aboutsummaryrefslogtreecommitdiffstats
path: root/mppa_k1c/Asmblockgenproof1.v
diff options
context:
space:
mode:
Diffstat (limited to 'mppa_k1c/Asmblockgenproof1.v')
-rw-r--r--mppa_k1c/Asmblockgenproof1.v1633
1 files changed, 1633 insertions, 0 deletions
diff --git a/mppa_k1c/Asmblockgenproof1.v b/mppa_k1c/Asmblockgenproof1.v
new file mode 100644
index 00000000..d0c205cd
--- /dev/null
+++ b/mppa_k1c/Asmblockgenproof1.v
@@ -0,0 +1,1633 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* Prashanth Mundkur, SRI International *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* The contributions by Prashanth Mundkur are reused and adapted *)
+(* under the terms of a Contributor License Agreement between *)
+(* SRI International and INRIA. *)
+(* *)
+(* *********************************************************************)
+
+Require Import Coqlib Errors Maps.
+Require Import AST Integers Floats Values Memory Globalenvs.
+Require Import Op Locations Machblock Conventions.
+Require Import Asmblock Asmblockgen Asmblockgenproof0.
+
+(** Decomposition of integer constants. *)
+
+Lemma make_immed32_sound:
+ forall n,
+ match make_immed32 n with
+ | Imm32_single imm => n = imm
+ end.
+Proof.
+ intros; unfold make_immed32. set (lo := Int.sign_ext 12 n).
+ predSpec Int.eq Int.eq_spec n lo; auto.
+(*
+- auto.
+- set (m := Int.sub n lo).
+ assert (A: Int.eqmod (two_p 12) (Int.unsigned lo) (Int.unsigned n)) by (apply Int.eqmod_sign_ext'; compute; auto).
+ assert (B: Int.eqmod (two_p 12) (Int.unsigned n - Int.unsigned lo) 0).
+ { replace 0 with (Int.unsigned n - Int.unsigned n) by omega.
+ auto using Int.eqmod_sub, Int.eqmod_refl. }
+ assert (C: Int.eqmod (two_p 12) (Int.unsigned m) 0).
+ { apply Int.eqmod_trans with (Int.unsigned n - Int.unsigned lo); auto.
+ apply Int.eqmod_divides with Int.modulus. apply Int.eqm_sym; apply Int.eqm_unsigned_repr.
+ exists (two_p (32-12)); auto. }
+ assert (D: Int.modu m (Int.repr 4096) = Int.zero).
+ { apply Int.eqmod_mod_eq in C. unfold Int.modu.
+ change (Int.unsigned (Int.repr 4096)) with (two_p 12). rewrite C.
+ reflexivity.
+ apply two_p_gt_ZERO; omega. }
+ rewrite <- (Int.divu_pow2 m (Int.repr 4096) (Int.repr 12)) by auto.
+ rewrite Int.shl_mul_two_p.
+ change (two_p (Int.unsigned (Int.repr 12))) with 4096.
+ replace (Int.mul (Int.divu m (Int.repr 4096)) (Int.repr 4096)) with m.
+ unfold m. rewrite Int.sub_add_opp. rewrite Int.add_assoc. rewrite <- (Int.add_commut lo).
+ rewrite Int.add_neg_zero. rewrite Int.add_zero. auto.
+ rewrite (Int.modu_divu_Euclid m (Int.repr 4096)) at 1 by (vm_compute; congruence).
+ rewrite D. apply Int.add_zero.
+*)
+Qed.
+
+Lemma make_immed64_sound:
+ forall n,
+ match make_immed64 n with
+ | Imm64_single imm => n = imm
+(*| Imm64_pair hi lo => n = Int64.add (Int64.sign_ext 32 (Int64.shl hi (Int64.repr 12))) lo
+ | Imm64_large imm => n = imm
+*)end.
+Proof.
+ intros; unfold make_immed64. set (lo := Int64.sign_ext 12 n).
+ predSpec Int64.eq Int64.eq_spec n lo.
+- auto.
+- set (m := Int64.sub n lo).
+ set (p := Int64.zero_ext 20 (Int64.shru m (Int64.repr 12))).
+ predSpec Int64.eq Int64.eq_spec n (Int64.add (Int64.sign_ext 32 (Int64.shl p (Int64.repr 12))) lo).
+ auto.
+ auto.
+Qed.
+
+
+
+(** Properties of registers *)
+
+Lemma ireg_of_not_GPR31:
+ forall m r, ireg_of m = OK r -> IR r <> IR GPR31.
+Proof.
+ intros. erewrite <- ireg_of_eq; eauto with asmgen.
+Qed.
+
+Lemma ireg_of_not_GPR31':
+ forall m r, ireg_of m = OK r -> r <> GPR31.
+Proof.
+ intros. apply ireg_of_not_GPR31 in H. congruence.
+Qed.
+
+Hint Resolve ireg_of_not_GPR31 ireg_of_not_GPR31': asmgen.
+
+
+(** Useful simplification tactic *)
+
+Ltac Simplif :=
+ ((rewrite nextblock_inv by eauto with asmgen)
+ || (rewrite nextblock_inv1 by eauto with asmgen)
+ || (rewrite Pregmap.gss)
+ || (rewrite nextblock_pc)
+ || (rewrite Pregmap.gso by eauto with asmgen)
+ ); auto with asmgen.
+
+Ltac Simpl := repeat Simplif.
+
+(** * Correctness of RISC-V constructor functions *)
+
+Section CONSTRUCTORS.
+
+Variable ge: genv.
+Variable fn: function.
+
+(*
+(** 32-bit integer constants and arithmetic *)
+(*
+Lemma load_hilo32_correct:
+ forall rd hi lo k rs m,
+ exists rs',
+ exec_straight ge fn (load_hilo32 rd hi lo k) rs m k rs' m
+ /\ rs'#rd = Vint (Int.add (Int.shl hi (Int.repr 12)) lo)
+ /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
+Proof.
+ unfold load_hilo32; intros.
+ predSpec Int.eq Int.eq_spec lo Int.zero.
+- subst lo. econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split. rewrite Int.add_zero. Simpl.
+ intros; Simpl.
+- econstructor; split.
+ eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto.
+ split. Simpl.
+ intros; Simpl.
+Qed.
+*)
+
+*)
+
+Lemma loadimm32_correct:
+ forall rd n k rs m,
+ exists rs',
+ exec_straight ge (loadimm32 rd n ::g k) rs m k rs' m
+ /\ rs'#rd = Vint n
+ /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
+Proof.
+ unfold loadimm32; intros. generalize (make_immed32_sound n); intros E.
+ destruct (make_immed32 n).
+- subst imm. econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split. Simpl.
+ intros; Simpl.
+Qed.
+
+Lemma loadimm64_correct:
+ forall rd n k rs m,
+ exists rs',
+ exec_straight ge (loadimm64 rd n ::g k) rs m k rs' m
+ /\ rs'#rd = Vlong n
+ /\ forall r, r <> PC -> r <> rd -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ unfold loadimm64; intros. generalize (make_immed64_sound n); intros E.
+ destruct (make_immed64 n).
+- subst imm. econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split. Simpl.
+ intros; Simpl.
+Qed.
+
+(*
+(*
+Lemma opimm32_correct:
+ forall (op: ireg -> ireg0 -> ireg0 -> instruction)
+ (opi: ireg -> ireg0 -> int -> instruction)
+ (sem: val -> val -> val) m,
+ (forall d s1 s2 rs,
+ exec_instr ge fn (op d s1 s2) rs m = Next (nextinstr (rs#d <- (sem rs##s1 rs##s2))) m) ->
+ (forall d s n rs,
+ exec_instr ge fn (opi d s n) rs m = Next (nextinstr (rs#d <- (sem rs##s (Vint n)))) m) ->
+ forall rd r1 n k rs,
+ r1 <> GPR31 ->
+ exists rs',
+ exec_straight ge fn (opimm32 op opi rd r1 n k) rs m k rs' m
+ /\ rs'#rd = sem rs##r1 (Vint n)
+ /\ forall r, r <> PC -> r <> rd -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros. unfold opimm32. generalize (make_immed32_sound n); intros E.
+ destruct (make_immed32 n).
+- subst imm. econstructor; split.
+ apply exec_straight_one. rewrite H0. simpl; eauto. auto.
+ split. Simpl. intros; Simpl.
+- destruct (load_hilo32_correct GPR31 hi lo (op rd r1 GPR31 :: k) rs m)
+ as (rs' & A & B & C).
+ econstructor; split.
+ eapply exec_straight_trans. eexact A. apply exec_straight_one.
+ rewrite H; eauto. auto.
+ split. Simpl. simpl. rewrite B, C, E. auto. congruence. congruence.
+ intros; Simpl.
+Qed.
+
+(** 64-bit integer constants and arithmetic *)
+
+Lemma load_hilo64_correct:
+ forall rd hi lo k rs m,
+ exists rs',
+ exec_straight ge fn (load_hilo64 rd hi lo k) rs m k rs' m
+ /\ rs'#rd = Vlong (Int64.add (Int64.sign_ext 32 (Int64.shl hi (Int64.repr 12))) lo)
+ /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
+Proof.
+ unfold load_hilo64; intros.
+ predSpec Int64.eq Int64.eq_spec lo Int64.zero.
+- subst lo. econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split. rewrite Int64.add_zero. Simpl.
+ intros; Simpl.
+- econstructor; split.
+ eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto.
+ split. Simpl.
+ intros; Simpl.
+Qed.
+*)
+*)
+
+Definition yolo := 4.
+
+Lemma opimm64_correct:
+ forall (op: arith_name_rrr)
+ (opi: arith_name_rri64)
+ (sem: val -> val -> val) m,
+ (forall d s1 s2 rs,
+ exec_basic_instr ge (op d s1 s2) rs m = Next ((rs#d <- (sem rs#s1 rs#s2))) m) ->
+ (forall d s n rs,
+ exec_basic_instr ge (opi d s n) rs m = Next ((rs#d <- (sem rs#s (Vlong n)))) m) ->
+ forall rd r1 n k rs,
+ r1 <> GPR31 ->
+ exists rs',
+ exec_straight ge (opimm64 op opi rd r1 n ::g k) rs m k rs' m
+ /\ rs'#rd = sem rs#r1 (Vlong n)
+ /\ forall r, r <> PC -> r <> rd -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros. unfold opimm64. generalize (make_immed64_sound n); intros E.
+ destruct (make_immed64 n).
+- subst imm. econstructor; split.
+ apply exec_straight_one. rewrite H0. simpl; eauto. auto.
+ split. Simpl. intros; Simpl.
+(*
+- destruct (load_hilo64_correct GPR31 hi lo (op rd r1 GPR31 :: k) rs m)
+ as (rs' & A & B & C).
+ econstructor; split.
+ eapply exec_straight_trans. eexact A. apply exec_straight_one.
+ rewrite H; eauto. auto.
+ split. Simpl. simpl. rewrite B, C, E. auto. congruence. congruence.
+ intros; Simpl.
+- subst imm. econstructor; split.
+ eapply exec_straight_two. simpl; eauto. rewrite H. simpl; eauto. auto. auto.
+ split. Simpl. intros; Simpl.
+*)
+Qed.
+
+(** Add offset to pointer *)
+
+Lemma addptrofs_correct:
+ forall rd r1 n k rs m,
+ r1 <> GPR31 ->
+ exists rs',
+ exec_straight ge (addptrofs rd r1 n ::g k) rs m k rs' m
+ /\ Val.lessdef (Val.offset_ptr rs#r1 n) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ unfold addptrofs; intros.
+ destruct (Ptrofs.eq_dec n Ptrofs.zero).
+- subst n. econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split. Simpl. destruct (rs r1); simpl; auto. rewrite Ptrofs.add_zero; auto.
+ intros; Simpl.
+- unfold addimm64.
+ exploit (opimm64_correct Paddl Paddil Val.addl); eauto. intros (rs' & A & B & C).
+ exists rs'; split. eexact A. split; auto.
+ rewrite B. destruct (rs r1); simpl; auto.
+ rewrite Ptrofs.of_int64_to_int64 by auto. auto.
+Qed.
+
+(*
+(*
+Lemma addptrofs_correct_2:
+ forall rd r1 n k (rs: regset) m b ofs,
+ r1 <> GPR31 -> rs#r1 = Vptr b of
+s ->
+ exists rs',
+ exec_straight ge fn (addptrofs rd r1 n k) rs m k rs' m
+ /\ rs'#rd = Vptr b (Ptrofs.add ofs n)
+ /\ forall r, r <> PC -> r <> rd -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros. exploit (addptrofs_correct rd r1 n); eauto. intros (rs' & A & B & C).
+ exists rs'; intuition eauto.
+ rewrite H0 in B. inv B. auto.
+Qed.
+
+(** Translation of conditional branches *)
+
+Remark branch_on_GPR31:
+ forall normal lbl (rs: regset) m b,
+ rs#GPR31 = Val.of_bool (eqb normal b) ->
+ exec_instr ge fn (if normal then Pbnew GPR31 X0 lbl else Pbeqw GPR31 X0 lbl) rs m =
+ eval_branch fn lbl rs m (Some b).
+Proof.
+ intros. destruct normal; simpl; rewrite H; simpl; destruct b; reflexivity.
+Qed.
+*)
+*)
+
+Ltac ArgsInv :=
+ repeat (match goal with
+ | [ H: Error _ = OK _ |- _ ] => discriminate
+ | [ H: match ?args with nil => _ | _ :: _ => _ end = OK _ |- _ ] => destruct args
+ | [ H: bind _ _ = OK _ |- _ ] => monadInv H
+ | [ H: match _ with left _ => _ | right _ => assertion_failed end = OK _ |- _ ] => monadInv H; ArgsInv
+ | [ H: match _ with true => _ | false => assertion_failed end = OK _ |- _ ] => monadInv H; ArgsInv
+ end);
+ subst;
+ repeat (match goal with
+ | [ H: ireg_of _ = OK _ |- _ ] => simpl in *; rewrite (ireg_of_eq _ _ H) in *
+ | [ H: freg_of _ = OK _ |- _ ] => simpl in *; rewrite (freg_of_eq _ _ H) in *
+ end).
+
+Inductive exec_straight_opt: list instruction -> regset -> mem -> list instruction -> regset -> mem -> Prop :=
+ | exec_straight_opt_refl: forall c rs m,
+ exec_straight_opt c rs m c rs m
+ | exec_straight_opt_intro: forall c1 rs1 m1 c2 rs2 m2,
+ exec_straight ge c1 rs1 m1 c2 rs2 m2 ->
+ exec_straight_opt c1 rs1 m1 c2 rs2 m2.
+
+Remark exec_straight_opt_right:
+ forall c3 rs3 m3 c1 rs1 m1 c2 rs2 m2,
+ exec_straight_opt c1 rs1 m1 c2 rs2 m2 ->
+ exec_straight ge c2 rs2 m2 c3 rs3 m3 ->
+ exec_straight ge c1 rs1 m1 c3 rs3 m3.
+Proof.
+ destruct 1; intros. auto. eapply exec_straight_trans; eauto.
+Qed.
+
+Lemma transl_comp_correct:
+ forall cmp r1 r2 lbl k rs m tbb b,
+ exists rs',
+ exec_straight ge (transl_comp cmp Signed r1 r2 lbl k) rs m (Pcb BTwnez GPR31 lbl ::g k) rs' m
+ /\ (forall r : preg, r <> PC -> r <> RTMP -> rs' r = rs r)
+ /\ ( Val.cmp_bool cmp rs#r1 rs#r2 = Some b ->
+ exec_control ge fn (Some (PCtlFlow (Pcb BTwnez GPR31 lbl))) (nextblock tbb rs') m
+ = eval_branch fn lbl (nextblock tbb rs') m (Some b))
+ .
+Proof.
+ intros. esplit. split.
+- unfold transl_comp. apply exec_straight_one; simpl; eauto.
+- split.
+ + intros; Simpl.
+ + intros.
+ remember (rs # GPR31 <- (compare_int (itest_for_cmp cmp Signed) rs # r1 rs # r2 m)) as rs'.
+ simpl. assert (Val.cmp_bool Cne (nextblock tbb rs') # GPR31 (Vint (Int.repr 0)) = Some b).
+ {
+ assert ((nextblock tbb rs') # GPR31 = (compare_int (itest_for_cmp cmp Signed) rs # r1 rs # r2 m)).
+ { rewrite Heqrs'. auto. }
+ rewrite H0. rewrite <- H.
+ remember (Val.cmp_bool cmp rs#r1 rs#r2) as cmpbool.
+ destruct cmp; simpl;
+ unfold Val.cmp; rewrite <- Heqcmpbool; destruct cmpbool; simpl; auto;
+ destruct b0; simpl; auto.
+ }
+ rewrite H0. simpl; auto.
+Qed.
+
+Lemma transl_compu_correct:
+ forall cmp r1 r2 lbl k rs m tbb b,
+ exists rs',
+ exec_straight ge (transl_comp cmp Unsigned r1 r2 lbl k) rs m (Pcb BTwnez GPR31 lbl ::g k) rs' m
+ /\ (forall r : preg, r <> PC -> r <> RTMP -> rs' r = rs r)
+ /\ ( Val.cmpu_bool (Mem.valid_pointer m) cmp rs#r1 rs#r2 = Some b ->
+ exec_control ge fn (Some (PCtlFlow ((Pcb BTwnez GPR31 lbl)))) (nextblock tbb rs') m
+ = eval_branch fn lbl (nextblock tbb rs') m (Some b))
+ .
+Proof.
+ intros. esplit. split.
+- unfold transl_comp. apply exec_straight_one; simpl; eauto.
+- split.
+ + intros; Simpl.
+ + intros.
+ remember (rs # GPR31 <- (compare_int (itest_for_cmp cmp Unsigned) rs # r1 rs # r2 m)) as rs'.
+ simpl. assert (Val.cmp_bool Cne (nextblock tbb rs') # GPR31 (Vint (Int.repr 0)) = Some b).
+ {
+ assert ((nextblock tbb rs') # GPR31 = (compare_int (itest_for_cmp cmp Unsigned) rs # r1 rs # r2 m)).
+ { rewrite Heqrs'. auto. }
+ rewrite H0. rewrite <- H.
+ remember (Val.cmpu_bool (Mem.valid_pointer m) cmp rs#r1 rs#r2) as cmpubool.
+ destruct cmp; simpl; unfold Val.cmpu; rewrite <- Heqcmpubool; destruct cmpubool; simpl; auto;
+ destruct b0; simpl; auto.
+ }
+ rewrite H0. simpl; auto.
+Qed.
+
+Lemma transl_compl_correct:
+ forall cmp r1 r2 lbl k rs m tbb b,
+ exists rs',
+ exec_straight ge (transl_compl cmp Signed r1 r2 lbl k) rs m (Pcb BTwnez GPR31 lbl ::g k) rs' m
+ /\ (forall r : preg, r <> PC -> r <> RTMP -> rs' r = rs r)
+ /\ ( Val.cmpl_bool cmp rs#r1 rs#r2 = Some b ->
+ exec_control ge fn (Some (PCtlFlow (Pcb BTwnez GPR31 lbl))) (nextblock tbb rs') m
+ = eval_branch fn lbl (nextblock tbb rs') m (Some b))
+ .
+Proof.
+ intros. esplit. split.
+- unfold transl_compl. apply exec_straight_one; simpl; eauto.
+- split.
+ + intros; Simpl.
+ + intros.
+ remember (rs # GPR31 <- (compare_long (itest_for_cmp cmp Signed) rs # r1 rs # r2 m)) as rs'.
+ simpl. assert (Val.cmp_bool Cne (nextblock tbb rs') # GPR31 (Vint (Int.repr 0)) = Some b).
+ {
+ assert ((nextblock tbb rs') # GPR31 = (compare_long (itest_for_cmp cmp Signed) rs # r1 rs # r2 m)).
+ { rewrite Heqrs'. auto. }
+ rewrite H0. rewrite <- H.
+ remember (Val.cmpl_bool cmp rs#r1 rs#r2) as cmpbool.
+ destruct cmp; simpl;
+ unfold compare_long;
+ unfold Val.cmpl; rewrite <- Heqcmpbool; destruct cmpbool; simpl; auto;
+ destruct b0; simpl; auto.
+ }
+ rewrite H0. simpl; auto.
+Qed.
+
+Lemma transl_complu_correct:
+ forall cmp r1 r2 lbl k rs m tbb b,
+ exists rs',
+ exec_straight ge (transl_compl cmp Unsigned r1 r2 lbl k) rs m (Pcb BTwnez GPR31 lbl ::g k) rs' m
+ /\ (forall r : preg, r <> PC -> r <> RTMP -> rs' r = rs r)
+ /\ ( Val.cmplu_bool (Mem.valid_pointer m) cmp rs#r1 rs#r2 = Some b ->
+ exec_control ge fn (Some (PCtlFlow (Pcb BTwnez GPR31 lbl))) (nextblock tbb rs') m
+ = eval_branch fn lbl (nextblock tbb rs') m (Some b))
+ .
+Proof.
+ intros. esplit. split.
+- unfold transl_compl. apply exec_straight_one; simpl; eauto.
+- split.
+ + intros; Simpl.
+ + intros.
+ remember (rs # GPR31 <- (compare_long (itest_for_cmp cmp Unsigned) rs # r1 rs # r2 m)) as rs'.
+ simpl. assert (Val.cmp_bool Cne (nextblock tbb rs') # GPR31 (Vint (Int.repr 0)) = Some b).
+ {
+ assert ((nextblock tbb rs') # GPR31 = (compare_long (itest_for_cmp cmp Unsigned) rs # r1 rs # r2 m)).
+ { rewrite Heqrs'. auto. }
+ rewrite H0. rewrite <- H.
+ remember (Val.cmplu_bool (Mem.valid_pointer m) cmp rs#r1 rs#r2) as cmpbool.
+ destruct cmp; simpl;
+ unfold compare_long;
+ unfold Val.cmplu; rewrite <- Heqcmpbool; destruct cmpbool; simpl; auto;
+ destruct b0; simpl; auto.
+ }
+ rewrite H0. simpl; auto.
+Qed.
+
+Lemma transl_opt_compuimm_correct:
+ forall n cmp r1 lbl k rs m b tbb c,
+ select_comp n cmp = Some c ->
+ exists rs', exists insn,
+ exec_straight_opt (transl_opt_compuimm n cmp r1 lbl k) rs m ((PControl insn) ::g k) rs' m
+ /\ (forall r : preg, r <> PC -> r <> RTMP -> rs' r = rs r)
+ /\ ( Val.cmpu_bool (Mem.valid_pointer m) cmp rs#r1 (Vint n) = Some b ->
+ exec_control ge fn (Some insn) (nextblock tbb rs') m = eval_branch fn lbl (nextblock tbb rs') m (Some b))
+ .
+Proof.
+ intros.
+(* unfold transl_opt_compuimm. unfold select_comp in H. rewrite H; simpl. *)
+ remember c as c'.
+ destruct c'.
+ - (* c = Ceq *)
+ assert (Int.eq n Int.zero = true) as H'.
+ { remember (Int.eq n Int.zero) as termz. destruct termz; auto.
+ generalize H. unfold select_comp; rewrite <- Heqtermz; simpl.
+ discriminate. }
+ assert (n = (Int.repr 0)) as H0. {
+ destruct (Int.eq_dec n (Int.repr 0)) as [Ha|Ha]; auto.
+ generalize (Int.eq_false _ _ Ha). unfold Int.zero in H'.
+ rewrite H'. discriminate.
+ }
+ assert (Ceq = cmp). {
+ remember cmp as c0'. destruct c0'; auto; generalize H; unfold select_comp;
+ rewrite H'; simpl; auto;
+ intros; contradict H; discriminate.
+ }
+ unfold transl_opt_compuimm. subst. rewrite H'.
+
+ exists rs, (Pcbu BTweqz r1 lbl).
+ split.
+ * constructor.
+ * split; auto. simpl. intros.
+ assert (rs r1 = (nextblock tbb rs) r1).
+ unfold nextblock. Simpl. rewrite H1 in H0.
+ (*assert (Val.cmp_bool Ceq (rs r1) (Vint (Int.repr 0)) = Some b) as EVAL'S.
+ { rewrite <- H2. rewrite <- H0. rewrite <- H1. auto. }*)
+ auto;
+ unfold eval_branch. rewrite H0; auto.
+ - (* c = Cne *)
+ assert (Int.eq n Int.zero = true) as H'.
+ { remember (Int.eq n Int.zero) as termz. destruct termz; auto.
+ generalize H. unfold select_comp; rewrite <- Heqtermz; simpl.
+ discriminate. }
+ assert (n = (Int.repr 0)) as H0. {
+ destruct (Int.eq_dec n (Int.repr 0)) as [Ha|Ha]; auto.
+ generalize (Int.eq_false _ _ Ha). unfold Int.zero in H'.
+ rewrite H'. discriminate.
+ }
+ assert (Cne = cmp). {
+ remember cmp as c0'. destruct c0'; auto; generalize H; unfold select_comp;
+ rewrite H'; simpl; auto;
+ intros; contradict H; discriminate.
+ }
+ unfold transl_opt_compuimm. subst. rewrite H'.
+
+ exists rs, (Pcbu BTwnez r1 lbl).
+ split.
+ * constructor.
+ * split; auto. simpl. intros.
+ assert (rs r1 = (nextblock tbb rs) r1).
+ unfold nextblock. Simpl. rewrite H1 in H0.
+ auto;
+ unfold eval_branch. rewrite H0. auto.
+ - (* c = Clt *) contradict H; unfold select_comp; destruct (Int.eq n Int.zero);
+ destruct cmp; discriminate.
+ - (* c = Cle *) contradict H; unfold select_comp; destruct (Int.eq n Int.zero);
+ destruct cmp; discriminate.
+ - (* c = Cgt *) contradict H; unfold select_comp; destruct (Int.eq n Int.zero);
+ destruct cmp; discriminate.
+ - (* c = Cge *) contradict H; unfold select_comp; destruct (Int.eq n Int.zero);
+ destruct cmp; discriminate.
+Qed.
+
+Lemma transl_opt_compluimm_correct:
+ forall n cmp r1 lbl k rs m b tbb c,
+ select_compl n cmp = Some c ->
+ exists rs', exists insn,
+ exec_straight_opt (transl_opt_compluimm n cmp r1 lbl k) rs m ((PControl insn) ::g k) rs' m
+ /\ (forall r : preg, r <> PC -> r <> RTMP -> rs' r = rs r)
+ /\ ( Val.cmplu_bool (Mem.valid_pointer m) cmp rs#r1 (Vlong n) = Some b ->
+ exec_control ge fn (Some insn) (nextblock tbb rs') m = eval_branch fn lbl (nextblock tbb rs') m (Some b))
+ .
+Proof.
+ intros.
+(* unfold transl_opt_compluimm; rewrite H; simpl. *)
+ remember c as c'.
+ destruct c'.
+ - (* c = Ceq *)
+ assert (Int64.eq n Int64.zero = true) as H'.
+ { remember (Int64.eq n Int64.zero) as termz. destruct termz; auto.
+ generalize H. unfold select_compl; rewrite <- Heqtermz; simpl.
+ discriminate. }
+ assert (n = (Int64.repr 0)) as H0. {
+ destruct (Int64.eq_dec n (Int64.repr 0)) as [Ha|Ha]; auto.
+ generalize (Int64.eq_false _ _ Ha). unfold Int64.zero in H'.
+ rewrite H'. discriminate.
+ }
+ assert (Ceq = cmp). {
+ remember cmp as c0'. destruct c0'; auto; generalize H; unfold select_compl;
+ rewrite H'; simpl; auto;
+ intros; contradict H; discriminate.
+ }
+ unfold transl_opt_compluimm; subst; rewrite H'.
+
+ exists rs, (Pcbu BTdeqz r1 lbl).
+ split.
+ * constructor.
+ * split; auto. simpl. intros.
+ assert (rs r1 = (nextblock tbb rs) r1).
+ unfold nextblock. Simpl. rewrite H1 in H0.
+ auto;
+ unfold eval_branch. rewrite H0; auto.
+ - (* c = Cne *)
+ assert (Int64.eq n Int64.zero = true) as H'.
+ { remember (Int64.eq n Int64.zero) as termz. destruct termz; auto.
+ generalize H. unfold select_compl; rewrite <- Heqtermz; simpl.
+ discriminate. }
+ assert (n = (Int64.repr 0)) as H0. {
+ destruct (Int64.eq_dec n (Int64.repr 0)) as [Ha|Ha]; auto.
+ generalize (Int64.eq_false _ _ Ha). unfold Int64.zero in H'.
+ rewrite H'. discriminate.
+ }
+ assert (Cne = cmp). {
+ remember cmp as c0'. destruct c0'; auto; generalize H; unfold select_compl;
+ rewrite H'; simpl; auto;
+ intros; contradict H; discriminate.
+ }
+ unfold transl_opt_compluimm; subst; rewrite H'.
+
+ exists rs, (Pcbu BTdnez r1 lbl).
+ split.
+ * constructor.
+ * split; auto. simpl. intros.
+ assert (rs r1 = (nextblock tbb rs) r1).
+ unfold nextblock. Simpl. rewrite H1 in H0.
+ auto;
+ unfold eval_branch. rewrite H0; auto.
+ - (* c = Clt *) contradict H; unfold select_compl; destruct (Int64.eq n Int64.zero);
+ destruct cmp; discriminate.
+ - (* c = Cle *) contradict H; unfold select_compl; destruct (Int64.eq n Int64.zero);
+ destruct cmp; discriminate.
+ - (* c = Cgt *) contradict H; unfold select_compl; destruct (Int64.eq n Int64.zero);
+ destruct cmp; discriminate.
+ - (* c = Cge *) contradict H; unfold select_compl; destruct (Int64.eq n Int64.zero);
+ destruct cmp; discriminate.
+Qed.
+
+Lemma transl_cbranch_correct_1:
+ forall cond args lbl k c m ms b sp rs m' tbb,
+ transl_cbranch cond args lbl k = OK c ->
+ eval_condition cond (List.map ms args) m = Some b ->
+ agree ms sp rs ->
+ Mem.extends m m' ->
+ exists rs', exists insn,
+ exec_straight_opt c rs m' ((PControl insn) ::g k) rs' m'
+ /\ exec_control ge fn (Some insn) (nextblock tbb rs') m' = eval_branch fn lbl (nextblock tbb rs') m' (Some b)
+ /\ forall r, r <> PC -> r <> RTMP -> rs'#r = rs#r.
+Proof.
+ intros until tbb; intros TRANSL EVAL AG MEXT.
+ set (vl' := map rs (map preg_of args)).
+ assert (EVAL': eval_condition cond vl' m' = Some b).
+ { apply eval_condition_lessdef with (map ms args) m; auto. eapply preg_vals; eauto. }
+ clear EVAL MEXT AG.
+ destruct cond; simpl in TRANSL; ArgsInv.
+(* Ccomp *)
+- exploit (transl_comp_correct c0 x x0 lbl); eauto. intros (rs' & A & B & C).
+ exists rs', (Pcb BTwnez GPR31 lbl).
+ split.
+ + constructor. eexact A.
+ + split; auto. apply C; auto.
+(* Ccompu *)
+- exploit (transl_compu_correct c0 x x0 lbl); eauto. intros (rs' & A & B & C).
+ exists rs', (Pcb BTwnez GPR31 lbl).
+ split.
+ + constructor. eexact A.
+ + split; auto. apply C; auto.
+(* Ccompimm *)
+- remember (Int.eq n Int.zero) as eqz.
+ destruct eqz.
+ + assert (n = (Int.repr 0)). {
+ destruct (Int.eq_dec n (Int.repr 0)) as [H|H]; auto.
+ generalize (Int.eq_false _ _ H). unfold Int.zero in Heqeqz.
+ rewrite <- Heqeqz. discriminate.
+ }
+ exists rs, (Pcb (btest_for_cmpswz c0) x lbl).
+ split.
+ * constructor.
+ * split; auto.
+ assert (rs x = (nextblock tbb rs) x).
+ unfold nextblock. Simpl. rewrite H0 in EVAL'. clear H0.
+ destruct c0; simpl; auto;
+ unfold eval_branch; rewrite <- H; rewrite EVAL'; auto.
+ + exploit (loadimm32_correct GPR31 n); eauto. intros (rs' & A & B & C).
+ exploit (transl_comp_correct c0 x GPR31 lbl); eauto. intros (rs'2 & A' & B' & C').
+ exists rs'2, (Pcb BTwnez GPR31 lbl).
+ split.
+ * constructor. apply exec_straight_trans
+ with (c2 := (transl_comp c0 Signed x GPR31 lbl k)) (rs2 := rs') (m2 := m').
+ eexact A. eexact A'.
+ * split; auto.
+ { apply C'; auto. rewrite B, C; eauto with asmgen. }
+ { intros. rewrite B'; eauto with asmgen. }
+(* Ccompuimm *)
+- remember (select_comp n c0) as selcomp.
+ destruct selcomp.
+ + exploit (transl_opt_compuimm_correct n c0 x lbl k). apply eq_sym. apply Heqselcomp.
+ intros (rs' & i & A & B & C).
+ exists rs', i.
+ split.
+ * apply A.
+ * split; auto. apply C. apply EVAL'.
+ + assert (transl_opt_compuimm n c0 x lbl k = loadimm32 GPR31 n ::g transl_comp c0 Unsigned x GPR31 lbl k).
+ { unfold transl_opt_compuimm.
+ destruct (Int.eq n Int.zero) eqn:EQN.
+ all: unfold select_comp in Heqselcomp; rewrite EQN in Heqselcomp; destruct c0; simpl in *; auto.
+ all: discriminate. }
+ rewrite H. clear H.
+ exploit (loadimm32_correct GPR31 n); eauto. intros (rs' & A & B & C).
+ exploit (transl_compu_correct c0 x GPR31 lbl); eauto. intros (rs'2 & A' & B' & C').
+ exists rs'2, (Pcb BTwnez GPR31 lbl).
+ split.
+ * constructor. apply exec_straight_trans
+ with (c2 := (transl_comp c0 Unsigned x GPR31 lbl k)) (rs2 := rs') (m2 := m').
+ eexact A. eexact A'.
+ * split; auto.
+ { apply C'; auto. rewrite B, C; eauto with asmgen. }
+ { intros. rewrite B'; eauto with asmgen. }
+(* Ccompl *)
+- exploit (transl_compl_correct c0 x x0 lbl); eauto. intros (rs' & A & B & C).
+ exists rs', (Pcb BTwnez GPR31 lbl).
+ split.
+ + constructor. eexact A.
+ + split; auto. apply C; auto.
+(* Ccomplu *)
+- exploit (transl_complu_correct c0 x x0 lbl); eauto. intros (rs' & A & B & C).
+ exists rs', (Pcb BTwnez GPR31 lbl).
+ split.
+ + constructor. eexact A.
+ + split; auto. apply C; auto.
+(* Ccomplimm *)
+- remember (Int64.eq n Int64.zero) as eqz.
+ destruct eqz.
+ + assert (n = (Int64.repr 0)). {
+ destruct (Int64.eq_dec n (Int64.repr 0)) as [H|H]; auto.
+ generalize (Int64.eq_false _ _ H). unfold Int64.zero in Heqeqz.
+ rewrite <- Heqeqz. discriminate.
+ }
+ exists rs, (Pcb (btest_for_cmpsdz c0) x lbl).
+ split.
+ * constructor.
+ * split; auto.
+ assert (rs x = (nextblock tbb rs) x).
+ unfold nextblock. Simpl. rewrite H0 in EVAL'. clear H0.
+ destruct c0; simpl; auto;
+ unfold eval_branch; rewrite <- H; rewrite EVAL'; auto.
+ + exploit (loadimm64_correct GPR31 n); eauto. intros (rs' & A & B & C).
+ exploit (transl_compl_correct c0 x GPR31 lbl); eauto. intros (rs'2 & A' & B' & C').
+ exists rs'2, (Pcb BTwnez GPR31 lbl).
+ split.
+ * constructor. apply exec_straight_trans
+ with (c2 := (transl_compl c0 Signed x GPR31 lbl k)) (rs2 := rs') (m2 := m').
+ eexact A. eexact A'.
+ * split; auto.
+ { apply C'; auto. rewrite B, C; eauto with asmgen. }
+ { intros. rewrite B'; eauto with asmgen. }
+
+(* Ccompluimm *)
+- remember (select_compl n c0) as selcomp.
+ destruct selcomp.
+ + exploit (transl_opt_compluimm_correct n c0 x lbl k). apply eq_sym. apply Heqselcomp.
+ intros (rs' & i & A & B & C).
+ exists rs', i.
+ split.
+ * apply A.
+ * split; auto. apply C. apply EVAL'.
+ + assert (transl_opt_compluimm n c0 x lbl k = loadimm64 GPR31 n ::g transl_compl c0 Unsigned x GPR31 lbl k).
+ { unfold transl_opt_compluimm.
+ destruct (Int64.eq n Int64.zero) eqn:EQN.
+ all: unfold select_compl in Heqselcomp; rewrite EQN in Heqselcomp; destruct c0; simpl in *; auto.
+ all: discriminate. }
+ rewrite H. clear H.
+ exploit (loadimm64_correct GPR31 n); eauto. intros (rs' & A & B & C).
+ exploit (transl_complu_correct c0 x GPR31 lbl); eauto. intros (rs'2 & A' & B' & C').
+ exists rs'2, (Pcb BTwnez GPR31 lbl).
+ split.
+ * constructor. apply exec_straight_trans
+ with (c2 := (transl_compl c0 Unsigned x GPR31 lbl k)) (rs2 := rs') (m2 := m').
+ eexact A. eexact A'.
+ * split; auto.
+ { apply C'; auto. rewrite B, C; eauto with asmgen. }
+ { intros. rewrite B'; eauto with asmgen. }
+Qed.
+
+Lemma transl_cbranch_correct_true:
+ forall cond args lbl k c m ms sp rs m' tbb,
+ transl_cbranch cond args lbl k = OK c ->
+ eval_condition cond (List.map ms args) m = Some true ->
+ agree ms sp rs ->
+ Mem.extends m m' ->
+ exists rs', exists insn,
+ exec_straight_opt c rs m' ((PControl insn) ::g k) rs' m'
+ /\ exec_control ge fn (Some insn) (nextblock tbb rs') m' = goto_label fn lbl (nextblock tbb rs') m'
+ /\ forall r, r <> PC -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros. eapply transl_cbranch_correct_1 with (b := true); eauto.
+Qed.
+
+Lemma transl_cbranch_correct_false:
+ forall cond args lbl k c m ms sp rs tbb m',
+ transl_cbranch cond args lbl k = OK c ->
+ eval_condition cond (List.map ms args) m = Some false ->
+ agree ms sp rs ->
+ Mem.extends m m' ->
+ exists rs', exists insn,
+ exec_straight_opt c rs m' ((PControl insn) ::g k) rs' m'
+ /\ exec_control ge fn (Some insn) (nextblock tbb rs') m' = Next (nextblock tbb rs') m'
+ /\ forall r, r <> PC -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros. exploit transl_cbranch_correct_1; eauto.
+Qed.
+(* intros (rs' & insn & A & B & C).
+ exists rs'.
+ split. eapply exec_straight_opt_right; eauto. apply exec_straight_one; auto.
+ intros; Simpl.
+ *)
+
+(** Translation of condition operators *)
+
+Lemma transl_cond_int32s_correct:
+ forall cmp rd r1 r2 k rs m,
+ exists rs',
+ exec_straight ge (basics_to_code (transl_cond_int32s cmp rd r1 r2 k)) rs m (basics_to_code k) rs' m
+ /\ Val.lessdef (Val.cmp cmp rs#r1 rs#r2) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
+Proof.
+ intros. destruct cmp; simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+Qed.
+
+Lemma transl_cond_int32u_correct:
+ forall cmp rd r1 r2 k rs m,
+ exists rs',
+ exec_straight ge (basics_to_code (transl_cond_int32u cmp rd r1 r2 k)) rs m (basics_to_code k) rs' m
+ /\ rs'#rd = Val.cmpu (Mem.valid_pointer m) cmp rs#r1 rs#r2
+ /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
+Proof.
+ intros. destruct cmp; simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+Qed.
+
+Lemma transl_cond_int64s_correct:
+ forall cmp rd r1 r2 k rs m,
+ exists rs',
+ exec_straight ge (basics_to_code (transl_cond_int64s cmp rd r1 r2 k)) rs m (basics_to_code k) rs' m
+ /\ Val.lessdef (Val.maketotal (Val.cmpl cmp rs#r1 rs#r2)) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
+Proof.
+ intros. destruct cmp; simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+Qed.
+
+Lemma transl_cond_int64u_correct:
+ forall cmp rd r1 r2 k rs m,
+ exists rs',
+ exec_straight ge (basics_to_code (transl_cond_int64u cmp rd r1 r2 k)) rs m (basics_to_code k) rs' m
+ /\ rs'#rd = Val.maketotal (Val.cmplu (Mem.valid_pointer m) cmp rs#r1 rs#r2)
+ /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r.
+Proof.
+ intros. destruct cmp; simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+Qed.
+
+Lemma transl_condimm_int32s_correct:
+ forall cmp rd r1 n k rs m,
+ r1 <> GPR31 ->
+ exists rs',
+ exec_straight ge (basics_to_code (transl_condimm_int32s cmp rd r1 n k)) rs m (basics_to_code k) rs' m
+ /\ Val.lessdef (Val.cmp cmp rs#r1 (Vint n)) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros. destruct cmp; simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+Qed.
+
+Lemma transl_condimm_int32u_correct:
+ forall cmp rd r1 n k rs m,
+ r1 <> GPR31 ->
+ exists rs',
+ exec_straight ge (basics_to_code (transl_condimm_int32u cmp rd r1 n k)) rs m (basics_to_code k) rs' m
+ /\ Val.lessdef (Val.cmpu (Mem.valid_pointer m) cmp rs#r1 (Vint n)) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros. destruct cmp; simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+Qed.
+
+Lemma transl_condimm_int64s_correct:
+ forall cmp rd r1 n k rs m,
+ r1 <> GPR31 ->
+ exists rs',
+ exec_straight ge (basics_to_code (transl_condimm_int64s cmp rd r1 n k)) rs m (basics_to_code k) rs' m
+ /\ Val.lessdef (Val.maketotal (Val.cmpl cmp rs#r1 (Vlong n))) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros. destruct cmp; simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+Qed.
+
+Lemma transl_condimm_int64u_correct:
+ forall cmp rd r1 n k rs m,
+ r1 <> GPR31 ->
+ exists rs',
+ exec_straight ge (basics_to_code (transl_condimm_int64u cmp rd r1 n k)) rs m (basics_to_code k) rs' m
+ /\ Val.lessdef (Val.maketotal (Val.cmplu (Mem.valid_pointer m) cmp rs#r1 (Vlong n))) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros. destruct cmp; simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+- econstructor; split. apply exec_straight_one; [simpl; eauto].
+ split; intros; Simpl.
+Qed.
+
+Lemma transl_cond_op_correct:
+ forall cond rd args k c rs m,
+ transl_cond_op cond rd args k = OK c ->
+ exists rs',
+ exec_straight ge (basics_to_code c) rs m (basics_to_code k) rs' m
+ /\ Val.lessdef (Val.of_optbool (eval_condition cond (map rs (map preg_of args)) m)) rs'#rd
+ /\ forall r, r <> PC -> r <> rd -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ assert (MKTOT: forall ob, Val.of_optbool ob = Val.maketotal (option_map Val.of_bool ob)).
+ { destruct ob as [[]|]; reflexivity. }
+ intros until m; intros TR.
+ destruct cond; simpl in TR; ArgsInv.
++ (* cmp *)
+ exploit transl_cond_int32s_correct; eauto. simpl. intros (rs' & A & B & C). exists rs'; eauto.
++ (* cmpu *)
+ exploit transl_cond_int32u_correct; eauto. simpl. intros (rs' & A & B & C).
+ exists rs'; repeat split; eauto. rewrite B; auto.
++ (* cmpimm *)
+ apply transl_condimm_int32s_correct; eauto with asmgen.
++ (* cmpuimm *)
+ apply transl_condimm_int32u_correct; eauto with asmgen.
++ (* cmpl *)
+ exploit transl_cond_int64s_correct; eauto. simpl. intros (rs' & A & B & C).
+ exists rs'; repeat split; eauto. rewrite MKTOT; eauto.
++ (* cmplu *)
+ exploit transl_cond_int64u_correct; eauto. simpl. intros (rs' & A & B & C).
+ exists rs'; repeat split; eauto. rewrite B, MKTOT; eauto.
++ (* cmplimm *)
+ exploit transl_condimm_int64s_correct; eauto. instantiate (1 := x); eauto with asmgen. simpl.
+ intros (rs' & A & B & C).
+ exists rs'; repeat split; eauto. rewrite MKTOT; eauto.
++ (* cmpluimm *)
+ exploit transl_condimm_int64u_correct; eauto. instantiate (1 := x); eauto with asmgen. simpl.
+ intros (rs' & A & B & C).
+ exists rs'; repeat split; eauto. rewrite MKTOT; eauto.
+Qed.
+
+(*
+(*
++ (* cmpf *)
+ destruct (transl_cond_float c0 rd x x0) as [insn normal] eqn:TR.
+ fold (Val.cmpf c0 (rs x) (rs x0)).
+ set (v := Val.cmpf c0 (rs x) (rs x0)).
+ destruct normal; inv EQ2.
+* econstructor; split.
+ apply exec_straight_one. eapply transl_cond_float_correct with (v := v); eauto. auto.
+ split; intros; Simpl.
+* econstructor; split.
+ eapply exec_straight_two.
+ eapply transl_cond_float_correct with (v := Val.notbool v); eauto.
+ simpl; reflexivity.
+ auto. auto.
+ split; intros; Simpl. unfold v, Val.cmpf. destruct (Val.cmpf_bool c0 (rs x) (rs x0)) as [[]|]; auto.
++ (* notcmpf *)
+ destruct (transl_cond_float c0 rd x x0) as [insn normal] eqn:TR.
+ rewrite Val.notbool_negb_3. fold (Val.cmpf c0 (rs x) (rs x0)).
+ set (v := Val.cmpf c0 (rs x) (rs x0)).
+ destruct normal; inv EQ2.
+* econstructor; split.
+ eapply exec_straight_two.
+ eapply transl_cond_float_correct with (v := v); eauto.
+ simpl; reflexivity.
+ auto. auto.
+ split; intros; Simpl. unfold v, Val.cmpf. destruct (Val.cmpf_bool c0 (rs x) (rs x0)) as [[]|]; auto.
+* econstructor; split.
+ apply exec_straight_one. eapply transl_cond_float_correct with (v := Val.notbool v); eauto. auto.
+ split; intros; Simpl.
++ (* cmpfs *)
+ destruct (transl_cond_single c0 rd x x0) as [insn normal] eqn:TR.
+ fold (Val.cmpfs c0 (rs x) (rs x0)).
+ set (v := Val.cmpfs c0 (rs x) (rs x0)).
+ destruct normal; inv EQ2.
+* econstructor; split.
+ apply exec_straight_one. eapply transl_cond_single_correct with (v := v); eauto. auto.
+ split; intros; Simpl.
+* econstructor; split.
+ eapply exec_straight_two.
+ eapply transl_cond_single_correct with (v := Val.notbool v); eauto.
+ simpl; reflexivity.
+ auto. auto.
+ split; intros; Simpl. unfold v, Val.cmpfs. destruct (Val.cmpfs_bool c0 (rs x) (rs x0)) as [[]|]; auto.
++ (* notcmpfs *)
+ destruct (transl_cond_single c0 rd x x0) as [insn normal] eqn:TR.
+ rewrite Val.notbool_negb_3. fold (Val.cmpfs c0 (rs x) (rs x0)).
+ set (v := Val.cmpfs c0 (rs x) (rs x0)).
+ destruct normal; inv EQ2.
+* econstructor; split.
+ eapply exec_straight_two.
+ eapply transl_cond_single_correct with (v := v); eauto.
+ simpl; reflexivity.
+ auto. auto.
+ split; intros; Simpl. unfold v, Val.cmpfs. destruct (Val.cmpfs_bool c0 (rs x) (rs x0)) as [[]|]; auto.
+* econstructor; split.
+ apply exec_straight_one. eapply transl_cond_single_correct with (v := Val.notbool v); eauto. auto.
+ split; intros; Simpl.
+*)
+*)
+
+(** Some arithmetic properties. *)
+
+Remark cast32unsigned_from_cast32signed:
+ forall i, Int64.repr (Int.unsigned i) = Int64.zero_ext 32 (Int64.repr (Int.signed i)).
+Proof.
+ intros. apply Int64.same_bits_eq; intros.
+ rewrite Int64.bits_zero_ext, !Int64.testbit_repr by tauto.
+ rewrite Int.bits_signed by tauto. fold (Int.testbit i i0).
+ change Int.zwordsize with 32.
+ destruct (zlt i0 32). auto. apply Int.bits_above. auto.
+Qed.
+
+Lemma cast32signed_correct:
+ forall (d s: ireg) (k: code) (rs: regset) (m: mem),
+ exists rs': regset,
+ exec_straight ge (cast32signed d s ::g k) rs m k rs' m
+ /\ Val.lessdef (Val.longofint (rs s)) (rs' d)
+ /\ (forall r: preg, r <> PC -> r <> d -> rs' r = rs r).
+Proof.
+ intros. unfold cast32signed. destruct (ireg_eq d s).
+- econstructor; split.
+ + apply exec_straight_one. simpl. eauto with asmgen.
+ + split.
+ * rewrite e. Simpl.
+ * intros. destruct r; Simpl.
+- econstructor; split.
+ + apply exec_straight_one. simpl. eauto with asmgen.
+ + split.
+ * Simpl.
+ * intros. destruct r; Simpl.
+Qed.
+
+(* Translation of arithmetic operations *)
+
+Ltac SimplEval H :=
+ match type of H with
+ | Some _ = None _ => discriminate
+ | Some _ = Some _ => inv H
+ | ?a = Some ?b => let A := fresh in assert (A: Val.maketotal a = b) by (rewrite H; reflexivity)
+end.
+
+Ltac TranslOpSimpl :=
+ econstructor; split;
+ [ apply exec_straight_one; reflexivity
+ | split; [ apply Val.lessdef_same; simpl; Simpl; fail | intros; simpl; Simpl; fail ] ].
+
+Lemma transl_op_correct:
+ forall op args res k (rs: regset) m v c,
+ transl_op op args res k = OK c ->
+ eval_operation ge (rs#SP) op (map rs (map preg_of args)) m = Some v ->
+ exists rs',
+ exec_straight ge (basics_to_code c) rs m (basics_to_code k) rs' m
+ /\ Val.lessdef v rs'#(preg_of res)
+ /\ forall r, data_preg r = true -> r <> preg_of res -> preg_notin r (destroyed_by_op op) -> rs' r = rs r.
+Proof.
+ assert (SAME: forall v1 v2, v1 = v2 -> Val.lessdef v2 v1). { intros; subst; auto. }
+Opaque Int.eq.
+ intros until c; intros TR EV.
+ unfold transl_op in TR; destruct op; ArgsInv; simpl in EV; SimplEval EV; try TranslOpSimpl.
+- (* Omove *)
+ destruct (preg_of res), (preg_of m0); inv TR; TranslOpSimpl.
+- (* Oaddrsymbol *)
+ destruct (Archi.pic_code tt && negb (Ptrofs.eq ofs Ptrofs.zero)).
++ set (rs1 := (rs#x <- (Genv.symbol_address ge id Ptrofs.zero))).
+ exploit (addptrofs_correct x x ofs (basics_to_code k) rs1 m); eauto with asmgen.
+ intros (rs2 & A & B & C).
+ exists rs2; split.
+ apply exec_straight_step with rs1 m; auto.
+ split. replace ofs with (Ptrofs.add Ptrofs.zero ofs) by (apply Ptrofs.add_zero_l).
+ rewrite Genv.shift_symbol_address.
+ replace (rs1 x) with (Genv.symbol_address ge id Ptrofs.zero) in B by (unfold rs1; Simpl).
+ exact B.
+ intros. rewrite C by eauto with asmgen. unfold rs1; Simpl.
++ TranslOpSimpl.
+- (* Oaddrstack *)
+ exploit addptrofs_correct. instantiate (1 := GPR12); auto with asmgen. intros (rs' & A & B & C).
+ exists rs'; split; eauto. auto with asmgen.
+- (* Ocast8signed *)
+ econstructor; split.
+ eapply exec_straight_two. simpl;eauto. simpl;eauto.
+ split; intros; simpl; Simpl.
+ assert (A: Int.ltu (Int.repr 24) Int.iwordsize = true) by auto.
+ destruct (rs x0); auto; simpl. rewrite A; simpl. Simpl. unfold Val.shr. rewrite A.
+ apply Val.lessdef_same. f_equal. apply Int.sign_ext_shr_shl. split; reflexivity.
+- (* Ocast16signed *)
+ econstructor; split.
+ eapply exec_straight_two. simpl;eauto. simpl;eauto.
+ split; intros; Simpl.
+ assert (A: Int.ltu (Int.repr 16) Int.iwordsize = true) by auto.
+ destruct (rs x0); auto; simpl. rewrite A; simpl. Simpl. unfold Val.shr. rewrite A.
+ apply Val.lessdef_same. f_equal. apply Int.sign_ext_shr_shl. split; reflexivity.
+- (* Oshrximm *)
+ clear H. exploit Val.shrx_shr_2; eauto. intros E; subst v; clear EV.
+ destruct (Int.eq n Int.zero).
++ econstructor; split. apply exec_straight_one. simpl; eauto.
+ split; intros; Simpl.
++ change (Int.repr 32) with Int.iwordsize. set (n' := Int.sub Int.iwordsize n).
+ econstructor; split.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ apply exec_straight_one. simpl; reflexivity. auto.
+ split; intros; Simpl.
+- (* Ocast32signed *)
+ exploit cast32signed_correct; eauto. intros (rs' & A & B & C).
+ exists rs'; split; eauto. split. apply B.
+ intros. assert (r <> PC). { destruct r; auto; contradict H; discriminate. }
+ apply C; auto.
+- (* longofintu *)
+ econstructor; split.
+ eapply exec_straight_three. simpl; eauto. simpl; eauto. simpl; eauto.
+ split; intros; Simpl. (* unfold Pregmap.set; Simpl. *) destruct (PregEq.eq x0 x0).
+ + destruct (rs x0); auto. simpl.
+ assert (A: Int.ltu (Int.repr 32) Int64.iwordsize' = true) by auto.
+ rewrite A; simpl. rewrite A. apply Val.lessdef_same. f_equal.
+ rewrite cast32unsigned_from_cast32signed. apply Int64.zero_ext_shru_shl. compute; auto.
+ + contradict n. auto.
+- (* Ocmp *)
+ exploit transl_cond_op_correct; eauto. intros (rs' & A & B & C).
+ exists rs'; split. eexact A. eauto with asmgen.
+(*
+- (* intconst *)
+ exploit loadimm32_correct; eauto. intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen.
+- (* longconst *)
+ exploit loadimm64_correct; eauto. intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen.
+- (* floatconst *)
+ destruct (Float.eq_dec n Float.zero).
++ subst n. econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl.
++ econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl.
+- (* singleconst *)
+ destruct (Float32.eq_dec n Float32.zero).
++ subst n. econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl.
++ econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl.
+- (* stackoffset *)
+ exploit addptrofs_correct. instantiate (1 := X2); auto with asmgen. intros (rs' & A & B & C).
+ exists rs'; split; eauto. auto with asmgen.
+- (* addimm *)
+ exploit (opimm32_correct Paddw Paddiw Val.add); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen.
+- (* andimm *)
+ exploit (opimm32_correct Pandw Pandiw Val.and); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen.
+- (* orimm *)
+ exploit (opimm32_correct Porw Poriw Val.or); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen.
+- (* xorimm *)
+ exploit (opimm32_correct Pxorw Pxoriw Val.xor); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen.
+
+
+
+- (* addlimm *)
+ exploit (opimm64_correct Paddl Paddil Val.addl); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen.
+
+- (* andimm *)
+ exploit (opimm64_correct Pandl Pandil Val.andl); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen.
+- (* orimm *)
+ exploit (opimm64_correct Porl Poril Val.orl); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen.
+- (* xorimm *)
+ exploit (opimm64_correct Pxorl Pxoril Val.xorl); auto. instantiate (1 := x0); eauto with asmgen.
+ intros (rs' & A & B & C).
+ exists rs'; split; eauto. rewrite B; auto with asmgen.
+- (* shrxlimm *)
+ clear H. exploit Val.shrxl_shrl_2; eauto. intros E; subst v; clear EV.
+ destruct (Int.eq n Int.zero).
++ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl.
++ change (Int.repr 64) with Int64.iwordsize'. set (n' := Int.sub Int64.iwordsize' n).
+ econstructor; split.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ eapply exec_straight_step. simpl; reflexivity. auto.
+ apply exec_straight_one. simpl; reflexivity. auto.
+ split; intros; Simpl.
+*)
+Qed.
+
+(** Memory accesses *)
+
+Lemma indexed_memory_access_correct:
+ forall mk_instr base ofs k rs m,
+ base <> GPR31 ->
+ exists base' ofs' rs',
+ exec_straight_opt (indexed_memory_access mk_instr base ofs ::g k) rs m
+ (mk_instr base' ofs' ::g k) rs' m
+ /\ Val.offset_ptr rs'#base' (eval_offset ge ofs') = Val.offset_ptr rs#base ofs
+ /\ forall r, r <> PC -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ unfold indexed_memory_access; intros.
+ (* destruct Archi.ptr64 eqn:SF. *)
+ assert (Archi.ptr64 = true) as SF; auto.
+- generalize (make_immed64_sound (Ptrofs.to_int64 ofs)); intros EQ.
+ destruct (make_immed64 (Ptrofs.to_int64 ofs)).
++ econstructor; econstructor; econstructor; split.
+ apply exec_straight_opt_refl.
+ split; auto. simpl. subst imm. rewrite Ptrofs.of_int64_to_int64 by auto. auto.
+(*
++ econstructor; econstructor; econstructor; split.
+ constructor. eapply exec_straight_two.
+ simpl; eauto. simpl; eauto. auto. auto.
+ split; intros; Simpl. destruct (rs base); auto; simpl. rewrite SF. simpl.
+ rewrite Ptrofs.add_assoc. f_equal. f_equal.
+ rewrite <- (Ptrofs.of_int64_to_int64 SF ofs). rewrite EQ.
+ symmetry; auto with ptrofs.
++ econstructor; econstructor; econstructor; split.
+ constructor. eapply exec_straight_two.
+ simpl; eauto. simpl; eauto. auto. auto.
+ split; intros; Simpl. unfold eval_offset. destruct (rs base); auto; simpl. rewrite SF. simpl.
+ rewrite Ptrofs.add_zero. subst imm. rewrite Ptrofs.of_int64_to_int64 by auto. auto.
+(* 32 bits part, irrelevant for us
+- generalize (make_immed32_sound (Ptrofs.to_int ofs)); intros EQ.
+ destruct (make_immed32 (Ptrofs.to_int ofs)).
++ econstructor; econstructor; econstructor; split.
+ apply exec_straight_opt_refl.
+ split; auto. simpl. subst imm. rewrite Ptrofs.of_int_to_int by auto. auto.
++ econstructor; econstructor; econstructor; split.
+ constructor. eapply exec_straight_two.
+ simpl; eauto. simpl; eauto. auto. auto.
+ split; intros; Simpl. destruct (rs base); auto; simpl. rewrite SF. simpl.
+ rewrite Ptrofs.add_assoc. f_equal. f_equal.
+ rewrite <- (Ptrofs.of_int_to_int SF ofs). rewrite EQ.
+ symmetry; auto with ptrofs.
+*)*)
+Qed.
+
+
+Lemma indexed_load_access_correct:
+ forall chunk (mk_instr: ireg -> offset -> basic) rd m,
+ (forall base ofs rs,
+ exec_basic_instr ge (mk_instr base ofs) rs m = exec_load ge chunk rs m rd base ofs) ->
+ forall (base: ireg) ofs k (rs: regset) v,
+ Mem.loadv chunk m (Val.offset_ptr rs#base ofs) = Some v ->
+ base <> GPR31 -> rd <> PC ->
+ exists rs',
+ exec_straight ge (indexed_memory_access mk_instr base ofs ::g k) rs m k rs' m
+ /\ rs'#rd = v
+ /\ forall r, r <> PC -> r <> GPR31 -> r <> rd -> rs'#r = rs#r.
+Proof.
+ intros until m; intros EXEC; intros until v; intros LOAD NOT31 NOTPC.
+ exploit indexed_memory_access_correct; eauto.
+ intros (base' & ofs' & rs' & A & B & C).
+ econstructor; split.
+ eapply exec_straight_opt_right. eexact A. apply exec_straight_one. rewrite EXEC.
+ unfold exec_load. rewrite B, LOAD. eauto. Simpl.
+ split; intros; Simpl. auto.
+Qed.
+
+Lemma indexed_store_access_correct:
+ forall chunk (mk_instr: ireg -> offset -> basic) r1 m,
+ (forall base ofs rs,
+ exec_basic_instr ge (mk_instr base ofs) rs m = exec_store ge chunk rs m r1 base ofs) ->
+ forall (base: ireg) ofs k (rs: regset) m',
+ Mem.storev chunk m (Val.offset_ptr rs#base ofs) (rs#r1) = Some m' ->
+ base <> GPR31 -> r1 <> GPR31 -> r1 <> PC ->
+ exists rs',
+ exec_straight ge (indexed_memory_access mk_instr base ofs ::g k) rs m k rs' m'
+ /\ forall r, r <> PC -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros until m; intros EXEC; intros until m'; intros STORE NOT31 NOT31' NOTPC.
+ exploit indexed_memory_access_correct. instantiate (1 := base). eauto.
+ intros (base' & ofs' & rs' & A & B & C).
+ econstructor; split.
+ eapply exec_straight_opt_right. eapply A. apply exec_straight_one. rewrite EXEC.
+ unfold exec_store. rewrite B, C, STORE. eauto. eauto. auto.
+ intros; Simpl. rewrite C; auto.
+Qed.
+
+Lemma loadind_correct:
+ forall (base: ireg) ofs ty dst k c (rs: regset) m v,
+ loadind base ofs ty dst k = OK c ->
+ Mem.loadv (chunk_of_type ty) m (Val.offset_ptr rs#base ofs) = Some v ->
+ base <> GPR31 ->
+ exists rs',
+ exec_straight ge (basics_to_code c) rs m (basics_to_code k) rs' m
+ /\ rs'#(preg_of dst) = v
+ /\ forall r, r <> PC -> r <> GPR31 -> r <> preg_of dst -> rs'#r = rs#r.
+Proof.
+ intros until v; intros TR LOAD NOT31.
+ assert (A: exists mk_instr,
+ c = indexed_memory_access mk_instr base ofs :: k
+ /\ forall base' ofs' rs',
+ exec_basic_instr ge (mk_instr base' ofs') rs' m =
+ exec_load ge (chunk_of_type ty) rs' m (preg_of dst) base' ofs').
+ { unfold loadind in TR.
+ destruct ty, (preg_of dst); inv TR; econstructor; split; eauto. }
+ destruct A as (mk_instr & B & C). subst c.
+ eapply indexed_load_access_correct; eauto with asmgen.
+Qed.
+
+Lemma storeind_correct:
+ forall (base: ireg) ofs ty src k c (rs: regset) m m',
+ storeind src base ofs ty k = OK c ->
+ Mem.storev (chunk_of_type ty) m (Val.offset_ptr rs#base ofs) rs#(preg_of src) = Some m' ->
+ base <> GPR31 ->
+ exists rs',
+ exec_straight ge (basics_to_code c) rs m (basics_to_code k) rs' m'
+ /\ forall r, r <> PC -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros until m'; intros TR STORE NOT31.
+ assert (A: exists mk_instr,
+ c = indexed_memory_access mk_instr base ofs :: k
+ /\ forall base' ofs' rs',
+ exec_basic_instr ge (mk_instr base' ofs') rs' m =
+ exec_store ge (chunk_of_type ty) rs' m (preg_of src) base' ofs').
+ { unfold storeind in TR. destruct ty, (preg_of src); inv TR; econstructor; split; eauto. }
+ destruct A as (mk_instr & B & C). subst c.
+ eapply indexed_store_access_correct; eauto with asmgen.
+Qed.
+
+Ltac bsimpl := unfold exec_bblock; simpl.
+
+Lemma Pget_correct:
+ forall (dst: gpreg) (src: preg) k (rs: regset) m,
+ src = RA ->
+ exists rs',
+ exec_straight ge (Pget dst src ::g k) rs m k rs' m
+ /\ rs'#dst = rs#src
+ /\ forall r, r <> PC -> r <> dst -> rs'#r = rs#r.
+Proof.
+ intros. econstructor; econstructor; econstructor.
+- rewrite H. bsimpl. auto.
+- Simpl.
+- intros. Simpl.
+Qed.
+
+Lemma Pset_correct:
+ forall (dst: preg) (src: gpreg) k (rs: regset) m,
+ dst = RA ->
+ exists rs',
+ exec_straight ge (Pset dst src ::g k) rs m k rs' m
+ /\ rs'#dst = rs#src
+ /\ forall r, r <> PC -> r <> dst -> rs'#r = rs#r.
+Proof.
+ intros. econstructor; econstructor; econstructor; simpl.
+ rewrite H. auto.
+ Simpl.
+ Simpl.
+ intros. rewrite H. Simpl.
+Qed.
+
+Lemma loadind_ptr_correct:
+ forall (base: ireg) ofs (dst: ireg) k (rs: regset) m v,
+ Mem.loadv Mptr m (Val.offset_ptr rs#base ofs) = Some v ->
+ base <> GPR31 ->
+ exists rs',
+ exec_straight ge (loadind_ptr base ofs dst ::g k) rs m k rs' m
+ /\ rs'#dst = v
+ /\ forall r, r <> PC -> r <> GPR31 -> r <> dst -> rs'#r = rs#r.
+Proof.
+ intros. eapply indexed_load_access_correct; eauto with asmgen.
+ intros. unfold Mptr. assert (Archi.ptr64 = true). auto. rewrite H1. auto.
+Qed.
+
+Lemma storeind_ptr_correct:
+ forall (base: ireg) ofs (src: ireg) k (rs: regset) m m',
+ Mem.storev Mptr m (Val.offset_ptr rs#base ofs) rs#src = Some m' ->
+ base <> GPR31 -> src <> GPR31 ->
+ exists rs',
+ exec_straight ge (storeind_ptr src base ofs ::g k) rs m k rs' m'
+ /\ forall r, r <> PC -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros. eapply indexed_store_access_correct with (r1 := src); eauto with asmgen.
+ intros. unfold Mptr. assert (Archi.ptr64 = true); auto.
+Qed.
+
+Lemma transl_memory_access_correct:
+ forall mk_instr addr args k c (rs: regset) m v,
+ transl_memory_access mk_instr addr args k = OK c ->
+ eval_addressing ge rs#SP addr (map rs (map preg_of args)) = Some v ->
+ exists base ofs rs',
+ exec_straight_opt (basics_to_code c) rs m (mk_instr base ofs ::g (basics_to_code k)) rs' m
+ /\ Val.offset_ptr rs'#base (eval_offset ge ofs) = v
+ /\ forall r, r <> PC -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros until v; intros TR EV.
+ unfold transl_memory_access in TR; destruct addr; ArgsInv.
+- (* indexed *)
+ inv EV. apply indexed_memory_access_correct; eauto with asmgen.
+- (* global *)
+ simpl in EV. inv EV. inv TR. econstructor; econstructor; econstructor; split.
+ constructor. apply exec_straight_one. simpl; eauto. auto.
+ split; intros; Simpl. unfold eval_offset.
+ assert (Val.lessdef (Val.offset_ptr (Genv.symbol_address ge i i0) Ptrofs.zero) (Genv.symbol_address ge i i0)).
+ { apply Val.offset_ptr_zero. }
+ remember (Genv.symbol_address ge i i0) as symbol.
+ destruct symbol; auto.
+ + contradict Heqsymbol; unfold Genv.symbol_address;
+ destruct (Genv.find_symbol ge i); discriminate.
+ + contradict Heqsymbol; unfold Genv.symbol_address;
+ destruct (Genv.find_symbol ge i); discriminate.
+ + contradict Heqsymbol; unfold Genv.symbol_address;
+ destruct (Genv.find_symbol ge i); discriminate.
+ + contradict Heqsymbol; unfold Genv.symbol_address;
+ destruct (Genv.find_symbol ge i); discriminate.
+ + simpl. rewrite Ptrofs.add_zero; auto.
+- (* stack *)
+ inv TR. inv EV. apply indexed_memory_access_correct; eauto with asmgen.
+Qed.
+
+Lemma transl_load_access_correct:
+ forall chunk (mk_instr: ireg -> offset -> basic) addr args k c rd (rs: regset) m v v',
+ (forall base ofs rs,
+ exec_basic_instr ge (mk_instr base ofs) rs m = exec_load ge chunk rs m rd base ofs) ->
+ transl_memory_access mk_instr addr args k = OK c ->
+ eval_addressing ge rs#SP addr (map rs (map preg_of args)) = Some v ->
+ Mem.loadv chunk m v = Some v' ->
+ rd <> PC ->
+ exists rs',
+ exec_straight ge (basics_to_code c) rs m (basics_to_code k) rs' m
+ /\ rs'#rd = v'
+ /\ forall r, r <> PC -> r <> GPR31 -> r <> rd -> rs'#r = rs#r.
+Proof.
+ intros until v'; intros INSTR TR EV LOAD NOTPC.
+ exploit transl_memory_access_correct; eauto.
+ intros (base & ofs & rs' & A & B & C).
+ econstructor; split.
+ eapply exec_straight_opt_right. eexact A. apply exec_straight_one.
+ rewrite INSTR. unfold exec_load. rewrite B, LOAD. reflexivity. Simpl.
+ split; intros; Simpl. auto.
+Qed.
+
+Lemma transl_store_access_correct:
+ forall chunk (mk_instr: ireg -> offset -> basic) addr args k c r1 (rs: regset) m v m',
+ (forall base ofs rs,
+ exec_basic_instr ge (mk_instr base ofs) rs m = exec_store ge chunk rs m r1 base ofs) ->
+ transl_memory_access mk_instr addr args k = OK c ->
+ eval_addressing ge rs#SP addr (map rs (map preg_of args)) = Some v ->
+ Mem.storev chunk m v rs#r1 = Some m' ->
+ r1 <> PC -> r1 <> GPR31 ->
+ exists rs',
+ exec_straight ge (basics_to_code c) rs m (basics_to_code k) rs' m'
+ /\ forall r, r <> PC -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros until m'; intros INSTR TR EV STORE NOTPC NOT31.
+ exploit transl_memory_access_correct; eauto.
+ intros (base & ofs & rs' & A & B & C).
+ econstructor; split.
+ eapply exec_straight_opt_right. eexact A. apply exec_straight_one.
+ rewrite INSTR. unfold exec_store. rewrite B, C, STORE by auto. reflexivity. auto.
+Qed.
+
+Lemma transl_load_correct:
+ forall chunk addr args dst k c (rs: regset) m a v,
+ transl_load chunk addr args dst k = OK c ->
+ eval_addressing ge rs#SP addr (map rs (map preg_of args)) = Some a ->
+ Mem.loadv chunk m a = Some v ->
+ exists rs',
+ exec_straight ge (basics_to_code c) rs m (basics_to_code k) rs' m
+ /\ rs'#(preg_of dst) = v
+ /\ forall r, r <> PC -> r <> GPR31 -> r <> preg_of dst -> rs'#r = rs#r.
+Proof.
+ intros until v; intros TR EV LOAD.
+ assert (A: exists mk_instr,
+ transl_memory_access mk_instr addr args k = OK c
+ /\ forall base ofs rs,
+ exec_basic_instr ge (mk_instr base ofs) rs m = exec_load ge chunk rs m (preg_of dst) base ofs).
+ { unfold transl_load in TR; destruct chunk; ArgsInv; econstructor; (split; [eassumption|auto]). }
+ destruct A as (mk_instr & B & C).
+ eapply transl_load_access_correct; eauto with asmgen.
+Qed.
+
+Lemma transl_store_correct:
+ forall chunk addr args src k c (rs: regset) m a m',
+ transl_store chunk addr args src k = OK c ->
+ eval_addressing ge rs#SP addr (map rs (map preg_of args)) = Some a ->
+ Mem.storev chunk m a rs#(preg_of src) = Some m' ->
+ exists rs',
+ exec_straight ge (basics_to_code c) rs m (basics_to_code k) rs' m'
+ /\ forall r, r <> PC -> r <> GPR31 -> rs'#r = rs#r.
+Proof.
+ intros until m'; intros TR EV STORE.
+ assert (A: exists mk_instr chunk',
+ transl_memory_access mk_instr addr args k = OK c
+ /\ (forall base ofs rs,
+ exec_basic_instr ge (mk_instr base ofs) rs m = exec_store ge chunk' rs m (preg_of src) base ofs)
+ /\ Mem.storev chunk m a rs#(preg_of src) = Mem.storev chunk' m a rs#(preg_of src)).
+ { unfold transl_store in TR; destruct chunk; ArgsInv;
+ (econstructor; econstructor; split; [eassumption | split; [ intros; simpl; reflexivity | auto]]).
+ destruct a; auto. apply Mem.store_signed_unsigned_8.
+ destruct a; auto. apply Mem.store_signed_unsigned_16.
+ }
+ destruct A as (mk_instr & chunk' & B & C & D).
+ rewrite D in STORE; clear D.
+ eapply transl_store_access_correct; eauto with asmgen.
+Qed.
+
+Lemma make_epilogue_correct:
+ forall ge0 f m stk soff cs m' ms rs k tm,
+ Mach.load_stack m (Vptr stk soff) Tptr f.(fn_link_ofs) = Some (parent_sp cs) ->
+ Mach.load_stack m (Vptr stk soff) Tptr f.(fn_retaddr_ofs) = Some (parent_ra cs) ->
+ Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
+ agree ms (Vptr stk soff) rs ->
+ Mem.extends m tm ->
+ match_stack ge0 cs ->
+ exists rs', exists tm',
+ exec_straight ge (make_epilogue f k) rs tm k rs' tm'
+ /\ agree ms (parent_sp cs) rs'
+ /\ Mem.extends m' tm'
+ /\ rs'#RA = parent_ra cs
+ /\ rs'#SP = parent_sp cs
+ /\ (forall r, r <> PC -> r <> RA -> r <> SP -> r <> GPR31 -> r <> GPR8 -> rs'#r = rs#r).
+Proof.
+ intros until tm; intros LP LRA FREE AG MEXT MCS.
+ exploit Mem.loadv_extends. eauto. eexact LP. auto. simpl. intros (parent' & LP' & LDP').
+ exploit Mem.loadv_extends. eauto. eexact LRA. auto. simpl. intros (ra' & LRA' & LDRA').
+ exploit lessdef_parent_sp; eauto. intros EQ; subst parent'; clear LDP'.
+ exploit lessdef_parent_ra; eauto. intros EQ; subst ra'; clear LDRA'.
+ exploit Mem.free_parallel_extends; eauto. intros (tm' & FREE' & MEXT').
+ unfold make_epilogue.
+ rewrite chunk_of_Tptr in *.
+
+ exploit ((loadind_ptr_correct SP (fn_retaddr_ofs f) GPR8 (Pset RA GPR8 ::g Pfreeframe (fn_stacksize f) (fn_link_ofs f) ::g k))
+ rs tm).
+ - rewrite <- (sp_val _ _ rs AG). simpl. eexact LRA'.
+ - congruence.
+ - intros (rs1 & A1 & B1 & C1).
+ assert (agree ms (Vptr stk soff) rs1) as AG1.
+ + destruct AG.
+ apply mkagree; auto.
+ rewrite C1; discriminate || auto.
+ intro. rewrite C1; auto; destruct r; simpl; try discriminate.
+ + exploit (Pset_correct RA GPR8 (Pfreeframe (fn_stacksize f) (fn_link_ofs f) ::g k) rs1 tm). auto.
+ intros (rs2 & A2 & B2 & C2).
+ econstructor; econstructor; split.
+ * eapply exec_straight_trans.
+ { eexact A1. }
+ { eapply exec_straight_trans.
+ { eapply A2. }
+ { apply exec_straight_one. simpl.
+ rewrite (C2 GPR12) by auto with asmgen. rewrite <- (sp_val _ _ rs1 AG1). simpl; rewrite LP'.
+ rewrite FREE'; eauto. (* auto. *) } }
+ * split. (* apply agree_nextinstr. *)apply agree_set_other; auto with asmgen.
+ apply agree_change_sp with (Vptr stk soff).
+ apply agree_exten with rs; auto. intros; rewrite C2; auto with asmgen.
+ eapply parent_sp_def; eauto.
+ split. auto.
+ split. Simpl. rewrite B2. auto.
+ split. Simpl.
+ intros. Simpl.
+ rewrite C2; auto.
+Qed.
+
+End CONSTRUCTORS.
+
+