aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/BearSSL/inc/bearssl_x509.h
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/BearSSL/inc/bearssl_x509.h')
-rw-r--r--test/monniaux/BearSSL/inc/bearssl_x509.h1397
1 files changed, 1397 insertions, 0 deletions
diff --git a/test/monniaux/BearSSL/inc/bearssl_x509.h b/test/monniaux/BearSSL/inc/bearssl_x509.h
new file mode 100644
index 00000000..49d2fba0
--- /dev/null
+++ b/test/monniaux/BearSSL/inc/bearssl_x509.h
@@ -0,0 +1,1397 @@
+/*
+ * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#ifndef BR_BEARSSL_X509_H__
+#define BR_BEARSSL_X509_H__
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include "bearssl_ec.h"
+#include "bearssl_hash.h"
+#include "bearssl_rsa.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** \file bearssl_x509.h
+ *
+ * # X.509 Certificate Chain Processing
+ *
+ * An X.509 processing engine receives an X.509 chain, chunk by chunk,
+ * as received from a SSL/TLS client or server (the client receives the
+ * server's certificate chain, and the server receives the client's
+ * certificate chain if it requested a client certificate). The chain
+ * is thus injected in the engine in SSL order (end-entity first).
+ *
+ * The engine's job is to return the public key to use for SSL/TLS.
+ * How exactly that key is obtained and verified is entirely up to the
+ * engine.
+ *
+ * **The "known key" engine** returns a public key which is already known
+ * from out-of-band information (e.g. the client _remembers_ the key from
+ * a previous connection, as in the usual SSH model). This is the simplest
+ * engine since it simply ignores the chain, thereby avoiding the need
+ * for any decoding logic.
+ *
+ * **The "minimal" engine** implements minimal X.509 decoding and chain
+ * validation:
+ *
+ * - The provided chain should validate "as is". There is no attempt
+ * at reordering, skipping or downloading extra certificates.
+ *
+ * - X.509 v1, v2 and v3 certificates are supported.
+ *
+ * - Trust anchors are a DN and a public key. Each anchor is either a
+ * "CA" anchor, or a non-CA.
+ *
+ * - If the end-entity certificate matches a non-CA anchor (subject DN
+ * is equal to the non-CA name, and public key is also identical to
+ * the anchor key), then this is a _direct trust_ case and the
+ * remaining certificates are ignored.
+ *
+ * - Unless direct trust is applied, the chain must be verifiable up to
+ * a certificate whose issuer DN matches the DN from a "CA" trust anchor,
+ * and whose signature is verifiable against that anchor's public key.
+ * Subsequent certificates in the chain are ignored.
+ *
+ * - The engine verifies subject/issuer DN matching, and enforces
+ * processing of Basic Constraints and Key Usage extensions. The
+ * Authority Key Identifier, Subject Key Identifier, Issuer Alt Name,
+ * Subject Directory Attribute, CRL Distribution Points, Freshest CRL,
+ * Authority Info Access and Subject Info Access extensions are
+ * ignored. The Subject Alt Name is decoded for the end-entity
+ * certificate under some conditions (see below). Other extensions
+ * are ignored if non-critical, or imply chain rejection if critical.
+ *
+ * - The Subject Alt Name extension is parsed for names of type `dNSName`
+ * when decoding the end-entity certificate, and only if there is a
+ * server name to match. If there is no SAN extension, then the
+ * Common Name from the subjectDN is used. That name matching is
+ * case-insensitive and honours a single starting wildcard (i.e. if
+ * the name in the certificate starts with "`*.`" then this matches
+ * any word as first element). Note: this name matching is performed
+ * also in the "direct trust" model.
+ *
+ * - DN matching is byte-to-byte equality (a future version might
+ * include some limited processing for case-insensitive matching and
+ * whitespace normalisation).
+ *
+ * - Successful validation produces a public key type but also a set
+ * of allowed usages (`BR_KEYTYPE_KEYX` and/or `BR_KEYTYPE_SIGN`).
+ * The caller is responsible for checking that the key type and
+ * usages are compatible with the expected values (e.g. with the
+ * selected cipher suite, when the client validates the server's
+ * certificate).
+ *
+ * **Important caveats:**
+ *
+ * - The "minimal" engine does not check revocation status. The relevant
+ * extensions are ignored, and CRL or OCSP responses are not gathered
+ * or checked.
+ *
+ * - The "minimal" engine does not currently support Name Constraints
+ * (some basic functionality to handle sub-domains may be added in a
+ * later version).
+ *
+ * - The decoder is not "validating" in the sense that it won't reject
+ * some certificates with invalid field values when these fields are
+ * not actually processed.
+ */
+
+/*
+ * X.509 error codes are in the 32..63 range.
+ */
+
+/** \brief X.509 status: validation was successful; this is not actually
+ an error. */
+#define BR_ERR_X509_OK 32
+
+/** \brief X.509 status: invalid value in an ASN.1 structure. */
+#define BR_ERR_X509_INVALID_VALUE 33
+
+/** \brief X.509 status: truncated certificate. */
+#define BR_ERR_X509_TRUNCATED 34
+
+/** \brief X.509 status: empty certificate chain (no certificate at all). */
+#define BR_ERR_X509_EMPTY_CHAIN 35
+
+/** \brief X.509 status: decoding error: inner element extends beyond
+ outer element size. */
+#define BR_ERR_X509_INNER_TRUNC 36
+
+/** \brief X.509 status: decoding error: unsupported tag class (application
+ or private). */
+#define BR_ERR_X509_BAD_TAG_CLASS 37
+
+/** \brief X.509 status: decoding error: unsupported tag value. */
+#define BR_ERR_X509_BAD_TAG_VALUE 38
+
+/** \brief X.509 status: decoding error: indefinite length. */
+#define BR_ERR_X509_INDEFINITE_LENGTH 39
+
+/** \brief X.509 status: decoding error: extraneous element. */
+#define BR_ERR_X509_EXTRA_ELEMENT 40
+
+/** \brief X.509 status: decoding error: unexpected element. */
+#define BR_ERR_X509_UNEXPECTED 41
+
+/** \brief X.509 status: decoding error: expected constructed element, but
+ is primitive. */
+#define BR_ERR_X509_NOT_CONSTRUCTED 42
+
+/** \brief X.509 status: decoding error: expected primitive element, but
+ is constructed. */
+#define BR_ERR_X509_NOT_PRIMITIVE 43
+
+/** \brief X.509 status: decoding error: BIT STRING length is not multiple
+ of 8. */
+#define BR_ERR_X509_PARTIAL_BYTE 44
+
+/** \brief X.509 status: decoding error: BOOLEAN value has invalid length. */
+#define BR_ERR_X509_BAD_BOOLEAN 45
+
+/** \brief X.509 status: decoding error: value is off-limits. */
+#define BR_ERR_X509_OVERFLOW 46
+
+/** \brief X.509 status: invalid distinguished name. */
+#define BR_ERR_X509_BAD_DN 47
+
+/** \brief X.509 status: invalid date/time representation. */
+#define BR_ERR_X509_BAD_TIME 48
+
+/** \brief X.509 status: certificate contains unsupported features that
+ cannot be ignored. */
+#define BR_ERR_X509_UNSUPPORTED 49
+
+/** \brief X.509 status: key or signature size exceeds internal limits. */
+#define BR_ERR_X509_LIMIT_EXCEEDED 50
+
+/** \brief X.509 status: key type does not match that which was expected. */
+#define BR_ERR_X509_WRONG_KEY_TYPE 51
+
+/** \brief X.509 status: signature is invalid. */
+#define BR_ERR_X509_BAD_SIGNATURE 52
+
+/** \brief X.509 status: validation time is unknown. */
+#define BR_ERR_X509_TIME_UNKNOWN 53
+
+/** \brief X.509 status: certificate is expired or not yet valid. */
+#define BR_ERR_X509_EXPIRED 54
+
+/** \brief X.509 status: issuer/subject DN mismatch in the chain. */
+#define BR_ERR_X509_DN_MISMATCH 55
+
+/** \brief X.509 status: expected server name was not found in the chain. */
+#define BR_ERR_X509_BAD_SERVER_NAME 56
+
+/** \brief X.509 status: unknown critical extension in certificate. */
+#define BR_ERR_X509_CRITICAL_EXTENSION 57
+
+/** \brief X.509 status: not a CA, or path length constraint violation */
+#define BR_ERR_X509_NOT_CA 58
+
+/** \brief X.509 status: Key Usage extension prohibits intended usage. */
+#define BR_ERR_X509_FORBIDDEN_KEY_USAGE 59
+
+/** \brief X.509 status: public key found in certificate is too small. */
+#define BR_ERR_X509_WEAK_PUBLIC_KEY 60
+
+/** \brief X.509 status: chain could not be linked to a trust anchor. */
+#define BR_ERR_X509_NOT_TRUSTED 62
+
+/**
+ * \brief Aggregate structure for public keys.
+ */
+typedef struct {
+ /** \brief Key type: `BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC` */
+ unsigned char key_type;
+ /** \brief Actual public key. */
+ union {
+ /** \brief RSA public key. */
+ br_rsa_public_key rsa;
+ /** \brief EC public key. */
+ br_ec_public_key ec;
+ } key;
+} br_x509_pkey;
+
+/**
+ * \brief Distinguished Name (X.500) structure.
+ *
+ * The DN is DER-encoded.
+ */
+typedef struct {
+ /** \brief Encoded DN data. */
+ unsigned char *data;
+ /** \brief Encoded DN length (in bytes). */
+ size_t len;
+} br_x500_name;
+
+/**
+ * \brief Trust anchor structure.
+ */
+typedef struct {
+ /** \brief Encoded DN (X.500 name). */
+ br_x500_name dn;
+ /** \brief Anchor flags (e.g. `BR_X509_TA_CA`). */
+ unsigned flags;
+ /** \brief Anchor public key. */
+ br_x509_pkey pkey;
+} br_x509_trust_anchor;
+
+/**
+ * \brief Trust anchor flag: CA.
+ *
+ * A "CA" anchor is deemed fit to verify signatures on certificates.
+ * A "non-CA" anchor is accepted only for direct trust (server's
+ * certificate name and key match the anchor).
+ */
+#define BR_X509_TA_CA 0x0001
+
+/*
+ * Key type: combination of a basic key type (low 4 bits) and some
+ * optional flags.
+ *
+ * For a public key, the basic key type only is set.
+ *
+ * For an expected key type, the flags indicate the intended purpose(s)
+ * for the key; the basic key type may be set to 0 to indicate that any
+ * key type compatible with the indicated purpose is acceptable.
+ */
+/** \brief Key type: algorithm is RSA. */
+#define BR_KEYTYPE_RSA 1
+/** \brief Key type: algorithm is EC. */
+#define BR_KEYTYPE_EC 2
+
+/**
+ * \brief Key type: usage is "key exchange".
+ *
+ * This value is combined (with bitwise OR) with the algorithm
+ * (`BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC`) when informing the X.509
+ * validation engine that it should find a public key of that type,
+ * fit for key exchanges (e.g. `TLS_RSA_*` and `TLS_ECDH_*` cipher
+ * suites).
+ */
+#define BR_KEYTYPE_KEYX 0x10
+
+/**
+ * \brief Key type: usage is "signature".
+ *
+ * This value is combined (with bitwise OR) with the algorithm
+ * (`BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC`) when informing the X.509
+ * validation engine that it should find a public key of that type,
+ * fit for signatures (e.g. `TLS_ECDHE_*` cipher suites).
+ */
+#define BR_KEYTYPE_SIGN 0x20
+
+/*
+ * start_chain Called when a new chain is started. If 'server_name'
+ * is not NULL and non-empty, then it is a name that
+ * should be looked for in the EE certificate (in the
+ * SAN extension as dNSName, or in the subjectDN's CN
+ * if there is no SAN extension).
+ * The caller ensures that the provided 'server_name'
+ * pointer remains valid throughout validation.
+ *
+ * start_cert Begins a new certificate in the chain. The provided
+ * length is in bytes; this is the total certificate length.
+ *
+ * append Get some additional bytes for the current certificate.
+ *
+ * end_cert Ends the current certificate.
+ *
+ * end_chain Called at the end of the chain. Returned value is
+ * 0 on success, or a non-zero error code.
+ *
+ * get_pkey Returns the EE certificate public key.
+ *
+ * For a complete chain, start_chain() and end_chain() are always
+ * called. For each certificate, start_cert(), some append() calls, then
+ * end_cert() are called, in that order. There may be no append() call
+ * at all if the certificate is empty (which is not valid but may happen
+ * if the peer sends exactly that).
+ *
+ * get_pkey() shall return a pointer to a structure that is valid as
+ * long as a new chain is not started. This may be a sub-structure
+ * within the context for the engine. This function MAY return a valid
+ * pointer to a public key even in some cases of validation failure,
+ * depending on the validation engine.
+ */
+
+/**
+ * \brief Class type for an X.509 engine.
+ *
+ * A certificate chain validation uses a caller-allocated context, which
+ * contains the running state for that validation. Methods are called
+ * in due order:
+ *
+ * - `start_chain()` is called at the start of the validation.
+ * - Certificates are processed one by one, in SSL order (end-entity
+ * comes first). For each certificate, the following methods are
+ * called:
+ *
+ * - `start_cert()` at the beginning of the certificate.
+ * - `append()` is called zero, one or more times, to provide
+ * the certificate (possibly in chunks).
+ * - `end_cert()` at the end of the certificate.
+ *
+ * - `end_chain()` is called when the last certificate in the chain
+ * was processed.
+ * - `get_pkey()` is called after chain processing, if the chain
+ * validation was successful.
+ *
+ * A context structure may be reused; the `start_chain()` method shall
+ * ensure (re)initialisation.
+ */
+typedef struct br_x509_class_ br_x509_class;
+struct br_x509_class_ {
+ /**
+ * \brief X.509 context size, in bytes.
+ */
+ size_t context_size;
+
+ /**
+ * \brief Start a new chain.
+ *
+ * This method shall set the vtable (first field) of the context
+ * structure.
+ *
+ * The `server_name`, if not `NULL`, will be considered as a
+ * fully qualified domain name, to be matched against the `dNSName`
+ * elements of the end-entity certificate's SAN extension (if there
+ * is no SAN, then the Common Name from the subjectDN will be used).
+ * If `server_name` is `NULL` then no such matching is performed.
+ *
+ * \param ctx validation context.
+ * \param server_name server name to match (or `NULL`).
+ */
+ void (*start_chain)(const br_x509_class **ctx,
+ const char *server_name);
+
+ /**
+ * \brief Start a new certificate.
+ *
+ * \param ctx validation context.
+ * \param length new certificate length (in bytes).
+ */
+ void (*start_cert)(const br_x509_class **ctx, uint32_t length);
+
+ /**
+ * \brief Receive some bytes for the current certificate.
+ *
+ * This function may be called several times in succession for
+ * a given certificate. The caller guarantees that for each
+ * call, `len` is not zero, and the sum of all chunk lengths
+ * for a certificate matches the total certificate length which
+ * was provided in the previous `start_cert()` call.
+ *
+ * If the new certificate is empty (no byte at all) then this
+ * function won't be called at all.
+ *
+ * \param ctx validation context.
+ * \param buf certificate data chunk.
+ * \param len certificate data chunk length (in bytes).
+ */
+ void (*append)(const br_x509_class **ctx,
+ const unsigned char *buf, size_t len);
+
+ /**
+ * \brief Finish the current certificate.
+ *
+ * This function is called when the end of the current certificate
+ * is reached.
+ *
+ * \param ctx validation context.
+ */
+ void (*end_cert)(const br_x509_class **ctx);
+
+ /**
+ * \brief Finish the chain.
+ *
+ * This function is called at the end of the chain. It shall
+ * return either 0 if the validation was successful, or a
+ * non-zero error code. The `BR_ERR_X509_*` constants are
+ * error codes, though other values may be possible.
+ *
+ * \param ctx validation context.
+ * \return 0 on success, or a non-zero error code.
+ */
+ unsigned (*end_chain)(const br_x509_class **ctx);
+
+ /**
+ * \brief Get the resulting end-entity public key.
+ *
+ * The decoded public key is returned. The returned pointer
+ * may be valid only as long as the context structure is
+ * unmodified, i.e. it may cease to be valid if the context
+ * is released or reused.
+ *
+ * This function _may_ return `NULL` if the validation failed.
+ * However, returning a public key does not mean that the
+ * validation was wholly successful; some engines may return
+ * a decoded public key even if the chain did not end on a
+ * trusted anchor.
+ *
+ * If validation succeeded and `usage` is not `NULL`, then
+ * `*usage` is filled with a combination of `BR_KEYTYPE_SIGN`
+ * and/or `BR_KEYTYPE_KEYX` that specifies the validated key
+ * usage types. It is the caller's responsibility to check
+ * that value against the intended use of the public key.
+ *
+ * \param ctx validation context.
+ * \return the end-entity public key, or `NULL`.
+ */
+ const br_x509_pkey *(*get_pkey)(
+ const br_x509_class *const *ctx, unsigned *usages);
+};
+
+/**
+ * \brief The "known key" X.509 engine structure.
+ *
+ * The structure contents are opaque (they shall not be accessed directly),
+ * except for the first field (the vtable).
+ *
+ * The "known key" engine returns an externally configured public key,
+ * and totally ignores the certificate contents.
+ */
+typedef struct {
+ /** \brief Reference to the context vtable. */
+ const br_x509_class *vtable;
+#ifndef BR_DOXYGEN_IGNORE
+ br_x509_pkey pkey;
+ unsigned usages;
+#endif
+} br_x509_knownkey_context;
+
+/**
+ * \brief Class instance for the "known key" X.509 engine.
+ */
+extern const br_x509_class br_x509_knownkey_vtable;
+
+/**
+ * \brief Initialize a "known key" X.509 engine with a known RSA public key.
+ *
+ * The `usages` parameter indicates the allowed key usages for that key
+ * (`BR_KEYTYPE_KEYX` and/or `BR_KEYTYPE_SIGN`).
+ *
+ * The provided pointers are linked in, not copied, so they must remain
+ * valid while the public key may be in usage.
+ *
+ * \param ctx context to initialise.
+ * \param pk known public key.
+ * \param usages allowed key usages.
+ */
+void br_x509_knownkey_init_rsa(br_x509_knownkey_context *ctx,
+ const br_rsa_public_key *pk, unsigned usages);
+
+/**
+ * \brief Initialize a "known key" X.509 engine with a known EC public key.
+ *
+ * The `usages` parameter indicates the allowed key usages for that key
+ * (`BR_KEYTYPE_KEYX` and/or `BR_KEYTYPE_SIGN`).
+ *
+ * The provided pointers are linked in, not copied, so they must remain
+ * valid while the public key may be in usage.
+ *
+ * \param ctx context to initialise.
+ * \param pk known public key.
+ * \param usages allowed key usages.
+ */
+void br_x509_knownkey_init_ec(br_x509_knownkey_context *ctx,
+ const br_ec_public_key *pk, unsigned usages);
+
+#ifndef BR_DOXYGEN_IGNORE
+/*
+ * The minimal X.509 engine has some state buffers which must be large
+ * enough to simultaneously accommodate:
+ * -- the public key extracted from the current certificate;
+ * -- the signature on the current certificate or on the previous
+ * certificate;
+ * -- the public key extracted from the EE certificate.
+ *
+ * We store public key elements in their raw unsigned big-endian
+ * encoding. We want to support up to RSA-4096 with a short (up to 64
+ * bits) public exponent, thus a buffer for a public key must have
+ * length at least 520 bytes. Similarly, a RSA-4096 signature has length
+ * 512 bytes.
+ *
+ * Though RSA public exponents can formally be as large as the modulus
+ * (mathematically, even larger exponents would work, but PKCS#1 forbids
+ * them), exponents that do not fit on 32 bits are extremely rare,
+ * notably because some widespread implementations (e.g. Microsoft's
+ * CryptoAPI) don't support them. Moreover, large public exponent do not
+ * seem to imply any tangible security benefit, and they increase the
+ * cost of public key operations. The X.509 "minimal" engine will tolerate
+ * public exponents of arbitrary size as long as the modulus and the
+ * exponent can fit together in the dedicated buffer.
+ *
+ * EC public keys are shorter than RSA public keys; even with curve
+ * NIST P-521 (the largest curve we care to support), a public key is
+ * encoded over 133 bytes only.
+ */
+#define BR_X509_BUFSIZE_KEY 520
+#define BR_X509_BUFSIZE_SIG 512
+#endif
+
+/**
+ * \brief Type for receiving a name element.
+ *
+ * An array of such structures can be provided to the X.509 decoding
+ * engines. If the specified elements are found in the certificate
+ * subject DN or the SAN extension, then the name contents are copied
+ * as zero-terminated strings into the buffer.
+ *
+ * The decoder converts TeletexString and BMPString to UTF8String, and
+ * ensures that the resulting string is zero-terminated. If the string
+ * does not fit in the provided buffer, then the copy is aborted and an
+ * error is reported.
+ */
+typedef struct {
+ /**
+ * \brief Element OID.
+ *
+ * For X.500 name elements (to be extracted from the subject DN),
+ * this is the encoded OID for the requested name element; the
+ * first byte shall contain the length of the DER-encoded OID
+ * value, followed by the OID value (for instance, OID 2.5.4.3,
+ * for id-at-commonName, will be `03 55 04 03`). This is
+ * equivalent to full DER encoding with the length but without
+ * the tag.
+ *
+ * For SAN name elements, the first byte (`oid[0]`) has value 0,
+ * followed by another byte that matches the expected GeneralName
+ * tag. Allowed second byte values are then:
+ *
+ * - 1: `rfc822Name`
+ *
+ * - 2: `dNSName`
+ *
+ * - 6: `uniformResourceIdentifier`
+ *
+ * - 0: `otherName`
+ *
+ * If first and second byte are 0, then this is a SAN element of
+ * type `otherName`; the `oid[]` array should then contain, right
+ * after the two bytes of value 0, an encoded OID (with the same
+ * conventions as for X.500 name elements). If a match is found
+ * for that OID, then the corresponding name element will be
+ * extracted, as long as it is a supported string type.
+ */
+ const unsigned char *oid;
+
+ /**
+ * \brief Destination buffer.
+ */
+ char *buf;
+
+ /**
+ * \brief Length (in bytes) of the destination buffer.
+ *
+ * The buffer MUST NOT be smaller than 1 byte.
+ */
+ size_t len;
+
+ /**
+ * \brief Decoding status.
+ *
+ * Status is 0 if the name element was not found, 1 if it was
+ * found and decoded, or -1 on error. Error conditions include
+ * an unrecognised encoding, an invalid encoding, or a string
+ * too large for the destination buffer.
+ */
+ int status;
+
+} br_name_element;
+
+/**
+ * \brief The "minimal" X.509 engine structure.
+ *
+ * The structure contents are opaque (they shall not be accessed directly),
+ * except for the first field (the vtable).
+ *
+ * The "minimal" engine performs a rudimentary but serviceable X.509 path
+ * validation.
+ */
+typedef struct {
+ const br_x509_class *vtable;
+
+#ifndef BR_DOXYGEN_IGNORE
+ /* Structure for returning the EE public key. */
+ br_x509_pkey pkey;
+
+ /* CPU for the T0 virtual machine. */
+ struct {
+ uint32_t *dp;
+ uint32_t *rp;
+ const unsigned char *ip;
+ } cpu;
+ uint32_t dp_stack[32];
+ uint32_t rp_stack[32];
+ int err;
+
+ /* Server name to match with the SAN / CN of the EE certificate. */
+ const char *server_name;
+
+ /* Validated key usages. */
+ unsigned char key_usages;
+
+ /* Explicitly set date and time. */
+ uint32_t days, seconds;
+
+ /* Current certificate length (in bytes). Set to 0 when the
+ certificate has been fully processed. */
+ uint32_t cert_length;
+
+ /* Number of certificates processed so far in the current chain.
+ It is incremented at the end of the processing of a certificate,
+ so it is 0 for the EE. */
+ uint32_t num_certs;
+
+ /* Certificate data chunk. */
+ const unsigned char *hbuf;
+ size_t hlen;
+
+ /* The pad serves as destination for various operations. */
+ unsigned char pad[256];
+
+ /* Buffer for EE public key data. */
+ unsigned char ee_pkey_data[BR_X509_BUFSIZE_KEY];
+
+ /* Buffer for currently decoded public key. */
+ unsigned char pkey_data[BR_X509_BUFSIZE_KEY];
+
+ /* Signature type: signer key type, offset to the hash
+ function OID (in the T0 data block) and hash function
+ output length (TBS hash length). */
+ unsigned char cert_signer_key_type;
+ uint16_t cert_sig_hash_oid;
+ unsigned char cert_sig_hash_len;
+
+ /* Current/last certificate signature. */
+ unsigned char cert_sig[BR_X509_BUFSIZE_SIG];
+ uint16_t cert_sig_len;
+
+ /* Minimum RSA key length (difference in bytes from 128). */
+ int16_t min_rsa_size;
+
+ /* Configured trust anchors. */
+ const br_x509_trust_anchor *trust_anchors;
+ size_t trust_anchors_num;
+
+ /*
+ * Multi-hasher for the TBS.
+ */
+ unsigned char do_mhash;
+ br_multihash_context mhash;
+ unsigned char tbs_hash[64];
+
+ /*
+ * Simple hasher for the subject/issuer DN.
+ */
+ unsigned char do_dn_hash;
+ const br_hash_class *dn_hash_impl;
+ br_hash_compat_context dn_hash;
+ unsigned char current_dn_hash[64];
+ unsigned char next_dn_hash[64];
+ unsigned char saved_dn_hash[64];
+
+ /*
+ * Name elements to gather.
+ */
+ br_name_element *name_elts;
+ size_t num_name_elts;
+
+ /*
+ * Public key cryptography implementations (signature verification).
+ */
+ br_rsa_pkcs1_vrfy irsa;
+ br_ecdsa_vrfy iecdsa;
+ const br_ec_impl *iec;
+#endif
+
+} br_x509_minimal_context;
+
+/**
+ * \brief Class instance for the "minimal" X.509 engine.
+ */
+extern const br_x509_class br_x509_minimal_vtable;
+
+/**
+ * \brief Initialise a "minimal" X.509 engine.
+ *
+ * The `dn_hash_impl` parameter shall be a hash function internally used
+ * to match X.500 names (subject/issuer DN, and anchor names). Any standard
+ * hash function may be used, but a collision-resistant hash function is
+ * advised.
+ *
+ * After initialization, some implementations for signature verification
+ * (hash functions and signature algorithms) MUST be added.
+ *
+ * \param ctx context to initialise.
+ * \param dn_hash_impl hash function for DN comparisons.
+ * \param trust_anchors trust anchors.
+ * \param trust_anchors_num number of trust anchors.
+ */
+void br_x509_minimal_init(br_x509_minimal_context *ctx,
+ const br_hash_class *dn_hash_impl,
+ const br_x509_trust_anchor *trust_anchors, size_t trust_anchors_num);
+
+/**
+ * \brief Set a supported hash function in an X.509 "minimal" engine.
+ *
+ * Hash functions are used with signature verification algorithms.
+ * Once initialised (with `br_x509_minimal_init()`), the context must
+ * be configured with the hash functions it shall support for that
+ * purpose. The hash function identifier MUST be one of the standard
+ * hash function identifiers (1 to 6, for MD5, SHA-1, SHA-224, SHA-256,
+ * SHA-384 and SHA-512).
+ *
+ * If `impl` is `NULL`, this _removes_ support for the designated
+ * hash function.
+ *
+ * \param ctx validation context.
+ * \param id hash function identifier (from 1 to 6).
+ * \param impl hash function implementation (or `NULL`).
+ */
+static inline void
+br_x509_minimal_set_hash(br_x509_minimal_context *ctx,
+ int id, const br_hash_class *impl)
+{
+ br_multihash_setimpl(&ctx->mhash, id, impl);
+}
+
+/**
+ * \brief Set a RSA signature verification implementation in the X.509
+ * "minimal" engine.
+ *
+ * Once initialised (with `br_x509_minimal_init()`), the context must
+ * be configured with the signature verification implementations that
+ * it is supposed to support. If `irsa` is `0`, then the RSA support
+ * is disabled.
+ *
+ * \param ctx validation context.
+ * \param irsa RSA signature verification implementation (or `0`).
+ */
+static inline void
+br_x509_minimal_set_rsa(br_x509_minimal_context *ctx,
+ br_rsa_pkcs1_vrfy irsa)
+{
+ ctx->irsa = irsa;
+}
+
+/**
+ * \brief Set a ECDSA signature verification implementation in the X.509
+ * "minimal" engine.
+ *
+ * Once initialised (with `br_x509_minimal_init()`), the context must
+ * be configured with the signature verification implementations that
+ * it is supposed to support.
+ *
+ * If `iecdsa` is `0`, then this call disables ECDSA support; in that
+ * case, `iec` may be `NULL`. Otherwise, `iecdsa` MUST point to a function
+ * that verifies ECDSA signatures with format "asn1", and it will use
+ * `iec` as underlying elliptic curve support.
+ *
+ * \param ctx validation context.
+ * \param iec elliptic curve implementation (or `NULL`).
+ * \param iecdsa ECDSA implementation (or `0`).
+ */
+static inline void
+br_x509_minimal_set_ecdsa(br_x509_minimal_context *ctx,
+ const br_ec_impl *iec, br_ecdsa_vrfy iecdsa)
+{
+ ctx->iecdsa = iecdsa;
+ ctx->iec = iec;
+}
+
+/**
+ * \brief Initialise a "minimal" X.509 engine with default algorithms.
+ *
+ * This function performs the same job as `br_x509_minimal_init()`, but
+ * also sets implementations for RSA, ECDSA, and the standard hash
+ * functions.
+ *
+ * \param ctx context to initialise.
+ * \param trust_anchors trust anchors.
+ * \param trust_anchors_num number of trust anchors.
+ */
+void br_x509_minimal_init_full(br_x509_minimal_context *ctx,
+ const br_x509_trust_anchor *trust_anchors, size_t trust_anchors_num);
+
+/**
+ * \brief Set the validation time for the X.509 "minimal" engine.
+ *
+ * The validation time is set as two 32-bit integers, for days and
+ * seconds since a fixed epoch:
+ *
+ * - Days are counted in a proleptic Gregorian calendar since
+ * January 1st, 0 AD. Year "0 AD" is the one that preceded "1 AD";
+ * it is also traditionally known as "1 BC".
+ *
+ * - Seconds are counted since midnight, from 0 to 86400 (a count of
+ * 86400 is possible only if a leap second happened).
+ *
+ * The validation date and time is understood in the UTC time zone.
+ *
+ * If the validation date and time are not explicitly set, but BearSSL
+ * was compiled with support for the system clock on the underlying
+ * platform, then the current time will automatically be used. Otherwise,
+ * not setting the validation date and time implies a validation
+ * failure (except in case of direct trust of the EE key).
+ *
+ * \param ctx validation context.
+ * \param days days since January 1st, 0 AD (Gregorian calendar).
+ * \param seconds seconds since midnight (0 to 86400).
+ */
+static inline void
+br_x509_minimal_set_time(br_x509_minimal_context *ctx,
+ uint32_t days, uint32_t seconds)
+{
+ ctx->days = days;
+ ctx->seconds = seconds;
+}
+
+/**
+ * \brief Set the minimal acceptable length for RSA keys (X.509 "minimal"
+ * engine).
+ *
+ * The RSA key length is expressed in bytes. The default minimum key
+ * length is 128 bytes, corresponding to 1017 bits. RSA keys shorter
+ * than the configured length will be rejected, implying validation
+ * failure. This setting applies to keys extracted from certificates
+ * (both end-entity, and intermediate CA) but not to "CA" trust anchors.
+ *
+ * \param ctx validation context.
+ * \param byte_length minimum RSA key length, **in bytes** (not bits).
+ */
+static inline void
+br_x509_minimal_set_minrsa(br_x509_minimal_context *ctx, int byte_length)
+{
+ ctx->min_rsa_size = (int16_t)(byte_length - 128);
+}
+
+/**
+ * \brief Set the name elements to gather.
+ *
+ * The provided array is linked in the context. The elements are
+ * gathered from the EE certificate. If the same element type is
+ * requested several times, then the relevant structures will be filled
+ * in the order the matching values are encountered in the certificate.
+ *
+ * \param ctx validation context.
+ * \param elts array of name element structures to fill.
+ * \param num_elts number of name element structures to fill.
+ */
+static inline void
+br_x509_minimal_set_name_elements(br_x509_minimal_context *ctx,
+ br_name_element *elts, size_t num_elts)
+{
+ ctx->name_elts = elts;
+ ctx->num_name_elts = num_elts;
+}
+
+/**
+ * \brief X.509 decoder context.
+ *
+ * This structure is _not_ for X.509 validation, but for extracting
+ * names and public keys from encoded certificates. Intended usage is
+ * to use (self-signed) certificates as trust anchors.
+ *
+ * Contents are opaque and shall not be accessed directly.
+ */
+typedef struct {
+
+#ifndef BR_DOXYGEN_IGNORE
+ /* Structure for returning the public key. */
+ br_x509_pkey pkey;
+
+ /* CPU for the T0 virtual machine. */
+ struct {
+ uint32_t *dp;
+ uint32_t *rp;
+ const unsigned char *ip;
+ } cpu;
+ uint32_t dp_stack[32];
+ uint32_t rp_stack[32];
+ int err;
+
+ /* The pad serves as destination for various operations. */
+ unsigned char pad[256];
+
+ /* Flag set when decoding succeeds. */
+ unsigned char decoded;
+
+ /* Validity dates. */
+ uint32_t notbefore_days, notbefore_seconds;
+ uint32_t notafter_days, notafter_seconds;
+
+ /* The "CA" flag. This is set to true if the certificate contains
+ a Basic Constraints extension that asserts CA status. */
+ unsigned char isCA;
+
+ /* DN processing: the subject DN is extracted and pushed to the
+ provided callback. */
+ unsigned char copy_dn;
+ void *append_dn_ctx;
+ void (*append_dn)(void *ctx, const void *buf, size_t len);
+
+ /* Certificate data chunk. */
+ const unsigned char *hbuf;
+ size_t hlen;
+
+ /* Buffer for decoded public key. */
+ unsigned char pkey_data[BR_X509_BUFSIZE_KEY];
+
+ /* Type of key and hash function used in the certificate signature. */
+ unsigned char signer_key_type;
+ unsigned char signer_hash_id;
+#endif
+
+} br_x509_decoder_context;
+
+/**
+ * \brief Initialise an X.509 decoder context for processing a new
+ * certificate.
+ *
+ * The `append_dn()` callback (with opaque context `append_dn_ctx`)
+ * will be invoked to receive, chunk by chunk, the certificate's
+ * subject DN. If `append_dn` is `0` then the subject DN will be
+ * ignored.
+ *
+ * \param ctx X.509 decoder context to initialise.
+ * \param append_dn DN receiver callback (or `0`).
+ * \param append_dn_ctx context for the DN receiver callback.
+ */
+void br_x509_decoder_init(br_x509_decoder_context *ctx,
+ void (*append_dn)(void *ctx, const void *buf, size_t len),
+ void *append_dn_ctx);
+
+/**
+ * \brief Push some certificate bytes into a decoder context.
+ *
+ * If `len` is non-zero, then that many bytes are pushed, from address
+ * `data`, into the provided decoder context.
+ *
+ * \param ctx X.509 decoder context.
+ * \param data certificate data chunk.
+ * \param len certificate data chunk length (in bytes).
+ */
+void br_x509_decoder_push(br_x509_decoder_context *ctx,
+ const void *data, size_t len);
+
+/**
+ * \brief Obtain the decoded public key.
+ *
+ * Returned value is a pointer to a structure internal to the decoder
+ * context; releasing or reusing the decoder context invalidates that
+ * structure.
+ *
+ * If decoding was not finished, or failed, then `NULL` is returned.
+ *
+ * \param ctx X.509 decoder context.
+ * \return the public key, or `NULL` on unfinished/error.
+ */
+static inline br_x509_pkey *
+br_x509_decoder_get_pkey(br_x509_decoder_context *ctx)
+{
+ if (ctx->decoded && ctx->err == 0) {
+ return &ctx->pkey;
+ } else {
+ return NULL;
+ }
+}
+
+/**
+ * \brief Get decoder error status.
+ *
+ * If no error was reported yet but the certificate decoding is not
+ * finished, then the error code is `BR_ERR_X509_TRUNCATED`. If decoding
+ * was successful, then 0 is returned.
+ *
+ * \param ctx X.509 decoder context.
+ * \return 0 on successful decoding, or a non-zero error code.
+ */
+static inline int
+br_x509_decoder_last_error(br_x509_decoder_context *ctx)
+{
+ if (ctx->err != 0) {
+ return ctx->err;
+ }
+ if (!ctx->decoded) {
+ return BR_ERR_X509_TRUNCATED;
+ }
+ return 0;
+}
+
+/**
+ * \brief Get the "isCA" flag from an X.509 decoder context.
+ *
+ * This flag is set if the decoded certificate claims to be a CA through
+ * a Basic Constraints extension. This flag should not be read before
+ * decoding completed successfully.
+ *
+ * \param ctx X.509 decoder context.
+ * \return the "isCA" flag.
+ */
+static inline int
+br_x509_decoder_isCA(br_x509_decoder_context *ctx)
+{
+ return ctx->isCA;
+}
+
+/**
+ * \brief Get the issuing CA key type (type of algorithm used to sign the
+ * decoded certificate).
+ *
+ * This is `BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC`. The value 0 is returned
+ * if the signature type was not recognised.
+ *
+ * \param ctx X.509 decoder context.
+ * \return the issuing CA key type.
+ */
+static inline int
+br_x509_decoder_get_signer_key_type(br_x509_decoder_context *ctx)
+{
+ return ctx->signer_key_type;
+}
+
+/**
+ * \brief Get the identifier for the hash function used to sign the decoded
+ * certificate.
+ *
+ * This is 0 if the hash function was not recognised.
+ *
+ * \param ctx X.509 decoder context.
+ * \return the signature hash function identifier.
+ */
+static inline int
+br_x509_decoder_get_signer_hash_id(br_x509_decoder_context *ctx)
+{
+ return ctx->signer_hash_id;
+}
+
+/**
+ * \brief Type for an X.509 certificate (DER-encoded).
+ */
+typedef struct {
+ /** \brief The DER-encoded certificate data. */
+ unsigned char *data;
+ /** \brief The DER-encoded certificate length (in bytes). */
+ size_t data_len;
+} br_x509_certificate;
+
+/**
+ * \brief Private key decoder context.
+ *
+ * The private key decoder recognises RSA and EC private keys, either in
+ * their raw, DER-encoded format, or wrapped in an unencrypted PKCS#8
+ * archive (again DER-encoded).
+ *
+ * Structure contents are opaque and shall not be accessed directly.
+ */
+typedef struct {
+#ifndef BR_DOXYGEN_IGNORE
+ /* Structure for returning the private key. */
+ union {
+ br_rsa_private_key rsa;
+ br_ec_private_key ec;
+ } key;
+
+ /* CPU for the T0 virtual machine. */
+ struct {
+ uint32_t *dp;
+ uint32_t *rp;
+ const unsigned char *ip;
+ } cpu;
+ uint32_t dp_stack[32];
+ uint32_t rp_stack[32];
+ int err;
+
+ /* Private key data chunk. */
+ const unsigned char *hbuf;
+ size_t hlen;
+
+ /* The pad serves as destination for various operations. */
+ unsigned char pad[256];
+
+ /* Decoded key type; 0 until decoding is complete. */
+ unsigned char key_type;
+
+ /* Buffer for the private key elements. It shall be large enough
+ to accommodate all elements for a RSA-4096 private key (roughly
+ five 2048-bit integers, possibly a bit more). */
+ unsigned char key_data[3 * BR_X509_BUFSIZE_SIG];
+#endif
+} br_skey_decoder_context;
+
+/**
+ * \brief Initialise a private key decoder context.
+ *
+ * \param ctx key decoder context to initialise.
+ */
+void br_skey_decoder_init(br_skey_decoder_context *ctx);
+
+/**
+ * \brief Push some data bytes into a private key decoder context.
+ *
+ * If `len` is non-zero, then that many data bytes, starting at address
+ * `data`, are pushed into the decoder.
+ *
+ * \param ctx key decoder context.
+ * \param data private key data chunk.
+ * \param len private key data chunk length (in bytes).
+ */
+void br_skey_decoder_push(br_skey_decoder_context *ctx,
+ const void *data, size_t len);
+
+/**
+ * \brief Get the decoding status for a private key.
+ *
+ * Decoding status is 0 on success, or a non-zero error code. If the
+ * decoding is unfinished when this function is called, then the
+ * status code `BR_ERR_X509_TRUNCATED` is returned.
+ *
+ * \param ctx key decoder context.
+ * \return 0 on successful decoding, or a non-zero error code.
+ */
+static inline int
+br_skey_decoder_last_error(const br_skey_decoder_context *ctx)
+{
+ if (ctx->err != 0) {
+ return ctx->err;
+ }
+ if (ctx->key_type == 0) {
+ return BR_ERR_X509_TRUNCATED;
+ }
+ return 0;
+}
+
+/**
+ * \brief Get the decoded private key type.
+ *
+ * Private key type is `BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC`. If decoding is
+ * not finished or failed, then 0 is returned.
+ *
+ * \param ctx key decoder context.
+ * \return decoded private key type, or 0.
+ */
+static inline int
+br_skey_decoder_key_type(const br_skey_decoder_context *ctx)
+{
+ if (ctx->err == 0) {
+ return ctx->key_type;
+ } else {
+ return 0;
+ }
+}
+
+/**
+ * \brief Get the decoded RSA private key.
+ *
+ * This function returns `NULL` if the decoding failed, or is not
+ * finished, or the key is not RSA. The returned pointer references
+ * structures within the context that can become invalid if the context
+ * is reused or released.
+ *
+ * \param ctx key decoder context.
+ * \return decoded RSA private key, or `NULL`.
+ */
+static inline const br_rsa_private_key *
+br_skey_decoder_get_rsa(const br_skey_decoder_context *ctx)
+{
+ if (ctx->err == 0 && ctx->key_type == BR_KEYTYPE_RSA) {
+ return &ctx->key.rsa;
+ } else {
+ return NULL;
+ }
+}
+
+/**
+ * \brief Get the decoded EC private key.
+ *
+ * This function returns `NULL` if the decoding failed, or is not
+ * finished, or the key is not EC. The returned pointer references
+ * structures within the context that can become invalid if the context
+ * is reused or released.
+ *
+ * \param ctx key decoder context.
+ * \return decoded EC private key, or `NULL`.
+ */
+static inline const br_ec_private_key *
+br_skey_decoder_get_ec(const br_skey_decoder_context *ctx)
+{
+ if (ctx->err == 0 && ctx->key_type == BR_KEYTYPE_EC) {
+ return &ctx->key.ec;
+ } else {
+ return NULL;
+ }
+}
+
+/**
+ * \brief Encode an RSA private key (raw DER format).
+ *
+ * This function encodes the provided key into the "raw" format specified
+ * in PKCS#1 (RFC 8017, Appendix C, type `RSAPrivateKey`), with DER
+ * encoding rules.
+ *
+ * The key elements are:
+ *
+ * - `sk`: the private key (`p`, `q`, `dp`, `dq` and `iq`)
+ *
+ * - `pk`: the public key (`n` and `e`)
+ *
+ * - `d` (size: `dlen` bytes): the private exponent
+ *
+ * The public key elements, and the private exponent `d`, can be
+ * recomputed from the private key (see `br_rsa_compute_modulus()`,
+ * `br_rsa_compute_pubexp()` and `br_rsa_compute_privexp()`).
+ *
+ * If `dest` is not `NULL`, then the encoded key is written at that
+ * address, and the encoded length (in bytes) is returned. If `dest` is
+ * `NULL`, then nothing is written, but the encoded length is still
+ * computed and returned.
+ *
+ * \param dest the destination buffer (or `NULL`).
+ * \param sk the RSA private key.
+ * \param pk the RSA public key.
+ * \param d the RSA private exponent.
+ * \param dlen the RSA private exponent length (in bytes).
+ * \return the encoded key length (in bytes).
+ */
+size_t br_encode_rsa_raw_der(void *dest, const br_rsa_private_key *sk,
+ const br_rsa_public_key *pk, const void *d, size_t dlen);
+
+/**
+ * \brief Encode an RSA private key (PKCS#8 DER format).
+ *
+ * This function encodes the provided key into the PKCS#8 format
+ * (RFC 5958, type `OneAsymmetricKey`). It wraps around the "raw DER"
+ * format for the RSA key, as implemented by `br_encode_rsa_raw_der()`.
+ *
+ * The key elements are:
+ *
+ * - `sk`: the private key (`p`, `q`, `dp`, `dq` and `iq`)
+ *
+ * - `pk`: the public key (`n` and `e`)
+ *
+ * - `d` (size: `dlen` bytes): the private exponent
+ *
+ * The public key elements, and the private exponent `d`, can be
+ * recomputed from the private key (see `br_rsa_compute_modulus()`,
+ * `br_rsa_compute_pubexp()` and `br_rsa_compute_privexp()`).
+ *
+ * If `dest` is not `NULL`, then the encoded key is written at that
+ * address, and the encoded length (in bytes) is returned. If `dest` is
+ * `NULL`, then nothing is written, but the encoded length is still
+ * computed and returned.
+ *
+ * \param dest the destination buffer (or `NULL`).
+ * \param sk the RSA private key.
+ * \param pk the RSA public key.
+ * \param d the RSA private exponent.
+ * \param dlen the RSA private exponent length (in bytes).
+ * \return the encoded key length (in bytes).
+ */
+size_t br_encode_rsa_pkcs8_der(void *dest, const br_rsa_private_key *sk,
+ const br_rsa_public_key *pk, const void *d, size_t dlen);
+
+/**
+ * \brief Encode an EC private key (raw DER format).
+ *
+ * This function encodes the provided key into the "raw" format specified
+ * in RFC 5915 (type `ECPrivateKey`), with DER encoding rules.
+ *
+ * The private key is provided in `sk`, the public key being `pk`. If
+ * `pk` is `NULL`, then the encoded key will not include the public key
+ * in its `publicKey` field (which is nominally optional).
+ *
+ * If `dest` is not `NULL`, then the encoded key is written at that
+ * address, and the encoded length (in bytes) is returned. If `dest` is
+ * `NULL`, then nothing is written, but the encoded length is still
+ * computed and returned.
+ *
+ * If the key cannot be encoded (e.g. because there is no known OBJECT
+ * IDENTIFIER for the used curve), then 0 is returned.
+ *
+ * \param dest the destination buffer (or `NULL`).
+ * \param sk the EC private key.
+ * \param pk the EC public key (or `NULL`).
+ * \return the encoded key length (in bytes), or 0.
+ */
+size_t br_encode_ec_raw_der(void *dest,
+ const br_ec_private_key *sk, const br_ec_public_key *pk);
+
+/**
+ * \brief Encode an EC private key (PKCS#8 DER format).
+ *
+ * This function encodes the provided key into the PKCS#8 format
+ * (RFC 5958, type `OneAsymmetricKey`). The curve is identified
+ * by an OID provided as parameters to the `privateKeyAlgorithm`
+ * field. The private key value (contents of the `privateKey` field)
+ * contains the DER encoding of the `ECPrivateKey` type defined in
+ * RFC 5915, without the `parameters` field (since they would be
+ * redundant with the information in `privateKeyAlgorithm`).
+ *
+ * The private key is provided in `sk`, the public key being `pk`. If
+ * `pk` is not `NULL`, then the encoded public key is included in the
+ * `publicKey` field of the private key value (but not in the `publicKey`
+ * field of the PKCS#8 `OneAsymmetricKey` wrapper).
+ *
+ * If `dest` is not `NULL`, then the encoded key is written at that
+ * address, and the encoded length (in bytes) is returned. If `dest` is
+ * `NULL`, then nothing is written, but the encoded length is still
+ * computed and returned.
+ *
+ * If the key cannot be encoded (e.g. because there is no known OBJECT
+ * IDENTIFIER for the used curve), then 0 is returned.
+ *
+ * \param dest the destination buffer (or `NULL`).
+ * \param sk the EC private key.
+ * \param pk the EC public key (or `NULL`).
+ * \return the encoded key length (in bytes), or 0.
+ */
+size_t br_encode_ec_pkcs8_der(void *dest,
+ const br_ec_private_key *sk, const br_ec_public_key *pk);
+
+/**
+ * \brief PEM banner for RSA private key (raw).
+ */
+#define BR_ENCODE_PEM_RSA_RAW "RSA PRIVATE KEY"
+
+/**
+ * \brief PEM banner for EC private key (raw).
+ */
+#define BR_ENCODE_PEM_EC_RAW "EC PRIVATE KEY"
+
+/**
+ * \brief PEM banner for an RSA or EC private key in PKCS#8 format.
+ */
+#define BR_ENCODE_PEM_PKCS8 "PRIVATE KEY"
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif