aboutsummaryrefslogtreecommitdiffstats
path: root/mppa_k1c/Asmblock.v
diff options
context:
space:
mode:
Diffstat (limited to 'mppa_k1c/Asmblock.v')
-rw-r--r--mppa_k1c/Asmblock.v1361
1 files changed, 1361 insertions, 0 deletions
diff --git a/mppa_k1c/Asmblock.v b/mppa_k1c/Asmblock.v
new file mode 100644
index 00000000..557ab788
--- /dev/null
+++ b/mppa_k1c/Asmblock.v
@@ -0,0 +1,1361 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* Prashanth Mundkur, SRI International *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* The contributions by Prashanth Mundkur are reused and adapted *)
+(* under the terms of a Contributor License Agreement between *)
+(* SRI International and INRIA. *)
+(* *)
+(* *********************************************************************)
+
+(** Abstract syntax and semantics for K1c assembly language. *)
+
+Require Import Coqlib.
+Require Import Maps.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Memory.
+Require Import Events.
+Require Import Globalenvs.
+Require Import Smallstep.
+Require Import Locations.
+Require Stacklayout.
+Require Import Conventions.
+
+(** * Abstract syntax *)
+
+(** General Purpose registers.
+*)
+
+Inductive gpreg: Type :=
+ | GPR0: gpreg | GPR1: gpreg | GPR2: gpreg | GPR3: gpreg | GPR4: gpreg
+ | GPR5: gpreg | GPR6: gpreg | GPR7: gpreg | GPR8: gpreg | GPR9: gpreg
+ | GPR10: gpreg | GPR11: gpreg | GPR12: gpreg | GPR13: gpreg | GPR14: gpreg
+ | GPR15: gpreg | GPR16: gpreg | GPR17: gpreg | GPR18: gpreg | GPR19: gpreg
+ | GPR20: gpreg | GPR21: gpreg | GPR22: gpreg | GPR23: gpreg | GPR24: gpreg
+ | GPR25: gpreg | GPR26: gpreg | GPR27: gpreg | GPR28: gpreg | GPR29: gpreg
+ | GPR30: gpreg | GPR31: gpreg | GPR32: gpreg | GPR33: gpreg | GPR34: gpreg
+ | GPR35: gpreg | GPR36: gpreg | GPR37: gpreg | GPR38: gpreg | GPR39: gpreg
+ | GPR40: gpreg | GPR41: gpreg | GPR42: gpreg | GPR43: gpreg | GPR44: gpreg
+ | GPR45: gpreg | GPR46: gpreg | GPR47: gpreg | GPR48: gpreg | GPR49: gpreg
+ | GPR50: gpreg | GPR51: gpreg | GPR52: gpreg | GPR53: gpreg | GPR54: gpreg
+ | GPR55: gpreg | GPR56: gpreg | GPR57: gpreg | GPR58: gpreg | GPR59: gpreg
+ | GPR60: gpreg | GPR61: gpreg | GPR62: gpreg | GPR63: gpreg.
+
+Definition ireg := gpreg.
+Definition freg := gpreg.
+
+Lemma ireg_eq: forall (x y: ireg), {x=y} + {x<>y}.
+Proof. decide equality. Defined.
+
+Lemma freg_eq: forall (x y: freg), {x=y} + {x<>y}.
+Proof. decide equality. Defined.
+
+(** We model the following registers of the RISC-V architecture. *)
+
+(** basic register *)
+Inductive preg: Type :=
+ | IR: gpreg -> preg (**r integer registers *)
+ | FR: gpreg -> preg (**r float registers *)
+ | RA: preg
+ | PC: preg
+ .
+
+Coercion IR: gpreg >-> preg.
+Coercion FR: gpreg >-> preg.
+
+Lemma preg_eq: forall (x y: preg), {x=y} + {x<>y}.
+Proof. decide equality. apply ireg_eq. apply freg_eq. Defined.
+
+Module PregEq.
+ Definition t := preg.
+ Definition eq := preg_eq.
+End PregEq.
+
+Module Pregmap := EMap(PregEq).
+
+(** Conventional names for stack pointer ([SP]) and return address ([RA]). *)
+
+Notation "'SP'" := GPR12 (only parsing) : asm.
+Notation "'FP'" := GPR10 (only parsing) : asm.
+Notation "'RTMP'" := GPR31 (only parsing) : asm.
+
+Inductive btest: Type :=
+ | BTdnez (**r Double Not Equal to Zero *)
+ | BTdeqz (**r Double Equal to Zero *)
+ | BTdltz (**r Double Less Than Zero *)
+ | BTdgez (**r Double Greater Than or Equal to Zero *)
+ | BTdlez (**r Double Less Than or Equal to Zero *)
+ | BTdgtz (**r Double Greater Than Zero *)
+(*| BTodd (**r Odd (LSB Set) *)
+ | BTeven (**r Even (LSB Clear) *)
+*)| BTwnez (**r Word Not Equal to Zero *)
+ | BTweqz (**r Word Equal to Zero *)
+ | BTwltz (**r Word Less Than Zero *)
+ | BTwgez (**r Word Greater Than or Equal to Zero *)
+ | BTwlez (**r Word Less Than or Equal to Zero *)
+ | BTwgtz (**r Word Greater Than Zero *)
+ .
+
+Inductive itest: Type :=
+ | ITne (**r Not Equal *)
+ | ITeq (**r Equal *)
+ | ITlt (**r Less Than *)
+ | ITge (**r Greater Than or Equal *)
+ | ITle (**r Less Than or Equal *)
+ | ITgt (**r Greater Than *)
+ | ITneu (**r Unsigned Not Equal *)
+ | ITequ (**r Unsigned Equal *)
+ | ITltu (**r Less Than Unsigned *)
+ | ITgeu (**r Greater Than or Equal Unsigned *)
+ | ITleu (**r Less Than or Equal Unsigned *)
+ | ITgtu (**r Greater Than Unsigned *)
+ (* Not used yet *)
+ | ITall (**r All Bits Set in Mask *)
+ | ITnall (**r Not All Bits Set in Mask *)
+ | ITany (**r Any Bits Set in Mask *)
+ | ITnone (**r Not Any Bits Set in Mask *)
+ .
+
+(** Offsets for load and store instructions. An offset is either an
+ immediate integer or the low part of a symbol. *)
+
+Inductive offset : Type :=
+ | Ofsimm (ofs: ptrofs)
+ | Ofslow (id: ident) (ofs: ptrofs).
+
+(** We model a subset of the K1c instruction set. In particular, we do not
+ support floats yet.
+
+ Although it is possible to use the 32-bits mode, for now we don't support it.
+
+ We follow a design close to the one used for the Risc-V port: one set of
+ pseudo-instructions for 32-bit integer arithmetic, with suffix W, another
+ set for 64-bit integer arithmetic, with suffix L.
+
+ When mapping to actual instructions, the OCaml code in TargetPrinter.ml
+ throws an error if we are not in 64-bits mode.
+*)
+
+(** * Instructions *)
+
+Definition label := positive.
+
+(* FIXME - rewrite the comment *)
+(** A note on immediates: there are various constraints on immediate
+ operands to K1c instructions. We do not attempt to capture these
+ restrictions in the abstract syntax nor in the semantics. The
+ assembler will emit an error if immediate operands exceed the
+ representable range. Of course, our K1c generator (file
+ [Asmgen]) is careful to respect this range. *)
+
+(** Instructions to be expanded in control-flow
+*)
+Inductive ex_instruction : Type :=
+ (* Pseudo-instructions *)
+(*| Ploadsymbol_high (rd: ireg) (id: ident) (ofs: ptrofs) (**r load the high part of the address of a symbol *)
+ | Pbtbl (r: ireg) (tbl: list label) (**r N-way branch through a jump table *) *)
+
+ | Pbuiltin: external_function -> list (builtin_arg preg)
+ -> builtin_res preg -> ex_instruction (**r built-in function (pseudo) *)
+.
+
+(** FIXME: comment not up to date !
+
+
+ The pseudo-instructions are the following:
+
+- [Ploadsymbol]: load the address of a symbol in an integer register.
+ Expands to the [la] assembler pseudo-instruction, which does the right
+ thing even if we are in PIC mode.
+
+- [Pallocframe sz pos]: in the formal semantics, this
+ pseudo-instruction allocates a memory block with bounds [0] and
+ [sz], stores the value of the stack pointer at offset [pos] in this
+ block, and sets the stack pointer to the address of the bottom of
+ this block.
+ In the printed ASM assembly code, this allocation is:
+<<
+ mv x30, sp
+ sub sp, sp, #sz
+ sw x30, #pos(sp)
+>>
+ This cannot be expressed in our memory model, which does not reflect
+ the fact that stack frames are adjacent and allocated/freed
+ following a stack discipline.
+
+- [Pfreeframe sz pos]: in the formal semantics, this pseudo-instruction
+ reads the word at [pos] of the block pointed by the stack pointer,
+ frees this block, and sets the stack pointer to the value read.
+ In the printed ASM assembly code, this freeing is just an increment of [sp]:
+<<
+ add sp, sp, #sz
+>>
+ Again, our memory model cannot comprehend that this operation
+ frees (logically) the current stack frame.
+
+- [Pbtbl reg table]: this is a N-way branch, implemented via a jump table
+ as follows:
+<<
+ la x31, table
+ add x31, x31, reg
+ jr x31
+table: .long table[0], table[1], ...
+>>
+ Note that [reg] contains 4 times the index of the desired table entry.
+*)
+
+(** Control Flow instructions *)
+Inductive cf_instruction : Type :=
+ | Pret (**r return *)
+ | Pcall (l: label) (**r function call *)
+
+ (* Pgoto is for tailcalls, Pj_l is for jumping to a particular label *)
+ | Pgoto (l: label) (**r goto *)
+ | Pj_l (l: label) (**r jump to label *)
+
+ (* Conditional branches *)
+ | Pcb (bt: btest) (r: ireg) (l: label) (**r branch based on btest *)
+ | Pcbu (bt: btest) (r: ireg) (l: label) (**r branch based on btest with unsigned semantics *)
+.
+
+(** Loads **)
+Inductive load_name_rro : Type :=
+ | Plb (**r load byte *)
+ | Plbu (**r load byte unsigned *)
+ | Plh (**r load half word *)
+ | Plhu (**r load half word unsigned *)
+ | Plw (**r load int32 *)
+ | Plw_a (**r load any32 *)
+ | Pld (**r load int64 *)
+ | Pld_a (**r load any64 *)
+ | Pfls (**r load float *)
+ | Pfld (**r load 64-bit float *)
+.
+
+Inductive ld_instruction : Type :=
+ | PLoadRRO (i: load_name_rro) (rd: ireg) (ra: ireg) (ofs: offset)
+.
+
+Coercion PLoadRRO: load_name_rro >-> Funclass.
+
+(** Stores **)
+Inductive store_name_rro : Type :=
+ | Psb (**r store byte *)
+ | Psh (**r store half byte *)
+ | Psw (**r store int32 *)
+ | Psw_a (**r store any32 *)
+ | Psd (**r store int64 *)
+ | Psd_a (**r store any64 *)
+ | Pfss (**r store float *)
+ | Pfsd (**r store 64-bit float *)
+.
+
+Inductive st_instruction : Type :=
+ | PStoreRRO (i: store_name_rro) (rs: ireg) (ra: ireg) (ofs: offset)
+.
+
+Coercion PStoreRRO: store_name_rro >-> Funclass.
+
+(** Arithmetic instructions **)
+Inductive arith_name_r : Type :=
+ | Pcvtw2l (**r Convert Word to Long *)
+ | Ploadsymbol (id: ident) (ofs: ptrofs) (**r load the address of a symbol *)
+.
+
+Inductive arith_name_rr : Type :=
+ | Pmv (**r register move *)
+ | Pnegw (**r negate word *)
+ | Pnegl (**r negate long *)
+ | Pfnegd (**r float negate double *)
+ | Pcvtl2w (**r Convert Long to Word *)
+ | Pmvw2l (**r Move Convert Word to Long *)
+.
+
+Inductive arith_name_ri32 : Type :=
+ | Pmake (**r load immediate *)
+.
+
+Inductive arith_name_ri64 : Type :=
+ | Pmakel (**r load immediate long *)
+.
+
+Inductive arith_name_rrr : Type :=
+ | Pcompw (it: itest) (**r comparison word *)
+ | Pcompl (it: itest) (**r comparison long *)
+
+ | Paddw (**r add word *)
+ | Psubw (**r sub word *)
+ | Pmulw (**r mul word *)
+ | Pandw (**r and word *)
+ | Porw (**r or word *)
+ | Pxorw (**r xor word *)
+ | Psraw (**r shift right arithmetic word *)
+ | Psrlw (**r shift right logical word *)
+ | Psllw (**r shift left logical word *)
+
+ | Paddl (**r add long *)
+ | Psubl (**r sub long *)
+ | Pandl (**r and long *)
+ | Porl (**r or long *)
+ | Pxorl (**r xor long *)
+ | Pmull (**r mul long (low part) *)
+ | Pslll (**r shift left logical long *)
+ | Psrll (**r shift right logical long *)
+ | Psral (**r shift right arithmetic long *)
+.
+
+Inductive arith_name_rri32 : Type :=
+ | Pcompiw (it: itest) (**r comparison imm word *)
+
+ | Paddiw (**r add imm word *)
+ | Pandiw (**r and imm word *)
+ | Poriw (**r or imm word *)
+ | Pxoriw (**r xor imm word *)
+ | Psraiw (**r shift right arithmetic imm word *)
+ | Psrliw (**r shift right logical imm word *)
+ | Pslliw (**r shift left logical imm word *)
+
+ | Psllil (**r shift left logical immediate long *)
+ | Psrlil (**r shift right logical immediate long *)
+ | Psrail (**r shift right arithmetic immediate long *)
+.
+
+Inductive arith_name_rri64 : Type :=
+ | Pcompil (it: itest) (**r comparison imm long *)
+ | Paddil (**r add immediate long *)
+ | Pandil (**r and immediate long *)
+ | Poril (**r or immediate long *)
+ | Pxoril (**r xor immediate long *)
+.
+
+Inductive ar_instruction : Type :=
+ | PArithR (i: arith_name_r) (rd: ireg)
+ | PArithRR (i: arith_name_rr) (rd rs: ireg)
+ | PArithRI32 (i: arith_name_ri32) (rd: ireg) (imm: int)
+ | PArithRI64 (i: arith_name_ri64) (rd: ireg) (imm: int64)
+ | PArithRRR (i: arith_name_rrr) (rd rs1 rs2: ireg)
+ | PArithRRI32 (i: arith_name_rri32) (rd rs: ireg) (imm: int)
+ | PArithRRI64 (i: arith_name_rri64) (rd rs: ireg) (imm: int64)
+.
+
+Coercion PArithR: arith_name_r >-> Funclass.
+Coercion PArithRR: arith_name_rr >-> Funclass.
+Coercion PArithRI32: arith_name_ri32 >-> Funclass.
+Coercion PArithRI64: arith_name_ri64 >-> Funclass.
+Coercion PArithRRR: arith_name_rrr >-> Funclass.
+Coercion PArithRRI32: arith_name_rri32 >-> Funclass.
+Coercion PArithRRI64: arith_name_rri64 >-> Funclass.
+
+Inductive basic : Type :=
+ | PArith (i: ar_instruction)
+ | PLoad (i: ld_instruction)
+ | PStore (i: st_instruction)
+ | Pallocframe (sz: Z) (pos: ptrofs) (**r allocate new stack frame *)
+ | Pfreeframe (sz: Z) (pos: ptrofs) (**r deallocate stack frame and restore previous frame *)
+ | Pget (rd: ireg) (rs: preg) (**r get system register *)
+ | Pset (rd: preg) (rs: ireg) (**r set system register *)
+ | Pnop (**r virtual instruction that does nothing *)
+.
+
+Coercion PLoad: ld_instruction >-> basic.
+Coercion PStore: st_instruction >-> basic.
+Coercion PArith: ar_instruction >-> basic.
+
+
+Inductive control : Type :=
+ | PExpand (i: ex_instruction)
+ | PCtlFlow (i: cf_instruction)
+.
+
+Coercion PExpand: ex_instruction >-> control.
+Coercion PCtlFlow: cf_instruction >-> control.
+
+
+(** * Definition of a bblock *)
+
+Definition non_empty_bblock (body: list basic) (exit: option control): Prop
+ := body <> nil \/ exit <> None.
+
+Definition non_empty_body (body: list basic): bool :=
+ match body with
+ | nil => false
+ | _ => true
+ end.
+
+Definition non_empty_exit (exit: option control): bool :=
+ match exit with
+ | None => false
+ | _ => true
+ end.
+
+Definition non_empty_bblockb (body: list basic) (exit: option control): bool := non_empty_body body || non_empty_exit exit.
+
+Lemma non_empty_bblock_refl:
+ forall body exit,
+ non_empty_bblock body exit ->
+ Is_true (non_empty_bblockb body exit).
+Proof.
+ intros. destruct body; destruct exit.
+ all: simpl; auto.
+ inv H; contradiction.
+Qed.
+
+(* Definition builtin_alone (body: list basic) (exit: option control) := forall ef args res,
+ exit = Some (PExpand (Pbuiltin ef args res)) -> body = nil.
+ *)
+
+(* Definition wf_bblock (header: list label) (body: list basic) (exit: option control) :=
+ non_empty_bblock body exit (* /\ builtin_alone body exit *). *)
+
+(** A bblock is well-formed if he contains at least one instruction,
+ and if there is a builtin then it must be alone in this bblock. *)
+
+Record bblock := mk_bblock {
+ header: list label;
+ body: list basic;
+ exit: option control;
+ correct: Is_true (non_empty_bblockb body exit)
+}.
+
+Ltac bblock_auto_correct := (apply non_empty_bblock_refl; try discriminate; try (left; discriminate); try (right; discriminate)).
+(* Local Obligation Tactic := bblock_auto_correct. *)
+
+Lemma Istrue_proof_irrelevant (b: bool): forall (p1 p2:Is_true b), p1=p2.
+Proof.
+ destruct b; simpl; auto.
+ - destruct p1, p2; auto.
+ - destruct p1.
+Qed.
+
+Lemma bblock_equality bb1 bb2: header bb1=header bb2 -> body bb1 = body bb2 -> exit bb1 = exit bb2 -> bb1 = bb2.
+Proof.
+ destruct bb1 as [h1 b1 e1 c1], bb2 as [h2 b2 e2 c2]; simpl.
+ intros; subst.
+ rewrite (Istrue_proof_irrelevant _ c1 c2).
+ auto.
+Qed.
+
+
+(* FIXME: redundant with definition in Machblock *)
+Definition length_opt {A} (o: option A) : nat :=
+ match o with
+ | Some o => 1
+ | None => 0
+ end.
+
+(* WARNING: the notion of size is not the same than in Machblock !
+ We ignore labels here...
+ The result is in Z to be compatible with operations on PC
+*)
+Definition size (b:bblock): Z := Z.of_nat (length (body b) + length_opt (exit b)).
+(* match (body b, exit b) with
+ | (nil, None) => 1
+ | _ =>
+ end.
+ *)
+
+Lemma length_nonil {A: Type} : forall l:(list A), l <> nil -> (length l > 0)%nat.
+Proof.
+ intros. destruct l; try (contradict H; auto; fail).
+ simpl. omega.
+Qed.
+
+Lemma to_nat_pos : forall z:Z, (Z.to_nat z > 0)%nat -> z > 0.
+Proof.
+ intros. destruct z; auto.
+ - contradict H. simpl. apply gt_irrefl.
+ - apply Zgt_pos_0.
+ - contradict H. simpl. apply gt_irrefl.
+Qed.
+
+Lemma size_positive (b:bblock): size b > 0.
+Proof.
+ unfold size. destruct b as [hd bdy ex cor]. simpl.
+ destruct ex; destruct bdy; try (apply to_nat_pos; rewrite Nat2Z.id; simpl; omega).
+ inversion cor; contradict H; simpl; auto.
+(* rewrite eq. (* inversion COR. *) (* inversion H. *)
+ - assert ((length b > 0)%nat). apply length_nonil. auto.
+ omega.
+ - destruct e; simpl; try omega. contradict H; simpl; auto.
+ *)Qed.
+
+Definition bblocks := list bblock.
+
+Record function : Type := mkfunction { fn_sig: signature; fn_blocks: bblocks }.
+Definition fundef := AST.fundef function.
+Definition program := AST.program fundef unit.
+
+Inductive instruction : Type :=
+ | PBasic (i: basic)
+ | PControl (i: control)
+.
+
+Coercion PBasic: basic >-> instruction.
+Coercion PControl: control >-> instruction.
+
+Definition code := list instruction.
+Definition bcode := list basic.
+
+Fixpoint basics_to_code (l: list basic) :=
+ match l with
+ | nil => nil
+ | bi::l => (PBasic bi)::(basics_to_code l)
+ end.
+
+Fixpoint code_to_basics (c: code) :=
+ match c with
+ | (PBasic i)::c =>
+ match code_to_basics c with
+ | None => None
+ | Some l => Some (i::l)
+ end
+ | _::c => None
+ | nil => Some nil
+ end.
+
+Lemma code_to_basics_id: forall c, code_to_basics (basics_to_code c) = Some c.
+Proof.
+ intros. induction c as [|i c]; simpl; auto.
+ rewrite IHc. auto.
+Qed.
+
+Lemma code_to_basics_dist:
+ forall c c' l l',
+ code_to_basics c = Some l ->
+ code_to_basics c' = Some l' ->
+ code_to_basics (c ++ c') = Some (l ++ l').
+Proof.
+ induction c as [|i c]; simpl; auto.
+ - intros. inv H. simpl. auto.
+ - intros. destruct i; try discriminate. destruct (code_to_basics c) eqn:CTB; try discriminate.
+ inv H. erewrite IHc; eauto. auto.
+Qed.
+
+(**
+ Asmblockgen will have to translate a Mach control into a list of instructions of the form
+ i1 :: i2 :: i3 :: ctl :: nil ; where i1..i3 are basic instructions, ctl is a control instruction
+ These functions provide way to extract the basic / control instructions
+*)
+
+Fixpoint extract_basic (c: code) :=
+ match c with
+ | nil => nil
+ | PBasic i :: c => i :: (extract_basic c)
+ | PControl i :: c => nil
+ end.
+
+Fixpoint extract_ctl (c: code) :=
+ match c with
+ | nil => None
+ | PBasic i :: c => extract_ctl c
+ | PControl i :: nil => Some i
+ | PControl i :: _ => None (* if the first found control instruction isn't the last *)
+ end.
+
+(** * Utility for Asmblockgen *)
+
+Program Definition bblock_single_inst (i: instruction) :=
+ match i with
+ | PBasic b => {| header:=nil; body:=(b::nil); exit:=None |}
+ | PControl ctl => {| header:=nil; body:=nil; exit:=(Some ctl) |}
+ end.
+
+Program Definition bblock_basic_ctl (c: list basic) (i: option control) :=
+ match i with
+ | Some i => {| header:=nil; body:=c; exit:=Some i |}
+ | None =>
+ match c with
+ | _::_ => {| header:=nil; body:=c; exit:=None |}
+ | nil => {| header:=nil; body:=Pnop::nil; exit:=None |}
+ end
+ end.
+Next Obligation.
+ bblock_auto_correct.
+Qed. Next Obligation.
+ bblock_auto_correct.
+Qed.
+
+
+(** * Operational semantics *)
+
+(** The semantics operates over a single mapping from registers
+ (type [preg]) to values. We maintain
+ the convention that integer registers are mapped to values of
+ type [Tint] or [Tlong] (in 64 bit mode),
+ and float registers to values of type [Tsingle] or [Tfloat]. *)
+
+Definition regset := Pregmap.t val.
+
+Definition genv := Genv.t fundef unit.
+
+Notation "a # b" := (a b) (at level 1, only parsing) : asm.
+Notation "a # b <- c" := (Pregmap.set b c a) (at level 1, b at next level) : asm.
+
+Open Scope asm.
+
+(** Undefining some registers *)
+
+Fixpoint undef_regs (l: list preg) (rs: regset) : regset :=
+ match l with
+ | nil => rs
+ | r :: l' => undef_regs l' (rs#r <- Vundef)
+ end.
+
+
+(** Assigning a register pair *)
+Definition set_pair (p: rpair preg) (v: val) (rs: regset) : regset :=
+ match p with
+ | One r => rs#r <- v
+ | Twolong rhi rlo => rs#rhi <- (Val.hiword v) #rlo <- (Val.loword v)
+ end.
+
+(* TODO: Is it still useful ?? *)
+
+
+(** Assigning multiple registers *)
+
+(* Fixpoint set_regs (rl: list preg) (vl: list val) (rs: regset) : regset :=
+ match rl, vl with
+ | r1 :: rl', v1 :: vl' => set_regs rl' vl' (rs#r1 <- v1)
+ | _, _ => rs
+ end.
+ *)
+(** Assigning the result of a builtin *)
+
+Fixpoint set_res (res: builtin_res preg) (v: val) (rs: regset) : regset :=
+ match res with
+ | BR r => rs#r <- v
+ | BR_none => rs
+ | BR_splitlong hi lo => set_res lo (Val.loword v) (set_res hi (Val.hiword v) rs)
+ end.
+
+Section RELSEM.
+
+
+(** The semantics is purely small-step and defined as a function
+ from the current state (a register set + a memory state)
+ to either [Next rs' m'] where [rs'] and [m'] are the updated register
+ set and memory state after execution of the instruction at [rs#PC],
+ or [Stuck] if the processor is stuck. *)
+
+Inductive outcome {rgset}: Type :=
+ | Next (rs:rgset) (m:mem)
+ | Stuck.
+Arguments outcome: clear implicits.
+
+
+(** ** Arithmetic Expressions (including comparisons) *)
+
+Inductive signedness: Type := Signed | Unsigned.
+
+Inductive intsize: Type := Int | Long.
+
+Definition itest_for_cmp (c: comparison) (s: signedness) :=
+ match c, s with
+ | Cne, Signed => ITne
+ | Ceq, Signed => ITeq
+ | Clt, Signed => ITlt
+ | Cge, Signed => ITge
+ | Cle, Signed => ITle
+ | Cgt, Signed => ITgt
+ | Cne, Unsigned => ITneu
+ | Ceq, Unsigned => ITequ
+ | Clt, Unsigned => ITltu
+ | Cge, Unsigned => ITgeu
+ | Cle, Unsigned => ITleu
+ | Cgt, Unsigned => ITgtu
+ end.
+
+(* CoMPare Signed Words to Zero *)
+Definition btest_for_cmpswz (c: comparison) :=
+ match c with
+ | Cne => BTwnez
+ | Ceq => BTweqz
+ | Clt => BTwltz
+ | Cge => BTwgez
+ | Cle => BTwlez
+ | Cgt => BTwgtz
+ end.
+
+(* CoMPare Signed Doubles to Zero *)
+Definition btest_for_cmpsdz (c: comparison) :=
+ match c with
+ | Cne => BTdnez
+ | Ceq => BTdeqz
+ | Clt => BTdltz
+ | Cge => BTdgez
+ | Cle => BTdlez
+ | Cgt => BTdgtz
+ end.
+
+Definition cmp_for_btest (bt: btest) :=
+ match bt with
+ | BTwnez => (Some Cne, Int)
+ | BTweqz => (Some Ceq, Int)
+ | BTwltz => (Some Clt, Int)
+ | BTwgez => (Some Cge, Int)
+ | BTwlez => (Some Cle, Int)
+ | BTwgtz => (Some Cgt, Int)
+
+ | BTdnez => (Some Cne, Long)
+ | BTdeqz => (Some Ceq, Long)
+ | BTdltz => (Some Clt, Long)
+ | BTdgez => (Some Cge, Long)
+ | BTdlez => (Some Cle, Long)
+ | BTdgtz => (Some Cgt, Long)
+ end.
+
+Definition cmpu_for_btest (bt: btest) :=
+ match bt with
+ | BTwnez => (Some Cne, Int)
+ | BTweqz => (Some Ceq, Int)
+ | BTdnez => (Some Cne, Long)
+ | BTdeqz => (Some Ceq, Long)
+ | _ => (None, Int)
+ end.
+
+(** Comparing integers *)
+Definition compare_int (t: itest) (v1 v2: val) (m: mem): val :=
+ match t with
+ | ITne => Val.cmp Cne v1 v2
+ | ITeq => Val.cmp Ceq v1 v2
+ | ITlt => Val.cmp Clt v1 v2
+ | ITge => Val.cmp Cge v1 v2
+ | ITle => Val.cmp Cle v1 v2
+ | ITgt => Val.cmp Cgt v1 v2
+ | ITneu => Val.cmpu (Mem.valid_pointer m) Cne v1 v2
+ | ITequ => Val.cmpu (Mem.valid_pointer m) Ceq v1 v2
+ | ITltu => Val.cmpu (Mem.valid_pointer m) Clt v1 v2
+ | ITgeu => Val.cmpu (Mem.valid_pointer m) Cge v1 v2
+ | ITleu => Val.cmpu (Mem.valid_pointer m) Cle v1 v2
+ | ITgtu => Val.cmpu (Mem.valid_pointer m) Cgt v1 v2
+ | ITall
+ | ITnall
+ | ITany
+ | ITnone => Vundef
+ end.
+
+Definition compare_long (t: itest) (v1 v2: val) (m: mem): val :=
+ let res := match t with
+ | ITne => Val.cmpl Cne v1 v2
+ | ITeq => Val.cmpl Ceq v1 v2
+ | ITlt => Val.cmpl Clt v1 v2
+ | ITge => Val.cmpl Cge v1 v2
+ | ITle => Val.cmpl Cle v1 v2
+ | ITgt => Val.cmpl Cgt v1 v2
+ | ITneu => Val.cmplu (Mem.valid_pointer m) Cne v1 v2
+ | ITequ => Val.cmplu (Mem.valid_pointer m) Ceq v1 v2
+ | ITltu => Val.cmplu (Mem.valid_pointer m) Clt v1 v2
+ | ITgeu => Val.cmplu (Mem.valid_pointer m) Cge v1 v2
+ | ITleu => Val.cmplu (Mem.valid_pointer m) Cle v1 v2
+ | ITgtu => Val.cmplu (Mem.valid_pointer m) Cgt v1 v2
+ | ITall
+ | ITnall
+ | ITany
+ | ITnone => Some Vundef
+ end in
+ match res with
+ | Some v => v
+ | None => Vundef
+ end
+ .
+(** Execution of arith instructions
+
+TODO: subsplitting by instruction type ? Could be useful for expressing auxiliary lemma...
+
+FIXME: replace parameter "m" by a function corresponding to the resul of "(Mem.valid_pointer m)"
+
+*)
+
+Variable ge: genv.
+
+
+Definition exec_arith_instr (ai: ar_instruction) (rs: regset) (m: mem) : regset :=
+ match ai with
+ | PArithR n d =>
+ match n with
+ | Pcvtw2l => rs#d <- (Val.longofint rs#d)
+ | Ploadsymbol s ofs => rs#d <- (Genv.symbol_address ge s ofs)
+ end
+
+ | PArithRR n d s =>
+ match n with
+ | Pmv => rs#d <- (rs#s)
+ | Pnegw => rs#d <- (Val.neg rs#s)
+ | Pnegl => rs#d <- (Val.negl rs#s)
+ | Pfnegd => rs#d <- (Val.negf rs#s)
+ | Pcvtl2w => rs#d <- (Val.loword rs#s)
+ | Pmvw2l => rs#d <- (Val.longofint rs#s)
+ end
+
+ | PArithRI32 n d i =>
+ match n with
+ | Pmake => rs#d <- (Vint i)
+ end
+
+ | PArithRI64 n d i =>
+ match n with
+ | Pmakel => rs#d <- (Vlong i)
+ end
+
+ | PArithRRR n d s1 s2 =>
+ match n with
+ | Pcompw c => rs#d <- (compare_int c rs#s1 rs#s2 m)
+ | Pcompl c => rs#d <- (compare_long c rs#s1 rs#s2 m)
+ | Paddw => rs#d <- (Val.add rs#s1 rs#s2)
+ | Psubw => rs#d <- (Val.sub rs#s1 rs#s2)
+ | Pmulw => rs#d <- (Val.mul rs#s1 rs#s2)
+ | Pandw => rs#d <- (Val.and rs#s1 rs#s2)
+ | Porw => rs#d <- (Val.or rs#s1 rs#s2)
+ | Pxorw => rs#d <- (Val.xor rs#s1 rs#s2)
+ | Psrlw => rs#d <- (Val.shru rs#s1 rs#s2)
+ | Psraw => rs#d <- (Val.shr rs#s1 rs#s2)
+ | Psllw => rs#d <- (Val.shl rs#s1 rs#s2)
+
+ | Paddl => rs#d <- (Val.addl rs#s1 rs#s2)
+ | Psubl => rs#d <- (Val.subl rs#s1 rs#s2)
+ | Pandl => rs#d <- (Val.andl rs#s1 rs#s2)
+ | Porl => rs#d <- (Val.orl rs#s1 rs#s2)
+ | Pxorl => rs#d <- (Val.xorl rs#s1 rs#s2)
+ | Pmull => rs#d <- (Val.mull rs#s1 rs#s2)
+ | Pslll => rs#d <- (Val.shll rs#s1 rs#s2)
+ | Psrll => rs#d <- (Val.shrlu rs#s1 rs#s2)
+ | Psral => rs#d <- (Val.shrl rs#s1 rs#s2)
+ end
+
+ | PArithRRI32 n d s i =>
+ match n with
+ | Pcompiw c => rs#d <- (compare_int c rs#s (Vint i) m)
+ | Paddiw => rs#d <- (Val.add rs#s (Vint i))
+ | Pandiw => rs#d <- (Val.and rs#s (Vint i))
+ | Poriw => rs#d <- (Val.or rs#s (Vint i))
+ | Pxoriw => rs#d <- (Val.xor rs#s (Vint i))
+ | Psraiw => rs#d <- (Val.shr rs#s (Vint i))
+ | Psrliw => rs#d <- (Val.shru rs#s (Vint i))
+ | Pslliw => rs#d <- (Val.shl rs#s (Vint i))
+ | Psllil => rs#d <- (Val.shll rs#s (Vint i))
+ | Psrlil => rs#d <- (Val.shrlu rs#s (Vint i))
+ | Psrail => rs#d <- (Val.shrl rs#s (Vint i))
+ end
+
+ | PArithRRI64 n d s i =>
+ match n with
+ | Pcompil c => rs#d <- (compare_long c rs#s (Vlong i) m)
+ | Paddil => rs#d <- (Val.addl rs#s (Vlong i))
+ | Pandil => rs#d <- (Val.andl rs#s (Vlong i))
+ | Poril => rs#d <- (Val.orl rs#s (Vlong i))
+ | Pxoril => rs#d <- (Val.xorl rs#s (Vlong i))
+ end
+ end.
+
+(** * load/store *)
+
+(** The two functions below axiomatize how the linker processes
+ symbolic references [symbol + offset)] and splits their
+ actual values into a 20-bit high part [%hi(symbol + offset)] and
+ a 12-bit low part [%lo(symbol + offset)]. *)
+
+Parameter low_half: genv -> ident -> ptrofs -> ptrofs.
+Parameter high_half: genv -> ident -> ptrofs -> val.
+
+(** The fundamental property of these operations is that, when applied
+ to the address of a symbol, their results can be recombined by
+ addition, rebuilding the original address. *)
+
+Axiom low_high_half:
+ forall id ofs,
+ Val.offset_ptr (high_half ge id ofs) (low_half ge id ofs) = Genv.symbol_address ge id ofs.
+
+(** Auxiliaries for memory accesses *)
+
+Definition eval_offset (ofs: offset) : ptrofs :=
+ match ofs with
+ | Ofsimm n => n
+ | Ofslow id delta => low_half ge id delta
+ end.
+
+Definition exec_load (chunk: memory_chunk) (rs: regset) (m: mem)
+ (d: preg) (a: ireg) (ofs: offset) :=
+ match Mem.loadv chunk m (Val.offset_ptr (rs a) (eval_offset ofs)) with
+ | None => Stuck
+ | Some v => Next (rs#d <- v) m
+ end.
+
+Definition exec_store (chunk: memory_chunk) (rs: regset) (m: mem)
+ (s: preg) (a: ireg) (ofs: offset) :=
+ match Mem.storev chunk m (Val.offset_ptr (rs a) (eval_offset ofs)) (rs s) with
+ | None => Stuck
+ | Some m' => Next rs m'
+ end.
+
+(** * basic instructions *)
+
+Definition exec_basic_instr (bi: basic) (rs: regset) (m: mem) : outcome regset :=
+ match bi with
+ | PArith ai => Next (exec_arith_instr ai rs m) m
+
+ | PLoadRRO n d a ofs =>
+ match n with
+ | Plb => exec_load Mint8signed rs m d a ofs
+ | Plbu => exec_load Mint8unsigned rs m d a ofs
+ | Plh => exec_load Mint16signed rs m d a ofs
+ | Plhu => exec_load Mint16unsigned rs m d a ofs
+ | Plw => exec_load Mint32 rs m d a ofs
+ | Plw_a => exec_load Many32 rs m d a ofs
+ | Pld => exec_load Mint64 rs m d a ofs
+ | Pld_a => exec_load Many64 rs m d a ofs
+ | Pfls => exec_load Mfloat32 rs m d a ofs
+ | Pfld => exec_load Mfloat64 rs m d a ofs
+ end
+
+ | PStoreRRO n s a ofs =>
+ match n with
+ | Psb => exec_store Mint8unsigned rs m s a ofs
+ | Psh => exec_store Mint16unsigned rs m s a ofs
+ | Psw => exec_store Mint32 rs m s a ofs
+ | Psw_a => exec_store Many32 rs m s a ofs
+ | Psd => exec_store Mint64 rs m s a ofs
+ | Psd_a => exec_store Many64 rs m s a ofs
+ | Pfss => exec_store Mfloat32 rs m s a ofs
+ | Pfsd => exec_store Mfloat64 rs m s a ofs
+ end
+
+ | Pallocframe sz pos =>
+ let (m1, stk) := Mem.alloc m 0 sz in
+ let sp := (Vptr stk Ptrofs.zero) in
+ match Mem.storev Mptr m1 (Val.offset_ptr sp pos) rs#SP with
+ | None => Stuck
+ | Some m2 => Next (rs #FP <- (rs SP) #SP <- sp #GPR31 <- Vundef) m2
+ end
+
+ | Pfreeframe sz pos =>
+ match Mem.loadv Mptr m (Val.offset_ptr rs#SP pos) with
+ | None => Stuck
+ | Some v =>
+ match rs SP with
+ | Vptr stk ofs =>
+ match Mem.free m stk 0 sz with
+ | None => Stuck
+ | Some m' => Next (rs#SP <- v #GPR31 <- Vundef) m'
+ end
+ | _ => Stuck
+ end
+ end
+ | Pget rd ra =>
+ match ra with
+ | RA => Next (rs#rd <- (rs#ra)) m
+ | _ => Stuck
+ end
+ | Pset ra rd =>
+ match ra with
+ | RA => Next (rs#ra <- (rs#rd)) m
+ | _ => Stuck
+ end
+ | Pnop => Next rs m
+end.
+
+Fixpoint exec_body (body: list basic) (rs: regset) (m: mem): outcome regset :=
+ match body with
+ | nil => Next rs m
+ | bi::body' =>
+ match exec_basic_instr bi rs m with
+ | Next rs' m' => exec_body body' rs' m'
+ | Stuck => Stuck
+ end
+ end.
+
+(** Manipulations over the [PC] register: continuing with the next
+ instruction ([nextblock]) or branching to a label ([goto_label]). *)
+
+Definition nextblock (b:bblock) (rs: regset) :=
+ rs#PC <- (Val.offset_ptr rs#PC (Ptrofs.repr (size b))).
+
+(** Looking up bblocks in a code sequence by position. *)
+Fixpoint find_bblock (pos: Z) (lb: bblocks) {struct lb} : option bblock :=
+ match lb with
+ | nil => None
+ | b :: il =>
+ if zlt pos 0 then None (* NOTE: It is impossible to branch inside a block *)
+ else if zeq pos 0 then Some b
+ else find_bblock (pos - (size b)) il
+ end.
+
+
+(** Position corresponding to a label *)
+
+(** TODO: redundant w.r.t Machblock *)
+Lemma in_dec (lbl: label) (l: list label): { List.In lbl l } + { ~(List.In lbl l) }.
+Proof.
+ apply List.in_dec.
+ apply Pos.eq_dec.
+Qed.
+
+
+(** Note: copy-paste from Machblock *)
+Definition is_label (lbl: label) (bb: bblock) : bool :=
+ if in_dec lbl (header bb) then true else false.
+
+Lemma is_label_correct_true lbl bb:
+ List.In lbl (header bb) <-> is_label lbl bb = true.
+Proof.
+ unfold is_label; destruct (in_dec lbl (header bb)); simpl; intuition.
+Qed.
+
+Lemma is_label_correct_false lbl bb:
+ ~(List.In lbl (header bb)) <-> is_label lbl bb = false.
+Proof.
+ unfold is_label; destruct (in_dec lbl (header bb)); simpl; intuition.
+Qed.
+
+(** convert a label into a position in the code *)
+Fixpoint label_pos (lbl: label) (pos: Z) (lb: bblocks) {struct lb} : option Z :=
+ match lb with
+ | nil => None
+ | b :: lb' => if is_label lbl b then Some pos else label_pos lbl (pos + (size b)) lb'
+ end.
+
+Definition goto_label (f: function) (lbl: label) (rs: regset) (m: mem) : outcome regset :=
+ match label_pos lbl 0 (fn_blocks f) with
+ | None => Stuck
+ | Some pos =>
+ match rs#PC with
+ | Vptr b ofs => Next (rs#PC <- (Vptr b (Ptrofs.repr pos))) m
+ | _ => Stuck
+ end
+ end.
+
+(** Evaluating a branch
+
+Warning: in m PC is assumed to be already pointing on the next instruction !
+
+*)
+Definition eval_branch (f: function) (l: label) (rs: regset) (m: mem) (res: option bool) : outcome regset :=
+ match res with
+ | Some true => goto_label f l rs m
+ | Some false => Next rs m
+ | None => Stuck
+ end.
+
+
+(** Execution of a single control-flow instruction [i] in initial state [rs] and
+ [m]. Return updated state.
+
+ As above: PC is assumed to be incremented on the next block before the control-flow instruction
+
+ For instructions that correspond tobuiltin
+ actual RISC-V instructions, the cases are straightforward
+ transliterations of the informal descriptions given in the RISC-V
+ user-mode specification. For pseudo-instructions, refer to the
+ informal descriptions given above.
+
+ Note that we set to [Vundef] the registers used as temporaries by
+ the expansions of the pseudo-instructions, so that the RISC-V code
+ we generate cannot use those registers to hold values that must
+ survive the execution of the pseudo-instruction. *)
+
+Definition exec_control (f: function) (oc: option control) (rs: regset) (m: mem) : outcome regset :=
+ match oc with
+ | Some ic =>
+(** Get/Set system registers *)
+ match ic with
+
+
+(** Branch Control Unit instructions *)
+ | Pret =>
+ Next (rs#PC <- (rs#RA)) m
+ | Pcall s =>
+ Next (rs#RA <- (rs#PC) #PC <- (Genv.symbol_address ge s Ptrofs.zero)) m
+ | Pgoto s =>
+ Next (rs#PC <- (Genv.symbol_address ge s Ptrofs.zero)) m
+ | Pj_l l =>
+ goto_label f l rs m
+ | Pcb bt r l =>
+ match cmp_for_btest bt with
+ | (Some c, Int) => eval_branch f l rs m (Val.cmp_bool c rs#r (Vint (Int.repr 0)))
+ | (Some c, Long) => eval_branch f l rs m (Val.cmpl_bool c rs#r (Vlong (Int64.repr 0)))
+ | (None, _) => Stuck
+ end
+ | Pcbu bt r l =>
+ match cmpu_for_btest bt with
+ | (Some c, Int) => eval_branch f l rs m (Val.cmpu_bool (Mem.valid_pointer m) c rs#r (Vint (Int.repr 0)))
+ | (Some c, Long) => eval_branch f l rs m (Val.cmplu_bool (Mem.valid_pointer m) c rs#r (Vlong (Int64.repr 0)))
+ | (None, _) => Stuck
+ end
+
+
+(** Pseudo-instructions *)
+ | Pbuiltin ef args res =>
+ Stuck (**r treated specially below *)
+ end
+ | None => Next rs m
+end.
+
+Definition exec_bblock (f: function) (b: bblock) (rs0: regset) (m: mem) : outcome regset :=
+ match exec_body (body b) rs0 m with
+ | Next rs' m' =>
+ let rs1 := nextblock b rs' in exec_control f (exit b) rs1 m'
+ | Stuck => Stuck
+ end.
+
+(** Translation of the LTL/Linear/Mach view of machine registers to
+ the RISC-V view. Note that no LTL register maps to [X31]. This
+ register is reserved as temporary, to be used by the generated RV32G
+ code. *)
+
+ (* FIXME - R31 is not there *)
+Definition preg_of (r: mreg) : preg :=
+ match r with
+ | R0 => GPR0 | R1 => GPR1 | R2 => GPR2 | R3 => GPR3 | R4 => GPR4
+ | R5 => GPR5 | R6 => GPR6 | R7 => GPR7 | R9 => GPR9
+ | R10 => GPR10 (*| R11 => GPR11 | R12 => GPR12 | R13 => GPR13 | R14 => GPR14 *)
+ | R15 => GPR15 | R16 => GPR16 | R17 => GPR17 | R18 => GPR18 | R19 => GPR19
+ | R20 => GPR20 | R21 => GPR21 | R22 => GPR22 | R23 => GPR23 | R24 => GPR24
+ | R25 => GPR25 | R26 => GPR26 | R27 => GPR27 | R28 => GPR28 | R29 => GPR29
+ | R30 => GPR30 | R32 => GPR32 | R33 => GPR33 | R34 => GPR34
+ | R35 => GPR35 | R36 => GPR36 | R37 => GPR37 | R38 => GPR38 | R39 => GPR39
+ | R40 => GPR40 | R41 => GPR41 | R42 => GPR42 | R43 => GPR43 | R44 => GPR44
+ | R45 => GPR45 | R46 => GPR46 | R47 => GPR47 | R48 => GPR48 | R49 => GPR49
+ | R50 => GPR50 | R51 => GPR51 | R52 => GPR52 | R53 => GPR53 | R54 => GPR54
+ | R55 => GPR55 | R56 => GPR56 | R57 => GPR57 | R58 => GPR58 | R59 => GPR59
+ | R60 => GPR60 | R61 => GPR61 | R62 => GPR62 | R63 => GPR63
+ end.
+
+(** Extract the values of the arguments of an external call.
+ We exploit the calling conventions from module [Conventions], except that
+ we use RISC-V registers instead of locations. *)
+
+Inductive extcall_arg (rs: regset) (m: mem): loc -> val -> Prop :=
+ | extcall_arg_reg: forall r,
+ extcall_arg rs m (R r) (rs (preg_of r))
+ | extcall_arg_stack: forall ofs ty bofs v,
+ bofs = Stacklayout.fe_ofs_arg + 4 * ofs ->
+ Mem.loadv (chunk_of_type ty) m
+ (Val.offset_ptr rs#SP (Ptrofs.repr bofs)) = Some v ->
+ extcall_arg rs m (S Outgoing ofs ty) v.
+
+Inductive extcall_arg_pair (rs: regset) (m: mem): rpair loc -> val -> Prop :=
+ | extcall_arg_one: forall l v,
+ extcall_arg rs m l v ->
+ extcall_arg_pair rs m (One l) v
+ | extcall_arg_twolong: forall hi lo vhi vlo,
+ extcall_arg rs m hi vhi ->
+ extcall_arg rs m lo vlo ->
+ extcall_arg_pair rs m (Twolong hi lo) (Val.longofwords vhi vlo).
+
+Definition extcall_arguments
+ (rs: regset) (m: mem) (sg: signature) (args: list val) : Prop :=
+ list_forall2 (extcall_arg_pair rs m) (loc_arguments sg) args.
+
+Definition loc_external_result (sg: signature) : rpair preg :=
+ map_rpair preg_of (loc_result sg).
+
+(** Execution of the instruction at [rs PC]. *)
+
+Inductive state: Type :=
+ | State: regset -> mem -> state.
+
+
+(** TODO
+ * For now, we consider a builtin is alone in a basic block.
+ * Perhaps there is a way to avoid that ?
+ *)
+
+Inductive step: state -> trace -> state -> Prop :=
+ | exec_step_internal:
+ forall b ofs f bi rs m rs' m',
+ rs PC = Vptr b ofs ->
+ Genv.find_funct_ptr ge b = Some (Internal f) ->
+ find_bblock (Ptrofs.unsigned ofs) (fn_blocks f) = Some bi ->
+ exec_bblock f bi rs m = Next rs' m' ->
+ step (State rs m) E0 (State rs' m')
+ | exec_step_builtin:
+ forall b ofs f ef args res rs m vargs t vres rs' m' bi,
+ rs PC = Vptr b ofs ->
+ Genv.find_funct_ptr ge b = Some (Internal f) ->
+ find_bblock (Ptrofs.unsigned ofs) f.(fn_blocks) = Some bi ->
+ exit bi = Some (PExpand (Pbuiltin ef args res)) ->
+ eval_builtin_args ge rs (rs SP) m args vargs ->
+ external_call ef ge vargs m t vres m' ->
+ rs' = nextblock bi
+ (set_res res vres
+ (undef_regs (map preg_of (destroyed_by_builtin ef))
+ (rs#GPR31 <- Vundef))) ->
+ step (State rs m) t (State rs' m')
+ | exec_step_external:
+ forall b ef args res rs m t rs' m',
+ rs PC = Vptr b Ptrofs.zero ->
+ Genv.find_funct_ptr ge b = Some (External ef) ->
+ external_call ef ge args m t res m' ->
+ extcall_arguments rs m (ef_sig ef) args ->
+ rs' = (set_pair (loc_external_result (ef_sig ef) ) res rs)#PC <- (rs RA) ->
+ step (State rs m) t (State rs' m')
+ .
+
+
+
+End RELSEM.
+
+(** Execution of whole programs. *)
+
+Inductive initial_state (p: program): state -> Prop :=
+ | initial_state_intro: forall m0,
+ let ge := Genv.globalenv p in
+ let rs0 :=
+ (Pregmap.init Vundef)
+ # PC <- (Genv.symbol_address ge p.(prog_main) Ptrofs.zero)
+ # SP <- Vnullptr
+ # RA <- Vnullptr in
+ Genv.init_mem p = Some m0 ->
+ initial_state p (State rs0 m0).
+
+Inductive final_state: state -> int -> Prop :=
+ | final_state_intro: forall rs m r,
+ rs PC = Vnullptr ->
+ rs GPR0 = Vint r ->
+ final_state (State rs m) r.
+
+Definition semantics (p: program) :=
+ Semantics step (initial_state p) final_state (Genv.globalenv p).
+
+Remark extcall_arguments_determ:
+ forall rs m sg args1 args2,
+ extcall_arguments rs m sg args1 -> extcall_arguments rs m sg args2 -> args1 = args2.
+Proof.
+ intros until m.
+ assert (A: forall l v1 v2,
+ extcall_arg rs m l v1 -> extcall_arg rs m l v2 -> v1 = v2).
+ { intros. inv H; inv H0; congruence. }
+ assert (B: forall p v1 v2,
+ extcall_arg_pair rs m p v1 -> extcall_arg_pair rs m p v2 -> v1 = v2).
+ { intros. inv H; inv H0.
+ eapply A; eauto.
+ f_equal; eapply A; eauto. }
+ assert (C: forall ll vl1, list_forall2 (extcall_arg_pair rs m) ll vl1 ->
+ forall vl2, list_forall2 (extcall_arg_pair rs m) ll vl2 -> vl1 = vl2).
+ {
+ induction 1; intros vl2 EA; inv EA.
+ auto.
+ f_equal; eauto. }
+ intros. eapply C; eauto.
+Qed.
+
+Lemma semantics_determinate: forall p, determinate (semantics p).
+Proof.
+Ltac Equalities :=
+ match goal with
+ | [ H1: ?a = ?b, H2: ?a = ?c |- _ ] =>
+ rewrite H1 in H2; inv H2; Equalities
+ | _ => idtac
+ end.
+ intros; constructor; simpl; intros.
+- (* determ *)
+ inv H; inv H0; Equalities.
+ + split. constructor. auto.
+ + unfold exec_bblock in H4. destruct (exec_body _ _ _ _); try discriminate.
+ rewrite H9 in H4. discriminate.
+ + unfold exec_bblock in H13. destruct (exec_body _ _ _ _); try discriminate.
+ rewrite H4 in H13. discriminate.
+ + assert (vargs0 = vargs) by (eapply eval_builtin_args_determ; eauto). subst vargs0.
+ exploit external_call_determ. eexact H6. eexact H13. intros [A B].
+ split. auto. intros. destruct B; auto. subst. auto.
+ + assert (args0 = args) by (eapply extcall_arguments_determ; eauto). subst args0.
+ exploit external_call_determ. eexact H3. eexact H8. intros [A B].
+ split. auto. intros. destruct B; auto. subst. auto.
+- (* trace length *)
+ red; intros. inv H; simpl.
+ omega.
+ eapply external_call_trace_length; eauto.
+ eapply external_call_trace_length; eauto.
+- (* initial states *)
+ inv H; inv H0. f_equal. congruence.
+- (* final no step *)
+ assert (NOTNULL: forall b ofs, Vnullptr <> Vptr b ofs).
+ { intros; unfold Vnullptr; destruct Archi.ptr64; congruence. }
+ inv H. unfold Vzero in H0. red; intros; red; intros.
+ inv H; rewrite H0 in *; eelim NOTNULL; eauto.
+- (* final states *)
+ inv H; inv H0. congruence.
+Qed.
+
+Definition data_preg (r: preg) : bool :=
+ match r with
+ | RA => false
+ | IR GPR31 => false
+ | IR GPR8 => false
+ | IR _ => true
+ | FR _ => true
+ | PC => false
+ end.
+
+(** Determinacy of the [Asm] semantics. *)
+
+(* TODO.
+
+Remark extcall_arguments_determ:
+ forall rs m sg args1 args2,
+ extcall_arguments rs m sg args1 -> extcall_arguments rs m sg args2 -> args1 = args2.
+Proof.
+ intros until m.
+ assert (A: forall l v1 v2,
+ extcall_arg rs m l v1 -> extcall_arg rs m l v2 -> v1 = v2).
+ { intros. inv H; inv H0; congruence. }
+ assert (B: forall p v1 v2,
+ extcall_arg_pair rs m p v1 -> extcall_arg_pair rs m p v2 -> v1 = v2).
+ { intros. inv H; inv H0.
+ eapply A; eauto.
+ f_equal; eapply A; eauto. }
+ assert (C: forall ll vl1, list_forall2 (extcall_arg_pair rs m) ll vl1 ->
+ forall vl2, list_forall2 (extcall_arg_pair rs m) ll vl2 -> vl1 = vl2).
+ {
+ induction 1; intros vl2 EA; inv EA.
+ auto.
+ f_equal; eauto. }
+ intros. eapply C; eauto.
+Qed.
+
+Lemma semantics_determinate: forall p, determinate (semantics p).
+Proof.
+Ltac Equalities :=
+ match goal with
+ | [ H1: ?a = ?b, H2: ?a = ?c |- _ ] =>
+ rewrite H1 in H2; inv H2; Equalities
+ | _ => idtac
+ end.
+ intros; constructor; simpl; intros.
+- (* determ *)
+ inv H; inv H0; Equalities.
+ split. constructor. auto.
+ discriminate.
+ discriminate.
+ assert (vargs0 = vargs) by (eapply eval_builtin_args_determ; eauto). subst vargs0.
+ exploit external_call_determ. eexact H5. eexact H11. intros [A B].
+ split. auto. intros. destruct B; auto. subst. auto.
+ assert (args0 = args) by (eapply extcall_arguments_determ; eauto). subst args0.
+ exploit external_call_determ. eexact H3. eexact H8. intros [A B].
+ split. auto. intros. destruct B; auto. subst. auto.
+- (* trace length *)
+ red; intros. inv H; simpl.
+ omega.
+ eapply external_call_trace_length; eauto.
+ eapply external_call_trace_length; eauto.
+- (* initial states *)
+ inv H; inv H0. f_equal. congruence.
+- (* final no step *)
+ assert (NOTNULL: forall b ofs, Vnullptr <> Vptr b ofs).
+ { intros; unfold Vnullptr; destruct Archi.ptr64; congruence. }
+ inv H. unfold Vzero in H0. red; intros; red; intros.
+ inv H; rewrite H0 in *; eelim NOTNULL; eauto.
+- (* final states *)
+ inv H; inv H0. congruence.
+Qed.
+*)