto with typeclass_instances.
+intros Hm choice x Hfx.
+case (round_DN_or_UP beta fexp (Znearest choice) x); intros Hx.
+(* *)
+case (Rle_or_lt 0 (round beta fexp Zfloor x)).
+intros H; destruct H.
+rewrite Hx at 2.
+rewrite ulp_DN; trivial.
+apply ulp_half_error.
+rewrite Hx in Hfx; contradict Hfx; auto with real.
+intros H.
+apply Rle_trans with (1:=ulp_half_error _ _).
+apply Rmult_le_compat_l.
+auto with real.
+rewrite <- (ulp_opp x), <- (ulp_opp (round beta fexp (Znearest choice) x)).
+apply ulp_le; trivial.
+apply Ropp_0_gt_lt_contravar; apply Rlt_gt.
+case (Rle_or_lt 0 x); trivial.
+intros H1; contradict H.
+apply Rle_not_lt.
+apply round_ge_generic...
+apply generic_format_0.
+apply Ropp_le_contravar; rewrite Hx.
+apply (round_DN_pt beta fexp x).
+(* *)
+case (Rle_or_lt 0 (round beta fexp Zceil x)).
+intros H; destruct H.
+apply Rle_trans with (1:=ulp_half_error _ _).
+apply Rmult_le_compat_l.
+auto with real.
+apply ulp_le; trivial.
+case (Rle_or_lt x 0); trivial.
+intros H1; contradict H.
+apply Rle_not_lt.
+apply round_le_generic...
+apply generic_format_0.
+rewrite Hx; apply (round_UP_pt beta fexp x).
+rewrite Hx in Hfx; contradict Hfx; auto with real.
+intros H.
+rewrite Hx at 2; rewrite <- (ulp_opp (round beta fexp Zceil x)).
+rewrite <- round_DN_opp.
+rewrite ulp_DN; trivial.
+pattern x at 1 2; rewrite <- Ropp_involutive.
+rewrite round_N_opp.
+unfold Rminus.
+rewrite <- Ropp_plus_distr, Rabs_Ropp.
+apply ulp_half_error.
+rewrite round_DN_opp; apply Ropp_0_gt_lt_contravar; apply Rlt_gt; assumption.
+Qed.
+
+(** Predecessor *)
+Definition pred x :=
+ if Req_bool x (bpow (ln_beta beta x - 1)) then
+ (x - bpow (fexp (ln_beta beta x - 1)))%R
+ else
+ (x - ulp x)%R.
+
+Theorem pred_ge_bpow :
+ forall x e, F x ->
+ x <> ulp x ->
+ (bpow e < x)%R ->
+ (bpow e <= x - ulp x)%R.
+Proof.
+intros x e Fx Hx' Hx.
+(* *)
+assert (1 <= Ztrunc (scaled_mantissa beta fexp x))%Z.
+assert (0 < Ztrunc (scaled_mantissa beta fexp x))%Z.
+apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+rewrite <- Fx.
+apply Rle_lt_trans with (2:=Hx).
+apply bpow_ge_0.
+omega.
+case (Zle_lt_or_eq _ _ H); intros Hm.
+(* *)
+pattern x at 1 ; rewrite Fx.
+unfold ulp, F2R. simpl.
+pattern (bpow (canonic_exp beta fexp x)) at 2 ; rewrite <- Rmult_1_l.
+rewrite <- Rmult_minus_distr_r.
+change 1%R with (Z2R 1).
+rewrite <- Z2R_minus.
+change (bpow e <= F2R (Float beta (Ztrunc (scaled_mantissa beta fexp x) - 1) (canonic_exp beta fexp x)))%R.
+apply bpow_le_F2R_m1; trivial.
+now rewrite <- Fx.
+(* *)
+contradict Hx'.
+pattern x at 1; rewrite Fx.
+rewrite <- Hm.
+unfold ulp, F2R; simpl.
+now rewrite Rmult_1_l.
+Qed.
+
+Lemma generic_format_pred_1:
+ forall x, (0 < x)%R -> F x ->
+ x <> bpow (ln_beta beta x - 1) ->
+ F (x - ulp x).
+Proof.
+intros x Zx Fx Hx.
+destruct (ln_beta beta x) as (ex, Ex).
+simpl in Hx.
+specialize (Ex (Rgt_not_eq _ _ Zx)).
+assert (Ex' : (bpow (ex - 1) < x < bpow ex)%R).
+rewrite Rabs_pos_eq in Ex.
+destruct Ex as (H,H'); destruct H; split; trivial.
+contradict Hx; easy.
+now apply Rlt_le.
+unfold generic_format, scaled_mantissa, canonic_exp.
+rewrite ln_beta_unique with beta (x - ulp x)%R ex.
+pattern x at 1 3 ; rewrite Fx.
+unfold ulp, scaled_mantissa.
+rewrite canonic_exp_fexp with (1 := Ex).
+unfold F2R. simpl.
+rewrite Rmult_minus_distr_r.
+rewrite Rmult_assoc.
+rewrite <- bpow_plus, Zplus_opp_r, Rmult_1_r.
+change (bpow 0) with (Z2R 1).
+rewrite <- Z2R_minus.
+rewrite Ztrunc_Z2R.
+rewrite Z2R_minus.
+rewrite Rmult_minus_distr_r.
+now rewrite Rmult_1_l.
+rewrite Rabs_pos_eq.
+split.
+apply pred_ge_bpow; trivial.
+unfold ulp; intro H.
+assert (ex-1 < canonic_exp beta fexp x < ex)%Z.
+split ; apply (lt_bpow beta) ; rewrite <- H ; easy.
+clear -H0. omega.
+apply Ex'.
+apply Rle_lt_trans with (2 := proj2 Ex').
+pattern x at 3 ; rewrite <- Rplus_0_r.
+apply Rplus_le_compat_l.
+rewrite <-Ropp_0.
+apply Ropp_le_contravar.
+apply bpow_ge_0.
+apply Rle_0_minus.
+pattern x at 2; rewrite Fx.
+unfold ulp, F2R; simpl.
+pattern (bpow (canonic_exp beta fexp x)) at 1; rewrite <- Rmult_1_l.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+replace 1%R with (Z2R 1) by reflexivity.
+apply Z2R_le.
+assert (0 < Ztrunc (scaled_mantissa beta fexp x))%Z.
+apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+rewrite <- Fx.
+apply Rle_lt_trans with (2:=proj1 Ex').
+apply bpow_ge_0.
+omega.
+Qed.
+
+Lemma generic_format_pred_2 :
+ forall x, (0 < x)%R -> F x ->
+ let e := ln_beta_val beta x (ln_beta beta x) in
+ x = bpow (e - 1) ->
+ F (x - bpow (fexp (e - 1))).
+Proof.
+intros x Zx Fx e Hx.
+pose (f:=(x - bpow (fexp (e - 1)))%R).
+fold f.
+assert (He:(fexp (e-1) <= e-1)%Z).
+apply generic_format_bpow_inv with beta; trivial.
+rewrite <- Hx; assumption.
+case (Zle_lt_or_eq _ _ He); clear He; intros He.
+assert (f = F2R (Float beta (Zpower beta (e-1-(fexp (e-1))) -1) (fexp (e-1))))%R.
+unfold f; rewrite Hx.
+unfold F2R; simpl.
+rewrite Z2R_minus, Z2R_Zpower.
+rewrite Rmult_minus_distr_r, Rmult_1_l.
+rewrite <- bpow_plus.
+now replace (e - 1 - fexp (e - 1) + fexp (e - 1))%Z with (e-1)%Z by ring.
+omega.
+rewrite H.
+apply generic_format_F2R.
+intros _.
+apply Zeq_le.
+apply canonic_exp_fexp.
+rewrite <- H.
+unfold f; rewrite Hx.
+rewrite Rabs_right.
+split.
+apply Rplus_le_reg_l with (bpow (fexp (e-1))).
+ring_simplify.
+apply Rle_trans with (bpow (e - 2) + bpow (e - 2))%R.
+apply Rplus_le_compat ; apply bpow_le ; omega.
+apply Rle_trans with (2*bpow (e - 2))%R;[right; ring|idtac].
+apply Rle_trans with (bpow 1*bpow (e - 2))%R.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+replace 2%R with (Z2R 2) by reflexivity.
+replace (bpow 1) with (Z2R beta).
+apply Z2R_le.
+apply <- Zle_is_le_bool.
+now destruct beta.
+simpl.
+unfold Zpower_pos; simpl.
+now rewrite Zmult_1_r.
+rewrite <- bpow_plus.
+replace (1+(e-2))%Z with (e-1)%Z by ring.
+now right.
+rewrite <- Rplus_0_r.
+apply Rplus_lt_compat_l.
+rewrite <- Ropp_0.
+apply Ropp_lt_contravar.
+apply bpow_gt_0.
+apply Rle_ge; apply Rle_0_minus.
+apply bpow_le.
+omega.
+replace f with 0%R.
+apply generic_format_0.
+unfold f.
+rewrite Hx, He.
+ring.
+Qed.
+
+Theorem generic_format_pred :
+ forall x, (0 < x)%R -> F x ->
+ F (pred x).
+Proof.
+intros x Zx Fx.
+unfold pred.
+case Req_bool_spec; intros H.
+now apply generic_format_pred_2.
+now apply generic_format_pred_1.
+Qed.
+
+Theorem generic_format_plus_ulp :
+ forall { monotone_exp : Monotone_exp fexp },
+ forall x, (x <> 0)%R ->
+ F x -> F (x + ulp x).
+Proof with auto with typeclass_instances.
+intros monotone_exp x Zx Fx.
+destruct (Rtotal_order x 0) as [Hx|[Hx|Hx]].
+rewrite <- Ropp_involutive.
+apply generic_format_opp.
+rewrite Ropp_plus_distr, <- ulp_opp.
+apply generic_format_opp in Fx.
+destruct (Req_dec (-x) (bpow (ln_beta beta (-x) - 1))) as [Hx'|Hx'].
+rewrite Hx' in Fx |- *.
+apply generic_format_bpow_inv' in Fx...
+unfold ulp, canonic_exp.
+rewrite ln_beta_bpow.
+revert Fx.
+generalize (ln_beta_val _ _ (ln_beta beta (-x)) - 1)%Z.
+clear -monotone_exp valid_exp.
+intros e He.
+destruct (Zle_lt_or_eq _ _ He) as [He1|He1].
+assert (He2 : e = (e - fexp (e + 1) + fexp (e + 1))%Z) by ring.
+rewrite He2 at 1.
+rewrite bpow_plus.
+assert (Hb := Z2R_Zpower beta _ (Zle_minus_le_0 _ _ He)).
+match goal with |- F (?a * ?b + - ?b) =>
+ replace (a * b + -b)%R with ((a - 1) * b)%R by ring end.
+rewrite <- Hb.
+rewrite <- (Z2R_minus _ 1).
+change (F (F2R (Float beta (Zpower beta (e - fexp (e + 1)) - 1) (fexp (e + 1))))).
+apply generic_format_F2R.
+intros Zb.
+unfold canonic_exp.
+rewrite ln_beta_F2R with (1 := Zb).
+rewrite (ln_beta_unique beta _ (e - fexp (e + 1))).
+apply monotone_exp.
+rewrite <- He2.
+apply Zle_succ.
+rewrite Rabs_pos_eq.
+rewrite Z2R_minus, Hb.
+split.
+apply Rplus_le_reg_r with (- bpow (e - fexp (e + 1) - 1) + Z2R 1)%R.
+apply Rmult_le_reg_r with (bpow (-(e - fexp (e+1) - 1))).
+apply bpow_gt_0.
+ring_simplify.
+apply Rle_trans with R1.
+rewrite Rmult_1_l.
+apply (bpow_le _ _ 0).
+clear -He1 ; omega.
+rewrite Ropp_mult_distr_l_reverse.
+rewrite <- 2!bpow_plus.
+ring_simplify (e - fexp (e + 1) - 1 + - (e - fexp (e + 1) - 1))%Z.
+ring_simplify (- (e - fexp (e + 1) - 1) + (e - fexp (e + 1)))%Z.
+rewrite bpow_1.
+rewrite <- (Z2R_plus (-1) _).
+apply (Z2R_le 1).
+generalize (Zle_bool_imp_le _ _ (radix_prop beta)).
+clear ; omega.
+rewrite <- (Rplus_0_r (bpow (e - fexp (e + 1)))) at 2.
+apply Rplus_lt_compat_l.
+now apply (Z2R_lt (-1) 0).
+rewrite Z2R_minus.
+apply Rle_0_minus.
+rewrite Hb.
+apply (bpow_le _ 0).
+now apply Zle_minus_le_0.
+rewrite He1, Rplus_opp_r.
+apply generic_format_0.
+apply generic_format_pred_1 ; try easy.
+rewrite <- Ropp_0.
+now apply Ropp_lt_contravar.
+now elim Zx.
+now apply generic_format_succ.
+Qed.
+
+Theorem generic_format_minus_ulp :
+ forall { monotone_exp : Monotone_exp fexp },
+ forall x, (x <> 0)%R ->
+ F x -> F (x - ulp x).
+Proof.
+intros monotone_exp x Zx Fx.
+replace (x - ulp x)%R with (-(-x + ulp x))%R by ring.
+apply generic_format_opp.
+rewrite <- ulp_opp.
+apply generic_format_plus_ulp.
+contradict Zx.
+rewrite <- (Ropp_involutive x), Zx.
+apply Ropp_0.
+now apply generic_format_opp.
+Qed.
+
+Lemma pred_plus_ulp_1 :
+ forall x, (0 < x)%R -> F x ->
+ x <> bpow (ln_beta beta x - 1) ->
+ ((x - ulp x) + ulp (x-ulp x) = x)%R.
+Proof.
+intros x Zx Fx Hx.
+replace (ulp (x - ulp x)) with (ulp x).
+ring.
+unfold ulp at 1 2; apply f_equal.
+unfold canonic_exp; apply f_equal.
+destruct (ln_beta beta x) as (ex, Hex).
+simpl in *.
+assert (x <> 0)%R by auto with real.
+specialize (Hex H).
+apply sym_eq.
+apply ln_beta_unique.
+rewrite Rabs_right.
+rewrite Rabs_right in Hex.
+2: apply Rle_ge; apply Rlt_le; easy.
+split.
+destruct Hex as ([H1|H1],H2).
+apply pred_ge_bpow; trivial.
+unfold ulp; intros H3.
+assert (ex-1 < canonic_exp beta fexp x < ex)%Z.
+split ; apply (lt_bpow beta) ; rewrite <- H3 ; easy.
+omega.
+contradict Hx; auto with real.
+apply Rle_lt_trans with (2:=proj2 Hex).
+rewrite <- Rplus_0_r.
+apply Rplus_le_compat_l.
+rewrite <- Ropp_0.
+apply Ropp_le_contravar.
+apply bpow_ge_0.
+apply Rle_ge.
+apply Rle_0_minus.
+pattern x at 2; rewrite Fx.
+unfold ulp, F2R; simpl.
+pattern (bpow (canonic_exp beta fexp x)) at 1; rewrite <- Rmult_1_l.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+replace 1%R with (Z2R (Zsucc 0)) by reflexivity.
+apply Z2R_le.
+apply Zlt_le_succ.
+apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+now rewrite <- Fx.
+Qed.
+
+Lemma pred_plus_ulp_2 :
+ forall x, (0 < x)%R -> F x ->
+ let e := ln_beta_val beta x (ln_beta beta x) in
+ x = bpow (e - 1) ->
+ (x - bpow (fexp (e-1)) <> 0)%R ->
+ ((x - bpow (fexp (e-1))) + ulp (x - bpow (fexp (e-1))) = x)%R.
+Proof.
+intros x Zx Fx e Hxe Zp.
+replace (ulp (x - bpow (fexp (e - 1)))) with (bpow (fexp (e - 1))).
+ring.
+assert (He:(fexp (e-1) <= e-1)%Z).
+apply generic_format_bpow_inv with beta; trivial.
+rewrite <- Hxe; assumption.
+case (Zle_lt_or_eq _ _ He); clear He; intros He.
+(* *)
+unfold ulp; apply f_equal.
+unfold canonic_exp; apply f_equal.
+apply sym_eq.
+apply ln_beta_unique.
+rewrite Rabs_right.
+split.
+apply Rplus_le_reg_l with (bpow (fexp (e-1))).
+ring_simplify.
+apply Rle_trans with (bpow (e - 2) + bpow (e - 2))%R.
+apply Rplus_le_compat; apply bpow_le; omega.
+apply Rle_trans with (2*bpow (e - 2))%R;[right; ring|idtac].
+apply Rle_trans with (bpow 1*bpow (e - 2))%R.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+replace 2%R with (Z2R 2) by reflexivity.
+replace (bpow 1) with (Z2R beta).
+apply Z2R_le.
+apply <- Zle_is_le_bool.
+now destruct beta.
+simpl.
+unfold Zpower_pos; simpl.
+now rewrite Zmult_1_r.
+rewrite <- bpow_plus.
+replace (1+(e-2))%Z with (e-1)%Z by ring.
+now right.
+rewrite <- Rplus_0_r, Hxe.
+apply Rplus_lt_compat_l.
+rewrite <- Ropp_0.
+apply Ropp_lt_contravar.
+apply bpow_gt_0.
+apply Rle_ge; apply Rle_0_minus.
+rewrite Hxe.
+apply bpow_le.
+omega.
+(* *)
+contradict Zp.
+rewrite Hxe, He; ring.
+Qed.
+
+Theorem pred_plus_ulp :
+ forall x, (0 < x)%R -> F x ->
+ (pred x <> 0)%R ->
+ (pred x + ulp (pred x) = x)%R.
+Proof.
+intros x Zx Fx.
+unfold pred.
+case Req_bool_spec; intros H Zp.
+now apply pred_plus_ulp_2.
+now apply pred_plus_ulp_1.
+Qed.
+
+Theorem pred_lt_id :
+ forall x,
+ (pred x < x)%R.
+Proof.
+intros.
+unfold pred.
+case Req_bool_spec; intros H.
+(* *)
+rewrite <- Rplus_0_r.
+apply Rplus_lt_compat_l.
+rewrite <- Ropp_0.
+apply Ropp_lt_contravar.
+apply bpow_gt_0.
+(* *)
+rewrite <- Rplus_0_r.
+apply Rplus_lt_compat_l.
+rewrite <- Ropp_0.
+apply Ropp_lt_contravar.
+apply bpow_gt_0.
+Qed.
+
+Theorem pred_ge_0 :
+ forall x,
+ (0 < x)%R -> F x -> (0 <= pred x)%R.
+intros x Zx Fx.
+unfold pred.
+case Req_bool_spec; intros H.
+(* *)
+apply Rle_0_minus.
+rewrite H.
+apply bpow_le.
+destruct (ln_beta beta x) as (ex,Ex) ; simpl.
+rewrite ln_beta_bpow.
+ring_simplify (ex - 1 + 1 - 1)%Z.
+apply generic_format_bpow_inv with beta; trivial.
+simpl in H.
+rewrite <- H; assumption.
+apply Rle_0_minus.
+now apply ulp_le_id.
+Qed.
+
+Theorem round_UP_pred :
+ forall x, (0 < pred x)%R -> F x ->
+ forall eps, (0 < eps <= ulp (pred x) )%R ->
+ round beta fexp Zceil (pred x + eps) = x.
+Proof.
+intros x Hx Fx eps Heps.
+rewrite round_UP_succ; trivial.
+apply pred_plus_ulp; trivial.
+apply Rlt_trans with (1:=Hx).
+apply pred_lt_id.
+now apply Rgt_not_eq.
+apply generic_format_pred; trivial.
+apply Rlt_trans with (1:=Hx).
+apply pred_lt_id.
+Qed.
+
+Theorem round_DN_pred :
+ forall x, (0 < pred x)%R -> F x ->
+ forall eps, (0 < eps <= ulp (pred x))%R ->
+ round beta fexp Zfloor (x - eps) = pred x.
+Proof.
+intros x Hpx Fx eps Heps.
+assert (Hx:(0 < x)%R).
+apply Rlt_trans with (1:=Hpx).
+apply pred_lt_id.
+replace (x-eps)%R with (pred x + (ulp (pred x)-eps))%R.
+2: pattern x at 3; rewrite <- (pred_plus_ulp x); trivial.
+2: ring.
+2: now apply Rgt_not_eq.
+rewrite round_DN_succ; trivial.
+now apply generic_format_pred.
+split.
+apply Rle_0_minus.
+now apply Heps.
+rewrite <- Rplus_0_r.
+apply Rplus_lt_compat_l.
+rewrite <- Ropp_0.
+apply Ropp_lt_contravar.
+now apply Heps.
+Qed.
+
+Lemma le_pred_lt_aux :
+ forall x y,
+ F x -> F y ->
+ (0 < x < y)%R ->
+ (x <= pred y)%R.
+Proof with auto with typeclass_instances.
+intros x y Hx Hy H.
+assert (Zy:(0 < y)%R).
+apply Rlt_trans with (1:=proj1 H).
+apply H.
+(* *)
+assert (Zp: (0 < pred y)%R).
+assert (Zp:(0 <= pred y)%R).
+apply pred_ge_0 ; trivial.
+destruct Zp; trivial.
+generalize H0.
+unfold pred.
+destruct (ln_beta beta y) as (ey,Hey); simpl.
+case Req_bool_spec; intros Hy2.
+(* . *)
+intros Hy3.
+assert (ey-1 = fexp (ey -1))%Z.
+apply bpow_inj with beta.
+rewrite <- Hy2, <- Rplus_0_l, Hy3.
+ring.
+assert (Zx: (x <> 0)%R).
+now apply Rgt_not_eq.
+destruct (ln_beta beta x) as (ex,Hex).
+specialize (Hex Zx).
+assert (ex <= ey)%Z.
+apply bpow_lt_bpow with beta.
+apply Rle_lt_trans with (1:=proj1 Hex).
+apply Rlt_trans with (Rabs y).
+rewrite 2!Rabs_right.
+apply H.
+now apply Rgt_ge.
+now apply Rgt_ge.
+apply Hey.
+now apply Rgt_not_eq.
+case (Zle_lt_or_eq _ _ H2); intros Hexy.
+assert (fexp ex = fexp (ey-1))%Z.
+apply valid_exp.
+omega.
+rewrite <- H1.
+omega.
+absurd (0 < Ztrunc (scaled_mantissa beta fexp x) < 1)%Z.
+omega.
+split.
+apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+now rewrite <- Hx.
+apply lt_Z2R.
+apply Rmult_lt_reg_r with (bpow (canonic_exp beta fexp x)).
+apply bpow_gt_0.
+replace (Z2R (Ztrunc (scaled_mantissa beta fexp x)) *
+ bpow (canonic_exp beta fexp x))%R with x.
+rewrite Rmult_1_l.
+unfold canonic_exp.
+rewrite ln_beta_unique with beta x ex.
+rewrite H3,<-H1, <- Hy2.
+apply H.
+exact Hex.
+absurd (y <= x)%R.
+now apply Rlt_not_le.
+rewrite Rabs_right in Hex.
+apply Rle_trans with (2:=proj1 Hex).
+rewrite Hexy, Hy2.
+now apply Rle_refl.
+now apply Rgt_ge.
+(* . *)
+intros Hy3.
+assert (y = bpow (fexp ey))%R.
+apply Rminus_diag_uniq.
+rewrite Hy3.
+unfold ulp, canonic_exp.
+rewrite (ln_beta_unique beta y ey); trivial.
+apply Hey.
+now apply Rgt_not_eq.
+contradict Hy2.
+rewrite H1.
+apply f_equal.
+apply Zplus_reg_l with 1%Z.
+ring_simplify.
+apply trans_eq with (ln_beta beta y).
+apply sym_eq; apply ln_beta_unique.
+rewrite H1, Rabs_right.
+split.
+apply bpow_le.
+omega.
+apply bpow_lt.
+omega.
+apply Rle_ge; apply bpow_ge_0.
+apply ln_beta_unique.
+apply Hey.
+now apply Rgt_not_eq.
+(* *)
+case (Rle_or_lt (ulp (pred y)) (y-x)); intros H1.
+(* . *)
+apply Rplus_le_reg_r with (-x + ulp (pred y))%R.
+ring_simplify (x+(-x+ulp (pred y)))%R.
+apply Rle_trans with (1:=H1).
+rewrite <- (pred_plus_ulp y) at 1; trivial.
+apply Req_le; ring.
+now apply Rgt_not_eq.
+(* . *)
+replace x with (y-(y-x))%R by ring.
+rewrite <- round_DN_pred with (eps:=(y-x)%R); try easy.
+ring_simplify (y-(y-x))%R.
+apply Req_le.
+apply sym_eq.
+apply round_generic...
+split; trivial.
+now apply Rlt_Rminus.
+now apply Rlt_le.
+Qed.
+
+Theorem le_pred_lt :
+ forall x y,
+ F x -> F y ->
+ (0 < y)%R ->
+ (x < y)%R ->
+ (x <= pred y)%R.
+Proof.
+intros x y Fx Fy Hy Hxy.
+destruct (Rle_or_lt x 0) as [Hx|Hx].
+apply Rle_trans with (1 := Hx).
+now apply pred_ge_0.
+apply le_pred_lt_aux ; try easy.
+now split.
+Qed.
+
+End Fcore_ulp.