aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/BearSSL/inc/bearssl_rand.h
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/BearSSL/inc/bearssl_rand.h')
-rw-r--r--test/monniaux/BearSSL/inc/bearssl_rand.h397
1 files changed, 397 insertions, 0 deletions
diff --git a/test/monniaux/BearSSL/inc/bearssl_rand.h b/test/monniaux/BearSSL/inc/bearssl_rand.h
new file mode 100644
index 00000000..0a9f544f
--- /dev/null
+++ b/test/monniaux/BearSSL/inc/bearssl_rand.h
@@ -0,0 +1,397 @@
+/*
+ * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#ifndef BR_BEARSSL_RAND_H__
+#define BR_BEARSSL_RAND_H__
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include "bearssl_block.h"
+#include "bearssl_hash.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** \file bearssl_rand.h
+ *
+ * # Pseudo-Random Generators
+ *
+ * A PRNG is a state-based engine that outputs pseudo-random bytes on
+ * demand. It is initialized with an initial seed, and additional seed
+ * bytes can be added afterwards. Bytes produced depend on the seeds and
+ * also on the exact sequence of calls (including sizes requested for
+ * each call).
+ *
+ *
+ * ## Procedural and OOP API
+ *
+ * For the PRNG of name "`xxx`", two API are provided. The _procedural_
+ * API defined a context structure `br_xxx_context` and three functions:
+ *
+ * - `br_xxx_init()`
+ *
+ * Initialise the context with an initial seed.
+ *
+ * - `br_xxx_generate()`
+ *
+ * Produce some pseudo-random bytes.
+ *
+ * - `br_xxx_update()`
+ *
+ * Inject some additional seed.
+ *
+ * The initialisation function sets the first context field (`vtable`)
+ * to a pointer to the vtable that supports the OOP API. The OOP API
+ * provides access to the same functions through function pointers,
+ * named `init()`, `generate()` and `update()`.
+ *
+ * Note that the context initialisation method may accept additional
+ * parameters, provided as a 'const void *' pointer at API level. These
+ * additional parameters depend on the implemented PRNG.
+ *
+ *
+ * ## HMAC_DRBG
+ *
+ * HMAC_DRBG is defined in [NIST SP 800-90A Revision
+ * 1](http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf).
+ * It uses HMAC repeatedly, over some configurable underlying hash
+ * function. In BearSSL, it is implemented under the "`hmac_drbg`" name.
+ * The "extra parameters" pointer for context initialisation should be
+ * set to a pointer to the vtable for the underlying hash function (e.g.
+ * pointer to `br_sha256_vtable` to use HMAC_DRBG with SHA-256).
+ *
+ * According to the NIST standard, each request shall produce up to
+ * 2<sup>19</sup> bits (i.e. 64 kB of data); moreover, the context shall
+ * be reseeded at least once every 2<sup>48</sup> requests. This
+ * implementation does not maintain the reseed counter (the threshold is
+ * too high to be reached in practice) and does not object to producing
+ * more than 64 kB in a single request; thus, the code cannot fail,
+ * which corresponds to the fact that the API has no room for error
+ * codes. However, this implies that requesting more than 64 kB in one
+ * `generate()` request, or making more than 2<sup>48</sup> requests
+ * without reseeding, is formally out of NIST specification. There is
+ * no currently known security penalty for exceeding the NIST limits,
+ * and, in any case, HMAC_DRBG usage in implementing SSL/TLS always
+ * stays much below these thresholds.
+ *
+ *
+ * ## AESCTR_DRBG
+ *
+ * AESCTR_DRBG is a custom PRNG based on AES-128 in CTR mode. This is
+ * meant to be used only in situations where you are desperate for
+ * speed, and have an hardware-optimized AES/CTR implementation. Whether
+ * this will yield perceptible improvements depends on what you use the
+ * pseudorandom bytes for, and how many you want; for instance, RSA key
+ * pair generation uses a substantial amount of randomness, and using
+ * AESCTR_DRBG instead of HMAC_DRBG yields a 15 to 20% increase in key
+ * generation speed on a recent x86 CPU (Intel Core i7-6567U at 3.30 GHz).
+ *
+ * Internally, it uses CTR mode with successive counter values, starting
+ * at zero (counter value expressed over 128 bits, big-endian convention).
+ * The counter is not allowed to reach 32768; thus, every 32768*16 bytes
+ * at most, the `update()` function is run (on an empty seed, if none is
+ * provided). The `update()` function computes the new AES-128 key by
+ * applying a custom hash function to the concatenation of a state-dependent
+ * word (encryption of an all-one block with the current key) and the new
+ * seed. The custom hash function uses Hirose's construction over AES-256;
+ * see the comments in `aesctr_drbg.c` for details.
+ *
+ * This DRBG does not follow an existing standard, and thus should be
+ * considered as inadequate for production use until it has been properly
+ * analysed.
+ */
+
+/**
+ * \brief Class type for PRNG implementations.
+ *
+ * A `br_prng_class` instance references the methods implementing a PRNG.
+ * Constant instances of this structure are defined for each implemented
+ * PRNG. Such instances are also called "vtables".
+ */
+typedef struct br_prng_class_ br_prng_class;
+struct br_prng_class_ {
+ /**
+ * \brief Size (in bytes) of the context structure appropriate for
+ * running this PRNG.
+ */
+ size_t context_size;
+
+ /**
+ * \brief Initialisation method.
+ *
+ * The context to initialise is provided as a pointer to its
+ * first field (the vtable pointer); this function sets that
+ * first field to a pointer to the vtable.
+ *
+ * The extra parameters depend on the implementation; each
+ * implementation defines what kind of extra parameters it
+ * expects (if any).
+ *
+ * Requirements on the initial seed depend on the implemented
+ * PRNG.
+ *
+ * \param ctx PRNG context to initialise.
+ * \param params extra parameters for the PRNG.
+ * \param seed initial seed.
+ * \param seed_len initial seed length (in bytes).
+ */
+ void (*init)(const br_prng_class **ctx, const void *params,
+ const void *seed, size_t seed_len);
+
+ /**
+ * \brief Random bytes generation.
+ *
+ * This method produces `len` pseudorandom bytes, in the `out`
+ * buffer. The context is updated accordingly.
+ *
+ * \param ctx PRNG context.
+ * \param out output buffer.
+ * \param len number of pseudorandom bytes to produce.
+ */
+ void (*generate)(const br_prng_class **ctx, void *out, size_t len);
+
+ /**
+ * \brief Inject additional seed bytes.
+ *
+ * The provided seed bytes are added into the PRNG internal
+ * entropy pool.
+ *
+ * \param ctx PRNG context.
+ * \param seed additional seed.
+ * \param seed_len additional seed length (in bytes).
+ */
+ void (*update)(const br_prng_class **ctx,
+ const void *seed, size_t seed_len);
+};
+
+/**
+ * \brief Context for HMAC_DRBG.
+ *
+ * The context contents are opaque, except the first field, which
+ * supports OOP.
+ */
+typedef struct {
+ /**
+ * \brief Pointer to the vtable.
+ *
+ * This field is set with the initialisation method/function.
+ */
+ const br_prng_class *vtable;
+#ifndef BR_DOXYGEN_IGNORE
+ unsigned char K[64];
+ unsigned char V[64];
+ const br_hash_class *digest_class;
+#endif
+} br_hmac_drbg_context;
+
+/**
+ * \brief Statically allocated, constant vtable for HMAC_DRBG.
+ */
+extern const br_prng_class br_hmac_drbg_vtable;
+
+/**
+ * \brief HMAC_DRBG initialisation.
+ *
+ * The context to initialise is provided as a pointer to its first field
+ * (the vtable pointer); this function sets that first field to a
+ * pointer to the vtable.
+ *
+ * The `seed` value is what is called, in NIST terminology, the
+ * concatenation of the "seed", "nonce" and "personalization string", in
+ * that order.
+ *
+ * The `digest_class` parameter defines the underlying hash function.
+ * Formally, the NIST standard specifies that the hash function shall
+ * be only SHA-1 or one of the SHA-2 functions. This implementation also
+ * works with any other implemented hash function (such as MD5), but
+ * this is non-standard and therefore not recommended.
+ *
+ * \param ctx HMAC_DRBG context to initialise.
+ * \param digest_class vtable for the underlying hash function.
+ * \param seed initial seed.
+ * \param seed_len initial seed length (in bytes).
+ */
+void br_hmac_drbg_init(br_hmac_drbg_context *ctx,
+ const br_hash_class *digest_class, const void *seed, size_t seed_len);
+
+/**
+ * \brief Random bytes generation with HMAC_DRBG.
+ *
+ * This method produces `len` pseudorandom bytes, in the `out`
+ * buffer. The context is updated accordingly. Formally, requesting
+ * more than 65536 bytes in one request falls out of specification
+ * limits (but it won't fail).
+ *
+ * \param ctx HMAC_DRBG context.
+ * \param out output buffer.
+ * \param len number of pseudorandom bytes to produce.
+ */
+void br_hmac_drbg_generate(br_hmac_drbg_context *ctx, void *out, size_t len);
+
+/**
+ * \brief Inject additional seed bytes in HMAC_DRBG.
+ *
+ * The provided seed bytes are added into the HMAC_DRBG internal
+ * entropy pool. The process does not _replace_ existing entropy,
+ * thus pushing non-random bytes (i.e. bytes which are known to the
+ * attackers) does not degrade the overall quality of generated bytes.
+ *
+ * \param ctx HMAC_DRBG context.
+ * \param seed additional seed.
+ * \param seed_len additional seed length (in bytes).
+ */
+void br_hmac_drbg_update(br_hmac_drbg_context *ctx,
+ const void *seed, size_t seed_len);
+
+/**
+ * \brief Get the hash function implementation used by a given instance of
+ * HMAC_DRBG.
+ *
+ * This calls MUST NOT be performed on a context which was not
+ * previously initialised.
+ *
+ * \param ctx HMAC_DRBG context.
+ * \return the hash function vtable.
+ */
+static inline const br_hash_class *
+br_hmac_drbg_get_hash(const br_hmac_drbg_context *ctx)
+{
+ return ctx->digest_class;
+}
+
+/**
+ * \brief Type for a provider of entropy seeds.
+ *
+ * A "seeder" is a function that is able to obtain random values from
+ * some source and inject them as entropy seed in a PRNG. A seeder
+ * shall guarantee that the total entropy of the injected seed is large
+ * enough to seed a PRNG for purposes of cryptographic key generation
+ * (i.e. at least 128 bits).
+ *
+ * A seeder may report a failure to obtain adequate entropy. Seeders
+ * shall endeavour to fix themselves transient errors by trying again;
+ * thus, callers may consider reported errors as permanent.
+ *
+ * \param ctx PRNG context to seed.
+ * \return 1 on success, 0 on error.
+ */
+typedef int (*br_prng_seeder)(const br_prng_class **ctx);
+
+/**
+ * \brief Get a seeder backed by the operating system or hardware.
+ *
+ * Get a seeder that feeds on RNG facilities provided by the current
+ * operating system or hardware. If no such facility is known, then 0
+ * is returned.
+ *
+ * If `name` is not `NULL`, then `*name` is set to a symbolic string
+ * that identifies the seeder implementation. If no seeder is returned
+ * and `name` is not `NULL`, then `*name` is set to a pointer to the
+ * constant string `"none"`.
+ *
+ * \param name receiver for seeder name, or `NULL`.
+ * \return the system seeder, if available, or 0.
+ */
+br_prng_seeder br_prng_seeder_system(const char **name);
+
+/**
+ * \brief Context for AESCTR_DRBG.
+ *
+ * The context contents are opaque, except the first field, which
+ * supports OOP.
+ */
+typedef struct {
+ /**
+ * \brief Pointer to the vtable.
+ *
+ * This field is set with the initialisation method/function.
+ */
+ const br_prng_class *vtable;
+#ifndef BR_DOXYGEN_IGNORE
+ br_aes_gen_ctr_keys sk;
+ uint32_t cc;
+#endif
+} br_aesctr_drbg_context;
+
+/**
+ * \brief Statically allocated, constant vtable for AESCTR_DRBG.
+ */
+extern const br_prng_class br_aesctr_drbg_vtable;
+
+/**
+ * \brief AESCTR_DRBG initialisation.
+ *
+ * The context to initialise is provided as a pointer to its first field
+ * (the vtable pointer); this function sets that first field to a
+ * pointer to the vtable.
+ *
+ * The internal AES key is first set to the all-zero key; then, the
+ * `br_aesctr_drbg_update()` function is called with the provided `seed`.
+ * The call is performed even if the seed length (`seed_len`) is zero.
+ *
+ * The `aesctr` parameter defines the underlying AES/CTR implementation.
+ *
+ * \param ctx AESCTR_DRBG context to initialise.
+ * \param aesctr vtable for the AES/CTR implementation.
+ * \param seed initial seed (can be `NULL` if `seed_len` is zero).
+ * \param seed_len initial seed length (in bytes).
+ */
+void br_aesctr_drbg_init(br_aesctr_drbg_context *ctx,
+ const br_block_ctr_class *aesctr, const void *seed, size_t seed_len);
+
+/**
+ * \brief Random bytes generation with AESCTR_DRBG.
+ *
+ * This method produces `len` pseudorandom bytes, in the `out`
+ * buffer. The context is updated accordingly.
+ *
+ * \param ctx AESCTR_DRBG context.
+ * \param out output buffer.
+ * \param len number of pseudorandom bytes to produce.
+ */
+void br_aesctr_drbg_generate(br_aesctr_drbg_context *ctx,
+ void *out, size_t len);
+
+/**
+ * \brief Inject additional seed bytes in AESCTR_DRBG.
+ *
+ * The provided seed bytes are added into the AESCTR_DRBG internal
+ * entropy pool. The process does not _replace_ existing entropy,
+ * thus pushing non-random bytes (i.e. bytes which are known to the
+ * attackers) does not degrade the overall quality of generated bytes.
+ *
+ * \param ctx AESCTR_DRBG context.
+ * \param seed additional seed.
+ * \param seed_len additional seed length (in bytes).
+ */
+void br_aesctr_drbg_update(br_aesctr_drbg_context *ctx,
+ const void *seed, size_t seed_len);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif