aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/bflib/btf.h
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/bflib/btf.h')
-rw-r--r--test/monniaux/glpk-4.65/src/bflib/btf.h207
1 files changed, 207 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/bflib/btf.h b/test/monniaux/glpk-4.65/src/bflib/btf.h
new file mode 100644
index 00000000..3f1b5926
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/bflib/btf.h
@@ -0,0 +1,207 @@
+/* btf.h (sparse block triangular LU-factorization) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2013-2014 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#ifndef BTF_H
+#define BTF_H
+
+#include "sva.h"
+
+/***********************************************************************
+* The structure BTF describes BT-factorization, which is sparse block
+* triangular LU-factorization.
+*
+* The BT-factorization has the following format:
+*
+* A = P * A~ * Q, (1)
+*
+* where A is a given (unsymmetric) square matrix, A~ is an upper block
+* triangular matrix (see below), P and Q are permutation matrices. All
+* the matrices have the same order n.
+*
+* The matrix A~, which is a permuted version of the original matrix A,
+* has the following structure:
+*
+* A~[1,1] A~[1,2] ... A~[1,num-1] A~[1,num]
+*
+* A~[2,2] ... A~[2,num-1] A~[2,num]
+*
+* . . . . . . . . . (2)
+*
+* A~[num-1,num-1] A~[num-1,num]
+*
+* A~[num,num]
+*
+* where A~[i,j] is a submatrix called a "block," num is the number of
+* blocks. Each diagonal block A~[k,k] is a non-singular square matrix,
+* and each subdiagonal block A~[i,j], i > j, is a zero submatrix, thus
+* A~ is an upper block triangular matrix.
+*
+* Permutation matrices P and Q are stored in ordinary arrays in both
+* row- and column-like formats.
+*
+* The original matrix A is stored in both row- and column-wise sparse
+* formats in the associated sparse vector area (SVA). Should note that
+* elements of all diagonal blocks A~[k,k] in matrix A are set to zero
+* (i.e. removed), so only elements of non-diagonal blocks are stored.
+*
+* Each diagonal block A~[k,k], 1 <= k <= num, is stored in the form of
+* LU-factorization (see the module LUF). */
+
+typedef struct BTF BTF;
+
+struct BTF
+{ /* sparse block triangular LU-factorization */
+ int n;
+ /* order of matrices A, A~, P, Q */
+ SVA *sva;
+ /* associated sparse vector area used to store rows and columns
+ * of matrix A as well as sparse vectors for LU-factorizations of
+ * all diagonal blocks A~[k,k] */
+ /*--------------------------------------------------------------*/
+ /* matrix P */
+ int *pp_ind; /* int pp_ind[1+n]; */
+ /* pp_ind[i] = j means that P[i,j] = 1 */
+ int *pp_inv; /* int pp_inv[1+n]; */
+ /* pp_inv[j] = i means that P[i,j] = 1 */
+ /* if i-th row of matrix A is i'-th row of matrix A~, then
+ * pp_ind[i] = i' and pp_inv[i'] = i */
+ /*--------------------------------------------------------------*/
+ /* matrix Q */
+ int *qq_ind; /* int qq_ind[1+n]; */
+ /* qq_ind[i] = j means that Q[i,j] = 1 */
+ int *qq_inv; /* int qq_inv[1+n]; */
+ /* qq_inv[j] = i means that Q[i,j] = 1 */
+ /* if j-th column of matrix A is j'-th column of matrix A~, then
+ * qq_ind[j'] = j and qq_inv[j] = j' */
+ /*--------------------------------------------------------------*/
+ /* block triangular structure of matrix A~ */
+ int num;
+ /* number of diagonal blocks, 1 <= num <= n */
+ int *beg; /* int beg[1+num+1]; */
+ /* beg[0] is not used;
+ * beg[k], 1 <= k <= num, is index of first row/column of k-th
+ * block of matrix A~;
+ * beg[num+1] is always n+1;
+ * note that order (size) of k-th diagonal block can be computed
+ * as beg[k+1] - beg[k] */
+ /*--------------------------------------------------------------*/
+ /* original matrix A in row-wise format */
+ /* NOTE: elements of all diagonal blocks A~[k,k] are removed */
+ int ar_ref;
+ /* reference number of sparse vector in SVA, which is the first
+ * row of matrix A */
+#if 0 + 0
+ int *ar_ptr = &sva->ptr[ar_ref-1];
+ /* ar_ptr[0] is not used;
+ * ar_ptr[i], 1 <= i <= n, is pointer to i-th row in SVA */
+ int *ar_len = &sva->ptr[ar_ref-1];
+ /* ar_len[0] is not used;
+ * ar_len[i], 1 <= i <= n, is length of i-th row */
+#endif
+ /*--------------------------------------------------------------*/
+ /* original matrix A in column-wise format */
+ /* NOTE: elements of all diagonal blocks A~[k,k] are removed */
+ int ac_ref;
+ /* reference number of sparse vector in SVA, which is the first
+ * column of matrix A */
+#if 0 + 0
+ int *ac_ptr = &sva->ptr[ac_ref-1];
+ /* ac_ptr[0] is not used;
+ * ac_ptr[j], 1 <= j <= n, is pointer to j-th column in SVA */
+ int *ac_len = &sva->ptr[ac_ref-1];
+ /* ac_len[0] is not used;
+ * ac_len[j], 1 <= j <= n, is length of j-th column */
+#endif
+ /*--------------------------------------------------------------*/
+ /* LU-factorizations of diagonal blocks A~[k,k] */
+ /* to decrease overhead expenses similar arrays for all LUFs are
+ * packed into a single array; for example, elements fr_ptr[1],
+ * ..., fr_ptr[n1], where n1 = beg[2] - beg[1], are related to
+ * LUF for first diagonal block A~[1,1], elements fr_ptr[n1+1],
+ * ..., fr_ptr[n1+n2], where n2 = beg[3] - beg[2], are related to
+ * LUF for second diagonal block A~[2,2], etc.; in other words,
+ * elements related to LUF for k-th diagonal block A~[k,k] have
+ * indices beg[k], beg[k]+1, ..., beg[k+1]-1 */
+ /* for details about LUF see description of the LUF module */
+ int fr_ref;
+ /* reference number of sparse vector in SVA, which is the first
+ row of matrix F for first diagonal block A~[1,1] */
+ int fc_ref;
+ /* reference number of sparse vector in SVA, which is the first
+ column of matrix F for first diagonal block A~[1,1] */
+ int vr_ref;
+ /* reference number of sparse vector in SVA, which is the first
+ row of matrix V for first diagonal block A~[1,1] */
+ double *vr_piv; /* double vr_piv[1+n]; */
+ /* vr_piv[0] is not used;
+ vr_piv[1,...,n] are pivot elements for all diagonal blocks */
+ int vc_ref;
+ /* reference number of sparse vector in SVA, which is the first
+ column of matrix V for first diagonal block A~[1,1] */
+ int *p1_ind; /* int p1_ind[1+n]; */
+ int *p1_inv; /* int p1_inv[1+n]; */
+ int *q1_ind; /* int q1_ind[1+n]; */
+ int *q1_inv; /* int q1_inv[1+n]; */
+ /* permutation matrices P and Q for all diagonal blocks */
+};
+
+#define btf_store_a_cols _glp_btf_store_a_cols
+int btf_store_a_cols(BTF *btf, int (*col)(void *info, int j, int ind[],
+ double val[]), void *info, int ind[], double val[]);
+/* store pattern of matrix A in column-wise format */
+
+#define btf_make_blocks _glp_btf_make_blocks
+int btf_make_blocks(BTF *btf);
+/* permutations to block triangular form */
+
+#define btf_check_blocks _glp_btf_check_blocks
+void btf_check_blocks(BTF *btf);
+/* check structure of matrix A~ */
+
+#define btf_build_a_rows _glp_btf_build_a_rows
+void btf_build_a_rows(BTF *btf, int len[/*1+n*/]);
+/* build matrix A in row-wise format */
+
+#define btf_a_solve _glp_btf_a_solve
+void btf_a_solve(BTF *btf, double b[/*1+n*/], double x[/*1+n*/],
+ double w1[/*1+n*/], double w2[/*1+n*/]);
+/* solve system A * x = b */
+
+#define btf_at_solve _glp_btf_at_solve
+void btf_at_solve(BTF *btf, double b[/*1+n*/], double x[/*1+n*/],
+ double w1[/*1+n*/], double w2[/*1+n*/]);
+/* solve system A'* x = b */
+
+#define btf_at_solve1 _glp_btf_at_solve1
+void btf_at_solve1(BTF *btf, double e[/*1+n*/], double y[/*1+n*/],
+ double w1[/*1+n*/], double w2[/*1+n*/]);
+/* solve system A'* y = e' to cause growth in y */
+
+#define btf_estimate_norm _glp_btf_estimate_norm
+double btf_estimate_norm(BTF *btf, double w1[/*1+n*/], double
+ w2[/*1+n*/], double w3[/*1+n*/], double w4[/*1+n*/]);
+/* estimate 1-norm of inv(A) */
+
+#endif
+
+/* eof */