aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/Prop/Fprop_div_sqrt_error.v
diff options
context:
space:
mode:
Diffstat (limited to 'flocq/Prop/Fprop_div_sqrt_error.v')
-rw-r--r--flocq/Prop/Fprop_div_sqrt_error.v299
1 files changed, 299 insertions, 0 deletions
diff --git a/flocq/Prop/Fprop_div_sqrt_error.v b/flocq/Prop/Fprop_div_sqrt_error.v
new file mode 100644
index 00000000..84a06942
--- /dev/null
+++ b/flocq/Prop/Fprop_div_sqrt_error.v
@@ -0,0 +1,299 @@
+(**
+This file is part of the Flocq formalization of floating-point
+arithmetic in Coq: http://flocq.gforge.inria.fr/
+
+Copyright (C) 2010-2011 Sylvie Boldo
+#<br />#
+Copyright (C) 2010-2011 Guillaume Melquiond
+
+This library is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+This library is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+COPYING file for more details.
+*)
+
+(** * Remainder of the division and square root are in the FLX format *)
+Require Import Fcore.
+Require Import Fcalc_ops.
+Require Import Fprop_relative.
+
+Section Fprop_divsqrt_error.
+
+Variable beta : radix.
+Notation bpow e := (bpow beta e).
+
+Variable prec : Z.
+
+Theorem generic_format_plus_prec:
+ forall fexp, (forall e, (fexp e <= e - prec)%Z) ->
+ forall x y (fx fy: float beta),
+ (x = F2R fx)%R -> (y = F2R fy)%R -> (Rabs (x+y) < bpow (prec+Fexp fx))%R -> (Rabs (x+y) < bpow (prec+Fexp fy))%R
+ -> generic_format beta fexp (x+y)%R.
+intros fexp Hfexp x y fx fy Hx Hy H1 H2.
+case (Req_dec (x+y) 0); intros H.
+rewrite H; apply generic_format_0.
+rewrite Hx, Hy, <- F2R_plus.
+apply generic_format_F2R.
+intros _.
+case_eq (Fplus beta fx fy).
+intros mz ez Hz.
+rewrite <- Hz.
+apply Zle_trans with (Zmin (Fexp fx) (Fexp fy)).
+rewrite F2R_plus, <- Hx, <- Hy.
+unfold canonic_exp.
+apply Zle_trans with (1:=Hfexp _).
+apply Zplus_le_reg_l with prec; ring_simplify.
+apply ln_beta_le_bpow with (1 := H).
+now apply Zmin_case.
+rewrite <- Fexp_Fplus, Hz.
+apply Zle_refl.
+Qed.
+
+Theorem ex_Fexp_canonic: forall fexp, forall x, generic_format beta fexp x
+ -> exists fx:float beta, (x=F2R fx)%R /\ Fexp fx = canonic_exp beta fexp x.
+intros fexp x; unfold generic_format.
+exists (Float beta (Ztrunc (scaled_mantissa beta fexp x)) (canonic_exp beta fexp x)).
+split; auto.
+Qed.
+
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+
+Notation format := (generic_format beta (FLX_exp prec)).
+Notation cexp := (canonic_exp beta (FLX_exp prec)).
+
+Variable choice : Z -> bool.
+
+
+(** Remainder of the division in FLX *)
+Theorem div_error_FLX :
+ forall rnd { Zrnd : Valid_rnd rnd } x y,
+ format x -> format y ->
+ format (x - round beta (FLX_exp prec) rnd (x/y) * y)%R.
+Proof with auto with typeclass_instances.
+intros rnd Zrnd x y Hx Hy.
+destruct (Req_dec y 0) as [Zy|Zy].
+now rewrite Zy, Rmult_0_r, Rminus_0_r.
+destruct (Req_dec (round beta (FLX_exp prec) rnd (x/y)) 0) as [Hr|Hr].
+rewrite Hr; ring_simplify (x-0*y)%R; assumption.
+assert (Zx: x <> R0).
+contradict Hr.
+rewrite Hr.
+unfold Rdiv.
+now rewrite Rmult_0_l, round_0.
+destruct (ex_Fexp_canonic _ x Hx) as (fx,(Hx1,Hx2)).
+destruct (ex_Fexp_canonic _ y Hy) as (fy,(Hy1,Hy2)).
+destruct (ex_Fexp_canonic (FLX_exp prec) (round beta (FLX_exp prec) rnd (x / y))) as (fr,(Hr1,Hr2)).
+apply generic_format_round...
+unfold Rminus; apply generic_format_plus_prec with fx (Fopp beta (Fmult beta fr fy)); trivial.
+intros e; apply Zle_refl.
+now rewrite F2R_opp, F2R_mult, <- Hr1, <- Hy1.
+(* *)
+destruct (relative_error_FLX_ex beta prec (prec_gt_0 prec) rnd (x / y)%R) as (eps,(Heps1,Heps2)).
+apply Rmult_integral_contrapositive_currified.
+exact Zx.
+now apply Rinv_neq_0_compat.
+rewrite Heps2.
+rewrite <- Rabs_Ropp.
+replace (-(x + - (x / y * (1 + eps) * y)))%R with (x * eps)%R by now field.
+rewrite Rabs_mult.
+apply Rlt_le_trans with (Rabs x * 1)%R.
+apply Rmult_lt_compat_l.
+now apply Rabs_pos_lt.
+apply Rlt_le_trans with (1 := Heps1).
+change R1 with (bpow 0).
+apply bpow_le.
+generalize (prec_gt_0 prec).
+clear ; omega.
+rewrite Rmult_1_r.
+rewrite Hx2.
+unfold canonic_exp.
+destruct (ln_beta beta x) as (ex, Hex).
+simpl.
+specialize (Hex Zx).
+apply Rlt_le.
+apply Rlt_le_trans with (1 := proj2 Hex).
+apply bpow_le.
+unfold FLX_exp.
+ring_simplify.
+apply Zle_refl.
+(* *)
+replace (Fexp (Fopp beta (Fmult beta fr fy))) with (Fexp fr + Fexp fy)%Z.
+2: unfold Fopp, Fmult; destruct fr; destruct fy; now simpl.
+replace (x + - (round beta (FLX_exp prec) rnd (x / y) * y))%R with
+ (y * (-(round beta (FLX_exp prec) rnd (x / y) - x/y)))%R.
+2: field; assumption.
+rewrite Rabs_mult.
+apply Rlt_le_trans with (Rabs y * bpow (Fexp fr))%R.
+apply Rmult_lt_compat_l.
+now apply Rabs_pos_lt.
+rewrite Rabs_Ropp.
+replace (bpow (Fexp fr)) with (ulp beta (FLX_exp prec) (F2R fr)).
+rewrite <- Hr1.
+apply ulp_error_f...
+unfold ulp; apply f_equal.
+now rewrite Hr2, <- Hr1.
+replace (prec+(Fexp fr+Fexp fy))%Z with ((prec+Fexp fy)+Fexp fr)%Z by ring.
+rewrite bpow_plus.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+rewrite Hy2; unfold canonic_exp, FLX_exp.
+ring_simplify (prec + (ln_beta beta y - prec))%Z.
+destruct (ln_beta beta y); simpl.
+left; now apply a.
+Qed.
+
+(** Remainder of the square in FLX (with p>1) and rounding to nearest *)
+Variable Hp1 : Zlt 1 prec.
+
+Theorem sqrt_error_FLX_N :
+ forall x, format x ->
+ format (x - Rsqr (round beta (FLX_exp prec) (Znearest choice) (sqrt x)))%R.
+Proof with auto with typeclass_instances.
+intros x Hx.
+destruct (total_order_T x 0) as [[Hxz|Hxz]|Hxz].
+unfold sqrt.
+destruct (Rcase_abs x).
+rewrite round_0...
+unfold Rsqr.
+now rewrite Rmult_0_l, Rminus_0_r.
+elim (Rlt_irrefl 0).
+now apply Rgt_ge_trans with x.
+rewrite Hxz, sqrt_0, round_0...
+unfold Rsqr.
+rewrite Rmult_0_l, Rminus_0_r.
+apply generic_format_0.
+case (Req_dec (round beta (FLX_exp prec) (Znearest choice) (sqrt x)) 0); intros Hr.
+rewrite Hr; unfold Rsqr; ring_simplify (x-0*0)%R; assumption.
+destruct (ex_Fexp_canonic _ x Hx) as (fx,(Hx1,Hx2)).
+destruct (ex_Fexp_canonic (FLX_exp prec) (round beta (FLX_exp prec) (Znearest choice) (sqrt x))) as (fr,(Hr1,Hr2)).
+apply generic_format_round...
+unfold Rminus; apply generic_format_plus_prec with fx (Fopp beta (Fmult beta fr fr)); trivial.
+intros e; apply Zle_refl.
+unfold Rsqr; now rewrite F2R_opp,F2R_mult, <- Hr1.
+(* *)
+apply Rle_lt_trans with x.
+apply Rabs_minus_le.
+apply Rle_0_sqr.
+destruct (relative_error_N_FLX_ex beta prec (prec_gt_0 prec) choice (sqrt x)) as (eps,(Heps1,Heps2)).
+rewrite Heps2.
+rewrite Rsqr_mult, Rsqr_sqrt, Rmult_comm. 2: now apply Rlt_le.
+apply Rmult_le_compat_r.
+now apply Rlt_le.
+apply Rle_trans with (5²/4²)%R.
+rewrite <- Rsqr_div.
+apply Rsqr_le_abs_1.
+apply Rle_trans with (1 := Rabs_triang _ _).
+rewrite Rabs_R1.
+apply Rplus_le_reg_l with (-1)%R.
+rewrite <- Rplus_assoc, Rplus_opp_l, Rplus_0_l.
+apply Rle_trans with (1 := Heps1).
+rewrite Rabs_pos_eq.
+apply Rmult_le_reg_l with 2%R.
+now apply (Z2R_lt 0 2).
+rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l.
+apply Rle_trans with (bpow (-1)).
+apply bpow_le.
+omega.
+replace (2 * (-1 + 5 / 4))%R with (/2)%R by field.
+apply Rinv_le.
+now apply (Z2R_lt 0 2).
+apply (Z2R_le 2).
+unfold Zpower_pos. simpl.
+rewrite Zmult_1_r.
+apply Zle_bool_imp_le.
+apply beta.
+apply Rgt_not_eq.
+now apply (Z2R_lt 0 2).
+unfold Rdiv.
+apply Rmult_le_pos.
+now apply (Z2R_le 0 5).
+apply Rlt_le.
+apply Rinv_0_lt_compat.
+now apply (Z2R_lt 0 4).
+apply Rgt_not_eq.
+now apply (Z2R_lt 0 4).
+unfold Rsqr.
+replace (5 * 5 / (4 * 4))%R with (25 * /16)%R by field.
+apply Rmult_le_reg_r with 16%R.
+now apply (Z2R_lt 0 16).
+rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
+now apply (Z2R_le 25 32).
+apply Rgt_not_eq.
+now apply (Z2R_lt 0 16).
+rewrite Hx2; unfold canonic_exp, FLX_exp.
+ring_simplify (prec + (ln_beta beta x - prec))%Z.
+destruct (ln_beta beta x); simpl.
+rewrite <- (Rabs_right x).
+apply a.
+now apply Rgt_not_eq.
+now apply Rgt_ge.
+(* *)
+replace (Fexp (Fopp beta (Fmult beta fr fr))) with (Fexp fr + Fexp fr)%Z.
+2: unfold Fopp, Fmult; destruct fr; now simpl.
+rewrite Hr1.
+replace (x + - Rsqr (F2R fr))%R with (-((F2R fr - sqrt x)*(F2R fr + sqrt x)))%R.
+2: rewrite <- (sqrt_sqrt x) at 3; auto.
+2: unfold Rsqr; ring.
+rewrite Rabs_Ropp, Rabs_mult.
+apply Rle_lt_trans with ((/2*bpow (Fexp fr))* Rabs (F2R fr + sqrt x))%R.
+apply Rmult_le_compat_r.
+apply Rabs_pos.
+apply Rle_trans with (/2*ulp beta (FLX_exp prec) (F2R fr))%R.
+rewrite <- Hr1.
+apply ulp_half_error_f...
+right; unfold ulp; apply f_equal.
+rewrite Hr2, <- Hr1; trivial.
+rewrite Rmult_assoc, Rmult_comm.
+replace (prec+(Fexp fr+Fexp fr))%Z with (Fexp fr + (prec+Fexp fr))%Z by ring.
+rewrite bpow_plus, Rmult_assoc.
+apply Rmult_lt_compat_l.
+apply bpow_gt_0.
+apply Rmult_lt_reg_l with 2%R.
+auto with real.
+apply Rle_lt_trans with (Rabs (F2R fr + sqrt x)).
+right; field.
+apply Rle_lt_trans with (1:=Rabs_triang _ _).
+(* . *)
+assert (Rabs (F2R fr) < bpow (prec + Fexp fr))%R.
+rewrite Hr2; unfold canonic_exp; rewrite Hr1.
+unfold FLX_exp.
+ring_simplify (prec + (ln_beta beta (F2R fr) - prec))%Z.
+destruct (ln_beta beta (F2R fr)); simpl.
+apply a.
+rewrite <- Hr1; auto.
+(* . *)
+apply Rlt_le_trans with (bpow (prec + Fexp fr)+ Rabs (sqrt x))%R.
+now apply Rplus_lt_compat_r.
+(* . *)
+rewrite Rmult_plus_distr_r, Rmult_1_l.
+apply Rplus_le_compat_l.
+assert (sqrt x <> 0)%R.
+apply Rgt_not_eq.
+now apply sqrt_lt_R0.
+destruct (ln_beta beta (sqrt x)) as (es,Es).
+specialize (Es H0).
+apply Rle_trans with (bpow es).
+now apply Rlt_le.
+apply bpow_le.
+case (Zle_or_lt es (prec + Fexp fr)) ; trivial.
+intros H1.
+absurd (Rabs (F2R fr) < bpow (es - 1))%R.
+apply Rle_not_lt.
+rewrite <- Hr1.
+apply abs_round_ge_generic...
+apply generic_format_bpow.
+unfold FLX_exp; omega.
+apply Es.
+apply Rlt_le_trans with (1:=H).
+apply bpow_le.
+omega.
+now apply Rlt_le.
+Qed.
+
+End Fprop_divsqrt_error.