aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/api/prob1.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/api/prob1.c')
-rw-r--r--test/monniaux/glpk-4.65/src/api/prob1.c1588
1 files changed, 1588 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/api/prob1.c b/test/monniaux/glpk-4.65/src/api/prob1.c
new file mode 100644
index 00000000..6afad442
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/api/prob1.c
@@ -0,0 +1,1588 @@
+/* prob1.c (problem creating and modifying routines) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2000-2018 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "ios.h"
+
+/* CAUTION: DO NOT CHANGE THE LIMITS BELOW */
+
+#define M_MAX 100000000 /* = 100*10^6 */
+/* maximal number of rows in the problem object */
+
+#define N_MAX 100000000 /* = 100*10^6 */
+/* maximal number of columns in the problem object */
+
+#define NNZ_MAX 500000000 /* = 500*10^6 */
+/* maximal number of constraint coefficients in the problem object */
+
+/***********************************************************************
+* NAME
+*
+* glp_create_prob - create problem object
+*
+* SYNOPSIS
+*
+* glp_prob *glp_create_prob(void);
+*
+* DESCRIPTION
+*
+* The routine glp_create_prob creates a new problem object, which is
+* initially "empty", i.e. has no rows and columns.
+*
+* RETURNS
+*
+* The routine returns a pointer to the object created, which should be
+* used in any subsequent operations on this object. */
+
+static void create_prob(glp_prob *lp)
+#if 0 /* 04/IV-2016 */
+{ lp->magic = GLP_PROB_MAGIC;
+#else
+{
+#endif
+ lp->pool = dmp_create_pool();
+#if 0 /* 08/III-2014 */
+#if 0 /* 17/XI-2009 */
+ lp->cps = xmalloc(sizeof(struct LPXCPS));
+ lpx_reset_parms(lp);
+#else
+ lp->parms = NULL;
+#endif
+#endif
+ lp->tree = NULL;
+#if 0
+ lp->lwa = 0;
+ lp->cwa = NULL;
+#endif
+ /* LP/MIP data */
+ lp->name = NULL;
+ lp->obj = NULL;
+ lp->dir = GLP_MIN;
+ lp->c0 = 0.0;
+ lp->m_max = 100;
+ lp->n_max = 200;
+ lp->m = lp->n = 0;
+ lp->nnz = 0;
+ lp->row = xcalloc(1+lp->m_max, sizeof(GLPROW *));
+ lp->col = xcalloc(1+lp->n_max, sizeof(GLPCOL *));
+ lp->r_tree = lp->c_tree = NULL;
+ /* basis factorization */
+ lp->valid = 0;
+ lp->head = xcalloc(1+lp->m_max, sizeof(int));
+#if 0 /* 08/III-2014 */
+ lp->bfcp = NULL;
+#endif
+ lp->bfd = NULL;
+ /* basic solution (LP) */
+ lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
+ lp->obj_val = 0.0;
+ lp->it_cnt = 0;
+ lp->some = 0;
+ /* interior-point solution (LP) */
+ lp->ipt_stat = GLP_UNDEF;
+ lp->ipt_obj = 0.0;
+ /* integer solution (MIP) */
+ lp->mip_stat = GLP_UNDEF;
+ lp->mip_obj = 0.0;
+ return;
+}
+
+glp_prob *glp_create_prob(void)
+{ glp_prob *lp;
+ lp = xmalloc(sizeof(glp_prob));
+ create_prob(lp);
+ return lp;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_set_prob_name - assign (change) problem name
+*
+* SYNOPSIS
+*
+* void glp_set_prob_name(glp_prob *lp, const char *name);
+*
+* DESCRIPTION
+*
+* The routine glp_set_prob_name assigns a given symbolic name (1 up to
+* 255 characters) to the specified problem object.
+*
+* If the parameter name is NULL or empty string, the routine erases an
+* existing symbolic name of the problem object. */
+
+void glp_set_prob_name(glp_prob *lp, const char *name)
+{ glp_tree *tree = lp->tree;
+ if (tree != NULL && tree->reason != 0)
+ xerror("glp_set_prob_name: operation not allowed\n");
+ if (lp->name != NULL)
+ { dmp_free_atom(lp->pool, lp->name, strlen(lp->name)+1);
+ lp->name = NULL;
+ }
+ if (!(name == NULL || name[0] == '\0'))
+ { int k;
+ for (k = 0; name[k] != '\0'; k++)
+ { if (k == 256)
+ xerror("glp_set_prob_name: problem name too long\n");
+ if (iscntrl((unsigned char)name[k]))
+ xerror("glp_set_prob_name: problem name contains invalid"
+ " character(s)\n");
+ }
+ lp->name = dmp_get_atom(lp->pool, strlen(name)+1);
+ strcpy(lp->name, name);
+ }
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_set_obj_name - assign (change) objective function name
+*
+* SYNOPSIS
+*
+* void glp_set_obj_name(glp_prob *lp, const char *name);
+*
+* DESCRIPTION
+*
+* The routine glp_set_obj_name assigns a given symbolic name (1 up to
+* 255 characters) to the objective function of the specified problem
+* object.
+*
+* If the parameter name is NULL or empty string, the routine erases an
+* existing name of the objective function. */
+
+void glp_set_obj_name(glp_prob *lp, const char *name)
+{ glp_tree *tree = lp->tree;
+ if (tree != NULL && tree->reason != 0)
+ xerror("glp_set_obj_name: operation not allowed\n");
+ if (lp->obj != NULL)
+ { dmp_free_atom(lp->pool, lp->obj, strlen(lp->obj)+1);
+ lp->obj = NULL;
+ }
+ if (!(name == NULL || name[0] == '\0'))
+ { int k;
+ for (k = 0; name[k] != '\0'; k++)
+ { if (k == 256)
+ xerror("glp_set_obj_name: objective name too long\n");
+ if (iscntrl((unsigned char)name[k]))
+ xerror("glp_set_obj_name: objective name contains invali"
+ "d character(s)\n");
+ }
+ lp->obj = dmp_get_atom(lp->pool, strlen(name)+1);
+ strcpy(lp->obj, name);
+ }
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_set_obj_dir - set (change) optimization direction flag
+*
+* SYNOPSIS
+*
+* void glp_set_obj_dir(glp_prob *lp, int dir);
+*
+* DESCRIPTION
+*
+* The routine glp_set_obj_dir sets (changes) optimization direction
+* flag (i.e. "sense" of the objective function) as specified by the
+* parameter dir:
+*
+* GLP_MIN - minimization;
+* GLP_MAX - maximization. */
+
+void glp_set_obj_dir(glp_prob *lp, int dir)
+{ glp_tree *tree = lp->tree;
+ if (tree != NULL && tree->reason != 0)
+ xerror("glp_set_obj_dir: operation not allowed\n");
+ if (!(dir == GLP_MIN || dir == GLP_MAX))
+ xerror("glp_set_obj_dir: dir = %d; invalid direction flag\n",
+ dir);
+ lp->dir = dir;
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_add_rows - add new rows to problem object
+*
+* SYNOPSIS
+*
+* int glp_add_rows(glp_prob *lp, int nrs);
+*
+* DESCRIPTION
+*
+* The routine glp_add_rows adds nrs rows (constraints) to the specified
+* problem object. New rows are always added to the end of the row list,
+* so the ordinal numbers of existing rows remain unchanged.
+*
+* Being added each new row is initially free (unbounded) and has empty
+* list of the constraint coefficients.
+*
+* RETURNS
+*
+* The routine glp_add_rows returns the ordinal number of the first new
+* row added to the problem object. */
+
+int glp_add_rows(glp_prob *lp, int nrs)
+{ glp_tree *tree = lp->tree;
+ GLPROW *row;
+ int m_new, i;
+ /* determine new number of rows */
+ if (nrs < 1)
+ xerror("glp_add_rows: nrs = %d; invalid number of rows\n",
+ nrs);
+ if (nrs > M_MAX - lp->m)
+ xerror("glp_add_rows: nrs = %d; too many rows\n", nrs);
+ m_new = lp->m + nrs;
+ /* increase the room, if necessary */
+ if (lp->m_max < m_new)
+ { GLPROW **save = lp->row;
+ while (lp->m_max < m_new)
+ { lp->m_max += lp->m_max;
+ xassert(lp->m_max > 0);
+ }
+ lp->row = xcalloc(1+lp->m_max, sizeof(GLPROW *));
+ memcpy(&lp->row[1], &save[1], lp->m * sizeof(GLPROW *));
+ xfree(save);
+ /* do not forget about the basis header */
+ xfree(lp->head);
+ lp->head = xcalloc(1+lp->m_max, sizeof(int));
+ }
+ /* add new rows to the end of the row list */
+ for (i = lp->m+1; i <= m_new; i++)
+ { /* create row descriptor */
+ lp->row[i] = row = dmp_get_atom(lp->pool, sizeof(GLPROW));
+ row->i = i;
+ row->name = NULL;
+ row->node = NULL;
+#if 1 /* 20/IX-2008 */
+ row->level = 0;
+ row->origin = 0;
+ row->klass = 0;
+ if (tree != NULL)
+ { switch (tree->reason)
+ { case 0:
+ break;
+ case GLP_IROWGEN:
+ xassert(tree->curr != NULL);
+ row->level = tree->curr->level;
+ row->origin = GLP_RF_LAZY;
+ break;
+ case GLP_ICUTGEN:
+ xassert(tree->curr != NULL);
+ row->level = tree->curr->level;
+ row->origin = GLP_RF_CUT;
+ break;
+ default:
+ xassert(tree != tree);
+ }
+ }
+#endif
+ row->type = GLP_FR;
+ row->lb = row->ub = 0.0;
+ row->ptr = NULL;
+ row->rii = 1.0;
+ row->stat = GLP_BS;
+#if 0
+ row->bind = -1;
+#else
+ row->bind = 0;
+#endif
+ row->prim = row->dual = 0.0;
+ row->pval = row->dval = 0.0;
+ row->mipx = 0.0;
+ }
+ /* set new number of rows */
+ lp->m = m_new;
+ /* invalidate the basis factorization */
+ lp->valid = 0;
+#if 1
+ if (tree != NULL && tree->reason != 0) tree->reopt = 1;
+#endif
+ /* return the ordinal number of the first row added */
+ return m_new - nrs + 1;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_add_cols - add new columns to problem object
+*
+* SYNOPSIS
+*
+* int glp_add_cols(glp_prob *lp, int ncs);
+*
+* DESCRIPTION
+*
+* The routine glp_add_cols adds ncs columns (structural variables) to
+* the specified problem object. New columns are always added to the end
+* of the column list, so the ordinal numbers of existing columns remain
+* unchanged.
+*
+* Being added each new column is initially fixed at zero and has empty
+* list of the constraint coefficients.
+*
+* RETURNS
+*
+* The routine glp_add_cols returns the ordinal number of the first new
+* column added to the problem object. */
+
+int glp_add_cols(glp_prob *lp, int ncs)
+{ glp_tree *tree = lp->tree;
+ GLPCOL *col;
+ int n_new, j;
+ if (tree != NULL && tree->reason != 0)
+ xerror("glp_add_cols: operation not allowed\n");
+ /* determine new number of columns */
+ if (ncs < 1)
+ xerror("glp_add_cols: ncs = %d; invalid number of columns\n",
+ ncs);
+ if (ncs > N_MAX - lp->n)
+ xerror("glp_add_cols: ncs = %d; too many columns\n", ncs);
+ n_new = lp->n + ncs;
+ /* increase the room, if necessary */
+ if (lp->n_max < n_new)
+ { GLPCOL **save = lp->col;
+ while (lp->n_max < n_new)
+ { lp->n_max += lp->n_max;
+ xassert(lp->n_max > 0);
+ }
+ lp->col = xcalloc(1+lp->n_max, sizeof(GLPCOL *));
+ memcpy(&lp->col[1], &save[1], lp->n * sizeof(GLPCOL *));
+ xfree(save);
+ }
+ /* add new columns to the end of the column list */
+ for (j = lp->n+1; j <= n_new; j++)
+ { /* create column descriptor */
+ lp->col[j] = col = dmp_get_atom(lp->pool, sizeof(GLPCOL));
+ col->j = j;
+ col->name = NULL;
+ col->node = NULL;
+ col->kind = GLP_CV;
+ col->type = GLP_FX;
+ col->lb = col->ub = 0.0;
+ col->coef = 0.0;
+ col->ptr = NULL;
+ col->sjj = 1.0;
+ col->stat = GLP_NS;
+#if 0
+ col->bind = -1;
+#else
+ col->bind = 0; /* the basis may remain valid */
+#endif
+ col->prim = col->dual = 0.0;
+ col->pval = col->dval = 0.0;
+ col->mipx = 0.0;
+ }
+ /* set new number of columns */
+ lp->n = n_new;
+ /* return the ordinal number of the first column added */
+ return n_new - ncs + 1;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_set_row_name - assign (change) row name
+*
+* SYNOPSIS
+*
+* void glp_set_row_name(glp_prob *lp, int i, const char *name);
+*
+* DESCRIPTION
+*
+* The routine glp_set_row_name assigns a given symbolic name (1 up to
+* 255 characters) to i-th row (auxiliary variable) of the specified
+* problem object.
+*
+* If the parameter name is NULL or empty string, the routine erases an
+* existing name of i-th row. */
+
+void glp_set_row_name(glp_prob *lp, int i, const char *name)
+{ glp_tree *tree = lp->tree;
+ GLPROW *row;
+ if (!(1 <= i && i <= lp->m))
+ xerror("glp_set_row_name: i = %d; row number out of range\n",
+ i);
+ row = lp->row[i];
+ if (tree != NULL && tree->reason != 0)
+ { xassert(tree->curr != NULL);
+ xassert(row->level == tree->curr->level);
+ }
+ if (row->name != NULL)
+ { if (row->node != NULL)
+ { xassert(lp->r_tree != NULL);
+ avl_delete_node(lp->r_tree, row->node);
+ row->node = NULL;
+ }
+ dmp_free_atom(lp->pool, row->name, strlen(row->name)+1);
+ row->name = NULL;
+ }
+ if (!(name == NULL || name[0] == '\0'))
+ { int k;
+ for (k = 0; name[k] != '\0'; k++)
+ { if (k == 256)
+ xerror("glp_set_row_name: i = %d; row name too long\n",
+ i);
+ if (iscntrl((unsigned char)name[k]))
+ xerror("glp_set_row_name: i = %d: row name contains inva"
+ "lid character(s)\n", i);
+ }
+ row->name = dmp_get_atom(lp->pool, strlen(name)+1);
+ strcpy(row->name, name);
+ if (lp->r_tree != NULL)
+ { xassert(row->node == NULL);
+ row->node = avl_insert_node(lp->r_tree, row->name);
+ avl_set_node_link(row->node, row);
+ }
+ }
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_set_col_name - assign (change) column name
+*
+* SYNOPSIS
+*
+* void glp_set_col_name(glp_prob *lp, int j, const char *name);
+*
+* DESCRIPTION
+*
+* The routine glp_set_col_name assigns a given symbolic name (1 up to
+* 255 characters) to j-th column (structural variable) of the specified
+* problem object.
+*
+* If the parameter name is NULL or empty string, the routine erases an
+* existing name of j-th column. */
+
+void glp_set_col_name(glp_prob *lp, int j, const char *name)
+{ glp_tree *tree = lp->tree;
+ GLPCOL *col;
+ if (tree != NULL && tree->reason != 0)
+ xerror("glp_set_col_name: operation not allowed\n");
+ if (!(1 <= j && j <= lp->n))
+ xerror("glp_set_col_name: j = %d; column number out of range\n"
+ , j);
+ col = lp->col[j];
+ if (col->name != NULL)
+ { if (col->node != NULL)
+ { xassert(lp->c_tree != NULL);
+ avl_delete_node(lp->c_tree, col->node);
+ col->node = NULL;
+ }
+ dmp_free_atom(lp->pool, col->name, strlen(col->name)+1);
+ col->name = NULL;
+ }
+ if (!(name == NULL || name[0] == '\0'))
+ { int k;
+ for (k = 0; name[k] != '\0'; k++)
+ { if (k == 256)
+ xerror("glp_set_col_name: j = %d; column name too long\n"
+ , j);
+ if (iscntrl((unsigned char)name[k]))
+ xerror("glp_set_col_name: j = %d: column name contains i"
+ "nvalid character(s)\n", j);
+ }
+ col->name = dmp_get_atom(lp->pool, strlen(name)+1);
+ strcpy(col->name, name);
+ if (lp->c_tree != NULL && col->name != NULL)
+ { xassert(col->node == NULL);
+ col->node = avl_insert_node(lp->c_tree, col->name);
+ avl_set_node_link(col->node, col);
+ }
+ }
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_set_row_bnds - set (change) row bounds
+*
+* SYNOPSIS
+*
+* void glp_set_row_bnds(glp_prob *lp, int i, int type, double lb,
+* double ub);
+*
+* DESCRIPTION
+*
+* The routine glp_set_row_bnds sets (changes) the type and bounds of
+* i-th row (auxiliary variable) of the specified problem object.
+*
+* Parameters type, lb, and ub specify the type, lower bound, and upper
+* bound, respectively, as follows:
+*
+* Type Bounds Comments
+* ------------------------------------------------------
+* GLP_FR -inf < x < +inf Free variable
+* GLP_LO lb <= x < +inf Variable with lower bound
+* GLP_UP -inf < x <= ub Variable with upper bound
+* GLP_DB lb <= x <= ub Double-bounded variable
+* GLP_FX x = lb Fixed variable
+*
+* where x is the auxiliary variable associated with i-th row.
+*
+* If the row has no lower bound, the parameter lb is ignored. If the
+* row has no upper bound, the parameter ub is ignored. If the row is
+* an equality constraint (i.e. the corresponding auxiliary variable is
+* of fixed type), only the parameter lb is used while the parameter ub
+* is ignored. */
+
+void glp_set_row_bnds(glp_prob *lp, int i, int type, double lb,
+ double ub)
+{ GLPROW *row;
+ if (!(1 <= i && i <= lp->m))
+ xerror("glp_set_row_bnds: i = %d; row number out of range\n",
+ i);
+ row = lp->row[i];
+ row->type = type;
+ switch (type)
+ { case GLP_FR:
+ row->lb = row->ub = 0.0;
+ if (row->stat != GLP_BS) row->stat = GLP_NF;
+ break;
+ case GLP_LO:
+ row->lb = lb, row->ub = 0.0;
+ if (row->stat != GLP_BS) row->stat = GLP_NL;
+ break;
+ case GLP_UP:
+ row->lb = 0.0, row->ub = ub;
+ if (row->stat != GLP_BS) row->stat = GLP_NU;
+ break;
+ case GLP_DB:
+ row->lb = lb, row->ub = ub;
+ if (!(row->stat == GLP_BS ||
+ row->stat == GLP_NL || row->stat == GLP_NU))
+ row->stat = (fabs(lb) <= fabs(ub) ? GLP_NL : GLP_NU);
+ break;
+ case GLP_FX:
+ row->lb = row->ub = lb;
+ if (row->stat != GLP_BS) row->stat = GLP_NS;
+ break;
+ default:
+ xerror("glp_set_row_bnds: i = %d; type = %d; invalid row ty"
+ "pe\n", i, type);
+ }
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_set_col_bnds - set (change) column bounds
+*
+* SYNOPSIS
+*
+* void glp_set_col_bnds(glp_prob *lp, int j, int type, double lb,
+* double ub);
+*
+* DESCRIPTION
+*
+* The routine glp_set_col_bnds sets (changes) the type and bounds of
+* j-th column (structural variable) of the specified problem object.
+*
+* Parameters type, lb, and ub specify the type, lower bound, and upper
+* bound, respectively, as follows:
+*
+* Type Bounds Comments
+* ------------------------------------------------------
+* GLP_FR -inf < x < +inf Free variable
+* GLP_LO lb <= x < +inf Variable with lower bound
+* GLP_UP -inf < x <= ub Variable with upper bound
+* GLP_DB lb <= x <= ub Double-bounded variable
+* GLP_FX x = lb Fixed variable
+*
+* where x is the structural variable associated with j-th column.
+*
+* If the column has no lower bound, the parameter lb is ignored. If the
+* column has no upper bound, the parameter ub is ignored. If the column
+* is of fixed type, only the parameter lb is used while the parameter
+* ub is ignored. */
+
+void glp_set_col_bnds(glp_prob *lp, int j, int type, double lb,
+ double ub)
+{ GLPCOL *col;
+ if (!(1 <= j && j <= lp->n))
+ xerror("glp_set_col_bnds: j = %d; column number out of range\n"
+ , j);
+ col = lp->col[j];
+ col->type = type;
+ switch (type)
+ { case GLP_FR:
+ col->lb = col->ub = 0.0;
+ if (col->stat != GLP_BS) col->stat = GLP_NF;
+ break;
+ case GLP_LO:
+ col->lb = lb, col->ub = 0.0;
+ if (col->stat != GLP_BS) col->stat = GLP_NL;
+ break;
+ case GLP_UP:
+ col->lb = 0.0, col->ub = ub;
+ if (col->stat != GLP_BS) col->stat = GLP_NU;
+ break;
+ case GLP_DB:
+ col->lb = lb, col->ub = ub;
+ if (!(col->stat == GLP_BS ||
+ col->stat == GLP_NL || col->stat == GLP_NU))
+ col->stat = (fabs(lb) <= fabs(ub) ? GLP_NL : GLP_NU);
+ break;
+ case GLP_FX:
+ col->lb = col->ub = lb;
+ if (col->stat != GLP_BS) col->stat = GLP_NS;
+ break;
+ default:
+ xerror("glp_set_col_bnds: j = %d; type = %d; invalid column"
+ " type\n", j, type);
+ }
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_set_obj_coef - set (change) obj. coefficient or constant term
+*
+* SYNOPSIS
+*
+* void glp_set_obj_coef(glp_prob *lp, int j, double coef);
+*
+* DESCRIPTION
+*
+* The routine glp_set_obj_coef sets (changes) objective coefficient at
+* j-th column (structural variable) of the specified problem object.
+*
+* If the parameter j is 0, the routine sets (changes) the constant term
+* ("shift") of the objective function. */
+
+void glp_set_obj_coef(glp_prob *lp, int j, double coef)
+{ glp_tree *tree = lp->tree;
+ if (tree != NULL && tree->reason != 0)
+ xerror("glp_set_obj_coef: operation not allowed\n");
+ if (!(0 <= j && j <= lp->n))
+ xerror("glp_set_obj_coef: j = %d; column number out of range\n"
+ , j);
+ if (j == 0)
+ lp->c0 = coef;
+ else
+ lp->col[j]->coef = coef;
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_set_mat_row - set (replace) row of the constraint matrix
+*
+* SYNOPSIS
+*
+* void glp_set_mat_row(glp_prob *lp, int i, int len, const int ind[],
+* const double val[]);
+*
+* DESCRIPTION
+*
+* The routine glp_set_mat_row stores (replaces) the contents of i-th
+* row of the constraint matrix of the specified problem object.
+*
+* Column indices and numeric values of new row elements must be placed
+* in locations ind[1], ..., ind[len] and val[1], ..., val[len], where
+* 0 <= len <= n is the new length of i-th row, n is the current number
+* of columns in the problem object. Elements with identical column
+* indices are not allowed. Zero elements are allowed, but they are not
+* stored in the constraint matrix.
+*
+* If the parameter len is zero, the parameters ind and/or val can be
+* specified as NULL. */
+
+void glp_set_mat_row(glp_prob *lp, int i, int len, const int ind[],
+ const double val[])
+{ glp_tree *tree = lp->tree;
+ GLPROW *row;
+ GLPCOL *col;
+ GLPAIJ *aij, *next;
+ int j, k;
+ /* obtain pointer to i-th row */
+ if (!(1 <= i && i <= lp->m))
+ xerror("glp_set_mat_row: i = %d; row number out of range\n",
+ i);
+ row = lp->row[i];
+ if (tree != NULL && tree->reason != 0)
+ { xassert(tree->curr != NULL);
+ xassert(row->level == tree->curr->level);
+ }
+ /* remove all existing elements from i-th row */
+ while (row->ptr != NULL)
+ { /* take next element in the row */
+ aij = row->ptr;
+ /* remove the element from the row list */
+ row->ptr = aij->r_next;
+ /* obtain pointer to corresponding column */
+ col = aij->col;
+ /* remove the element from the column list */
+ if (aij->c_prev == NULL)
+ col->ptr = aij->c_next;
+ else
+ aij->c_prev->c_next = aij->c_next;
+ if (aij->c_next == NULL)
+ ;
+ else
+ aij->c_next->c_prev = aij->c_prev;
+ /* return the element to the memory pool */
+ dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
+ /* if the corresponding column is basic, invalidate the basis
+ factorization */
+ if (col->stat == GLP_BS) lp->valid = 0;
+ }
+ /* store new contents of i-th row */
+ if (!(0 <= len && len <= lp->n))
+ xerror("glp_set_mat_row: i = %d; len = %d; invalid row length "
+ "\n", i, len);
+ if (len > NNZ_MAX - lp->nnz)
+ xerror("glp_set_mat_row: i = %d; len = %d; too many constraint"
+ " coefficients\n", i, len);
+ for (k = 1; k <= len; k++)
+ { /* take number j of corresponding column */
+ j = ind[k];
+ /* obtain pointer to j-th column */
+ if (!(1 <= j && j <= lp->n))
+ xerror("glp_set_mat_row: i = %d; ind[%d] = %d; column index"
+ " out of range\n", i, k, j);
+ col = lp->col[j];
+ /* if there is element with the same column index, it can only
+ be found in the beginning of j-th column list */
+ if (col->ptr != NULL && col->ptr->row->i == i)
+ xerror("glp_set_mat_row: i = %d; ind[%d] = %d; duplicate co"
+ "lumn indices not allowed\n", i, k, j);
+ /* create new element */
+ aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++;
+ aij->row = row;
+ aij->col = col;
+ aij->val = val[k];
+ /* add the new element to the beginning of i-th row and j-th
+ column lists */
+ aij->r_prev = NULL;
+ aij->r_next = row->ptr;
+ aij->c_prev = NULL;
+ aij->c_next = col->ptr;
+ if (aij->r_next != NULL) aij->r_next->r_prev = aij;
+ if (aij->c_next != NULL) aij->c_next->c_prev = aij;
+ row->ptr = col->ptr = aij;
+ /* if the corresponding column is basic, invalidate the basis
+ factorization */
+ if (col->stat == GLP_BS && aij->val != 0.0) lp->valid = 0;
+ }
+ /* remove zero elements from i-th row */
+ for (aij = row->ptr; aij != NULL; aij = next)
+ { next = aij->r_next;
+ if (aij->val == 0.0)
+ { /* remove the element from the row list */
+ if (aij->r_prev == NULL)
+ row->ptr = next;
+ else
+ aij->r_prev->r_next = next;
+ if (next == NULL)
+ ;
+ else
+ next->r_prev = aij->r_prev;
+ /* remove the element from the column list */
+ xassert(aij->c_prev == NULL);
+ aij->col->ptr = aij->c_next;
+ if (aij->c_next != NULL) aij->c_next->c_prev = NULL;
+ /* return the element to the memory pool */
+ dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
+ }
+ }
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_set_mat_col - set (replace) column of the constraint matrix
+*
+* SYNOPSIS
+*
+* void glp_set_mat_col(glp_prob *lp, int j, int len, const int ind[],
+* const double val[]);
+*
+* DESCRIPTION
+*
+* The routine glp_set_mat_col stores (replaces) the contents of j-th
+* column of the constraint matrix of the specified problem object.
+*
+* Row indices and numeric values of new column elements must be placed
+* in locations ind[1], ..., ind[len] and val[1], ..., val[len], where
+* 0 <= len <= m is the new length of j-th column, m is the current
+* number of rows in the problem object. Elements with identical column
+* indices are not allowed. Zero elements are allowed, but they are not
+* stored in the constraint matrix.
+*
+* If the parameter len is zero, the parameters ind and/or val can be
+* specified as NULL. */
+
+void glp_set_mat_col(glp_prob *lp, int j, int len, const int ind[],
+ const double val[])
+{ glp_tree *tree = lp->tree;
+ GLPROW *row;
+ GLPCOL *col;
+ GLPAIJ *aij, *next;
+ int i, k;
+ if (tree != NULL && tree->reason != 0)
+ xerror("glp_set_mat_col: operation not allowed\n");
+ /* obtain pointer to j-th column */
+ if (!(1 <= j && j <= lp->n))
+ xerror("glp_set_mat_col: j = %d; column number out of range\n",
+ j);
+ col = lp->col[j];
+ /* remove all existing elements from j-th column */
+ while (col->ptr != NULL)
+ { /* take next element in the column */
+ aij = col->ptr;
+ /* remove the element from the column list */
+ col->ptr = aij->c_next;
+ /* obtain pointer to corresponding row */
+ row = aij->row;
+ /* remove the element from the row list */
+ if (aij->r_prev == NULL)
+ row->ptr = aij->r_next;
+ else
+ aij->r_prev->r_next = aij->r_next;
+ if (aij->r_next == NULL)
+ ;
+ else
+ aij->r_next->r_prev = aij->r_prev;
+ /* return the element to the memory pool */
+ dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
+ }
+ /* store new contents of j-th column */
+ if (!(0 <= len && len <= lp->m))
+ xerror("glp_set_mat_col: j = %d; len = %d; invalid column leng"
+ "th\n", j, len);
+ if (len > NNZ_MAX - lp->nnz)
+ xerror("glp_set_mat_col: j = %d; len = %d; too many constraint"
+ " coefficients\n", j, len);
+ for (k = 1; k <= len; k++)
+ { /* take number i of corresponding row */
+ i = ind[k];
+ /* obtain pointer to i-th row */
+ if (!(1 <= i && i <= lp->m))
+ xerror("glp_set_mat_col: j = %d; ind[%d] = %d; row index ou"
+ "t of range\n", j, k, i);
+ row = lp->row[i];
+ /* if there is element with the same row index, it can only be
+ found in the beginning of i-th row list */
+ if (row->ptr != NULL && row->ptr->col->j == j)
+ xerror("glp_set_mat_col: j = %d; ind[%d] = %d; duplicate ro"
+ "w indices not allowed\n", j, k, i);
+ /* create new element */
+ aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++;
+ aij->row = row;
+ aij->col = col;
+ aij->val = val[k];
+ /* add the new element to the beginning of i-th row and j-th
+ column lists */
+ aij->r_prev = NULL;
+ aij->r_next = row->ptr;
+ aij->c_prev = NULL;
+ aij->c_next = col->ptr;
+ if (aij->r_next != NULL) aij->r_next->r_prev = aij;
+ if (aij->c_next != NULL) aij->c_next->c_prev = aij;
+ row->ptr = col->ptr = aij;
+ }
+ /* remove zero elements from j-th column */
+ for (aij = col->ptr; aij != NULL; aij = next)
+ { next = aij->c_next;
+ if (aij->val == 0.0)
+ { /* remove the element from the row list */
+ xassert(aij->r_prev == NULL);
+ aij->row->ptr = aij->r_next;
+ if (aij->r_next != NULL) aij->r_next->r_prev = NULL;
+ /* remove the element from the column list */
+ if (aij->c_prev == NULL)
+ col->ptr = next;
+ else
+ aij->c_prev->c_next = next;
+ if (next == NULL)
+ ;
+ else
+ next->c_prev = aij->c_prev;
+ /* return the element to the memory pool */
+ dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
+ }
+ }
+ /* if j-th column is basic, invalidate the basis factorization */
+ if (col->stat == GLP_BS) lp->valid = 0;
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_load_matrix - load (replace) the whole constraint matrix
+*
+* SYNOPSIS
+*
+* void glp_load_matrix(glp_prob *lp, int ne, const int ia[],
+* const int ja[], const double ar[]);
+*
+* DESCRIPTION
+*
+* The routine glp_load_matrix loads the constraint matrix passed in
+* the arrays ia, ja, and ar into the specified problem object. Before
+* loading the current contents of the constraint matrix is destroyed.
+*
+* Constraint coefficients (elements of the constraint matrix) must be
+* specified as triplets (ia[k], ja[k], ar[k]) for k = 1, ..., ne,
+* where ia[k] is the row index, ja[k] is the column index, ar[k] is a
+* numeric value of corresponding constraint coefficient. The parameter
+* ne specifies the total number of (non-zero) elements in the matrix
+* to be loaded. Coefficients with identical indices are not allowed.
+* Zero coefficients are allowed, however, they are not stored in the
+* constraint matrix.
+*
+* If the parameter ne is zero, the parameters ia, ja, and ar can be
+* specified as NULL. */
+
+void glp_load_matrix(glp_prob *lp, int ne, const int ia[],
+ const int ja[], const double ar[])
+{ glp_tree *tree = lp->tree;
+ GLPROW *row;
+ GLPCOL *col;
+ GLPAIJ *aij, *next;
+ int i, j, k;
+ if (tree != NULL && tree->reason != 0)
+ xerror("glp_load_matrix: operation not allowed\n");
+ /* clear the constraint matrix */
+ for (i = 1; i <= lp->m; i++)
+ { row = lp->row[i];
+ while (row->ptr != NULL)
+ { aij = row->ptr;
+ row->ptr = aij->r_next;
+ dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
+ }
+ }
+ xassert(lp->nnz == 0);
+ for (j = 1; j <= lp->n; j++) lp->col[j]->ptr = NULL;
+ /* load the new contents of the constraint matrix and build its
+ row lists */
+ if (ne < 0)
+ xerror("glp_load_matrix: ne = %d; invalid number of constraint"
+ " coefficients\n", ne);
+ if (ne > NNZ_MAX)
+ xerror("glp_load_matrix: ne = %d; too many constraint coeffici"
+ "ents\n", ne);
+ for (k = 1; k <= ne; k++)
+ { /* take indices of new element */
+ i = ia[k], j = ja[k];
+ /* obtain pointer to i-th row */
+ if (!(1 <= i && i <= lp->m))
+ xerror("glp_load_matrix: ia[%d] = %d; row index out of rang"
+ "e\n", k, i);
+ row = lp->row[i];
+ /* obtain pointer to j-th column */
+ if (!(1 <= j && j <= lp->n))
+ xerror("glp_load_matrix: ja[%d] = %d; column index out of r"
+ "ange\n", k, j);
+ col = lp->col[j];
+ /* create new element */
+ aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++;
+ aij->row = row;
+ aij->col = col;
+ aij->val = ar[k];
+ /* add the new element to the beginning of i-th row list */
+ aij->r_prev = NULL;
+ aij->r_next = row->ptr;
+ if (aij->r_next != NULL) aij->r_next->r_prev = aij;
+ row->ptr = aij;
+ }
+ xassert(lp->nnz == ne);
+ /* build column lists of the constraint matrix and check elements
+ with identical indices */
+ for (i = 1; i <= lp->m; i++)
+ { for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next)
+ { /* obtain pointer to corresponding column */
+ col = aij->col;
+ /* if there is element with identical indices, it can only
+ be found in the beginning of j-th column list */
+ if (col->ptr != NULL && col->ptr->row->i == i)
+ { for (k = 1; k <= ne; k++)
+ if (ia[k] == i && ja[k] == col->j) break;
+ xerror("glp_load_mat: ia[%d] = %d; ja[%d] = %d; duplicat"
+ "e indices not allowed\n", k, i, k, col->j);
+ }
+ /* add the element to the beginning of j-th column list */
+ aij->c_prev = NULL;
+ aij->c_next = col->ptr;
+ if (aij->c_next != NULL) aij->c_next->c_prev = aij;
+ col->ptr = aij;
+ }
+ }
+ /* remove zero elements from the constraint matrix */
+ for (i = 1; i <= lp->m; i++)
+ { row = lp->row[i];
+ for (aij = row->ptr; aij != NULL; aij = next)
+ { next = aij->r_next;
+ if (aij->val == 0.0)
+ { /* remove the element from the row list */
+ if (aij->r_prev == NULL)
+ row->ptr = next;
+ else
+ aij->r_prev->r_next = next;
+ if (next == NULL)
+ ;
+ else
+ next->r_prev = aij->r_prev;
+ /* remove the element from the column list */
+ if (aij->c_prev == NULL)
+ aij->col->ptr = aij->c_next;
+ else
+ aij->c_prev->c_next = aij->c_next;
+ if (aij->c_next == NULL)
+ ;
+ else
+ aij->c_next->c_prev = aij->c_prev;
+ /* return the element to the memory pool */
+ dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
+ }
+ }
+ }
+ /* invalidate the basis factorization */
+ lp->valid = 0;
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_check_dup - check for duplicate elements in sparse matrix
+*
+* SYNOPSIS
+*
+* int glp_check_dup(int m, int n, int ne, const int ia[],
+* const int ja[]);
+*
+* DESCRIPTION
+*
+* The routine glp_check_dup checks for duplicate elements (that is,
+* elements with identical indices) in a sparse matrix specified in the
+* coordinate format.
+*
+* The parameters m and n specifies, respectively, the number of rows
+* and columns in the matrix, m >= 0, n >= 0.
+*
+* The parameter ne specifies the number of (structurally) non-zero
+* elements in the matrix, ne >= 0.
+*
+* Elements of the matrix are specified as doublets (ia[k],ja[k]) for
+* k = 1,...,ne, where ia[k] is a row index, ja[k] is a column index.
+*
+* The routine glp_check_dup can be used prior to a call to the routine
+* glp_load_matrix to check that the constraint matrix to be loaded has
+* no duplicate elements.
+*
+* RETURNS
+*
+* The routine glp_check_dup returns one of the following values:
+*
+* 0 - the matrix has no duplicate elements;
+*
+* -k - indices ia[k] or/and ja[k] are out of range;
+*
+* +k - element (ia[k],ja[k]) is duplicate. */
+
+int glp_check_dup(int m, int n, int ne, const int ia[], const int ja[])
+{ int i, j, k, *ptr, *next, ret;
+ char *flag;
+ if (m < 0)
+ xerror("glp_check_dup: m = %d; invalid parameter\n");
+ if (n < 0)
+ xerror("glp_check_dup: n = %d; invalid parameter\n");
+ if (ne < 0)
+ xerror("glp_check_dup: ne = %d; invalid parameter\n");
+ if (ne > 0 && ia == NULL)
+ xerror("glp_check_dup: ia = %p; invalid parameter\n", ia);
+ if (ne > 0 && ja == NULL)
+ xerror("glp_check_dup: ja = %p; invalid parameter\n", ja);
+ for (k = 1; k <= ne; k++)
+ { i = ia[k], j = ja[k];
+ if (!(1 <= i && i <= m && 1 <= j && j <= n))
+ { ret = -k;
+ goto done;
+ }
+ }
+ if (m == 0 || n == 0)
+ { ret = 0;
+ goto done;
+ }
+ /* allocate working arrays */
+ ptr = xcalloc(1+m, sizeof(int));
+ next = xcalloc(1+ne, sizeof(int));
+ flag = xcalloc(1+n, sizeof(char));
+ /* build row lists */
+ for (i = 1; i <= m; i++)
+ ptr[i] = 0;
+ for (k = 1; k <= ne; k++)
+ { i = ia[k];
+ next[k] = ptr[i];
+ ptr[i] = k;
+ }
+ /* clear column flags */
+ for (j = 1; j <= n; j++)
+ flag[j] = 0;
+ /* check for duplicate elements */
+ for (i = 1; i <= m; i++)
+ { for (k = ptr[i]; k != 0; k = next[k])
+ { j = ja[k];
+ if (flag[j])
+ { /* find first element (i,j) */
+ for (k = 1; k <= ne; k++)
+ if (ia[k] == i && ja[k] == j) break;
+ xassert(k <= ne);
+ /* find next (duplicate) element (i,j) */
+ for (k++; k <= ne; k++)
+ if (ia[k] == i && ja[k] == j) break;
+ xassert(k <= ne);
+ ret = +k;
+ goto skip;
+ }
+ flag[j] = 1;
+ }
+ /* clear column flags */
+ for (k = ptr[i]; k != 0; k = next[k])
+ flag[ja[k]] = 0;
+ }
+ /* no duplicate element found */
+ ret = 0;
+skip: /* free working arrays */
+ xfree(ptr);
+ xfree(next);
+ xfree(flag);
+done: return ret;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_sort_matrix - sort elements of the constraint matrix
+*
+* SYNOPSIS
+*
+* void glp_sort_matrix(glp_prob *P);
+*
+* DESCRIPTION
+*
+* The routine glp_sort_matrix sorts elements of the constraint matrix
+* rebuilding its row and column linked lists. On exit from the routine
+* the constraint matrix is not changed, however, elements in the row
+* linked lists become ordered by ascending column indices, and the
+* elements in the column linked lists become ordered by ascending row
+* indices. */
+
+void glp_sort_matrix(glp_prob *P)
+{ GLPAIJ *aij;
+ int i, j;
+#if 0 /* 04/IV-2016 */
+ if (P == NULL || P->magic != GLP_PROB_MAGIC)
+ xerror("glp_sort_matrix: P = %p; invalid problem object\n",
+ P);
+#endif
+ /* rebuild row linked lists */
+ for (i = P->m; i >= 1; i--)
+ P->row[i]->ptr = NULL;
+ for (j = P->n; j >= 1; j--)
+ { for (aij = P->col[j]->ptr; aij != NULL; aij = aij->c_next)
+ { i = aij->row->i;
+ aij->r_prev = NULL;
+ aij->r_next = P->row[i]->ptr;
+ if (aij->r_next != NULL) aij->r_next->r_prev = aij;
+ P->row[i]->ptr = aij;
+ }
+ }
+ /* rebuild column linked lists */
+ for (j = P->n; j >= 1; j--)
+ P->col[j]->ptr = NULL;
+ for (i = P->m; i >= 1; i--)
+ { for (aij = P->row[i]->ptr; aij != NULL; aij = aij->r_next)
+ { j = aij->col->j;
+ aij->c_prev = NULL;
+ aij->c_next = P->col[j]->ptr;
+ if (aij->c_next != NULL) aij->c_next->c_prev = aij;
+ P->col[j]->ptr = aij;
+ }
+ }
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_del_rows - delete rows from problem object
+*
+* SYNOPSIS
+*
+* void glp_del_rows(glp_prob *lp, int nrs, const int num[]);
+*
+* DESCRIPTION
+*
+* The routine glp_del_rows deletes rows from the specified problem
+* object. Ordinal numbers of rows to be deleted should be placed in
+* locations num[1], ..., num[nrs], where nrs > 0.
+*
+* Note that deleting rows involves changing ordinal numbers of other
+* rows remaining in the problem object. New ordinal numbers of the
+* remaining rows are assigned under the assumption that the original
+* order of rows is not changed. */
+
+void glp_del_rows(glp_prob *lp, int nrs, const int num[])
+{ glp_tree *tree = lp->tree;
+ GLPROW *row;
+ int i, k, m_new;
+ /* mark rows to be deleted */
+ if (!(1 <= nrs && nrs <= lp->m))
+ xerror("glp_del_rows: nrs = %d; invalid number of rows\n",
+ nrs);
+ for (k = 1; k <= nrs; k++)
+ { /* take the number of row to be deleted */
+ i = num[k];
+ /* obtain pointer to i-th row */
+ if (!(1 <= i && i <= lp->m))
+ xerror("glp_del_rows: num[%d] = %d; row number out of range"
+ "\n", k, i);
+ row = lp->row[i];
+ if (tree != NULL && tree->reason != 0)
+ { if (!(tree->reason == GLP_IROWGEN ||
+ tree->reason == GLP_ICUTGEN))
+ xerror("glp_del_rows: operation not allowed\n");
+ xassert(tree->curr != NULL);
+ if (row->level != tree->curr->level)
+ xerror("glp_del_rows: num[%d] = %d; invalid attempt to d"
+ "elete row created not in current subproblem\n", k,i);
+ if (row->stat != GLP_BS)
+ xerror("glp_del_rows: num[%d] = %d; invalid attempt to d"
+ "elete active row (constraint)\n", k, i);
+ tree->reinv = 1;
+ }
+ /* check that the row is not marked yet */
+ if (row->i == 0)
+ xerror("glp_del_rows: num[%d] = %d; duplicate row numbers n"
+ "ot allowed\n", k, i);
+ /* erase symbolic name assigned to the row */
+ glp_set_row_name(lp, i, NULL);
+ xassert(row->node == NULL);
+ /* erase corresponding row of the constraint matrix */
+ glp_set_mat_row(lp, i, 0, NULL, NULL);
+ xassert(row->ptr == NULL);
+ /* mark the row to be deleted */
+ row->i = 0;
+ }
+ /* delete all marked rows from the row list */
+ m_new = 0;
+ for (i = 1; i <= lp->m; i++)
+ { /* obtain pointer to i-th row */
+ row = lp->row[i];
+ /* check if the row is marked */
+ if (row->i == 0)
+ { /* it is marked, delete it */
+ dmp_free_atom(lp->pool, row, sizeof(GLPROW));
+ }
+ else
+ { /* it is not marked; keep it */
+ row->i = ++m_new;
+ lp->row[row->i] = row;
+ }
+ }
+ /* set new number of rows */
+ lp->m = m_new;
+ /* invalidate the basis factorization */
+ lp->valid = 0;
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_del_cols - delete columns from problem object
+*
+* SYNOPSIS
+*
+* void glp_del_cols(glp_prob *lp, int ncs, const int num[]);
+*
+* DESCRIPTION
+*
+* The routine glp_del_cols deletes columns from the specified problem
+* object. Ordinal numbers of columns to be deleted should be placed in
+* locations num[1], ..., num[ncs], where ncs > 0.
+*
+* Note that deleting columns involves changing ordinal numbers of
+* other columns remaining in the problem object. New ordinal numbers
+* of the remaining columns are assigned under the assumption that the
+* original order of columns is not changed. */
+
+void glp_del_cols(glp_prob *lp, int ncs, const int num[])
+{ glp_tree *tree = lp->tree;
+ GLPCOL *col;
+ int j, k, n_new;
+ if (tree != NULL && tree->reason != 0)
+ xerror("glp_del_cols: operation not allowed\n");
+ /* mark columns to be deleted */
+ if (!(1 <= ncs && ncs <= lp->n))
+ xerror("glp_del_cols: ncs = %d; invalid number of columns\n",
+ ncs);
+ for (k = 1; k <= ncs; k++)
+ { /* take the number of column to be deleted */
+ j = num[k];
+ /* obtain pointer to j-th column */
+ if (!(1 <= j && j <= lp->n))
+ xerror("glp_del_cols: num[%d] = %d; column number out of ra"
+ "nge", k, j);
+ col = lp->col[j];
+ /* check that the column is not marked yet */
+ if (col->j == 0)
+ xerror("glp_del_cols: num[%d] = %d; duplicate column number"
+ "s not allowed\n", k, j);
+ /* erase symbolic name assigned to the column */
+ glp_set_col_name(lp, j, NULL);
+ xassert(col->node == NULL);
+ /* erase corresponding column of the constraint matrix */
+ glp_set_mat_col(lp, j, 0, NULL, NULL);
+ xassert(col->ptr == NULL);
+ /* mark the column to be deleted */
+ col->j = 0;
+ /* if it is basic, invalidate the basis factorization */
+ if (col->stat == GLP_BS) lp->valid = 0;
+ }
+ /* delete all marked columns from the column list */
+ n_new = 0;
+ for (j = 1; j <= lp->n; j++)
+ { /* obtain pointer to j-th column */
+ col = lp->col[j];
+ /* check if the column is marked */
+ if (col->j == 0)
+ { /* it is marked; delete it */
+ dmp_free_atom(lp->pool, col, sizeof(GLPCOL));
+ }
+ else
+ { /* it is not marked; keep it */
+ col->j = ++n_new;
+ lp->col[col->j] = col;
+ }
+ }
+ /* set new number of columns */
+ lp->n = n_new;
+ /* if the basis header is still valid, adjust it */
+ if (lp->valid)
+ { int m = lp->m;
+ int *head = lp->head;
+ for (j = 1; j <= n_new; j++)
+ { k = lp->col[j]->bind;
+ if (k != 0)
+ { xassert(1 <= k && k <= m);
+ head[k] = m + j;
+ }
+ }
+ }
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_copy_prob - copy problem object content
+*
+* SYNOPSIS
+*
+* void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names);
+*
+* DESCRIPTION
+*
+* The routine glp_copy_prob copies the content of the problem object
+* prob to the problem object dest.
+*
+* The parameter names is a flag. If it is non-zero, the routine also
+* copies all symbolic names; otherwise, if it is zero, symbolic names
+* are not copied. */
+
+void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names)
+{ glp_tree *tree = dest->tree;
+ glp_bfcp bfcp;
+ int i, j, len, *ind;
+ double *val;
+ if (tree != NULL && tree->reason != 0)
+ xerror("glp_copy_prob: operation not allowed\n");
+ if (dest == prob)
+ xerror("glp_copy_prob: copying problem object to itself not al"
+ "lowed\n");
+ if (!(names == GLP_ON || names == GLP_OFF))
+ xerror("glp_copy_prob: names = %d; invalid parameter\n",
+ names);
+ glp_erase_prob(dest);
+ if (names && prob->name != NULL)
+ glp_set_prob_name(dest, prob->name);
+ if (names && prob->obj != NULL)
+ glp_set_obj_name(dest, prob->obj);
+ dest->dir = prob->dir;
+ dest->c0 = prob->c0;
+ if (prob->m > 0)
+ glp_add_rows(dest, prob->m);
+ if (prob->n > 0)
+ glp_add_cols(dest, prob->n);
+ glp_get_bfcp(prob, &bfcp);
+ glp_set_bfcp(dest, &bfcp);
+ dest->pbs_stat = prob->pbs_stat;
+ dest->dbs_stat = prob->dbs_stat;
+ dest->obj_val = prob->obj_val;
+ dest->some = prob->some;
+ dest->ipt_stat = prob->ipt_stat;
+ dest->ipt_obj = prob->ipt_obj;
+ dest->mip_stat = prob->mip_stat;
+ dest->mip_obj = prob->mip_obj;
+ for (i = 1; i <= prob->m; i++)
+ { GLPROW *to = dest->row[i];
+ GLPROW *from = prob->row[i];
+ if (names && from->name != NULL)
+ glp_set_row_name(dest, i, from->name);
+ to->type = from->type;
+ to->lb = from->lb;
+ to->ub = from->ub;
+ to->rii = from->rii;
+ to->stat = from->stat;
+ to->prim = from->prim;
+ to->dual = from->dual;
+ to->pval = from->pval;
+ to->dval = from->dval;
+ to->mipx = from->mipx;
+ }
+ ind = xcalloc(1+prob->m, sizeof(int));
+ val = xcalloc(1+prob->m, sizeof(double));
+ for (j = 1; j <= prob->n; j++)
+ { GLPCOL *to = dest->col[j];
+ GLPCOL *from = prob->col[j];
+ if (names && from->name != NULL)
+ glp_set_col_name(dest, j, from->name);
+ to->kind = from->kind;
+ to->type = from->type;
+ to->lb = from->lb;
+ to->ub = from->ub;
+ to->coef = from->coef;
+ len = glp_get_mat_col(prob, j, ind, val);
+ glp_set_mat_col(dest, j, len, ind, val);
+ to->sjj = from->sjj;
+ to->stat = from->stat;
+ to->prim = from->prim;
+ to->dual = from->dual;
+ to->pval = from->pval;
+ to->dval = from->dval;
+ to->mipx = from->mipx;
+ }
+ xfree(ind);
+ xfree(val);
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_erase_prob - erase problem object content
+*
+* SYNOPSIS
+*
+* void glp_erase_prob(glp_prob *lp);
+*
+* DESCRIPTION
+*
+* The routine glp_erase_prob erases the content of the specified
+* problem object. The effect of this operation is the same as if the
+* problem object would be deleted with the routine glp_delete_prob and
+* then created anew with the routine glp_create_prob, with exception
+* that the handle (pointer) to the problem object remains valid. */
+
+static void delete_prob(glp_prob *lp);
+
+void glp_erase_prob(glp_prob *lp)
+{ glp_tree *tree = lp->tree;
+ if (tree != NULL && tree->reason != 0)
+ xerror("glp_erase_prob: operation not allowed\n");
+ delete_prob(lp);
+ create_prob(lp);
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_delete_prob - delete problem object
+*
+* SYNOPSIS
+*
+* void glp_delete_prob(glp_prob *lp);
+*
+* DESCRIPTION
+*
+* The routine glp_delete_prob deletes the specified problem object and
+* frees all the memory allocated to it. */
+
+static void delete_prob(glp_prob *lp)
+#if 0 /* 04/IV-2016 */
+{ lp->magic = 0x3F3F3F3F;
+#else
+{
+#endif
+ dmp_delete_pool(lp->pool);
+#if 0 /* 08/III-2014 */
+#if 0 /* 17/XI-2009 */
+ xfree(lp->cps);
+#else
+ if (lp->parms != NULL) xfree(lp->parms);
+#endif
+#endif
+ xassert(lp->tree == NULL);
+#if 0
+ if (lp->cwa != NULL) xfree(lp->cwa);
+#endif
+ xfree(lp->row);
+ xfree(lp->col);
+ if (lp->r_tree != NULL) avl_delete_tree(lp->r_tree);
+ if (lp->c_tree != NULL) avl_delete_tree(lp->c_tree);
+ xfree(lp->head);
+#if 0 /* 08/III-2014 */
+ if (lp->bfcp != NULL) xfree(lp->bfcp);
+#endif
+ if (lp->bfd != NULL) bfd_delete_it(lp->bfd);
+ return;
+}
+
+void glp_delete_prob(glp_prob *lp)
+{ glp_tree *tree = lp->tree;
+ if (tree != NULL && tree->reason != 0)
+ xerror("glp_delete_prob: operation not allowed\n");
+ delete_prob(lp);
+ xfree(lp);
+ return;
+}
+
+/* eof */