aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/Core/Raux.v
diff options
context:
space:
mode:
Diffstat (limited to 'flocq/Core/Raux.v')
-rw-r--r--flocq/Core/Raux.v2402
1 files changed, 2402 insertions, 0 deletions
diff --git a/flocq/Core/Raux.v b/flocq/Core/Raux.v
new file mode 100644
index 00000000..8273a55b
--- /dev/null
+++ b/flocq/Core/Raux.v
@@ -0,0 +1,2402 @@
+(**
+This file is part of the Flocq formalization of floating-point
+arithmetic in Coq: http://flocq.gforge.inria.fr/
+
+Copyright (C) 2009-2018 Sylvie Boldo
+#<br />#
+Copyright (C) 2009-2018 Guillaume Melquiond
+
+This library is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+This library is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+COPYING file for more details.
+*)
+
+(** * Missing definitions/lemmas *)
+Require Import Psatz.
+Require Export Reals ZArith.
+Require Export Zaux.
+
+Section Rmissing.
+
+(** About R *)
+Theorem Rle_0_minus :
+ forall x y, (x <= y)%R -> (0 <= y - x)%R.
+Proof.
+intros.
+apply Rge_le.
+apply Rge_minus.
+now apply Rle_ge.
+Qed.
+
+Theorem Rabs_eq_Rabs :
+ forall x y : R,
+ Rabs x = Rabs y -> x = y \/ x = Ropp y.
+Proof.
+intros x y H.
+unfold Rabs in H.
+destruct (Rcase_abs x) as [_|_].
+assert (H' := f_equal Ropp H).
+rewrite Ropp_involutive in H'.
+rewrite H'.
+destruct (Rcase_abs y) as [_|_].
+left.
+apply Ropp_involutive.
+now right.
+rewrite H.
+now destruct (Rcase_abs y) as [_|_] ; [right|left].
+Qed.
+
+Theorem Rabs_minus_le:
+ forall x y : R,
+ (0 <= y)%R -> (y <= 2*x)%R ->
+ (Rabs (x-y) <= x)%R.
+Proof.
+intros x y Hx Hy.
+apply Rabs_le.
+lra.
+Qed.
+
+Theorem Rabs_eq_R0 x : (Rabs x = 0 -> x = 0)%R.
+Proof. split_Rabs; lra. Qed.
+
+Theorem Rplus_eq_reg_r :
+ forall r r1 r2 : R,
+ (r1 + r = r2 + r)%R -> (r1 = r2)%R.
+Proof.
+intros r r1 r2 H.
+apply Rplus_eq_reg_l with r.
+now rewrite 2!(Rplus_comm r).
+Qed.
+
+Theorem Rmult_lt_compat :
+ forall r1 r2 r3 r4,
+ (0 <= r1)%R -> (0 <= r3)%R -> (r1 < r2)%R -> (r3 < r4)%R ->
+ (r1 * r3 < r2 * r4)%R.
+Proof.
+intros r1 r2 r3 r4 Pr1 Pr3 H12 H34.
+apply Rle_lt_trans with (r1 * r4)%R.
+- apply Rmult_le_compat_l.
+ + exact Pr1.
+ + now apply Rlt_le.
+- apply Rmult_lt_compat_r.
+ + now apply Rle_lt_trans with r3.
+ + exact H12.
+Qed.
+
+Theorem Rmult_minus_distr_r :
+ forall r r1 r2 : R,
+ ((r1 - r2) * r = r1 * r - r2 * r)%R.
+Proof.
+intros r r1 r2.
+rewrite <- 3!(Rmult_comm r).
+apply Rmult_minus_distr_l.
+Qed.
+
+Lemma Rmult_neq_reg_r :
+ forall r1 r2 r3 : R, (r2 * r1 <> r3 * r1)%R -> r2 <> r3.
+Proof.
+intros r1 r2 r3 H1 H2.
+apply H1; rewrite H2; ring.
+Qed.
+
+Lemma Rmult_neq_compat_r :
+ forall r1 r2 r3 : R,
+ (r1 <> 0)%R -> (r2 <> r3)%R ->
+ (r2 * r1 <> r3 * r1)%R.
+Proof.
+intros r1 r2 r3 H H1 H2.
+now apply H1, Rmult_eq_reg_r with r1.
+Qed.
+
+
+Theorem Rmult_min_distr_r :
+ forall r r1 r2 : R,
+ (0 <= r)%R ->
+ (Rmin r1 r2 * r)%R = Rmin (r1 * r) (r2 * r).
+Proof.
+intros r r1 r2 [Hr|Hr].
+unfold Rmin.
+destruct (Rle_dec r1 r2) as [H1|H1] ;
+ destruct (Rle_dec (r1 * r) (r2 * r)) as [H2|H2] ;
+ try easy.
+apply (f_equal (fun x => Rmult x r)).
+apply Rle_antisym.
+exact H1.
+apply Rmult_le_reg_r with (1 := Hr).
+apply Rlt_le.
+now apply Rnot_le_lt.
+apply Rle_antisym.
+apply Rmult_le_compat_r.
+now apply Rlt_le.
+apply Rlt_le.
+now apply Rnot_le_lt.
+exact H2.
+rewrite <- Hr.
+rewrite 3!Rmult_0_r.
+unfold Rmin.
+destruct (Rle_dec 0 0) as [H0|H0].
+easy.
+elim H0.
+apply Rle_refl.
+Qed.
+
+Theorem Rmult_min_distr_l :
+ forall r r1 r2 : R,
+ (0 <= r)%R ->
+ (r * Rmin r1 r2)%R = Rmin (r * r1) (r * r2).
+Proof.
+intros r r1 r2 Hr.
+rewrite 3!(Rmult_comm r).
+now apply Rmult_min_distr_r.
+Qed.
+
+Lemma Rmin_opp: forall x y, (Rmin (-x) (-y) = - Rmax x y)%R.
+Proof.
+intros x y.
+apply Rmax_case_strong; intros H.
+rewrite Rmin_left; trivial.
+now apply Ropp_le_contravar.
+rewrite Rmin_right; trivial.
+now apply Ropp_le_contravar.
+Qed.
+
+Lemma Rmax_opp: forall x y, (Rmax (-x) (-y) = - Rmin x y)%R.
+Proof.
+intros x y.
+apply Rmin_case_strong; intros H.
+rewrite Rmax_left; trivial.
+now apply Ropp_le_contravar.
+rewrite Rmax_right; trivial.
+now apply Ropp_le_contravar.
+Qed.
+
+Theorem exp_le :
+ forall x y : R,
+ (x <= y)%R -> (exp x <= exp y)%R.
+Proof.
+intros x y [H|H].
+apply Rlt_le.
+now apply exp_increasing.
+rewrite H.
+apply Rle_refl.
+Qed.
+
+Theorem Rinv_lt :
+ forall x y,
+ (0 < x)%R -> (x < y)%R -> (/y < /x)%R.
+Proof.
+intros x y Hx Hxy.
+apply Rinv_lt_contravar.
+apply Rmult_lt_0_compat.
+exact Hx.
+now apply Rlt_trans with x.
+exact Hxy.
+Qed.
+
+Theorem Rinv_le :
+ forall x y,
+ (0 < x)%R -> (x <= y)%R -> (/y <= /x)%R.
+Proof.
+intros x y Hx Hxy.
+apply Rle_Rinv.
+exact Hx.
+now apply Rlt_le_trans with x.
+exact Hxy.
+Qed.
+
+Theorem sqrt_ge_0 :
+ forall x : R,
+ (0 <= sqrt x)%R.
+Proof.
+intros x.
+unfold sqrt.
+destruct (Rcase_abs x) as [_|H].
+apply Rle_refl.
+apply Rsqrt_positivity.
+Qed.
+
+Lemma sqrt_neg : forall x, (x <= 0)%R -> (sqrt x = 0)%R.
+Proof.
+intros x Npx.
+destruct (Req_dec x 0) as [Zx|Nzx].
+- (* x = 0 *)
+ rewrite Zx.
+ exact sqrt_0.
+- (* x < 0 *)
+ unfold sqrt.
+ destruct Rcase_abs.
+ + reflexivity.
+ + casetype False.
+ now apply Nzx, Rle_antisym; [|apply Rge_le].
+Qed.
+
+Lemma Rsqr_le_abs_0_alt :
+ forall x y,
+ (x² <= y² -> x <= Rabs y)%R.
+Proof.
+intros x y H.
+apply (Rle_trans _ (Rabs x)); [apply Rle_abs|apply (Rsqr_le_abs_0 _ _ H)].
+Qed.
+
+Theorem Rabs_le :
+ forall x y,
+ (-y <= x <= y)%R -> (Rabs x <= y)%R.
+Proof.
+intros x y (Hyx,Hxy).
+unfold Rabs.
+case Rcase_abs ; intros Hx.
+apply Ropp_le_cancel.
+now rewrite Ropp_involutive.
+exact Hxy.
+Qed.
+
+Theorem Rabs_le_inv :
+ forall x y,
+ (Rabs x <= y)%R -> (-y <= x <= y)%R.
+Proof.
+intros x y Hxy.
+split.
+apply Rle_trans with (- Rabs x)%R.
+now apply Ropp_le_contravar.
+apply Ropp_le_cancel.
+rewrite Ropp_involutive, <- Rabs_Ropp.
+apply RRle_abs.
+apply Rle_trans with (2 := Hxy).
+apply RRle_abs.
+Qed.
+
+Theorem Rabs_ge :
+ forall x y,
+ (y <= -x \/ x <= y)%R -> (x <= Rabs y)%R.
+Proof.
+intros x y [Hyx|Hxy].
+apply Rle_trans with (-y)%R.
+apply Ropp_le_cancel.
+now rewrite Ropp_involutive.
+rewrite <- Rabs_Ropp.
+apply RRle_abs.
+apply Rle_trans with (1 := Hxy).
+apply RRle_abs.
+Qed.
+
+Theorem Rabs_ge_inv :
+ forall x y,
+ (x <= Rabs y)%R -> (y <= -x \/ x <= y)%R.
+Proof.
+intros x y.
+unfold Rabs.
+case Rcase_abs ; intros Hy Hxy.
+left.
+apply Ropp_le_cancel.
+now rewrite Ropp_involutive.
+now right.
+Qed.
+
+Theorem Rabs_lt :
+ forall x y,
+ (-y < x < y)%R -> (Rabs x < y)%R.
+Proof.
+intros x y (Hyx,Hxy).
+now apply Rabs_def1.
+Qed.
+
+Theorem Rabs_lt_inv :
+ forall x y,
+ (Rabs x < y)%R -> (-y < x < y)%R.
+Proof.
+intros x y H.
+now split ; eapply Rabs_def2.
+Qed.
+
+Theorem Rabs_gt :
+ forall x y,
+ (y < -x \/ x < y)%R -> (x < Rabs y)%R.
+Proof.
+intros x y [Hyx|Hxy].
+rewrite <- Rabs_Ropp.
+apply Rlt_le_trans with (Ropp y).
+apply Ropp_lt_cancel.
+now rewrite Ropp_involutive.
+apply RRle_abs.
+apply Rlt_le_trans with (1 := Hxy).
+apply RRle_abs.
+Qed.
+
+Theorem Rabs_gt_inv :
+ forall x y,
+ (x < Rabs y)%R -> (y < -x \/ x < y)%R.
+Proof.
+intros x y.
+unfold Rabs.
+case Rcase_abs ; intros Hy Hxy.
+left.
+apply Ropp_lt_cancel.
+now rewrite Ropp_involutive.
+now right.
+Qed.
+
+End Rmissing.
+
+Section IZR.
+
+Theorem IZR_le_lt :
+ forall m n p, (m <= n < p)%Z -> (IZR m <= IZR n < IZR p)%R.
+Proof.
+intros m n p (H1, H2).
+split.
+now apply IZR_le.
+now apply IZR_lt.
+Qed.
+
+Theorem le_lt_IZR :
+ forall m n p, (IZR m <= IZR n < IZR p)%R -> (m <= n < p)%Z.
+Proof.
+intros m n p (H1, H2).
+split.
+now apply le_IZR.
+now apply lt_IZR.
+Qed.
+
+Theorem neq_IZR :
+ forall m n, (IZR m <> IZR n)%R -> (m <> n)%Z.
+Proof.
+intros m n H H'.
+apply H.
+now apply f_equal.
+Qed.
+
+End IZR.
+
+(** Decidable comparison on reals *)
+Section Rcompare.
+
+Definition Rcompare x y :=
+ match total_order_T x y with
+ | inleft (left _) => Lt
+ | inleft (right _) => Eq
+ | inright _ => Gt
+ end.
+
+Inductive Rcompare_prop (x y : R) : comparison -> Prop :=
+ | Rcompare_Lt_ : (x < y)%R -> Rcompare_prop x y Lt
+ | Rcompare_Eq_ : x = y -> Rcompare_prop x y Eq
+ | Rcompare_Gt_ : (y < x)%R -> Rcompare_prop x y Gt.
+
+Theorem Rcompare_spec :
+ forall x y, Rcompare_prop x y (Rcompare x y).
+Proof.
+intros x y.
+unfold Rcompare.
+now destruct (total_order_T x y) as [[H|H]|H] ; constructor.
+Qed.
+
+Global Opaque Rcompare.
+
+Theorem Rcompare_Lt :
+ forall x y,
+ (x < y)%R -> Rcompare x y = Lt.
+Proof.
+intros x y H.
+case Rcompare_spec ; intro H'.
+easy.
+rewrite H' in H.
+elim (Rlt_irrefl _ H).
+elim (Rlt_irrefl x).
+now apply Rlt_trans with y.
+Qed.
+
+Theorem Rcompare_Lt_inv :
+ forall x y,
+ Rcompare x y = Lt -> (x < y)%R.
+Proof.
+intros x y.
+now case Rcompare_spec.
+Qed.
+
+Theorem Rcompare_not_Lt :
+ forall x y,
+ (y <= x)%R -> Rcompare x y <> Lt.
+Proof.
+intros x y H1 H2.
+apply Rle_not_lt with (1 := H1).
+now apply Rcompare_Lt_inv.
+Qed.
+
+Theorem Rcompare_not_Lt_inv :
+ forall x y,
+ Rcompare x y <> Lt -> (y <= x)%R.
+Proof.
+intros x y H.
+apply Rnot_lt_le.
+contradict H.
+now apply Rcompare_Lt.
+Qed.
+
+Theorem Rcompare_Eq :
+ forall x y,
+ x = y -> Rcompare x y = Eq.
+Proof.
+intros x y H.
+rewrite H.
+now case Rcompare_spec ; intro H' ; try elim (Rlt_irrefl _ H').
+Qed.
+
+Theorem Rcompare_Eq_inv :
+ forall x y,
+ Rcompare x y = Eq -> x = y.
+Proof.
+intros x y.
+now case Rcompare_spec.
+Qed.
+
+Theorem Rcompare_Gt :
+ forall x y,
+ (y < x)%R -> Rcompare x y = Gt.
+Proof.
+intros x y H.
+case Rcompare_spec ; intro H'.
+elim (Rlt_irrefl x).
+now apply Rlt_trans with y.
+rewrite H' in H.
+elim (Rlt_irrefl _ H).
+easy.
+Qed.
+
+Theorem Rcompare_Gt_inv :
+ forall x y,
+ Rcompare x y = Gt -> (y < x)%R.
+Proof.
+intros x y.
+now case Rcompare_spec.
+Qed.
+
+Theorem Rcompare_not_Gt :
+ forall x y,
+ (x <= y)%R -> Rcompare x y <> Gt.
+Proof.
+intros x y H1 H2.
+apply Rle_not_lt with (1 := H1).
+now apply Rcompare_Gt_inv.
+Qed.
+
+Theorem Rcompare_not_Gt_inv :
+ forall x y,
+ Rcompare x y <> Gt -> (x <= y)%R.
+Proof.
+intros x y H.
+apply Rnot_lt_le.
+contradict H.
+now apply Rcompare_Gt.
+Qed.
+
+Theorem Rcompare_IZR :
+ forall x y, Rcompare (IZR x) (IZR y) = Z.compare x y.
+Proof.
+intros x y.
+case Rcompare_spec ; intros H ; apply sym_eq.
+apply Zcompare_Lt.
+now apply lt_IZR.
+apply Zcompare_Eq.
+now apply eq_IZR.
+apply Zcompare_Gt.
+now apply lt_IZR.
+Qed.
+
+Theorem Rcompare_sym :
+ forall x y,
+ Rcompare x y = CompOpp (Rcompare y x).
+Proof.
+intros x y.
+destruct (Rcompare_spec y x) as [H|H|H].
+now apply Rcompare_Gt.
+now apply Rcompare_Eq.
+now apply Rcompare_Lt.
+Qed.
+
+Lemma Rcompare_opp :
+ forall x y,
+ Rcompare (- x) (- y) = Rcompare y x.
+Proof.
+intros x y.
+destruct (Rcompare_spec y x);
+ destruct (Rcompare_spec (- x) (- y));
+ try reflexivity; exfalso; lra.
+Qed.
+
+Theorem Rcompare_plus_r :
+ forall z x y,
+ Rcompare (x + z) (y + z) = Rcompare x y.
+Proof.
+intros z x y.
+destruct (Rcompare_spec x y) as [H|H|H].
+apply Rcompare_Lt.
+now apply Rplus_lt_compat_r.
+apply Rcompare_Eq.
+now rewrite H.
+apply Rcompare_Gt.
+now apply Rplus_lt_compat_r.
+Qed.
+
+Theorem Rcompare_plus_l :
+ forall z x y,
+ Rcompare (z + x) (z + y) = Rcompare x y.
+Proof.
+intros z x y.
+rewrite 2!(Rplus_comm z).
+apply Rcompare_plus_r.
+Qed.
+
+Theorem Rcompare_mult_r :
+ forall z x y,
+ (0 < z)%R ->
+ Rcompare (x * z) (y * z) = Rcompare x y.
+Proof.
+intros z x y Hz.
+destruct (Rcompare_spec x y) as [H|H|H].
+apply Rcompare_Lt.
+now apply Rmult_lt_compat_r.
+apply Rcompare_Eq.
+now rewrite H.
+apply Rcompare_Gt.
+now apply Rmult_lt_compat_r.
+Qed.
+
+Theorem Rcompare_mult_l :
+ forall z x y,
+ (0 < z)%R ->
+ Rcompare (z * x) (z * y) = Rcompare x y.
+Proof.
+intros z x y.
+rewrite 2!(Rmult_comm z).
+apply Rcompare_mult_r.
+Qed.
+
+Theorem Rcompare_middle :
+ forall x d u,
+ Rcompare (x - d) (u - x) = Rcompare x ((d + u) / 2).
+Proof.
+intros x d u.
+rewrite <- (Rcompare_plus_r (- x / 2 - d / 2) x).
+rewrite <- (Rcompare_mult_r (/2) (x - d)).
+field_simplify (x + (- x / 2 - d / 2))%R.
+now field_simplify ((d + u) / 2 + (- x / 2 - d / 2))%R.
+apply Rinv_0_lt_compat.
+now apply IZR_lt.
+Qed.
+
+Theorem Rcompare_half_l :
+ forall x y, Rcompare (x / 2) y = Rcompare x (2 * y).
+Proof.
+intros x y.
+rewrite <- (Rcompare_mult_r 2%R).
+unfold Rdiv.
+rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
+now rewrite Rmult_comm.
+now apply IZR_neq.
+now apply IZR_lt.
+Qed.
+
+Theorem Rcompare_half_r :
+ forall x y, Rcompare x (y / 2) = Rcompare (2 * x) y.
+Proof.
+intros x y.
+rewrite <- (Rcompare_mult_r 2%R).
+unfold Rdiv.
+rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
+now rewrite Rmult_comm.
+now apply IZR_neq.
+now apply IZR_lt.
+Qed.
+
+Theorem Rcompare_sqr :
+ forall x y,
+ Rcompare (x * x) (y * y) = Rcompare (Rabs x) (Rabs y).
+Proof.
+intros x y.
+destruct (Rcompare_spec (Rabs x) (Rabs y)) as [H|H|H].
+apply Rcompare_Lt.
+now apply Rsqr_lt_abs_1.
+change (Rcompare (Rsqr x) (Rsqr y) = Eq).
+rewrite Rsqr_abs, H, (Rsqr_abs y).
+now apply Rcompare_Eq.
+apply Rcompare_Gt.
+now apply Rsqr_lt_abs_1.
+Qed.
+
+Theorem Rmin_compare :
+ forall x y,
+ Rmin x y = match Rcompare x y with Lt => x | Eq => x | Gt => y end.
+Proof.
+intros x y.
+unfold Rmin.
+destruct (Rle_dec x y) as [[Hx|Hx]|Hx].
+now rewrite Rcompare_Lt.
+now rewrite Rcompare_Eq.
+rewrite Rcompare_Gt.
+easy.
+now apply Rnot_le_lt.
+Qed.
+
+End Rcompare.
+
+Section Rle_bool.
+
+Definition Rle_bool x y :=
+ match Rcompare x y with
+ | Gt => false
+ | _ => true
+ end.
+
+Inductive Rle_bool_prop (x y : R) : bool -> Prop :=
+ | Rle_bool_true_ : (x <= y)%R -> Rle_bool_prop x y true
+ | Rle_bool_false_ : (y < x)%R -> Rle_bool_prop x y false.
+
+Theorem Rle_bool_spec :
+ forall x y, Rle_bool_prop x y (Rle_bool x y).
+Proof.
+intros x y.
+unfold Rle_bool.
+case Rcompare_spec ; constructor.
+now apply Rlt_le.
+rewrite H.
+apply Rle_refl.
+exact H.
+Qed.
+
+Theorem Rle_bool_true :
+ forall x y,
+ (x <= y)%R -> Rle_bool x y = true.
+Proof.
+intros x y Hxy.
+case Rle_bool_spec ; intros H.
+apply refl_equal.
+elim (Rlt_irrefl x).
+now apply Rle_lt_trans with y.
+Qed.
+
+Theorem Rle_bool_false :
+ forall x y,
+ (y < x)%R -> Rle_bool x y = false.
+Proof.
+intros x y Hxy.
+case Rle_bool_spec ; intros H.
+elim (Rlt_irrefl x).
+now apply Rle_lt_trans with y.
+apply refl_equal.
+Qed.
+
+End Rle_bool.
+
+Section Rlt_bool.
+
+Definition Rlt_bool x y :=
+ match Rcompare x y with
+ | Lt => true
+ | _ => false
+ end.
+
+Inductive Rlt_bool_prop (x y : R) : bool -> Prop :=
+ | Rlt_bool_true_ : (x < y)%R -> Rlt_bool_prop x y true
+ | Rlt_bool_false_ : (y <= x)%R -> Rlt_bool_prop x y false.
+
+Theorem Rlt_bool_spec :
+ forall x y, Rlt_bool_prop x y (Rlt_bool x y).
+Proof.
+intros x y.
+unfold Rlt_bool.
+case Rcompare_spec ; constructor.
+exact H.
+rewrite H.
+apply Rle_refl.
+now apply Rlt_le.
+Qed.
+
+Theorem negb_Rlt_bool :
+ forall x y,
+ negb (Rle_bool x y) = Rlt_bool y x.
+Proof.
+intros x y.
+unfold Rlt_bool, Rle_bool.
+rewrite Rcompare_sym.
+now case Rcompare.
+Qed.
+
+Theorem negb_Rle_bool :
+ forall x y,
+ negb (Rlt_bool x y) = Rle_bool y x.
+Proof.
+intros x y.
+unfold Rlt_bool, Rle_bool.
+rewrite Rcompare_sym.
+now case Rcompare.
+Qed.
+
+Theorem Rlt_bool_true :
+ forall x y,
+ (x < y)%R -> Rlt_bool x y = true.
+Proof.
+intros x y Hxy.
+rewrite <- negb_Rlt_bool.
+now rewrite Rle_bool_false.
+Qed.
+
+Theorem Rlt_bool_false :
+ forall x y,
+ (y <= x)%R -> Rlt_bool x y = false.
+Proof.
+intros x y Hxy.
+rewrite <- negb_Rlt_bool.
+now rewrite Rle_bool_true.
+Qed.
+
+Lemma Rlt_bool_opp :
+ forall x y,
+ Rlt_bool (- x) (- y) = Rlt_bool y x.
+Proof.
+intros x y.
+now unfold Rlt_bool; rewrite Rcompare_opp.
+Qed.
+
+End Rlt_bool.
+
+Section Req_bool.
+
+Definition Req_bool x y :=
+ match Rcompare x y with
+ | Eq => true
+ | _ => false
+ end.
+
+Inductive Req_bool_prop (x y : R) : bool -> Prop :=
+ | Req_bool_true_ : (x = y)%R -> Req_bool_prop x y true
+ | Req_bool_false_ : (x <> y)%R -> Req_bool_prop x y false.
+
+Theorem Req_bool_spec :
+ forall x y, Req_bool_prop x y (Req_bool x y).
+Proof.
+intros x y.
+unfold Req_bool.
+case Rcompare_spec ; constructor.
+now apply Rlt_not_eq.
+easy.
+now apply Rgt_not_eq.
+Qed.
+
+Theorem Req_bool_true :
+ forall x y,
+ (x = y)%R -> Req_bool x y = true.
+Proof.
+intros x y Hxy.
+case Req_bool_spec ; intros H.
+apply refl_equal.
+contradict H.
+exact Hxy.
+Qed.
+
+Theorem Req_bool_false :
+ forall x y,
+ (x <> y)%R -> Req_bool x y = false.
+Proof.
+intros x y Hxy.
+case Req_bool_spec ; intros H.
+contradict Hxy.
+exact H.
+apply refl_equal.
+Qed.
+
+End Req_bool.
+
+Section Floor_Ceil.
+
+(** Zfloor and Zceil *)
+Definition Zfloor (x : R) := (up x - 1)%Z.
+
+Theorem Zfloor_lb :
+ forall x : R,
+ (IZR (Zfloor x) <= x)%R.
+Proof.
+intros x.
+unfold Zfloor.
+rewrite minus_IZR.
+simpl.
+apply Rplus_le_reg_r with (1 - x)%R.
+ring_simplify.
+exact (proj2 (archimed x)).
+Qed.
+
+Theorem Zfloor_ub :
+ forall x : R,
+ (x < IZR (Zfloor x) + 1)%R.
+Proof.
+intros x.
+unfold Zfloor.
+rewrite minus_IZR.
+unfold Rminus.
+rewrite Rplus_assoc.
+rewrite Rplus_opp_l, Rplus_0_r.
+exact (proj1 (archimed x)).
+Qed.
+
+Theorem Zfloor_lub :
+ forall n x,
+ (IZR n <= x)%R ->
+ (n <= Zfloor x)%Z.
+Proof.
+intros n x Hnx.
+apply Zlt_succ_le.
+apply lt_IZR.
+apply Rle_lt_trans with (1 := Hnx).
+unfold Z.succ.
+rewrite plus_IZR.
+apply Zfloor_ub.
+Qed.
+
+Theorem Zfloor_imp :
+ forall n x,
+ (IZR n <= x < IZR (n + 1))%R ->
+ Zfloor x = n.
+Proof.
+intros n x Hnx.
+apply Zle_antisym.
+apply Zlt_succ_le.
+apply lt_IZR.
+apply Rle_lt_trans with (2 := proj2 Hnx).
+apply Zfloor_lb.
+now apply Zfloor_lub.
+Qed.
+
+Theorem Zfloor_IZR :
+ forall n,
+ Zfloor (IZR n) = n.
+Proof.
+intros n.
+apply Zfloor_imp.
+split.
+apply Rle_refl.
+apply IZR_lt.
+apply Zlt_succ.
+Qed.
+
+Theorem Zfloor_le :
+ forall x y, (x <= y)%R ->
+ (Zfloor x <= Zfloor y)%Z.
+Proof.
+intros x y Hxy.
+apply Zfloor_lub.
+apply Rle_trans with (2 := Hxy).
+apply Zfloor_lb.
+Qed.
+
+Definition Zceil (x : R) := (- Zfloor (- x))%Z.
+
+Theorem Zceil_ub :
+ forall x : R,
+ (x <= IZR (Zceil x))%R.
+Proof.
+intros x.
+unfold Zceil.
+rewrite opp_IZR.
+apply Ropp_le_cancel.
+rewrite Ropp_involutive.
+apply Zfloor_lb.
+Qed.
+
+Theorem Zceil_glb :
+ forall n x,
+ (x <= IZR n)%R ->
+ (Zceil x <= n)%Z.
+Proof.
+intros n x Hnx.
+unfold Zceil.
+apply Zopp_le_cancel.
+rewrite Z.opp_involutive.
+apply Zfloor_lub.
+rewrite opp_IZR.
+now apply Ropp_le_contravar.
+Qed.
+
+Theorem Zceil_imp :
+ forall n x,
+ (IZR (n - 1) < x <= IZR n)%R ->
+ Zceil x = n.
+Proof.
+intros n x Hnx.
+unfold Zceil.
+rewrite <- (Z.opp_involutive n).
+apply f_equal.
+apply Zfloor_imp.
+split.
+rewrite opp_IZR.
+now apply Ropp_le_contravar.
+rewrite <- (Z.opp_involutive 1).
+rewrite <- Zopp_plus_distr.
+rewrite opp_IZR.
+now apply Ropp_lt_contravar.
+Qed.
+
+Theorem Zceil_IZR :
+ forall n,
+ Zceil (IZR n) = n.
+Proof.
+intros n.
+unfold Zceil.
+rewrite <- opp_IZR, Zfloor_IZR.
+apply Z.opp_involutive.
+Qed.
+
+Theorem Zceil_le :
+ forall x y, (x <= y)%R ->
+ (Zceil x <= Zceil y)%Z.
+Proof.
+intros x y Hxy.
+apply Zceil_glb.
+apply Rle_trans with (1 := Hxy).
+apply Zceil_ub.
+Qed.
+
+Theorem Zceil_floor_neq :
+ forall x : R,
+ (IZR (Zfloor x) <> x)%R ->
+ (Zceil x = Zfloor x + 1)%Z.
+Proof.
+intros x Hx.
+apply Zceil_imp.
+split.
+ring_simplify (Zfloor x + 1 - 1)%Z.
+apply Rnot_le_lt.
+intros H.
+apply Hx.
+apply Rle_antisym.
+apply Zfloor_lb.
+exact H.
+apply Rlt_le.
+rewrite plus_IZR.
+apply Zfloor_ub.
+Qed.
+
+Definition Ztrunc x := if Rlt_bool x 0 then Zceil x else Zfloor x.
+
+Theorem Ztrunc_IZR :
+ forall n,
+ Ztrunc (IZR n) = n.
+Proof.
+intros n.
+unfold Ztrunc.
+case Rlt_bool_spec ; intro H.
+apply Zceil_IZR.
+apply Zfloor_IZR.
+Qed.
+
+Theorem Ztrunc_floor :
+ forall x,
+ (0 <= x)%R ->
+ Ztrunc x = Zfloor x.
+Proof.
+intros x Hx.
+unfold Ztrunc.
+case Rlt_bool_spec ; intro H.
+elim Rlt_irrefl with x.
+now apply Rlt_le_trans with R0.
+apply refl_equal.
+Qed.
+
+Theorem Ztrunc_ceil :
+ forall x,
+ (x <= 0)%R ->
+ Ztrunc x = Zceil x.
+Proof.
+intros x Hx.
+unfold Ztrunc.
+case Rlt_bool_spec ; intro H.
+apply refl_equal.
+rewrite (Rle_antisym _ _ Hx H).
+rewrite Zceil_IZR.
+apply Zfloor_IZR.
+Qed.
+
+Theorem Ztrunc_le :
+ forall x y, (x <= y)%R ->
+ (Ztrunc x <= Ztrunc y)%Z.
+Proof.
+intros x y Hxy.
+unfold Ztrunc at 1.
+case Rlt_bool_spec ; intro Hx.
+unfold Ztrunc.
+case Rlt_bool_spec ; intro Hy.
+now apply Zceil_le.
+apply Z.le_trans with 0%Z.
+apply Zceil_glb.
+now apply Rlt_le.
+now apply Zfloor_lub.
+rewrite Ztrunc_floor.
+now apply Zfloor_le.
+now apply Rle_trans with x.
+Qed.
+
+Theorem Ztrunc_opp :
+ forall x,
+ Ztrunc (- x) = Z.opp (Ztrunc x).
+Proof.
+intros x.
+unfold Ztrunc at 2.
+case Rlt_bool_spec ; intros Hx.
+rewrite Ztrunc_floor.
+apply sym_eq.
+apply Z.opp_involutive.
+rewrite <- Ropp_0.
+apply Ropp_le_contravar.
+now apply Rlt_le.
+rewrite Ztrunc_ceil.
+unfold Zceil.
+now rewrite Ropp_involutive.
+rewrite <- Ropp_0.
+now apply Ropp_le_contravar.
+Qed.
+
+Theorem Ztrunc_abs :
+ forall x,
+ Ztrunc (Rabs x) = Z.abs (Ztrunc x).
+Proof.
+intros x.
+rewrite Ztrunc_floor. 2: apply Rabs_pos.
+unfold Ztrunc.
+case Rlt_bool_spec ; intro H.
+rewrite Rabs_left with (1 := H).
+rewrite Zabs_non_eq.
+apply sym_eq.
+apply Z.opp_involutive.
+apply Zceil_glb.
+now apply Rlt_le.
+rewrite Rabs_pos_eq with (1 := H).
+apply sym_eq.
+apply Z.abs_eq.
+now apply Zfloor_lub.
+Qed.
+
+Theorem Ztrunc_lub :
+ forall n x,
+ (IZR n <= Rabs x)%R ->
+ (n <= Z.abs (Ztrunc x))%Z.
+Proof.
+intros n x H.
+rewrite <- Ztrunc_abs.
+rewrite Ztrunc_floor. 2: apply Rabs_pos.
+now apply Zfloor_lub.
+Qed.
+
+Definition Zaway x := if Rlt_bool x 0 then Zfloor x else Zceil x.
+
+Theorem Zaway_IZR :
+ forall n,
+ Zaway (IZR n) = n.
+Proof.
+intros n.
+unfold Zaway.
+case Rlt_bool_spec ; intro H.
+apply Zfloor_IZR.
+apply Zceil_IZR.
+Qed.
+
+Theorem Zaway_ceil :
+ forall x,
+ (0 <= x)%R ->
+ Zaway x = Zceil x.
+Proof.
+intros x Hx.
+unfold Zaway.
+case Rlt_bool_spec ; intro H.
+elim Rlt_irrefl with x.
+now apply Rlt_le_trans with R0.
+apply refl_equal.
+Qed.
+
+Theorem Zaway_floor :
+ forall x,
+ (x <= 0)%R ->
+ Zaway x = Zfloor x.
+Proof.
+intros x Hx.
+unfold Zaway.
+case Rlt_bool_spec ; intro H.
+apply refl_equal.
+rewrite (Rle_antisym _ _ Hx H).
+rewrite Zfloor_IZR.
+apply Zceil_IZR.
+Qed.
+
+Theorem Zaway_le :
+ forall x y, (x <= y)%R ->
+ (Zaway x <= Zaway y)%Z.
+Proof.
+intros x y Hxy.
+unfold Zaway at 1.
+case Rlt_bool_spec ; intro Hx.
+unfold Zaway.
+case Rlt_bool_spec ; intro Hy.
+now apply Zfloor_le.
+apply le_IZR.
+apply Rle_trans with 0%R.
+apply Rlt_le.
+apply Rle_lt_trans with (2 := Hx).
+apply Zfloor_lb.
+apply Rle_trans with (1 := Hy).
+apply Zceil_ub.
+rewrite Zaway_ceil.
+now apply Zceil_le.
+now apply Rle_trans with x.
+Qed.
+
+Theorem Zaway_opp :
+ forall x,
+ Zaway (- x) = Z.opp (Zaway x).
+Proof.
+intros x.
+unfold Zaway at 2.
+case Rlt_bool_spec ; intro H.
+rewrite Zaway_ceil.
+unfold Zceil.
+now rewrite Ropp_involutive.
+apply Rlt_le.
+now apply Ropp_0_gt_lt_contravar.
+rewrite Zaway_floor.
+apply sym_eq.
+apply Z.opp_involutive.
+rewrite <- Ropp_0.
+now apply Ropp_le_contravar.
+Qed.
+
+Theorem Zaway_abs :
+ forall x,
+ Zaway (Rabs x) = Z.abs (Zaway x).
+Proof.
+intros x.
+rewrite Zaway_ceil. 2: apply Rabs_pos.
+unfold Zaway.
+case Rlt_bool_spec ; intro H.
+rewrite Rabs_left with (1 := H).
+rewrite Zabs_non_eq.
+apply (f_equal (fun v => - Zfloor v)%Z).
+apply Ropp_involutive.
+apply le_IZR.
+apply Rlt_le.
+apply Rle_lt_trans with (2 := H).
+apply Zfloor_lb.
+rewrite Rabs_pos_eq with (1 := H).
+apply sym_eq.
+apply Z.abs_eq.
+apply le_IZR.
+apply Rle_trans with (1 := H).
+apply Zceil_ub.
+Qed.
+
+End Floor_Ceil.
+
+Theorem Rcompare_floor_ceil_middle :
+ forall x,
+ IZR (Zfloor x) <> x ->
+ Rcompare (x - IZR (Zfloor x)) (/ 2) = Rcompare (x - IZR (Zfloor x)) (IZR (Zceil x) - x).
+Proof.
+intros x Hx.
+rewrite Zceil_floor_neq with (1 := Hx).
+rewrite plus_IZR.
+destruct (Rcompare_spec (x - IZR (Zfloor x)) (/ 2)) as [H1|H1|H1] ; apply sym_eq.
+(* . *)
+apply Rcompare_Lt.
+apply Rplus_lt_reg_l with (x - IZR (Zfloor x))%R.
+replace (x - IZR (Zfloor x) + (x - IZR (Zfloor x)))%R with ((x - IZR (Zfloor x)) * 2)%R by ring.
+replace (x - IZR (Zfloor x) + (IZR (Zfloor x) + 1 - x))%R with (/2 * 2)%R by field.
+apply Rmult_lt_compat_r with (2 := H1).
+now apply IZR_lt.
+(* . *)
+apply Rcompare_Eq.
+replace (IZR (Zfloor x) + 1 - x)%R with (1 - (x - IZR (Zfloor x)))%R by ring.
+rewrite H1.
+field.
+(* . *)
+apply Rcompare_Gt.
+apply Rplus_lt_reg_l with (x - IZR (Zfloor x))%R.
+replace (x - IZR (Zfloor x) + (x - IZR (Zfloor x)))%R with ((x - IZR (Zfloor x)) * 2)%R by ring.
+replace (x - IZR (Zfloor x) + (IZR (Zfloor x) + 1 - x))%R with (/2 * 2)%R by field.
+apply Rmult_lt_compat_r with (2 := H1).
+now apply IZR_lt.
+Qed.
+
+Theorem Rcompare_ceil_floor_middle :
+ forall x,
+ IZR (Zfloor x) <> x ->
+ Rcompare (IZR (Zceil x) - x) (/ 2) = Rcompare (IZR (Zceil x) - x) (x - IZR (Zfloor x)).
+Proof.
+intros x Hx.
+rewrite Zceil_floor_neq with (1 := Hx).
+rewrite plus_IZR.
+destruct (Rcompare_spec (IZR (Zfloor x) + 1 - x) (/ 2)) as [H1|H1|H1] ; apply sym_eq.
+(* . *)
+apply Rcompare_Lt.
+apply Rplus_lt_reg_l with (IZR (Zfloor x) + 1 - x)%R.
+replace (IZR (Zfloor x) + 1 - x + (IZR (Zfloor x) + 1 - x))%R with ((IZR (Zfloor x) + 1 - x) * 2)%R by ring.
+replace (IZR (Zfloor x) + 1 - x + (x - IZR (Zfloor x)))%R with (/2 * 2)%R by field.
+apply Rmult_lt_compat_r with (2 := H1).
+now apply IZR_lt.
+(* . *)
+apply Rcompare_Eq.
+replace (x - IZR (Zfloor x))%R with (1 - (IZR (Zfloor x) + 1 - x))%R by ring.
+rewrite H1.
+field.
+(* . *)
+apply Rcompare_Gt.
+apply Rplus_lt_reg_l with (IZR (Zfloor x) + 1 - x)%R.
+replace (IZR (Zfloor x) + 1 - x + (IZR (Zfloor x) + 1 - x))%R with ((IZR (Zfloor x) + 1 - x) * 2)%R by ring.
+replace (IZR (Zfloor x) + 1 - x + (x - IZR (Zfloor x)))%R with (/2 * 2)%R by field.
+apply Rmult_lt_compat_r with (2 := H1).
+now apply IZR_lt.
+Qed.
+
+Section Zdiv_Rdiv.
+
+Theorem Zfloor_div :
+ forall x y,
+ y <> Z0 ->
+ Zfloor (IZR x / IZR y) = (x / y)%Z.
+Proof.
+intros x y Zy.
+generalize (Z_div_mod_eq_full x y Zy).
+intros Hx.
+rewrite Hx at 1.
+assert (Zy': IZR y <> 0%R).
+contradict Zy.
+now apply eq_IZR.
+unfold Rdiv.
+rewrite plus_IZR, Rmult_plus_distr_r, mult_IZR.
+replace (IZR y * IZR (x / y) * / IZR y)%R with (IZR (x / y)) by now field.
+apply Zfloor_imp.
+rewrite plus_IZR.
+assert (0 <= IZR (x mod y) * / IZR y < 1)%R.
+(* *)
+assert (forall x' y', (0 < y')%Z -> 0 <= IZR (x' mod y') * / IZR y' < 1)%R.
+(* . *)
+clear.
+intros x y Hy.
+split.
+apply Rmult_le_pos.
+apply IZR_le.
+refine (proj1 (Z_mod_lt _ _ _)).
+now apply Z.lt_gt.
+apply Rlt_le.
+apply Rinv_0_lt_compat.
+now apply IZR_lt.
+apply Rmult_lt_reg_r with (IZR y).
+now apply IZR_lt.
+rewrite Rmult_1_l, Rmult_assoc, Rinv_l, Rmult_1_r.
+apply IZR_lt.
+eapply Z_mod_lt.
+now apply Z.lt_gt.
+apply Rgt_not_eq.
+now apply IZR_lt.
+(* . *)
+destruct (Z_lt_le_dec y 0) as [Hy|Hy].
+rewrite <- Rmult_opp_opp.
+rewrite Ropp_inv_permute with (1 := Zy').
+rewrite <- 2!opp_IZR.
+rewrite <- Zmod_opp_opp.
+apply H.
+clear -Hy. omega.
+apply H.
+clear -Zy Hy. omega.
+(* *)
+split.
+pattern (IZR (x / y)) at 1 ; rewrite <- Rplus_0_r.
+apply Rplus_le_compat_l.
+apply H.
+apply Rplus_lt_compat_l.
+apply H.
+Qed.
+
+End Zdiv_Rdiv.
+
+Section pow.
+
+Variable r : radix.
+
+Theorem radix_pos : (0 < IZR r)%R.
+Proof.
+destruct r as (v, Hr). simpl.
+apply IZR_lt.
+apply Z.lt_le_trans with 2%Z.
+easy.
+now apply Zle_bool_imp_le.
+Qed.
+
+(** Well-used function called bpow for computing the power function #&beta;#^e *)
+Definition bpow e :=
+ match e with
+ | Zpos p => IZR (Zpower_pos r p)
+ | Zneg p => Rinv (IZR (Zpower_pos r p))
+ | Z0 => 1%R
+ end.
+
+Theorem IZR_Zpower_pos :
+ forall n m,
+ IZR (Zpower_pos n m) = powerRZ (IZR n) (Zpos m).
+Proof.
+intros.
+rewrite Zpower_pos_nat.
+simpl.
+induction (nat_of_P m).
+apply refl_equal.
+unfold Zpower_nat.
+simpl.
+rewrite mult_IZR.
+apply Rmult_eq_compat_l.
+exact IHn0.
+Qed.
+
+Theorem bpow_powerRZ :
+ forall e,
+ bpow e = powerRZ (IZR r) e.
+Proof.
+destruct e ; unfold bpow.
+reflexivity.
+now rewrite IZR_Zpower_pos.
+now rewrite IZR_Zpower_pos.
+Qed.
+
+Theorem bpow_ge_0 :
+ forall e : Z, (0 <= bpow e)%R.
+Proof.
+intros.
+rewrite bpow_powerRZ.
+apply powerRZ_le.
+apply radix_pos.
+Qed.
+
+Theorem bpow_gt_0 :
+ forall e : Z, (0 < bpow e)%R.
+Proof.
+intros.
+rewrite bpow_powerRZ.
+apply powerRZ_lt.
+apply radix_pos.
+Qed.
+
+Theorem bpow_plus :
+ forall e1 e2 : Z, (bpow (e1 + e2) = bpow e1 * bpow e2)%R.
+Proof.
+intros.
+repeat rewrite bpow_powerRZ.
+apply powerRZ_add.
+apply Rgt_not_eq.
+apply radix_pos.
+Qed.
+
+Theorem bpow_1 :
+ bpow 1 = IZR r.
+Proof.
+unfold bpow, Zpower_pos. simpl.
+now rewrite Zmult_1_r.
+Qed.
+
+Theorem bpow_plus_1 :
+ forall e : Z, (bpow (e + 1) = IZR r * bpow e)%R.
+Proof.
+intros.
+rewrite <- bpow_1.
+rewrite <- bpow_plus.
+now rewrite Zplus_comm.
+Qed.
+
+Theorem bpow_opp :
+ forall e : Z, (bpow (-e) = /bpow e)%R.
+Proof.
+intros [|p|p].
+apply eq_sym, Rinv_1.
+now change (-Zpos p)%Z with (Zneg p).
+change (-Zneg p)%Z with (Zpos p).
+simpl; rewrite Rinv_involutive; trivial.
+apply Rgt_not_eq.
+apply (bpow_gt_0 (Zpos p)).
+Qed.
+
+Theorem IZR_Zpower_nat :
+ forall e : nat,
+ IZR (Zpower_nat r e) = bpow (Z_of_nat e).
+Proof.
+intros [|e].
+split.
+rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ.
+rewrite <- Zpower_pos_nat.
+now rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P.
+Qed.
+
+Theorem IZR_Zpower :
+ forall e : Z,
+ (0 <= e)%Z ->
+ IZR (Zpower r e) = bpow e.
+Proof.
+intros [|e|e] H.
+split.
+split.
+now elim H.
+Qed.
+
+Theorem bpow_lt :
+ forall e1 e2 : Z,
+ (e1 < e2)%Z -> (bpow e1 < bpow e2)%R.
+Proof.
+intros e1 e2 H.
+replace e2 with (e1 + (e2 - e1))%Z by ring.
+rewrite <- (Rmult_1_r (bpow e1)).
+rewrite bpow_plus.
+apply Rmult_lt_compat_l.
+apply bpow_gt_0.
+assert (0 < e2 - e1)%Z by omega.
+destruct (e2 - e1)%Z ; try discriminate H0.
+clear.
+rewrite <- IZR_Zpower by easy.
+apply IZR_lt.
+now apply Zpower_gt_1.
+Qed.
+
+Theorem lt_bpow :
+ forall e1 e2 : Z,
+ (bpow e1 < bpow e2)%R -> (e1 < e2)%Z.
+Proof.
+intros e1 e2 H.
+apply Z.gt_lt.
+apply Znot_le_gt.
+intros H'.
+apply Rlt_not_le with (1 := H).
+destruct (Zle_lt_or_eq _ _ H').
+apply Rlt_le.
+now apply bpow_lt.
+rewrite H0.
+apply Rle_refl.
+Qed.
+
+Theorem bpow_le :
+ forall e1 e2 : Z,
+ (e1 <= e2)%Z -> (bpow e1 <= bpow e2)%R.
+Proof.
+intros e1 e2 H.
+apply Rnot_lt_le.
+intros H'.
+apply Zle_not_gt with (1 := H).
+apply Z.lt_gt.
+now apply lt_bpow.
+Qed.
+
+Theorem le_bpow :
+ forall e1 e2 : Z,
+ (bpow e1 <= bpow e2)%R -> (e1 <= e2)%Z.
+Proof.
+intros e1 e2 H.
+apply Znot_gt_le.
+intros H'.
+apply Rle_not_lt with (1 := H).
+apply bpow_lt.
+now apply Z.gt_lt.
+Qed.
+
+Theorem bpow_inj :
+ forall e1 e2 : Z,
+ bpow e1 = bpow e2 -> e1 = e2.
+Proof.
+intros.
+apply Zle_antisym.
+apply le_bpow.
+now apply Req_le.
+apply le_bpow.
+now apply Req_le.
+Qed.
+
+Theorem bpow_exp :
+ forall e : Z,
+ bpow e = exp (IZR e * ln (IZR r)).
+Proof.
+(* positive case *)
+assert (forall e, bpow (Zpos e) = exp (IZR (Zpos e) * ln (IZR r))).
+intros e.
+unfold bpow.
+rewrite Zpower_pos_nat.
+rewrite <- positive_nat_Z.
+rewrite <- INR_IZR_INZ.
+induction (nat_of_P e).
+rewrite Rmult_0_l.
+now rewrite exp_0.
+rewrite Zpower_nat_S.
+rewrite S_INR.
+rewrite Rmult_plus_distr_r.
+rewrite exp_plus.
+rewrite Rmult_1_l.
+rewrite exp_ln.
+rewrite <- IHn.
+rewrite <- mult_IZR.
+now rewrite Zmult_comm.
+apply radix_pos.
+(* general case *)
+intros [|e|e].
+rewrite Rmult_0_l.
+now rewrite exp_0.
+apply H.
+unfold bpow.
+change (IZR (Zpower_pos r e)) with (bpow (Zpos e)).
+rewrite H.
+rewrite <- exp_Ropp.
+rewrite <- Ropp_mult_distr_l_reverse.
+now rewrite <- opp_IZR.
+Qed.
+
+Lemma sqrt_bpow :
+ forall e,
+ sqrt (bpow (2 * e)) = bpow e.
+Proof.
+intro e.
+change 2%Z with (1 + 1)%Z; rewrite Z.mul_add_distr_r, Z.mul_1_l, bpow_plus.
+apply sqrt_square, bpow_ge_0.
+Qed.
+
+Lemma sqrt_bpow_ge :
+ forall e,
+ (bpow (e / 2) <= sqrt (bpow e))%R.
+Proof.
+intro e.
+rewrite <- (sqrt_square (bpow _)); [|now apply bpow_ge_0].
+apply sqrt_le_1_alt; rewrite <- bpow_plus; apply bpow_le.
+now replace (_ + _)%Z with (2 * (e / 2))%Z by ring; apply Z_mult_div_ge.
+Qed.
+
+(** Another well-used function for having the magnitude of a real number x to the base #&beta;# *)
+Record mag_prop x := {
+ mag_val :> Z ;
+ _ : (x <> 0)%R -> (bpow (mag_val - 1)%Z <= Rabs x < bpow mag_val)%R
+}.
+
+Definition mag :
+ forall x : R, mag_prop x.
+Proof.
+intros x.
+set (fact := ln (IZR r)).
+(* . *)
+assert (0 < fact)%R.
+apply exp_lt_inv.
+rewrite exp_0.
+unfold fact.
+rewrite exp_ln.
+apply IZR_lt.
+apply radix_gt_1.
+apply radix_pos.
+(* . *)
+exists (Zfloor (ln (Rabs x) / fact) + 1)%Z.
+intros Hx'.
+generalize (Rabs_pos_lt _ Hx'). clear Hx'.
+generalize (Rabs x). clear x.
+intros x Hx.
+rewrite 2!bpow_exp.
+fold fact.
+pattern x at 2 3 ; replace x with (exp (ln x * / fact * fact)).
+split.
+rewrite minus_IZR.
+apply exp_le.
+apply Rmult_le_compat_r.
+now apply Rlt_le.
+unfold Rminus.
+rewrite plus_IZR.
+rewrite Rplus_assoc.
+rewrite Rplus_opp_r, Rplus_0_r.
+apply Zfloor_lb.
+apply exp_increasing.
+apply Rmult_lt_compat_r.
+exact H.
+rewrite plus_IZR.
+apply Zfloor_ub.
+rewrite Rmult_assoc.
+rewrite Rinv_l.
+rewrite Rmult_1_r.
+now apply exp_ln.
+now apply Rgt_not_eq.
+Qed.
+
+Theorem bpow_lt_bpow :
+ forall e1 e2,
+ (bpow (e1 - 1) < bpow e2)%R ->
+ (e1 <= e2)%Z.
+Proof.
+intros e1 e2 He.
+rewrite (Zsucc_pred e1).
+apply Zlt_le_succ.
+now apply lt_bpow.
+Qed.
+
+Theorem bpow_unique :
+ forall x e1 e2,
+ (bpow (e1 - 1) <= x < bpow e1)%R ->
+ (bpow (e2 - 1) <= x < bpow e2)%R ->
+ e1 = e2.
+Proof.
+intros x e1 e2 (H1a,H1b) (H2a,H2b).
+apply Zle_antisym ;
+ apply bpow_lt_bpow ;
+ apply Rle_lt_trans with x ;
+ assumption.
+Qed.
+
+Theorem mag_unique :
+ forall (x : R) (e : Z),
+ (bpow (e - 1) <= Rabs x < bpow e)%R ->
+ mag x = e :> Z.
+Proof.
+intros x e1 He.
+destruct (Req_dec x 0) as [Hx|Hx].
+elim Rle_not_lt with (1 := proj1 He).
+rewrite Hx, Rabs_R0.
+apply bpow_gt_0.
+destruct (mag x) as (e2, Hx2).
+simpl.
+apply bpow_unique with (2 := He).
+now apply Hx2.
+Qed.
+
+Theorem mag_opp :
+ forall x,
+ mag (-x) = mag x :> Z.
+Proof.
+intros x.
+destruct (Req_dec x 0) as [Hx|Hx].
+now rewrite Hx, Ropp_0.
+destruct (mag x) as (e, He).
+simpl.
+specialize (He Hx).
+apply mag_unique.
+now rewrite Rabs_Ropp.
+Qed.
+
+Theorem mag_abs :
+ forall x,
+ mag (Rabs x) = mag x :> Z.
+Proof.
+intros x.
+unfold Rabs.
+case Rcase_abs ; intros _.
+apply mag_opp.
+apply refl_equal.
+Qed.
+
+Theorem mag_unique_pos :
+ forall (x : R) (e : Z),
+ (bpow (e - 1) <= x < bpow e)%R ->
+ mag x = e :> Z.
+Proof.
+intros x e1 He1.
+rewrite <- mag_abs.
+apply mag_unique.
+rewrite 2!Rabs_pos_eq.
+exact He1.
+apply Rle_trans with (2 := proj1 He1).
+apply bpow_ge_0.
+apply Rabs_pos.
+Qed.
+
+Theorem mag_le_abs :
+ forall x y,
+ (x <> 0)%R -> (Rabs x <= Rabs y)%R ->
+ (mag x <= mag y)%Z.
+Proof.
+intros x y H0x Hxy.
+destruct (mag x) as (ex, Hx).
+destruct (mag y) as (ey, Hy).
+simpl.
+apply bpow_lt_bpow.
+specialize (Hx H0x).
+apply Rle_lt_trans with (1 := proj1 Hx).
+apply Rle_lt_trans with (1 := Hxy).
+apply Hy.
+intros Hy'.
+apply Rlt_not_le with (1 := Rabs_pos_lt _ H0x).
+apply Rle_trans with (1 := Hxy).
+rewrite Hy', Rabs_R0.
+apply Rle_refl.
+Qed.
+
+Theorem mag_le :
+ forall x y,
+ (0 < x)%R -> (x <= y)%R ->
+ (mag x <= mag y)%Z.
+Proof.
+intros x y H0x Hxy.
+apply mag_le_abs.
+now apply Rgt_not_eq.
+rewrite 2!Rabs_pos_eq.
+exact Hxy.
+apply Rle_trans with (2 := Hxy).
+now apply Rlt_le.
+now apply Rlt_le.
+Qed.
+
+Lemma lt_mag :
+ forall x y,
+ (0 < y)%R ->
+ (mag x < mag y)%Z -> (x < y)%R.
+Proof.
+intros x y Py.
+case (Rle_or_lt x 0); intros Px.
+intros H.
+now apply Rle_lt_trans with 0%R.
+destruct (mag x) as (ex, Hex).
+destruct (mag y) as (ey, Hey).
+simpl.
+intro H.
+destruct Hex as (_,Hex); [now apply Rgt_not_eq|].
+destruct Hey as (Hey,_); [now apply Rgt_not_eq|].
+rewrite Rabs_right in Hex; [|now apply Rle_ge; apply Rlt_le].
+rewrite Rabs_right in Hey; [|now apply Rle_ge; apply Rlt_le].
+apply (Rlt_le_trans _ _ _ Hex).
+apply Rle_trans with (bpow (ey - 1)); [|exact Hey].
+now apply bpow_le; omega.
+Qed.
+
+Theorem mag_bpow :
+ forall e, (mag (bpow e) = e + 1 :> Z)%Z.
+Proof.
+intros e.
+apply mag_unique.
+rewrite Rabs_right.
+replace (e + 1 - 1)%Z with e by ring.
+split.
+apply Rle_refl.
+apply bpow_lt.
+apply Zlt_succ.
+apply Rle_ge.
+apply bpow_ge_0.
+Qed.
+
+Theorem mag_mult_bpow :
+ forall x e, x <> 0%R ->
+ (mag (x * bpow e) = mag x + e :>Z)%Z.
+Proof.
+intros x e Zx.
+destruct (mag x) as (ex, Ex) ; simpl.
+specialize (Ex Zx).
+apply mag_unique.
+rewrite Rabs_mult.
+rewrite (Rabs_pos_eq (bpow e)) by apply bpow_ge_0.
+split.
+replace (ex + e - 1)%Z with (ex - 1 + e)%Z by ring.
+rewrite bpow_plus.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+apply Ex.
+rewrite bpow_plus.
+apply Rmult_lt_compat_r.
+apply bpow_gt_0.
+apply Ex.
+Qed.
+
+Theorem mag_le_bpow :
+ forall x e,
+ x <> 0%R ->
+ (Rabs x < bpow e)%R ->
+ (mag x <= e)%Z.
+Proof.
+intros x e Zx Hx.
+destruct (mag x) as (ex, Ex) ; simpl.
+specialize (Ex Zx).
+apply bpow_lt_bpow.
+now apply Rle_lt_trans with (Rabs x).
+Qed.
+
+Theorem mag_gt_bpow :
+ forall x e,
+ (bpow e <= Rabs x)%R ->
+ (e < mag x)%Z.
+Proof.
+intros x e Hx.
+destruct (mag x) as (ex, Ex) ; simpl.
+apply lt_bpow.
+apply Rle_lt_trans with (1 := Hx).
+apply Ex.
+intros Zx.
+apply Rle_not_lt with (1 := Hx).
+rewrite Zx, Rabs_R0.
+apply bpow_gt_0.
+Qed.
+
+Theorem mag_ge_bpow :
+ forall x e,
+ (bpow (e - 1) <= Rabs x)%R ->
+ (e <= mag x)%Z.
+Proof.
+intros x e H.
+destruct (Rlt_or_le (Rabs x) (bpow e)) as [Hxe|Hxe].
+- (* Rabs x w bpow e *)
+ assert (mag x = e :> Z) as Hln.
+ now apply mag_unique; split.
+ rewrite Hln.
+ now apply Z.le_refl.
+- (* bpow e <= Rabs x *)
+ apply Zlt_le_weak.
+ now apply mag_gt_bpow.
+Qed.
+
+Theorem bpow_mag_gt :
+ forall x,
+ (Rabs x < bpow (mag x))%R.
+Proof.
+intros x.
+destruct (Req_dec x 0) as [Zx|Zx].
+rewrite Zx, Rabs_R0.
+apply bpow_gt_0.
+destruct (mag x) as (ex, Ex) ; simpl.
+now apply Ex.
+Qed.
+
+Theorem bpow_mag_le :
+ forall x, (x <> 0)%R ->
+ (bpow (mag x-1) <= Rabs x)%R.
+Proof.
+intros x Hx.
+destruct (mag x) as (ex, Ex) ; simpl.
+now apply Ex.
+Qed.
+
+
+Theorem mag_le_Zpower :
+ forall m e,
+ m <> Z0 ->
+ (Z.abs m < Zpower r e)%Z->
+ (mag (IZR m) <= e)%Z.
+Proof.
+intros m e Zm Hm.
+apply mag_le_bpow.
+now apply IZR_neq.
+destruct (Zle_or_lt 0 e).
+rewrite <- abs_IZR, <- IZR_Zpower with (1 := H).
+now apply IZR_lt.
+elim Zm.
+cut (Z.abs m < 0)%Z.
+now case m.
+clear -Hm H.
+now destruct e.
+Qed.
+
+Theorem mag_gt_Zpower :
+ forall m e,
+ m <> Z0 ->
+ (Zpower r e <= Z.abs m)%Z ->
+ (e < mag (IZR m))%Z.
+Proof.
+intros m e Zm Hm.
+apply mag_gt_bpow.
+rewrite <- abs_IZR.
+destruct (Zle_or_lt 0 e).
+rewrite <- IZR_Zpower with (1 := H).
+now apply IZR_le.
+apply Rle_trans with (bpow 0).
+apply bpow_le.
+now apply Zlt_le_weak.
+apply IZR_le.
+clear -Zm.
+zify ; omega.
+Qed.
+
+Lemma mag_mult :
+ forall x y,
+ (x <> 0)%R -> (y <> 0)%R ->
+ (mag x + mag y - 1 <= mag (x * y) <= mag x + mag y)%Z.
+Proof.
+intros x y Hx Hy.
+destruct (mag x) as (ex, Hx2).
+destruct (mag y) as (ey, Hy2).
+simpl.
+destruct (Hx2 Hx) as (Hx21,Hx22); clear Hx2.
+destruct (Hy2 Hy) as (Hy21,Hy22); clear Hy2.
+assert (Hxy : (bpow (ex + ey - 1 - 1) <= Rabs (x * y))%R).
+{ replace (ex + ey -1 -1)%Z with (ex - 1 + (ey - 1))%Z; [|ring].
+ rewrite bpow_plus.
+ rewrite Rabs_mult.
+ now apply Rmult_le_compat; try apply bpow_ge_0. }
+assert (Hxy2 : (Rabs (x * y) < bpow (ex + ey))%R).
+{ rewrite Rabs_mult.
+ rewrite bpow_plus.
+ apply Rmult_le_0_lt_compat; try assumption.
+ now apply Rle_trans with (bpow (ex - 1)); try apply bpow_ge_0.
+ now apply Rle_trans with (bpow (ey - 1)); try apply bpow_ge_0. }
+split.
+- now apply mag_ge_bpow.
+- apply mag_le_bpow.
+ + now apply Rmult_integral_contrapositive_currified.
+ + assumption.
+Qed.
+
+Lemma mag_plus :
+ forall x y,
+ (0 < y)%R -> (y <= x)%R ->
+ (mag x <= mag (x + y) <= mag x + 1)%Z.
+Proof.
+assert (Hr : (2 <= r)%Z).
+{ destruct r as (beta_val,beta_prop).
+ now apply Zle_bool_imp_le. }
+intros x y Hy Hxy.
+assert (Hx : (0 < x)%R) by apply (Rlt_le_trans _ _ _ Hy Hxy).
+destruct (mag x) as (ex,Hex); simpl.
+destruct Hex as (Hex0,Hex1); [now apply Rgt_not_eq|].
+assert (Haxy : (Rabs (x + y) < bpow (ex + 1))%R).
+{ rewrite bpow_plus_1.
+ apply Rlt_le_trans with (2 * bpow ex)%R.
+ - rewrite Rabs_pos_eq.
+ apply Rle_lt_trans with (2 * Rabs x)%R.
+ + rewrite Rabs_pos_eq.
+ replace (2 * x)%R with (x + x)%R by ring.
+ now apply Rplus_le_compat_l.
+ now apply Rlt_le.
+ + apply Rmult_lt_compat_l with (2 := Hex1).
+ exact Rlt_0_2.
+ + rewrite <- (Rplus_0_l 0).
+ now apply Rlt_le, Rplus_lt_compat.
+ - apply Rmult_le_compat_r.
+ now apply bpow_ge_0.
+ now apply IZR_le. }
+assert (Haxy2 : (bpow (ex - 1) <= Rabs (x + y))%R).
+{ apply (Rle_trans _ _ _ Hex0).
+ rewrite Rabs_right; [|now apply Rgt_ge].
+ apply Rabs_ge; right.
+ rewrite <- (Rplus_0_r x) at 1.
+ apply Rplus_le_compat_l.
+ now apply Rlt_le. }
+split.
+- now apply mag_ge_bpow.
+- apply mag_le_bpow.
+ + now apply tech_Rplus; [apply Rlt_le|].
+ + exact Haxy.
+Qed.
+
+Lemma mag_minus :
+ forall x y,
+ (0 < y)%R -> (y < x)%R ->
+ (mag (x - y) <= mag x)%Z.
+Proof.
+intros x y Py Hxy.
+assert (Px : (0 < x)%R) by apply (Rlt_trans _ _ _ Py Hxy).
+apply mag_le.
+- now apply Rlt_Rminus.
+- rewrite <- (Rplus_0_r x) at 2.
+ apply Rplus_le_compat_l.
+ rewrite <- Ropp_0.
+ now apply Ropp_le_contravar; apply Rlt_le.
+Qed.
+
+Lemma mag_minus_lb :
+ forall x y,
+ (0 < x)%R -> (0 < y)%R ->
+ (mag y <= mag x - 2)%Z ->
+ (mag x - 1 <= mag (x - y))%Z.
+Proof.
+assert (Hbeta : (2 <= r)%Z).
+{ destruct r as (beta_val,beta_prop).
+ now apply Zle_bool_imp_le. }
+intros x y Px Py Hln.
+assert (Oxy : (y < x)%R); [apply lt_mag;[assumption|omega]|].
+destruct (mag x) as (ex,Hex).
+destruct (mag y) as (ey,Hey).
+simpl in Hln |- *.
+destruct Hex as (Hex,_); [now apply Rgt_not_eq|].
+destruct Hey as (_,Hey); [now apply Rgt_not_eq|].
+assert (Hbx : (bpow (ex - 2) + bpow (ex - 2) <= x)%R).
+{ ring_simplify.
+ apply Rle_trans with (bpow (ex - 1)).
+ - replace (ex - 1)%Z with (ex - 2 + 1)%Z by ring.
+ rewrite bpow_plus_1.
+ apply Rmult_le_compat_r; [now apply bpow_ge_0|].
+ now apply IZR_le.
+ - now rewrite Rabs_right in Hex; [|apply Rle_ge; apply Rlt_le]. }
+assert (Hby : (y < bpow (ex - 2))%R).
+{ apply Rlt_le_trans with (bpow ey).
+ now rewrite Rabs_right in Hey; [|apply Rle_ge; apply Rlt_le].
+ now apply bpow_le. }
+assert (Hbxy : (bpow (ex - 2) <= x - y)%R).
+{ apply Ropp_lt_contravar in Hby.
+ apply Rlt_le in Hby.
+ replace (bpow (ex - 2))%R with (bpow (ex - 2) + bpow (ex - 2)
+ - bpow (ex - 2))%R by ring.
+ now apply Rplus_le_compat. }
+apply mag_ge_bpow.
+replace (ex - 1 - 1)%Z with (ex - 2)%Z by ring.
+now apply Rabs_ge; right.
+Qed.
+
+Lemma mag_div :
+ forall x y : R,
+ x <> 0%R -> y <> 0%R ->
+ (mag x - mag y <= mag (x / y) <= mag x - mag y + 1)%Z.
+Proof.
+intros x y Px Py.
+destruct (mag x) as (ex,Hex).
+destruct (mag y) as (ey,Hey).
+simpl.
+unfold Rdiv.
+assert (Heiy : (bpow (- ey) < Rabs (/ y) <= bpow (- ey + 1))%R).
+{ rewrite Rabs_Rinv by easy.
+ split.
+ - rewrite bpow_opp.
+ apply Rinv_lt_contravar.
+ + apply Rmult_lt_0_compat.
+ now apply Rabs_pos_lt.
+ now apply bpow_gt_0.
+ + now apply Hey.
+ - replace (_ + _)%Z with (- (ey - 1))%Z by ring.
+ rewrite bpow_opp.
+ apply Rinv_le; [now apply bpow_gt_0|].
+ now apply Hey. }
+split.
+- apply mag_ge_bpow.
+ replace (_ - _)%Z with (ex - 1 - ey)%Z by ring.
+ unfold Zminus at 1; rewrite bpow_plus.
+ rewrite Rabs_mult.
+ apply Rmult_le_compat.
+ + now apply bpow_ge_0.
+ + now apply bpow_ge_0.
+ + now apply Hex.
+ + now apply Rlt_le; apply Heiy.
+- apply mag_le_bpow.
+ + apply Rmult_integral_contrapositive_currified.
+ exact Px.
+ now apply Rinv_neq_0_compat.
+ + replace (_ + 1)%Z with (ex + (- ey + 1))%Z by ring.
+ rewrite bpow_plus.
+ apply Rlt_le_trans with (bpow ex * Rabs (/ y))%R.
+ * rewrite Rabs_mult.
+ apply Rmult_lt_compat_r.
+ apply Rabs_pos_lt.
+ now apply Rinv_neq_0_compat.
+ now apply Hex.
+ * apply Rmult_le_compat_l; [now apply bpow_ge_0|].
+ apply Heiy.
+Qed.
+
+Lemma mag_sqrt :
+ forall x,
+ (0 < x)%R ->
+ mag (sqrt x) = Z.div2 (mag x + 1) :> Z.
+Proof.
+intros x Px.
+apply mag_unique.
+destruct mag as [e He].
+simpl.
+specialize (He (Rgt_not_eq _ _ Px)).
+rewrite Rabs_pos_eq in He by now apply Rlt_le.
+split.
+- rewrite <- (Rabs_pos_eq (bpow _)) by apply bpow_ge_0.
+ apply Rsqr_le_abs_0.
+ rewrite Rsqr_sqrt by now apply Rlt_le.
+ apply Rle_trans with (2 := proj1 He).
+ unfold Rsqr ; rewrite <- bpow_plus.
+ apply bpow_le.
+ generalize (Zdiv2_odd_eqn (e + 1)).
+ destruct Z.odd ; intros ; omega.
+- rewrite <- (Rabs_pos_eq (bpow _)) by apply bpow_ge_0.
+ apply Rsqr_lt_abs_0.
+ rewrite Rsqr_sqrt by now apply Rlt_le.
+ apply Rlt_le_trans with (1 := proj2 He).
+ unfold Rsqr ; rewrite <- bpow_plus.
+ apply bpow_le.
+ generalize (Zdiv2_odd_eqn (e + 1)).
+ destruct Z.odd ; intros ; omega.
+Qed.
+
+Lemma mag_1 : mag 1 = 1%Z :> Z.
+Proof.
+apply mag_unique_pos; rewrite bpow_1; simpl; split; [now right|apply IZR_lt].
+assert (H := Zle_bool_imp_le _ _ (radix_prop r)); revert H.
+now apply Z.lt_le_trans.
+Qed.
+
+End pow.
+
+Section Bool.
+
+Theorem eqb_sym :
+ forall x y, Bool.eqb x y = Bool.eqb y x.
+Proof.
+now intros [|] [|].
+Qed.
+
+Theorem eqb_false :
+ forall x y, x = negb y -> Bool.eqb x y = false.
+Proof.
+now intros [|] [|].
+Qed.
+
+Theorem eqb_true :
+ forall x y, x = y -> Bool.eqb x y = true.
+Proof.
+now intros [|] [|].
+Qed.
+
+End Bool.
+
+Section cond_Ropp.
+
+Definition cond_Ropp (b : bool) m := if b then Ropp m else m.
+
+Theorem IZR_cond_Zopp :
+ forall b m,
+ IZR (cond_Zopp b m) = cond_Ropp b (IZR m).
+Proof.
+intros [|] m.
+apply opp_IZR.
+apply refl_equal.
+Qed.
+
+Theorem abs_cond_Ropp :
+ forall b m,
+ Rabs (cond_Ropp b m) = Rabs m.
+Proof.
+intros [|] m.
+apply Rabs_Ropp.
+apply refl_equal.
+Qed.
+
+Theorem cond_Ropp_Rlt_bool :
+ forall m,
+ cond_Ropp (Rlt_bool m 0) m = Rabs m.
+Proof.
+intros m.
+apply sym_eq.
+case Rlt_bool_spec ; intros Hm.
+now apply Rabs_left.
+now apply Rabs_pos_eq.
+Qed.
+
+Theorem cond_Ropp_involutive :
+ forall b x,
+ cond_Ropp b (cond_Ropp b x) = x.
+Proof.
+intros [|] x.
+apply Ropp_involutive.
+apply refl_equal.
+Qed.
+
+Theorem cond_Ropp_inj :
+ forall b x y,
+ cond_Ropp b x = cond_Ropp b y -> x = y.
+Proof.
+intros b x y H.
+rewrite <- (cond_Ropp_involutive b x), H.
+apply cond_Ropp_involutive.
+Qed.
+
+Theorem cond_Ropp_mult_l :
+ forall b x y,
+ cond_Ropp b (x * y) = (cond_Ropp b x * y)%R.
+Proof.
+intros [|] x y.
+apply sym_eq.
+apply Ropp_mult_distr_l_reverse.
+apply refl_equal.
+Qed.
+
+Theorem cond_Ropp_mult_r :
+ forall b x y,
+ cond_Ropp b (x * y) = (x * cond_Ropp b y)%R.
+Proof.
+intros [|] x y.
+apply sym_eq.
+apply Ropp_mult_distr_r_reverse.
+apply refl_equal.
+Qed.
+
+Theorem cond_Ropp_plus :
+ forall b x y,
+ cond_Ropp b (x + y) = (cond_Ropp b x + cond_Ropp b y)%R.
+Proof.
+intros [|] x y.
+apply Ropp_plus_distr.
+apply refl_equal.
+Qed.
+
+End cond_Ropp.
+
+
+(** LPO taken from Coquelicot *)
+
+Theorem LPO_min :
+ forall P : nat -> Prop, (forall n, P n \/ ~ P n) ->
+ {n : nat | P n /\ forall i, (i < n)%nat -> ~ P i} + {forall n, ~ P n}.
+Proof.
+assert (Hi: forall n, (0 < INR n + 1)%R).
+ intros N.
+ rewrite <- S_INR.
+ apply lt_0_INR.
+ apply lt_0_Sn.
+intros P HP.
+set (E y := exists n, (P n /\ y = / (INR n + 1))%R \/ (~ P n /\ y = 0)%R).
+assert (HE: forall n, P n -> E (/ (INR n + 1))%R).
+ intros n Pn.
+ exists n.
+ left.
+ now split.
+assert (BE: is_upper_bound E 1).
+ intros x [y [[_ ->]|[_ ->]]].
+ rewrite <- Rinv_1 at 2.
+ apply Rinv_le.
+ exact Rlt_0_1.
+ rewrite <- S_INR.
+ apply (le_INR 1), le_n_S, le_0_n.
+ exact Rle_0_1.
+destruct (completeness E) as [l [ub lub]].
+ now exists 1%R.
+ destruct (HP O) as [H0|H0].
+ exists 1%R.
+ exists O.
+ left.
+ apply (conj H0).
+ rewrite Rplus_0_l.
+ apply sym_eq, Rinv_1.
+ exists 0%R.
+ exists O.
+ right.
+ now split.
+destruct (Rle_lt_dec l 0) as [Hl|Hl].
+ right.
+ intros n Pn.
+ apply Rle_not_lt with (1 := Hl).
+ apply Rlt_le_trans with (/ (INR n + 1))%R.
+ now apply Rinv_0_lt_compat.
+ apply ub.
+ now apply HE.
+left.
+set (N := Z.abs_nat (up (/l) - 2)).
+exists N.
+assert (HN: (INR N + 1 = IZR (up (/ l)) - 1)%R).
+ unfold N.
+ rewrite INR_IZR_INZ.
+ rewrite inj_Zabs_nat.
+ replace (IZR (up (/ l)) - 1)%R with (IZR (up (/ l) - 2) + 1)%R.
+ apply (f_equal (fun v => IZR v + 1)%R).
+ apply Z.abs_eq.
+ apply Zle_minus_le_0.
+ apply (Zlt_le_succ 1).
+ apply lt_IZR.
+ apply Rle_lt_trans with (/l)%R.
+ apply Rmult_le_reg_r with (1 := Hl).
+ rewrite Rmult_1_l, Rinv_l by now apply Rgt_not_eq.
+ apply lub.
+ exact BE.
+ apply archimed.
+ rewrite minus_IZR.
+ simpl.
+ ring.
+assert (H: forall i, (i < N)%nat -> ~ P i).
+ intros i HiN Pi.
+ unfold is_upper_bound in ub.
+ refine (Rle_not_lt _ _ (ub (/ (INR i + 1))%R _) _).
+ now apply HE.
+ rewrite <- (Rinv_involutive l) by now apply Rgt_not_eq.
+ apply Rinv_1_lt_contravar.
+ rewrite <- S_INR.
+ apply (le_INR 1).
+ apply le_n_S.
+ apply le_0_n.
+ apply Rlt_le_trans with (INR N + 1)%R.
+ apply Rplus_lt_compat_r.
+ now apply lt_INR.
+ rewrite HN.
+ apply Rplus_le_reg_r with (-/l + 1)%R.
+ ring_simplify.
+ apply archimed.
+destruct (HP N) as [PN|PN].
+ now split.
+elimtype False.
+refine (Rle_not_lt _ _ (lub (/ (INR (S N) + 1))%R _) _).
+ intros x [y [[Py ->]|[_ ->]]].
+ destruct (eq_nat_dec y N) as [HyN|HyN].
+ elim PN.
+ now rewrite <- HyN.
+ apply Rinv_le.
+ apply Hi.
+ apply Rplus_le_compat_r.
+ apply Rnot_lt_le.
+ intros Hy.
+ refine (H _ _ Py).
+ apply INR_lt in Hy.
+ clear -Hy HyN.
+ omega.
+ now apply Rlt_le, Rinv_0_lt_compat.
+rewrite S_INR, HN.
+ring_simplify (IZR (up (/ l)) - 1 + 1)%R.
+rewrite <- (Rinv_involutive l) at 2 by now apply Rgt_not_eq.
+apply Rinv_1_lt_contravar.
+rewrite <- Rinv_1.
+apply Rinv_le.
+exact Hl.
+now apply lub.
+apply archimed.
+Qed.
+
+Theorem LPO :
+ forall P : nat -> Prop, (forall n, P n \/ ~ P n) ->
+ {n : nat | P n} + {forall n, ~ P n}.
+Proof.
+intros P HP.
+destruct (LPO_min P HP) as [[n [Pn _]]|Pn].
+left.
+now exists n.
+now right.
+Qed.
+
+
+Lemma LPO_Z : forall P : Z -> Prop, (forall n, P n \/ ~P n) ->
+ {n : Z| P n} + {forall n, ~ P n}.
+Proof.
+intros P H.
+destruct (LPO (fun n => P (Z.of_nat n))) as [J|J].
+intros n; apply H.
+destruct J as (n, Hn).
+left; now exists (Z.of_nat n).
+destruct (LPO (fun n => P (-Z.of_nat n)%Z)) as [K|K].
+intros n; apply H.
+destruct K as (n, Hn).
+left; now exists (-Z.of_nat n)%Z.
+right; intros n; case (Zle_or_lt 0 n); intros M.
+rewrite <- (Z.abs_eq n); trivial.
+rewrite <- Zabs2Nat.id_abs.
+apply J.
+rewrite <- (Z.opp_involutive n).
+rewrite <- (Z.abs_neq n).
+rewrite <- Zabs2Nat.id_abs.
+apply K.
+omega.
+Qed.
+
+
+
+(** A little tactic to simplify terms of the form [bpow a * bpow b]. *)
+Ltac bpow_simplify :=
+ (* bpow ex * bpow ey ~~> bpow (ex + ey) *)
+ repeat
+ match goal with
+ | |- context [(bpow _ _ * bpow _ _)] =>
+ rewrite <- bpow_plus
+ | |- context [(?X1 * bpow _ _ * bpow _ _)] =>
+ rewrite (Rmult_assoc X1); rewrite <- bpow_plus
+ | |- context [(?X1 * (?X2 * bpow _ _) * bpow _ _)] =>
+ rewrite <- (Rmult_assoc X1 X2); rewrite (Rmult_assoc (X1 * X2));
+ rewrite <- bpow_plus
+ end;
+ (* ring_simplify arguments of bpow *)
+ repeat
+ match goal with
+ | |- context [(bpow _ ?X)] =>
+ progress ring_simplify X
+ end;
+ (* bpow 0 ~~> 1 *)
+ change (bpow _ 0) with 1;
+ repeat
+ match goal with
+ | |- context [(_ * 1)] =>
+ rewrite Rmult_1_r
+ end.