aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Integers.v
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Integers.v')
-rw-r--r--lib/Integers.v453
1 files changed, 416 insertions, 37 deletions
diff --git a/lib/Integers.v b/lib/Integers.v
index f4213332..3b6c35eb 100644
--- a/lib/Integers.v
+++ b/lib/Integers.v
@@ -668,6 +668,11 @@ Proof.
intros. generalize (eq_spec x y); case (eq x y); intros; congruence.
Qed.
+Theorem same_if_eq: forall x y, eq x y = true -> x = y.
+Proof.
+ intros. generalize (eq_spec x y); rewrite H; auto.
+Qed.
+
Theorem eq_signed:
forall x y, eq x y = if zeq (signed x) (signed y) then true else false.
Proof.
@@ -1139,6 +1144,12 @@ Proof.
intros. apply Ztestbit_above with wordsize; auto. apply unsigned_range.
Qed.
+Lemma bits_below:
+ forall x i, i < 0 -> testbit x i = false.
+Proof.
+ intros. apply Z.testbit_neg_r; auto.
+Qed.
+
Lemma bits_zero:
forall i, testbit zero i = false.
Proof.
@@ -2511,12 +2522,11 @@ Proof.
Qed.
Lemma bits_sign_ext:
- forall n x i, 0 <= i < zwordsize -> 0 < n ->
+ forall n x i, 0 <= i < zwordsize ->
testbit (sign_ext n x) i = testbit x (if zlt i n then i else n - 1).
Proof.
intros. unfold sign_ext.
- rewrite testbit_repr; auto. rewrite Zsign_ext_spec. destruct (zlt i n); auto.
- omega. auto.
+ rewrite testbit_repr; auto. apply Zsign_ext_spec. omega.
Qed.
Hint Rewrite bits_zero_ext bits_sign_ext: ints.
@@ -2528,12 +2538,24 @@ Proof.
rewrite bits_zero_ext. apply zlt_true. omega. omega.
Qed.
+Theorem zero_ext_below:
+ forall n x, n <= 0 -> zero_ext n x = zero.
+Proof.
+ intros. bit_solve. destruct (zlt i n); auto. apply bits_below; omega. omega.
+Qed.
+
Theorem sign_ext_above:
forall n x, n >= zwordsize -> sign_ext n x = x.
Proof.
intros. apply same_bits_eq; intros.
unfold sign_ext; rewrite testbit_repr; auto.
- rewrite Zsign_ext_spec. rewrite zlt_true. auto. omega. omega. omega.
+ rewrite Zsign_ext_spec. rewrite zlt_true. auto. omega. omega.
+Qed.
+
+Theorem sign_ext_below:
+ forall n x, n <= 0 -> sign_ext n x = zero.
+Proof.
+ intros. bit_solve. apply bits_below. destruct (zlt i n); omega.
Qed.
Theorem zero_ext_and:
@@ -2570,7 +2592,7 @@ Proof.
Qed.
Theorem sign_ext_widen:
- forall x n n', 0 < n <= n' ->
+ forall x n n', 0 < n <= n' ->
sign_ext n' (sign_ext n x) = sign_ext n x.
Proof.
intros. destruct (zlt n' zwordsize).
@@ -2578,9 +2600,8 @@ Proof.
auto.
rewrite (zlt_false _ i n).
destruct (zlt (n' - 1) n); f_equal; omega.
- omega. omega.
+ omega.
destruct (zlt i n'); omega.
- omega. omega.
apply sign_ext_above; auto.
Qed.
@@ -2594,7 +2615,6 @@ Proof.
auto.
rewrite !zlt_false. auto. omega. omega. omega.
destruct (zlt i n'); omega.
- omega.
apply sign_ext_above; auto.
Qed.
@@ -2614,9 +2634,7 @@ Theorem sign_ext_narrow:
Proof.
intros. destruct (zlt n zwordsize).
bit_solve. destruct (zlt i n); f_equal; apply zlt_true; omega.
- omega.
destruct (zlt i n); omega.
- omega. omega.
rewrite (sign_ext_above n'). auto. omega.
Qed.
@@ -2628,7 +2646,7 @@ Proof.
bit_solve.
destruct (zlt i n); auto.
rewrite zlt_true; auto. omega.
- omega. omega. omega.
+ omega. omega.
rewrite sign_ext_above; auto.
Qed.
@@ -2643,7 +2661,7 @@ Theorem sign_ext_idem:
Proof.
intros. apply sign_ext_widen. omega.
Qed.
-
+
Theorem sign_ext_zero_ext:
forall n x, 0 < n -> sign_ext n (zero_ext n x) = sign_ext n x.
Proof.
@@ -2671,42 +2689,93 @@ Proof.
rewrite <- (sign_ext_zero_ext n y H). congruence.
Qed.
-Theorem zero_ext_shru_shl:
+Theorem shru_shl:
+ forall x y z, ltu y iwordsize = true -> ltu z iwordsize = true ->
+ shru (shl x y) z =
+ if ltu z y then shl (zero_ext (zwordsize - unsigned y) x) (sub y z)
+ else zero_ext (zwordsize - unsigned z) (shru x (sub z y)).
+Proof.
+ intros. apply ltu_iwordsize_inv in H; apply ltu_iwordsize_inv in H0.
+ unfold ltu. set (Y := unsigned y) in *; set (Z := unsigned z) in *.
+ apply same_bits_eq; intros. rewrite bits_shru by auto. fold Z.
+ destruct (zlt Z Y).
+- assert (A: unsigned (sub y z) = Y - Z).
+ { apply unsigned_repr. generalize wordsize_max_unsigned; omega. }
+ symmetry; rewrite bits_shl, A by omega.
+ destruct (zlt (i + Z) zwordsize).
++ rewrite bits_shl by omega. fold Y.
+ destruct (zlt i (Y - Z)); [rewrite zlt_true by omega|rewrite zlt_false by omega]; auto.
+ rewrite bits_zero_ext by omega. rewrite zlt_true by omega. f_equal; omega.
++ rewrite bits_zero_ext by omega. rewrite ! zlt_false by omega. auto.
+- assert (A: unsigned (sub z y) = Z - Y).
+ { apply unsigned_repr. generalize wordsize_max_unsigned; omega. }
+ rewrite bits_zero_ext, bits_shru, A by omega.
+ destruct (zlt (i + Z) zwordsize); [rewrite zlt_true by omega|rewrite zlt_false by omega]; auto.
+ rewrite bits_shl by omega. fold Y.
+ destruct (zlt (i + Z) Y).
++ rewrite zlt_false by omega. auto.
++ rewrite zlt_true by omega. f_equal; omega.
+Qed.
+
+Corollary zero_ext_shru_shl:
forall n x,
0 < n < zwordsize ->
let y := repr (zwordsize - n) in
zero_ext n x = shru (shl x y) y.
Proof.
intros.
- assert (unsigned y = zwordsize - n).
- unfold y. apply unsigned_repr. generalize wordsize_max_unsigned. omega.
- apply same_bits_eq; intros.
- rewrite bits_zero_ext.
- rewrite bits_shru; auto.
- destruct (zlt i n).
- rewrite zlt_true. rewrite bits_shl. rewrite zlt_false. f_equal. omega.
- omega. omega. omega.
- rewrite zlt_false. auto. omega.
- omega.
-Qed.
-
-Theorem sign_ext_shr_shl:
+ assert (A: unsigned y = zwordsize - n).
+ { unfold y. apply unsigned_repr. generalize wordsize_max_unsigned. omega. }
+ assert (B: ltu y iwordsize = true).
+ { unfold ltu; rewrite A, unsigned_repr_wordsize. apply zlt_true; omega. }
+ rewrite shru_shl by auto. unfold ltu; rewrite zlt_false by omega.
+ rewrite sub_idem, shru_zero. f_equal. rewrite A; omega.
+Qed.
+
+Theorem shr_shl:
+ forall x y z, ltu y iwordsize = true -> ltu z iwordsize = true ->
+ shr (shl x y) z =
+ if ltu z y then shl (sign_ext (zwordsize - unsigned y) x) (sub y z)
+ else sign_ext (zwordsize - unsigned z) (shr x (sub z y)).
+Proof.
+ intros. apply ltu_iwordsize_inv in H; apply ltu_iwordsize_inv in H0.
+ unfold ltu. set (Y := unsigned y) in *; set (Z := unsigned z) in *.
+ apply same_bits_eq; intros. rewrite bits_shr by auto. fold Z.
+ rewrite bits_shl by (destruct (zlt (i + Z) zwordsize); omega). fold Y.
+ destruct (zlt Z Y).
+- assert (A: unsigned (sub y z) = Y - Z).
+ { apply unsigned_repr. generalize wordsize_max_unsigned; omega. }
+ rewrite bits_shl, A by omega.
+ destruct (zlt i (Y - Z)).
++ apply zlt_true. destruct (zlt (i + Z) zwordsize); omega.
++ rewrite zlt_false by (destruct (zlt (i + Z) zwordsize); omega).
+ rewrite bits_sign_ext by omega. f_equal.
+ destruct (zlt (i + Z) zwordsize).
+ rewrite zlt_true by omega. omega.
+ rewrite zlt_false by omega. omega.
+- assert (A: unsigned (sub z y) = Z - Y).
+ { apply unsigned_repr. generalize wordsize_max_unsigned; omega. }
+ rewrite bits_sign_ext by omega.
+ rewrite bits_shr by (destruct (zlt i (zwordsize - Z)); omega).
+ rewrite A. rewrite zlt_false by (destruct (zlt (i + Z) zwordsize); omega).
+ f_equal. destruct (zlt i (zwordsize - Z)).
++ rewrite ! zlt_true by omega. omega.
++ rewrite ! zlt_false by omega. rewrite zlt_true by omega. omega.
+Qed.
+
+Corollary sign_ext_shr_shl:
forall n x,
0 < n < zwordsize ->
let y := repr (zwordsize - n) in
sign_ext n x = shr (shl x y) y.
Proof.
intros.
- assert (unsigned y = zwordsize - n).
- unfold y. apply unsigned_repr. generalize wordsize_max_unsigned. omega.
- apply same_bits_eq; intros.
- rewrite bits_sign_ext.
- rewrite bits_shr; auto.
- destruct (zlt i n).
- rewrite zlt_true. rewrite bits_shl. rewrite zlt_false. f_equal. omega.
- omega. omega. omega.
- rewrite zlt_false. rewrite bits_shl. rewrite zlt_false. f_equal. omega.
- omega. omega. omega. omega. omega.
+ assert (A: unsigned y = zwordsize - n).
+ { unfold y. apply unsigned_repr. generalize wordsize_max_unsigned. omega. }
+ assert (B: ltu y iwordsize = true).
+ { unfold ltu; rewrite A, unsigned_repr_wordsize. apply zlt_true; omega. }
+ rewrite shr_shl by auto. unfold ltu; rewrite zlt_false by omega.
+ rewrite sub_idem, shr_zero. f_equal. rewrite A; omega.
Qed.
(** [zero_ext n x] is the unique integer congruent to [x] modulo [2^n]
@@ -2766,7 +2835,7 @@ Proof.
apply eqmod_same_bits; intros.
rewrite H0 in H1. rewrite H0.
fold (testbit (sign_ext n x) i). rewrite bits_sign_ext.
- rewrite zlt_true. auto. omega. omega. omega.
+ rewrite zlt_true. auto. omega. omega.
Qed.
Lemma eqmod_sign_ext:
@@ -2781,6 +2850,132 @@ Proof.
apply eqmod_sign_ext'; auto.
Qed.
+(** Combinations of shifts and zero/sign extensions *)
+
+Lemma shl_zero_ext:
+ forall n m x, 0 <= n ->
+ shl (zero_ext n x) m = zero_ext (n + unsigned m) (shl x m).
+Proof.
+ intros. apply same_bits_eq; intros.
+ rewrite bits_zero_ext, ! bits_shl by omega.
+ destruct (zlt i (unsigned m)).
+- rewrite zlt_true by omega; auto.
+- rewrite bits_zero_ext by omega.
+ destruct (zlt (i - unsigned m) n); [rewrite zlt_true by omega|rewrite zlt_false by omega]; auto.
+Qed.
+
+Lemma shl_sign_ext:
+ forall n m x, 0 < n ->
+ shl (sign_ext n x) m = sign_ext (n + unsigned m) (shl x m).
+Proof.
+ intros. generalize (unsigned_range m); intros.
+ apply same_bits_eq; intros.
+ rewrite bits_sign_ext, ! bits_shl by omega.
+ destruct (zlt i (n + unsigned m)).
+- rewrite bits_shl by auto. destruct (zlt i (unsigned m)); auto.
+ rewrite bits_sign_ext by omega. f_equal. apply zlt_true. omega.
+- rewrite zlt_false by omega. rewrite bits_shl by omega. rewrite zlt_false by omega.
+ rewrite bits_sign_ext by omega. f_equal. rewrite zlt_false by omega. omega.
+Qed.
+
+Lemma shru_zero_ext:
+ forall n m x, 0 <= n ->
+ shru (zero_ext (n + unsigned m) x) m = zero_ext n (shru x m).
+Proof.
+ intros. bit_solve.
+- destruct (zlt (i + unsigned m) zwordsize).
+* destruct (zlt i n); [rewrite zlt_true by omega|rewrite zlt_false by omega]; auto.
+* destruct (zlt i n); auto.
+- generalize (unsigned_range m); omega.
+- omega.
+Qed.
+
+Lemma shru_zero_ext_0:
+ forall n m x, n <= unsigned m ->
+ shru (zero_ext n x) m = zero.
+Proof.
+ intros. bit_solve.
+- destruct (zlt (i + unsigned m) zwordsize); auto.
+ apply zlt_false. omega.
+- generalize (unsigned_range m); omega.
+Qed.
+
+Lemma shr_sign_ext:
+ forall n m x, 0 < n -> n + unsigned m < zwordsize ->
+ shr (sign_ext (n + unsigned m) x) m = sign_ext n (shr x m).
+Proof.
+ intros. generalize (unsigned_range m); intros.
+ apply same_bits_eq; intros.
+ rewrite bits_sign_ext, bits_shr by auto.
+ rewrite bits_sign_ext, bits_shr.
+- f_equal.
+ destruct (zlt i n), (zlt (i + unsigned m) zwordsize).
++ apply zlt_true; omega.
++ apply zlt_true; omega.
++ rewrite zlt_false by omega. rewrite zlt_true by omega. omega.
++ rewrite zlt_false by omega. rewrite zlt_true by omega. omega.
+- destruct (zlt i n); omega.
+- destruct (zlt (i + unsigned m) zwordsize); omega.
+Qed.
+
+Lemma zero_ext_shru_min:
+ forall s x n, ltu n iwordsize = true ->
+ zero_ext s (shru x n) = zero_ext (Z.min s (zwordsize - unsigned n)) (shru x n).
+Proof.
+ intros. apply ltu_iwordsize_inv in H.
+ apply Z.min_case_strong; intros; auto.
+ bit_solve; try omega.
+ destruct (zlt i (zwordsize - unsigned n)).
+ rewrite zlt_true by omega. auto.
+ destruct (zlt i s); auto. rewrite zlt_false by omega; auto.
+Qed.
+
+Lemma sign_ext_shr_min:
+ forall s x n, ltu n iwordsize = true ->
+ sign_ext s (shr x n) = sign_ext (Z.min s (zwordsize - unsigned n)) (shr x n).
+Proof.
+ intros. apply ltu_iwordsize_inv in H.
+ rewrite Z.min_comm.
+ destruct (Z.min_spec (zwordsize - unsigned n) s) as [[A B] | [A B]]; rewrite B; auto.
+ apply same_bits_eq; intros. rewrite ! bits_sign_ext by auto.
+ destruct (zlt i (zwordsize - unsigned n)).
+ rewrite zlt_true by omega. auto.
+ assert (C: testbit (shr x n) (zwordsize - unsigned n - 1) = testbit x (zwordsize - 1)).
+ { rewrite bits_shr by omega. rewrite zlt_true by omega. f_equal; omega. }
+ rewrite C. destruct (zlt i s); rewrite bits_shr by omega.
+ rewrite zlt_false by omega. auto.
+ rewrite zlt_false by omega. auto.
+Qed.
+
+Lemma shl_zero_ext_min:
+ forall s x n, ltu n iwordsize = true ->
+ shl (zero_ext s x) n = shl (zero_ext (Z.min s (zwordsize - unsigned n)) x) n.
+Proof.
+ intros. apply ltu_iwordsize_inv in H.
+ apply Z.min_case_strong; intros; auto.
+ apply same_bits_eq; intros. rewrite ! bits_shl by auto.
+ destruct (zlt i (unsigned n)); auto.
+ rewrite ! bits_zero_ext by omega.
+ destruct (zlt (i - unsigned n) s).
+ rewrite zlt_true by omega; auto.
+ rewrite zlt_false by omega; auto.
+Qed.
+
+Lemma shl_sign_ext_min:
+ forall s x n, ltu n iwordsize = true ->
+ shl (sign_ext s x) n = shl (sign_ext (Z.min s (zwordsize - unsigned n)) x) n.
+Proof.
+ intros. apply ltu_iwordsize_inv in H.
+ rewrite Z.min_comm.
+ destruct (Z.min_spec (zwordsize - unsigned n) s) as [[A B] | [A B]]; rewrite B; auto.
+ apply same_bits_eq; intros. rewrite ! bits_shl by auto.
+ destruct (zlt i (unsigned n)); auto.
+ rewrite ! bits_sign_ext by omega. f_equal.
+ destruct (zlt (i - unsigned n) s).
+ rewrite zlt_true by omega; auto.
+ omegaContradiction.
+Qed.
+
(** ** Properties of [one_bits] (decomposition in sum of powers of two) *)
Theorem one_bits_range:
@@ -3499,6 +3694,190 @@ Proof.
unfold shr, shr'; rewrite <- A; auto.
Qed.
+Theorem shru'_shl':
+ forall x y z, Int.ltu y iwordsize' = true -> Int.ltu z iwordsize' = true ->
+ shru' (shl' x y) z =
+ if Int.ltu z y then shl' (zero_ext (zwordsize - Int.unsigned y) x) (Int.sub y z)
+ else zero_ext (zwordsize - Int.unsigned z) (shru' x (Int.sub z y)).
+Proof.
+ intros. apply Int.ltu_inv in H; apply Int.ltu_inv in H0.
+ change (Int.unsigned iwordsize') with zwordsize in *.
+ unfold Int.ltu. set (Y := Int.unsigned y) in *; set (Z := Int.unsigned z) in *.
+ apply same_bits_eq; intros. rewrite bits_shru' by auto. fold Z.
+ destruct (zlt Z Y).
+- assert (A: Int.unsigned (Int.sub y z) = Y - Z).
+ { apply Int.unsigned_repr. assert (zwordsize < Int.max_unsigned) by reflexivity. omega. }
+ symmetry; rewrite bits_shl', A by omega.
+ destruct (zlt (i + Z) zwordsize).
++ rewrite bits_shl' by omega. fold Y.
+ destruct (zlt i (Y - Z)); [rewrite zlt_true by omega|rewrite zlt_false by omega]; auto.
+ rewrite bits_zero_ext by omega. rewrite zlt_true by omega. f_equal; omega.
++ rewrite bits_zero_ext by omega. rewrite ! zlt_false by omega. auto.
+- assert (A: Int.unsigned (Int.sub z y) = Z - Y).
+ { apply Int.unsigned_repr. assert (zwordsize < Int.max_unsigned) by reflexivity. omega. }
+ rewrite bits_zero_ext, bits_shru', A by omega.
+ destruct (zlt (i + Z) zwordsize); [rewrite zlt_true by omega|rewrite zlt_false by omega]; auto.
+ rewrite bits_shl' by omega. fold Y.
+ destruct (zlt (i + Z) Y).
++ rewrite zlt_false by omega. auto.
++ rewrite zlt_true by omega. f_equal; omega.
+Qed.
+
+Theorem shr'_shl':
+ forall x y z, Int.ltu y iwordsize' = true -> Int.ltu z iwordsize' = true ->
+ shr' (shl' x y) z =
+ if Int.ltu z y then shl' (sign_ext (zwordsize - Int.unsigned y) x) (Int.sub y z)
+ else sign_ext (zwordsize - Int.unsigned z) (shr' x (Int.sub z y)).
+Proof.
+ intros. apply Int.ltu_inv in H; apply Int.ltu_inv in H0.
+ change (Int.unsigned iwordsize') with zwordsize in *.
+ unfold Int.ltu. set (Y := Int.unsigned y) in *; set (Z := Int.unsigned z) in *.
+ apply same_bits_eq; intros. rewrite bits_shr' by auto. fold Z.
+ rewrite bits_shl' by (destruct (zlt (i + Z) zwordsize); omega). fold Y.
+ destruct (zlt Z Y).
+- assert (A: Int.unsigned (Int.sub y z) = Y - Z).
+ { apply Int.unsigned_repr. assert (zwordsize < Int.max_unsigned) by reflexivity. omega. }
+ rewrite bits_shl', A by omega.
+ destruct (zlt i (Y - Z)).
++ apply zlt_true. destruct (zlt (i + Z) zwordsize); omega.
++ rewrite zlt_false by (destruct (zlt (i + Z) zwordsize); omega).
+ rewrite bits_sign_ext by omega. f_equal.
+ destruct (zlt (i + Z) zwordsize).
+ rewrite zlt_true by omega. omega.
+ rewrite zlt_false by omega. omega.
+- assert (A: Int.unsigned (Int.sub z y) = Z - Y).
+ { apply Int.unsigned_repr. assert (zwordsize < Int.max_unsigned) by reflexivity. omega. }
+ rewrite bits_sign_ext by omega.
+ rewrite bits_shr' by (destruct (zlt i (zwordsize - Z)); omega).
+ rewrite A. rewrite zlt_false by (destruct (zlt (i + Z) zwordsize); omega).
+ f_equal. destruct (zlt i (zwordsize - Z)).
++ rewrite ! zlt_true by omega. omega.
++ rewrite ! zlt_false by omega. rewrite zlt_true by omega. omega.
+Qed.
+
+Lemma shl'_zero_ext:
+ forall n m x, 0 <= n ->
+ shl' (zero_ext n x) m = zero_ext (n + Int.unsigned m) (shl' x m).
+Proof.
+ intros. apply same_bits_eq; intros.
+ rewrite bits_zero_ext, ! bits_shl' by omega.
+ destruct (zlt i (Int.unsigned m)).
+- rewrite zlt_true by omega; auto.
+- rewrite bits_zero_ext by omega.
+ destruct (zlt (i - Int.unsigned m) n); [rewrite zlt_true by omega|rewrite zlt_false by omega]; auto.
+Qed.
+
+Lemma shl'_sign_ext:
+ forall n m x, 0 < n ->
+ shl' (sign_ext n x) m = sign_ext (n + Int.unsigned m) (shl' x m).
+Proof.
+ intros. generalize (Int.unsigned_range m); intros.
+ apply same_bits_eq; intros.
+ rewrite bits_sign_ext, ! bits_shl' by omega.
+ destruct (zlt i (n + Int.unsigned m)).
+- rewrite bits_shl' by auto. destruct (zlt i (Int.unsigned m)); auto.
+ rewrite bits_sign_ext by omega. f_equal. apply zlt_true. omega.
+- rewrite zlt_false by omega. rewrite bits_shl' by omega. rewrite zlt_false by omega.
+ rewrite bits_sign_ext by omega. f_equal. rewrite zlt_false by omega. omega.
+Qed.
+
+Lemma shru'_zero_ext:
+ forall n m x, 0 <= n ->
+ shru' (zero_ext (n + Int.unsigned m) x) m = zero_ext n (shru' x m).
+Proof.
+ intros. generalize (Int.unsigned_range m); intros.
+ bit_solve; [|omega]. rewrite bits_shru', bits_zero_ext, bits_shru' by omega.
+ destruct (zlt (i + Int.unsigned m) zwordsize).
+* destruct (zlt i n); [rewrite zlt_true by omega|rewrite zlt_false by omega]; auto.
+* destruct (zlt i n); auto.
+Qed.
+
+Lemma shru'_zero_ext_0:
+ forall n m x, n <= Int.unsigned m ->
+ shru' (zero_ext n x) m = zero.
+Proof.
+ intros. generalize (Int.unsigned_range m); intros.
+ bit_solve. rewrite bits_shru', bits_zero_ext by omega.
+ destruct (zlt (i + Int.unsigned m) zwordsize); auto.
+ apply zlt_false. omega.
+Qed.
+
+Lemma shr'_sign_ext:
+ forall n m x, 0 < n -> n + Int.unsigned m < zwordsize ->
+ shr' (sign_ext (n + Int.unsigned m) x) m = sign_ext n (shr' x m).
+Proof.
+ intros. generalize (Int.unsigned_range m); intros.
+ apply same_bits_eq; intros.
+ rewrite bits_sign_ext, bits_shr' by auto.
+ rewrite bits_sign_ext, bits_shr'.
+- f_equal.
+ destruct (zlt i n), (zlt (i + Int.unsigned m) zwordsize).
++ apply zlt_true; omega.
++ apply zlt_true; omega.
++ rewrite zlt_false by omega. rewrite zlt_true by omega. omega.
++ rewrite zlt_false by omega. rewrite zlt_true by omega. omega.
+- destruct (zlt i n); omega.
+- destruct (zlt (i + Int.unsigned m) zwordsize); omega.
+Qed.
+
+Lemma zero_ext_shru'_min:
+ forall s x n, Int.ltu n iwordsize' = true ->
+ zero_ext s (shru' x n) = zero_ext (Z.min s (zwordsize - Int.unsigned n)) (shru' x n).
+Proof.
+ intros. apply Int.ltu_inv in H. change (Int.unsigned iwordsize') with zwordsize in H.
+ apply Z.min_case_strong; intros; auto.
+ bit_solve; try omega. rewrite ! bits_shru' by omega.
+ destruct (zlt i (zwordsize - Int.unsigned n)).
+ rewrite zlt_true by omega. auto.
+ destruct (zlt i s); auto. rewrite zlt_false by omega; auto.
+Qed.
+
+Lemma sign_ext_shr'_min:
+ forall s x n, Int.ltu n iwordsize' = true ->
+ sign_ext s (shr' x n) = sign_ext (Z.min s (zwordsize - Int.unsigned n)) (shr' x n).
+Proof.
+ intros. apply Int.ltu_inv in H. change (Int.unsigned iwordsize') with zwordsize in H.
+ rewrite Z.min_comm.
+ destruct (Z.min_spec (zwordsize - Int.unsigned n) s) as [[A B] | [A B]]; rewrite B; auto.
+ apply same_bits_eq; intros. rewrite ! bits_sign_ext by auto.
+ destruct (zlt i (zwordsize - Int.unsigned n)).
+ rewrite zlt_true by omega. auto.
+ assert (C: testbit (shr' x n) (zwordsize - Int.unsigned n - 1) = testbit x (zwordsize - 1)).
+ { rewrite bits_shr' by omega. rewrite zlt_true by omega. f_equal; omega. }
+ rewrite C. destruct (zlt i s); rewrite bits_shr' by omega.
+ rewrite zlt_false by omega. auto.
+ rewrite zlt_false by omega. auto.
+Qed.
+
+Lemma shl'_zero_ext_min:
+ forall s x n, Int.ltu n iwordsize' = true ->
+ shl' (zero_ext s x) n = shl' (zero_ext (Z.min s (zwordsize - Int.unsigned n)) x) n.
+Proof.
+ intros. apply Int.ltu_inv in H. change (Int.unsigned iwordsize') with zwordsize in H.
+ apply Z.min_case_strong; intros; auto.
+ apply same_bits_eq; intros. rewrite ! bits_shl' by auto.
+ destruct (zlt i (Int.unsigned n)); auto.
+ rewrite ! bits_zero_ext by omega.
+ destruct (zlt (i - Int.unsigned n) s).
+ rewrite zlt_true by omega; auto.
+ rewrite zlt_false by omega; auto.
+Qed.
+
+Lemma shl'_sign_ext_min:
+ forall s x n, Int.ltu n iwordsize' = true ->
+ shl' (sign_ext s x) n = shl' (sign_ext (Z.min s (zwordsize - Int.unsigned n)) x) n.
+Proof.
+ intros. apply Int.ltu_inv in H. change (Int.unsigned iwordsize') with zwordsize in H.
+ rewrite Z.min_comm.
+ destruct (Z.min_spec (zwordsize - Int.unsigned n) s) as [[A B] | [A B]]; rewrite B; auto.
+ apply same_bits_eq; intros. rewrite ! bits_shl' by auto.
+ destruct (zlt i (Int.unsigned n)); auto.
+ rewrite ! bits_sign_ext by omega. f_equal.
+ destruct (zlt (i - Int.unsigned n) s).
+ rewrite zlt_true by omega; auto.
+ omegaContradiction.
+Qed.
+
(** Powers of two with exponents given as 32-bit ints *)
Definition one_bits' (x: int) : list Int.int :=