aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/colamd/colamd.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/colamd/colamd.c')
-rw-r--r--test/monniaux/glpk-4.65/src/colamd/colamd.c3622
1 files changed, 3622 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/colamd/colamd.c b/test/monniaux/glpk-4.65/src/colamd/colamd.c
new file mode 100644
index 00000000..86ddd6b7
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/colamd/colamd.c
@@ -0,0 +1,3622 @@
+/* ========================================================================== */
+/* === colamd/symamd - a sparse matrix column ordering algorithm ============ */
+/* ========================================================================== */
+
+/* COLAMD / SYMAMD
+
+ colamd: an approximate minimum degree column ordering algorithm,
+ for LU factorization of symmetric or unsymmetric matrices,
+ QR factorization, least squares, interior point methods for
+ linear programming problems, and other related problems.
+
+ symamd: an approximate minimum degree ordering algorithm for Cholesky
+ factorization of symmetric matrices.
+
+ Purpose:
+
+ Colamd computes a permutation Q such that the Cholesky factorization of
+ (AQ)'(AQ) has less fill-in and requires fewer floating point operations
+ than A'A. This also provides a good ordering for sparse partial
+ pivoting methods, P(AQ) = LU, where Q is computed prior to numerical
+ factorization, and P is computed during numerical factorization via
+ conventional partial pivoting with row interchanges. Colamd is the
+ column ordering method used in SuperLU, part of the ScaLAPACK library.
+ It is also available as built-in function in MATLAB Version 6,
+ available from MathWorks, Inc. (http://www.mathworks.com). This
+ routine can be used in place of colmmd in MATLAB.
+
+ Symamd computes a permutation P of a symmetric matrix A such that the
+ Cholesky factorization of PAP' has less fill-in and requires fewer
+ floating point operations than A. Symamd constructs a matrix M such
+ that M'M has the same nonzero pattern of A, and then orders the columns
+ of M using colmmd. The column ordering of M is then returned as the
+ row and column ordering P of A.
+
+ Authors:
+
+ The authors of the code itself are Stefan I. Larimore and Timothy A.
+ Davis (davis at cise.ufl.edu), University of Florida. The algorithm was
+ developed in collaboration with John Gilbert, Xerox PARC, and Esmond
+ Ng, Oak Ridge National Laboratory.
+
+ Acknowledgements:
+
+ This work was supported by the National Science Foundation, under
+ grants DMS-9504974 and DMS-9803599.
+
+ Copyright and License:
+
+ Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved.
+ COLAMD is also available under alternate licenses, contact T. Davis
+ for details.
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with this library; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
+ USA
+
+ Permission is hereby granted to use or copy this program under the
+ terms of the GNU LGPL, provided that the Copyright, this License,
+ and the Availability of the original version is retained on all copies.
+ User documentation of any code that uses this code or any modified
+ version of this code must cite the Copyright, this License, the
+ Availability note, and "Used by permission." Permission to modify
+ the code and to distribute modified code is granted, provided the
+ Copyright, this License, and the Availability note are retained,
+ and a notice that the code was modified is included.
+
+ Availability:
+
+ The colamd/symamd library is available at
+
+ http://www.cise.ufl.edu/research/sparse/colamd/
+
+ This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.c
+ file. It requires the colamd.h file. It is required by the colamdmex.c
+ and symamdmex.c files, for the MATLAB interface to colamd and symamd.
+ Appears as ACM Algorithm 836.
+
+ See the ChangeLog file for changes since Version 1.0.
+
+ References:
+
+ T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column
+ minimum degree ordering algorithm, ACM Transactions on Mathematical
+ Software, vol. 30, no. 3., pp. 353-376, 2004.
+
+ T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD,
+ an approximate column minimum degree ordering algorithm, ACM
+ Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380,
+ 2004.
+
+*/
+
+/* ========================================================================== */
+/* === Description of user-callable routines ================================ */
+/* ========================================================================== */
+
+/* COLAMD includes both int and UF_long versions of all its routines. The
+ * description below is for the int version. For UF_long, all int arguments
+ * become UF_long. UF_long is normally defined as long, except for WIN64.
+
+ ----------------------------------------------------------------------------
+ colamd_recommended:
+ ----------------------------------------------------------------------------
+
+ C syntax:
+
+ #include "colamd.h"
+ size_t colamd_recommended (int nnz, int n_row, int n_col) ;
+ size_t colamd_l_recommended (UF_long nnz, UF_long n_row,
+ UF_long n_col) ;
+
+ Purpose:
+
+ Returns recommended value of Alen for use by colamd. Returns 0
+ if any input argument is negative. The use of this routine
+ is optional. Not needed for symamd, which dynamically allocates
+ its own memory.
+
+ Note that in v2.4 and earlier, these routines returned int or long.
+ They now return a value of type size_t.
+
+ Arguments (all input arguments):
+
+ int nnz ; Number of nonzeros in the matrix A. This must
+ be the same value as p [n_col] in the call to
+ colamd - otherwise you will get a wrong value
+ of the recommended memory to use.
+
+ int n_row ; Number of rows in the matrix A.
+
+ int n_col ; Number of columns in the matrix A.
+
+ ----------------------------------------------------------------------------
+ colamd_set_defaults:
+ ----------------------------------------------------------------------------
+
+ C syntax:
+
+ #include "colamd.h"
+ colamd_set_defaults (double knobs [COLAMD_KNOBS]) ;
+ colamd_l_set_defaults (double knobs [COLAMD_KNOBS]) ;
+
+ Purpose:
+
+ Sets the default parameters. The use of this routine is optional.
+
+ Arguments:
+
+ double knobs [COLAMD_KNOBS] ; Output only.
+
+ NOTE: the meaning of the dense row/col knobs has changed in v2.4
+
+ knobs [0] and knobs [1] control dense row and col detection:
+
+ Colamd: rows with more than
+ max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n_col))
+ entries are removed prior to ordering. Columns with more than
+ max (16, knobs [COLAMD_DENSE_COL] * sqrt (MIN (n_row,n_col)))
+ entries are removed prior to
+ ordering, and placed last in the output column ordering.
+
+ Symamd: uses only knobs [COLAMD_DENSE_ROW], which is knobs [0].
+ Rows and columns with more than
+ max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n))
+ entries are removed prior to ordering, and placed last in the
+ output ordering.
+
+ COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
+ respectively, in colamd.h. Default values of these two knobs
+ are both 10. Currently, only knobs [0] and knobs [1] are
+ used, but future versions may use more knobs. If so, they will
+ be properly set to their defaults by the future version of
+ colamd_set_defaults, so that the code that calls colamd will
+ not need to change, assuming that you either use
+ colamd_set_defaults, or pass a (double *) NULL pointer as the
+ knobs array to colamd or symamd.
+
+ knobs [2]: aggressive absorption
+
+ knobs [COLAMD_AGGRESSIVE] controls whether or not to do
+ aggressive absorption during the ordering. Default is TRUE.
+
+
+ ----------------------------------------------------------------------------
+ colamd:
+ ----------------------------------------------------------------------------
+
+ C syntax:
+
+ #include "colamd.h"
+ int colamd (int n_row, int n_col, int Alen, int *A, int *p,
+ double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS]) ;
+ UF_long colamd_l (UF_long n_row, UF_long n_col, UF_long Alen,
+ UF_long *A, UF_long *p, double knobs [COLAMD_KNOBS],
+ UF_long stats [COLAMD_STATS]) ;
+
+ Purpose:
+
+ Computes a column ordering (Q) of A such that P(AQ)=LU or
+ (AQ)'AQ=LL' have less fill-in and require fewer floating point
+ operations than factorizing the unpermuted matrix A or A'A,
+ respectively.
+
+ Returns:
+
+ TRUE (1) if successful, FALSE (0) otherwise.
+
+ Arguments:
+
+ int n_row ; Input argument.
+
+ Number of rows in the matrix A.
+ Restriction: n_row >= 0.
+ Colamd returns FALSE if n_row is negative.
+
+ int n_col ; Input argument.
+
+ Number of columns in the matrix A.
+ Restriction: n_col >= 0.
+ Colamd returns FALSE if n_col is negative.
+
+ int Alen ; Input argument.
+
+ Restriction (see note):
+ Alen >= 2*nnz + 6*(n_col+1) + 4*(n_row+1) + n_col
+ Colamd returns FALSE if these conditions are not met.
+
+ Note: this restriction makes an modest assumption regarding
+ the size of the two typedef's structures in colamd.h.
+ We do, however, guarantee that
+
+ Alen >= colamd_recommended (nnz, n_row, n_col)
+
+ will be sufficient. Note: the macro version does not check
+ for integer overflow, and thus is not recommended. Use
+ the colamd_recommended routine instead.
+
+ int A [Alen] ; Input argument, undefined on output.
+
+ A is an integer array of size Alen. Alen must be at least as
+ large as the bare minimum value given above, but this is very
+ low, and can result in excessive run time. For best
+ performance, we recommend that Alen be greater than or equal to
+ colamd_recommended (nnz, n_row, n_col), which adds
+ nnz/5 to the bare minimum value given above.
+
+ On input, the row indices of the entries in column c of the
+ matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices
+ in a given column c need not be in ascending order, and
+ duplicate row indices may be be present. However, colamd will
+ work a little faster if both of these conditions are met
+ (Colamd puts the matrix into this format, if it finds that the
+ the conditions are not met).
+
+ The matrix is 0-based. That is, rows are in the range 0 to
+ n_row-1, and columns are in the range 0 to n_col-1. Colamd
+ returns FALSE if any row index is out of range.
+
+ The contents of A are modified during ordering, and are
+ undefined on output.
+
+ int p [n_col+1] ; Both input and output argument.
+
+ p is an integer array of size n_col+1. On input, it holds the
+ "pointers" for the column form of the matrix A. Column c of
+ the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
+ entry, p [0], must be zero, and p [c] <= p [c+1] must hold
+ for all c in the range 0 to n_col-1. The value p [n_col] is
+ thus the total number of entries in the pattern of the matrix A.
+ Colamd returns FALSE if these conditions are not met.
+
+ On output, if colamd returns TRUE, the array p holds the column
+ permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is
+ the first column index in the new ordering, and p [n_col-1] is
+ the last. That is, p [k] = j means that column j of A is the
+ kth pivot column, in AQ, where k is in the range 0 to n_col-1
+ (p [0] = j means that column j of A is the first column in AQ).
+
+ If colamd returns FALSE, then no permutation is returned, and
+ p is undefined on output.
+
+ double knobs [COLAMD_KNOBS] ; Input argument.
+
+ See colamd_set_defaults for a description.
+
+ int stats [COLAMD_STATS] ; Output argument.
+
+ Statistics on the ordering, and error status.
+ See colamd.h for related definitions.
+ Colamd returns FALSE if stats is not present.
+
+ stats [0]: number of dense or empty rows ignored.
+
+ stats [1]: number of dense or empty columns ignored (and
+ ordered last in the output permutation p)
+ Note that a row can become "empty" if it
+ contains only "dense" and/or "empty" columns,
+ and similarly a column can become "empty" if it
+ only contains "dense" and/or "empty" rows.
+
+ stats [2]: number of garbage collections performed.
+ This can be excessively high if Alen is close
+ to the minimum required value.
+
+ stats [3]: status code. < 0 is an error code.
+ > 1 is a warning or notice.
+
+ 0 OK. Each column of the input matrix contained
+ row indices in increasing order, with no
+ duplicates.
+
+ 1 OK, but columns of input matrix were jumbled
+ (unsorted columns or duplicate entries). Colamd
+ had to do some extra work to sort the matrix
+ first and remove duplicate entries, but it
+ still was able to return a valid permutation
+ (return value of colamd was TRUE).
+
+ stats [4]: highest numbered column that
+ is unsorted or has duplicate
+ entries.
+ stats [5]: last seen duplicate or
+ unsorted row index.
+ stats [6]: number of duplicate or
+ unsorted row indices.
+
+ -1 A is a null pointer
+
+ -2 p is a null pointer
+
+ -3 n_row is negative
+
+ stats [4]: n_row
+
+ -4 n_col is negative
+
+ stats [4]: n_col
+
+ -5 number of nonzeros in matrix is negative
+
+ stats [4]: number of nonzeros, p [n_col]
+
+ -6 p [0] is nonzero
+
+ stats [4]: p [0]
+
+ -7 A is too small
+
+ stats [4]: required size
+ stats [5]: actual size (Alen)
+
+ -8 a column has a negative number of entries
+
+ stats [4]: column with < 0 entries
+ stats [5]: number of entries in col
+
+ -9 a row index is out of bounds
+
+ stats [4]: column with bad row index
+ stats [5]: bad row index
+ stats [6]: n_row, # of rows of matrx
+
+ -10 (unused; see symamd.c)
+
+ -999 (unused; see symamd.c)
+
+ Future versions may return more statistics in the stats array.
+
+ Example:
+
+ See http://www.cise.ufl.edu/research/sparse/colamd/example.c
+ for a complete example.
+
+ To order the columns of a 5-by-4 matrix with 11 nonzero entries in
+ the following nonzero pattern
+
+ x 0 x 0
+ x 0 x x
+ 0 x x 0
+ 0 0 x x
+ x x 0 0
+
+ with default knobs and no output statistics, do the following:
+
+ #include "colamd.h"
+ #define ALEN 100
+ int A [ALEN] = {0, 1, 4, 2, 4, 0, 1, 2, 3, 1, 3} ;
+ int p [ ] = {0, 3, 5, 9, 11} ;
+ int stats [COLAMD_STATS] ;
+ colamd (5, 4, ALEN, A, p, (double *) NULL, stats) ;
+
+ The permutation is returned in the array p, and A is destroyed.
+
+ ----------------------------------------------------------------------------
+ symamd:
+ ----------------------------------------------------------------------------
+
+ C syntax:
+
+ #include "colamd.h"
+ int symamd (int n, int *A, int *p, int *perm,
+ double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS],
+ void (*allocate) (size_t, size_t), void (*release) (void *)) ;
+ UF_long symamd_l (UF_long n, UF_long *A, UF_long *p, UF_long *perm,
+ double knobs [COLAMD_KNOBS], UF_long stats [COLAMD_STATS],
+ void (*allocate) (size_t, size_t), void (*release) (void *)) ;
+
+ Purpose:
+
+ The symamd routine computes an ordering P of a symmetric sparse
+ matrix A such that the Cholesky factorization PAP' = LL' remains
+ sparse. It is based on a column ordering of a matrix M constructed
+ so that the nonzero pattern of M'M is the same as A. The matrix A
+ is assumed to be symmetric; only the strictly lower triangular part
+ is accessed. You must pass your selected memory allocator (usually
+ calloc/free or mxCalloc/mxFree) to symamd, for it to allocate
+ memory for the temporary matrix M.
+
+ Returns:
+
+ TRUE (1) if successful, FALSE (0) otherwise.
+
+ Arguments:
+
+ int n ; Input argument.
+
+ Number of rows and columns in the symmetrix matrix A.
+ Restriction: n >= 0.
+ Symamd returns FALSE if n is negative.
+
+ int A [nnz] ; Input argument.
+
+ A is an integer array of size nnz, where nnz = p [n].
+
+ The row indices of the entries in column c of the matrix are
+ held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a
+ given column c need not be in ascending order, and duplicate
+ row indices may be present. However, symamd will run faster
+ if the columns are in sorted order with no duplicate entries.
+
+ The matrix is 0-based. That is, rows are in the range 0 to
+ n-1, and columns are in the range 0 to n-1. Symamd
+ returns FALSE if any row index is out of range.
+
+ The contents of A are not modified.
+
+ int p [n+1] ; Input argument.
+
+ p is an integer array of size n+1. On input, it holds the
+ "pointers" for the column form of the matrix A. Column c of
+ the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
+ entry, p [0], must be zero, and p [c] <= p [c+1] must hold
+ for all c in the range 0 to n-1. The value p [n] is
+ thus the total number of entries in the pattern of the matrix A.
+ Symamd returns FALSE if these conditions are not met.
+
+ The contents of p are not modified.
+
+ int perm [n+1] ; Output argument.
+
+ On output, if symamd returns TRUE, the array perm holds the
+ permutation P, where perm [0] is the first index in the new
+ ordering, and perm [n-1] is the last. That is, perm [k] = j
+ means that row and column j of A is the kth column in PAP',
+ where k is in the range 0 to n-1 (perm [0] = j means
+ that row and column j of A are the first row and column in
+ PAP'). The array is used as a workspace during the ordering,
+ which is why it must be of length n+1, not just n.
+
+ double knobs [COLAMD_KNOBS] ; Input argument.
+
+ See colamd_set_defaults for a description.
+
+ int stats [COLAMD_STATS] ; Output argument.
+
+ Statistics on the ordering, and error status.
+ See colamd.h for related definitions.
+ Symamd returns FALSE if stats is not present.
+
+ stats [0]: number of dense or empty row and columns ignored
+ (and ordered last in the output permutation
+ perm). Note that a row/column can become
+ "empty" if it contains only "dense" and/or
+ "empty" columns/rows.
+
+ stats [1]: (same as stats [0])
+
+ stats [2]: number of garbage collections performed.
+
+ stats [3]: status code. < 0 is an error code.
+ > 1 is a warning or notice.
+
+ 0 OK. Each column of the input matrix contained
+ row indices in increasing order, with no
+ duplicates.
+
+ 1 OK, but columns of input matrix were jumbled
+ (unsorted columns or duplicate entries). Symamd
+ had to do some extra work to sort the matrix
+ first and remove duplicate entries, but it
+ still was able to return a valid permutation
+ (return value of symamd was TRUE).
+
+ stats [4]: highest numbered column that
+ is unsorted or has duplicate
+ entries.
+ stats [5]: last seen duplicate or
+ unsorted row index.
+ stats [6]: number of duplicate or
+ unsorted row indices.
+
+ -1 A is a null pointer
+
+ -2 p is a null pointer
+
+ -3 (unused, see colamd.c)
+
+ -4 n is negative
+
+ stats [4]: n
+
+ -5 number of nonzeros in matrix is negative
+
+ stats [4]: # of nonzeros (p [n]).
+
+ -6 p [0] is nonzero
+
+ stats [4]: p [0]
+
+ -7 (unused)
+
+ -8 a column has a negative number of entries
+
+ stats [4]: column with < 0 entries
+ stats [5]: number of entries in col
+
+ -9 a row index is out of bounds
+
+ stats [4]: column with bad row index
+ stats [5]: bad row index
+ stats [6]: n_row, # of rows of matrx
+
+ -10 out of memory (unable to allocate temporary
+ workspace for M or count arrays using the
+ "allocate" routine passed into symamd).
+
+ Future versions may return more statistics in the stats array.
+
+ void * (*allocate) (size_t, size_t)
+
+ A pointer to a function providing memory allocation. The
+ allocated memory must be returned initialized to zero. For a
+ C application, this argument should normally be a pointer to
+ calloc. For a MATLAB mexFunction, the routine mxCalloc is
+ passed instead.
+
+ void (*release) (size_t, size_t)
+
+ A pointer to a function that frees memory allocated by the
+ memory allocation routine above. For a C application, this
+ argument should normally be a pointer to free. For a MATLAB
+ mexFunction, the routine mxFree is passed instead.
+
+
+ ----------------------------------------------------------------------------
+ colamd_report:
+ ----------------------------------------------------------------------------
+
+ C syntax:
+
+ #include "colamd.h"
+ colamd_report (int stats [COLAMD_STATS]) ;
+ colamd_l_report (UF_long stats [COLAMD_STATS]) ;
+
+ Purpose:
+
+ Prints the error status and statistics recorded in the stats
+ array on the standard error output (for a standard C routine)
+ or on the MATLAB output (for a mexFunction).
+
+ Arguments:
+
+ int stats [COLAMD_STATS] ; Input only. Statistics from colamd.
+
+
+ ----------------------------------------------------------------------------
+ symamd_report:
+ ----------------------------------------------------------------------------
+
+ C syntax:
+
+ #include "colamd.h"
+ symamd_report (int stats [COLAMD_STATS]) ;
+ symamd_l_report (UF_long stats [COLAMD_STATS]) ;
+
+ Purpose:
+
+ Prints the error status and statistics recorded in the stats
+ array on the standard error output (for a standard C routine)
+ or on the MATLAB output (for a mexFunction).
+
+ Arguments:
+
+ int stats [COLAMD_STATS] ; Input only. Statistics from symamd.
+
+
+*/
+
+/* ========================================================================== */
+/* === Scaffolding code definitions ======================================== */
+/* ========================================================================== */
+
+/* Ensure that debugging is turned off: */
+#ifndef NDEBUG
+#define NDEBUG
+#endif
+
+/* turn on debugging by uncommenting the following line
+ #undef NDEBUG
+*/
+
+/*
+ Our "scaffolding code" philosophy: In our opinion, well-written library
+ code should keep its "debugging" code, and just normally have it turned off
+ by the compiler so as not to interfere with performance. This serves
+ several purposes:
+
+ (1) assertions act as comments to the reader, telling you what the code
+ expects at that point. All assertions will always be true (unless
+ there really is a bug, of course).
+
+ (2) leaving in the scaffolding code assists anyone who would like to modify
+ the code, or understand the algorithm (by reading the debugging output,
+ one can get a glimpse into what the code is doing).
+
+ (3) (gasp!) for actually finding bugs. This code has been heavily tested
+ and "should" be fully functional and bug-free ... but you never know...
+
+ The code will become outrageously slow when debugging is
+ enabled. To control the level of debugging output, set an environment
+ variable D to 0 (little), 1 (some), 2, 3, or 4 (lots). When debugging,
+ you should see the following message on the standard output:
+
+ colamd: debug version, D = 1 (THIS WILL BE SLOW!)
+
+ or a similar message for symamd. If you don't, then debugging has not
+ been enabled.
+
+*/
+
+/* ========================================================================== */
+/* === Include files ======================================================== */
+/* ========================================================================== */
+
+#include "colamd.h"
+
+#if 0 /* by mao */
+#include <limits.h>
+#include <math.h>
+
+#ifdef MATLAB_MEX_FILE
+#include "mex.h"
+#include "matrix.h"
+#endif /* MATLAB_MEX_FILE */
+
+#if !defined (NPRINT) || !defined (NDEBUG)
+#include <stdio.h>
+#endif
+
+#ifndef NULL
+#define NULL ((void *) 0)
+#endif
+#endif
+
+/* ========================================================================== */
+/* === int or UF_long ======================================================= */
+/* ========================================================================== */
+
+#if 0 /* by mao */
+/* define UF_long */
+#include "UFconfig.h"
+#endif
+
+#ifdef DLONG
+
+#define Int UF_long
+#define ID UF_long_id
+#define Int_MAX UF_long_max
+
+#define COLAMD_recommended colamd_l_recommended
+#define COLAMD_set_defaults colamd_l_set_defaults
+#define COLAMD_MAIN colamd_l
+#define SYMAMD_MAIN symamd_l
+#define COLAMD_report colamd_l_report
+#define SYMAMD_report symamd_l_report
+
+#else
+
+#define Int int
+#define ID "%d"
+#define Int_MAX INT_MAX
+
+#define COLAMD_recommended colamd_recommended
+#define COLAMD_set_defaults colamd_set_defaults
+#define COLAMD_MAIN colamd
+#define SYMAMD_MAIN symamd
+#define COLAMD_report colamd_report
+#define SYMAMD_report symamd_report
+
+#endif
+
+/* ========================================================================== */
+/* === Row and Column structures ============================================ */
+/* ========================================================================== */
+
+/* User code that makes use of the colamd/symamd routines need not directly */
+/* reference these structures. They are used only for colamd_recommended. */
+
+typedef struct Colamd_Col_struct
+{
+ Int start ; /* index for A of first row in this column, or DEAD */
+ /* if column is dead */
+ Int length ; /* number of rows in this column */
+ union
+ {
+ Int thickness ; /* number of original columns represented by this */
+ /* col, if the column is alive */
+ Int parent ; /* parent in parent tree super-column structure, if */
+ /* the column is dead */
+ } shared1 ;
+ union
+ {
+ Int score ; /* the score used to maintain heap, if col is alive */
+ Int order ; /* pivot ordering of this column, if col is dead */
+ } shared2 ;
+ union
+ {
+ Int headhash ; /* head of a hash bucket, if col is at the head of */
+ /* a degree list */
+ Int hash ; /* hash value, if col is not in a degree list */
+ Int prev ; /* previous column in degree list, if col is in a */
+ /* degree list (but not at the head of a degree list) */
+ } shared3 ;
+ union
+ {
+ Int degree_next ; /* next column, if col is in a degree list */
+ Int hash_next ; /* next column, if col is in a hash list */
+ } shared4 ;
+
+} Colamd_Col ;
+
+typedef struct Colamd_Row_struct
+{
+ Int start ; /* index for A of first col in this row */
+ Int length ; /* number of principal columns in this row */
+ union
+ {
+ Int degree ; /* number of principal & non-principal columns in row */
+ Int p ; /* used as a row pointer in init_rows_cols () */
+ } shared1 ;
+ union
+ {
+ Int mark ; /* for computing set differences and marking dead rows*/
+ Int first_column ;/* first column in row (used in garbage collection) */
+ } shared2 ;
+
+} Colamd_Row ;
+
+/* ========================================================================== */
+/* === Definitions ========================================================== */
+/* ========================================================================== */
+
+/* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */
+#define PUBLIC
+#define PRIVATE static
+
+#define DENSE_DEGREE(alpha,n) \
+ ((Int) MAX (16.0, (alpha) * sqrt ((double) (n))))
+
+#define MAX(a,b) (((a) > (b)) ? (a) : (b))
+#define MIN(a,b) (((a) < (b)) ? (a) : (b))
+
+#define ONES_COMPLEMENT(r) (-(r)-1)
+
+/* -------------------------------------------------------------------------- */
+/* Change for version 2.1: define TRUE and FALSE only if not yet defined */
+/* -------------------------------------------------------------------------- */
+
+#ifndef TRUE
+#define TRUE (1)
+#endif
+
+#ifndef FALSE
+#define FALSE (0)
+#endif
+
+/* -------------------------------------------------------------------------- */
+
+#define EMPTY (-1)
+
+/* Row and column status */
+#define ALIVE (0)
+#define DEAD (-1)
+
+/* Column status */
+#define DEAD_PRINCIPAL (-1)
+#define DEAD_NON_PRINCIPAL (-2)
+
+/* Macros for row and column status update and checking. */
+#define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
+#define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE)
+#define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE)
+#define COL_IS_DEAD(c) (Col [c].start < ALIVE)
+#define COL_IS_ALIVE(c) (Col [c].start >= ALIVE)
+#define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL)
+#define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; }
+#define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; }
+#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }
+
+/* ========================================================================== */
+/* === Colamd reporting mechanism =========================================== */
+/* ========================================================================== */
+
+#if defined (MATLAB_MEX_FILE) || defined (MATHWORKS)
+/* In MATLAB, matrices are 1-based to the user, but 0-based internally */
+#define INDEX(i) ((i)+1)
+#else
+/* In C, matrices are 0-based and indices are reported as such in *_report */
+#define INDEX(i) (i)
+#endif
+
+/* All output goes through the PRINTF macro. */
+#define PRINTF(params) { if (colamd_printf != NULL) (void) colamd_printf params ; }
+
+/* ========================================================================== */
+/* === Prototypes of PRIVATE routines ======================================= */
+/* ========================================================================== */
+
+PRIVATE Int init_rows_cols
+(
+ Int n_row,
+ Int n_col,
+ Colamd_Row Row [],
+ Colamd_Col Col [],
+ Int A [],
+ Int p [],
+ Int stats [COLAMD_STATS]
+) ;
+
+PRIVATE void init_scoring
+(
+ Int n_row,
+ Int n_col,
+ Colamd_Row Row [],
+ Colamd_Col Col [],
+ Int A [],
+ Int head [],
+ double knobs [COLAMD_KNOBS],
+ Int *p_n_row2,
+ Int *p_n_col2,
+ Int *p_max_deg
+) ;
+
+PRIVATE Int find_ordering
+(
+ Int n_row,
+ Int n_col,
+ Int Alen,
+ Colamd_Row Row [],
+ Colamd_Col Col [],
+ Int A [],
+ Int head [],
+ Int n_col2,
+ Int max_deg,
+ Int pfree,
+ Int aggressive
+) ;
+
+PRIVATE void order_children
+(
+ Int n_col,
+ Colamd_Col Col [],
+ Int p []
+) ;
+
+PRIVATE void detect_super_cols
+(
+
+#ifndef NDEBUG
+ Int n_col,
+ Colamd_Row Row [],
+#endif /* NDEBUG */
+
+ Colamd_Col Col [],
+ Int A [],
+ Int head [],
+ Int row_start,
+ Int row_length
+) ;
+
+PRIVATE Int garbage_collection
+(
+ Int n_row,
+ Int n_col,
+ Colamd_Row Row [],
+ Colamd_Col Col [],
+ Int A [],
+ Int *pfree
+) ;
+
+PRIVATE Int clear_mark
+(
+ Int tag_mark,
+ Int max_mark,
+ Int n_row,
+ Colamd_Row Row []
+) ;
+
+PRIVATE void print_report
+(
+ char *method,
+ Int stats [COLAMD_STATS]
+) ;
+
+/* ========================================================================== */
+/* === Debugging prototypes and definitions ================================= */
+/* ========================================================================== */
+
+#ifndef NDEBUG
+
+#if 0 /* by mao */
+#include <assert.h>
+#endif
+
+/* colamd_debug is the *ONLY* global variable, and is only */
+/* present when debugging */
+
+PRIVATE Int colamd_debug = 0 ; /* debug print level */
+
+#define DEBUG0(params) { PRINTF (params) ; }
+#define DEBUG1(params) { if (colamd_debug >= 1) PRINTF (params) ; }
+#define DEBUG2(params) { if (colamd_debug >= 2) PRINTF (params) ; }
+#define DEBUG3(params) { if (colamd_debug >= 3) PRINTF (params) ; }
+#define DEBUG4(params) { if (colamd_debug >= 4) PRINTF (params) ; }
+
+#if 0 /* by mao */
+#ifdef MATLAB_MEX_FILE
+#define ASSERT(expression) (mxAssert ((expression), ""))
+#else
+#define ASSERT(expression) (assert (expression))
+#endif /* MATLAB_MEX_FILE */
+#else
+#define ASSERT xassert
+#endif
+
+PRIVATE void colamd_get_debug /* gets the debug print level from getenv */
+(
+ char *method
+) ;
+
+PRIVATE void debug_deg_lists
+(
+ Int n_row,
+ Int n_col,
+ Colamd_Row Row [],
+ Colamd_Col Col [],
+ Int head [],
+ Int min_score,
+ Int should,
+ Int max_deg
+) ;
+
+PRIVATE void debug_mark
+(
+ Int n_row,
+ Colamd_Row Row [],
+ Int tag_mark,
+ Int max_mark
+) ;
+
+PRIVATE void debug_matrix
+(
+ Int n_row,
+ Int n_col,
+ Colamd_Row Row [],
+ Colamd_Col Col [],
+ Int A []
+) ;
+
+PRIVATE void debug_structures
+(
+ Int n_row,
+ Int n_col,
+ Colamd_Row Row [],
+ Colamd_Col Col [],
+ Int A [],
+ Int n_col2
+) ;
+
+#else /* NDEBUG */
+
+/* === No debugging ========================================================= */
+
+#define DEBUG0(params) ;
+#define DEBUG1(params) ;
+#define DEBUG2(params) ;
+#define DEBUG3(params) ;
+#define DEBUG4(params) ;
+
+#define ASSERT(expression)
+
+#endif /* NDEBUG */
+
+/* ========================================================================== */
+/* === USER-CALLABLE ROUTINES: ============================================== */
+/* ========================================================================== */
+
+/* ========================================================================== */
+/* === colamd_recommended =================================================== */
+/* ========================================================================== */
+
+/*
+ The colamd_recommended routine returns the suggested size for Alen. This
+ value has been determined to provide good balance between the number of
+ garbage collections and the memory requirements for colamd. If any
+ argument is negative, or if integer overflow occurs, a 0 is returned as an
+ error condition. 2*nnz space is required for the row and column
+ indices of the matrix. COLAMD_C (n_col) + COLAMD_R (n_row) space is
+ required for the Col and Row arrays, respectively, which are internal to
+ colamd (roughly 6*n_col + 4*n_row). An additional n_col space is the
+ minimal amount of "elbow room", and nnz/5 more space is recommended for
+ run time efficiency.
+
+ Alen is approximately 2.2*nnz + 7*n_col + 4*n_row + 10.
+
+ This function is not needed when using symamd.
+*/
+
+/* add two values of type size_t, and check for integer overflow */
+static size_t t_add (size_t a, size_t b, int *ok)
+{
+ (*ok) = (*ok) && ((a + b) >= MAX (a,b)) ;
+ return ((*ok) ? (a + b) : 0) ;
+}
+
+/* compute a*k where k is a small integer, and check for integer overflow */
+static size_t t_mult (size_t a, size_t k, int *ok)
+{
+ size_t i, s = 0 ;
+ for (i = 0 ; i < k ; i++)
+ {
+ s = t_add (s, a, ok) ;
+ }
+ return (s) ;
+}
+
+/* size of the Col and Row structures */
+#define COLAMD_C(n_col,ok) \
+ ((t_mult (t_add (n_col, 1, ok), sizeof (Colamd_Col), ok) / sizeof (Int)))
+
+#define COLAMD_R(n_row,ok) \
+ ((t_mult (t_add (n_row, 1, ok), sizeof (Colamd_Row), ok) / sizeof (Int)))
+
+
+PUBLIC size_t COLAMD_recommended /* returns recommended value of Alen. */
+(
+ /* === Parameters ======================================================= */
+
+ Int nnz, /* number of nonzeros in A */
+ Int n_row, /* number of rows in A */
+ Int n_col /* number of columns in A */
+)
+{
+ size_t s, c, r ;
+ int ok = TRUE ;
+ if (nnz < 0 || n_row < 0 || n_col < 0)
+ {
+ return (0) ;
+ }
+ s = t_mult (nnz, 2, &ok) ; /* 2*nnz */
+ c = COLAMD_C (n_col, &ok) ; /* size of column structures */
+ r = COLAMD_R (n_row, &ok) ; /* size of row structures */
+ s = t_add (s, c, &ok) ;
+ s = t_add (s, r, &ok) ;
+ s = t_add (s, n_col, &ok) ; /* elbow room */
+ s = t_add (s, nnz/5, &ok) ; /* elbow room */
+ ok = ok && (s < Int_MAX) ;
+ return (ok ? s : 0) ;
+}
+
+
+/* ========================================================================== */
+/* === colamd_set_defaults ================================================== */
+/* ========================================================================== */
+
+/*
+ The colamd_set_defaults routine sets the default values of the user-
+ controllable parameters for colamd and symamd:
+
+ Colamd: rows with more than max (16, knobs [0] * sqrt (n_col))
+ entries are removed prior to ordering. Columns with more than
+ max (16, knobs [1] * sqrt (MIN (n_row,n_col))) entries are removed
+ prior to ordering, and placed last in the output column ordering.
+
+ Symamd: Rows and columns with more than max (16, knobs [0] * sqrt (n))
+ entries are removed prior to ordering, and placed last in the
+ output ordering.
+
+ knobs [0] dense row control
+
+ knobs [1] dense column control
+
+ knobs [2] if nonzero, do aggresive absorption
+
+ knobs [3..19] unused, but future versions might use this
+
+*/
+
+PUBLIC void COLAMD_set_defaults
+(
+ /* === Parameters ======================================================= */
+
+ double knobs [COLAMD_KNOBS] /* knob array */
+)
+{
+ /* === Local variables ================================================== */
+
+ Int i ;
+
+ if (!knobs)
+ {
+ return ; /* no knobs to initialize */
+ }
+ for (i = 0 ; i < COLAMD_KNOBS ; i++)
+ {
+ knobs [i] = 0 ;
+ }
+ knobs [COLAMD_DENSE_ROW] = 10 ;
+ knobs [COLAMD_DENSE_COL] = 10 ;
+ knobs [COLAMD_AGGRESSIVE] = TRUE ; /* default: do aggressive absorption*/
+}
+
+
+/* ========================================================================== */
+/* === symamd =============================================================== */
+/* ========================================================================== */
+
+PUBLIC Int SYMAMD_MAIN /* return TRUE if OK, FALSE otherwise */
+(
+ /* === Parameters ======================================================= */
+
+ Int n, /* number of rows and columns of A */
+ Int A [], /* row indices of A */
+ Int p [], /* column pointers of A */
+ Int perm [], /* output permutation, size n+1 */
+ double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */
+ Int stats [COLAMD_STATS], /* output statistics and error codes */
+ void * (*allocate) (size_t, size_t),
+ /* pointer to calloc (ANSI C) or */
+ /* mxCalloc (for MATLAB mexFunction) */
+ void (*release) (void *)
+ /* pointer to free (ANSI C) or */
+ /* mxFree (for MATLAB mexFunction) */
+)
+{
+ /* === Local variables ================================================== */
+
+ Int *count ; /* length of each column of M, and col pointer*/
+ Int *mark ; /* mark array for finding duplicate entries */
+ Int *M ; /* row indices of matrix M */
+ size_t Mlen ; /* length of M */
+ Int n_row ; /* number of rows in M */
+ Int nnz ; /* number of entries in A */
+ Int i ; /* row index of A */
+ Int j ; /* column index of A */
+ Int k ; /* row index of M */
+ Int mnz ; /* number of nonzeros in M */
+ Int pp ; /* index into a column of A */
+ Int last_row ; /* last row seen in the current column */
+ Int length ; /* number of nonzeros in a column */
+
+ double cknobs [COLAMD_KNOBS] ; /* knobs for colamd */
+ double default_knobs [COLAMD_KNOBS] ; /* default knobs for colamd */
+
+#ifndef NDEBUG
+ colamd_get_debug ("symamd") ;
+#endif /* NDEBUG */
+
+ /* === Check the input arguments ======================================== */
+
+ if (!stats)
+ {
+ DEBUG0 (("symamd: stats not present\n")) ;
+ return (FALSE) ;
+ }
+ for (i = 0 ; i < COLAMD_STATS ; i++)
+ {
+ stats [i] = 0 ;
+ }
+ stats [COLAMD_STATUS] = COLAMD_OK ;
+ stats [COLAMD_INFO1] = -1 ;
+ stats [COLAMD_INFO2] = -1 ;
+
+ if (!A)
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
+ DEBUG0 (("symamd: A not present\n")) ;
+ return (FALSE) ;
+ }
+
+ if (!p) /* p is not present */
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
+ DEBUG0 (("symamd: p not present\n")) ;
+ return (FALSE) ;
+ }
+
+ if (n < 0) /* n must be >= 0 */
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
+ stats [COLAMD_INFO1] = n ;
+ DEBUG0 (("symamd: n negative %d\n", n)) ;
+ return (FALSE) ;
+ }
+
+ nnz = p [n] ;
+ if (nnz < 0) /* nnz must be >= 0 */
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
+ stats [COLAMD_INFO1] = nnz ;
+ DEBUG0 (("symamd: number of entries negative %d\n", nnz)) ;
+ return (FALSE) ;
+ }
+
+ if (p [0] != 0)
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
+ stats [COLAMD_INFO1] = p [0] ;
+ DEBUG0 (("symamd: p[0] not zero %d\n", p [0])) ;
+ return (FALSE) ;
+ }
+
+ /* === If no knobs, set default knobs =================================== */
+
+ if (!knobs)
+ {
+ COLAMD_set_defaults (default_knobs) ;
+ knobs = default_knobs ;
+ }
+
+ /* === Allocate count and mark ========================================== */
+
+ count = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
+ if (!count)
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
+ DEBUG0 (("symamd: allocate count (size %d) failed\n", n+1)) ;
+ return (FALSE) ;
+ }
+
+ mark = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
+ if (!mark)
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
+ (*release) ((void *) count) ;
+ DEBUG0 (("symamd: allocate mark (size %d) failed\n", n+1)) ;
+ return (FALSE) ;
+ }
+
+ /* === Compute column counts of M, check if A is valid ================== */
+
+ stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
+
+ for (i = 0 ; i < n ; i++)
+ {
+ mark [i] = -1 ;
+ }
+
+ for (j = 0 ; j < n ; j++)
+ {
+ last_row = -1 ;
+
+ length = p [j+1] - p [j] ;
+ if (length < 0)
+ {
+ /* column pointers must be non-decreasing */
+ stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
+ stats [COLAMD_INFO1] = j ;
+ stats [COLAMD_INFO2] = length ;
+ (*release) ((void *) count) ;
+ (*release) ((void *) mark) ;
+ DEBUG0 (("symamd: col %d negative length %d\n", j, length)) ;
+ return (FALSE) ;
+ }
+
+ for (pp = p [j] ; pp < p [j+1] ; pp++)
+ {
+ i = A [pp] ;
+ if (i < 0 || i >= n)
+ {
+ /* row index i, in column j, is out of bounds */
+ stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
+ stats [COLAMD_INFO1] = j ;
+ stats [COLAMD_INFO2] = i ;
+ stats [COLAMD_INFO3] = n ;
+ (*release) ((void *) count) ;
+ (*release) ((void *) mark) ;
+ DEBUG0 (("symamd: row %d col %d out of bounds\n", i, j)) ;
+ return (FALSE) ;
+ }
+
+ if (i <= last_row || mark [i] == j)
+ {
+ /* row index is unsorted or repeated (or both), thus col */
+ /* is jumbled. This is a notice, not an error condition. */
+ stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
+ stats [COLAMD_INFO1] = j ;
+ stats [COLAMD_INFO2] = i ;
+ (stats [COLAMD_INFO3]) ++ ;
+ DEBUG1 (("symamd: row %d col %d unsorted/duplicate\n", i, j)) ;
+ }
+
+ if (i > j && mark [i] != j)
+ {
+ /* row k of M will contain column indices i and j */
+ count [i]++ ;
+ count [j]++ ;
+ }
+
+ /* mark the row as having been seen in this column */
+ mark [i] = j ;
+
+ last_row = i ;
+ }
+ }
+
+ /* v2.4: removed free(mark) */
+
+ /* === Compute column pointers of M ===================================== */
+
+ /* use output permutation, perm, for column pointers of M */
+ perm [0] = 0 ;
+ for (j = 1 ; j <= n ; j++)
+ {
+ perm [j] = perm [j-1] + count [j-1] ;
+ }
+ for (j = 0 ; j < n ; j++)
+ {
+ count [j] = perm [j] ;
+ }
+
+ /* === Construct M ====================================================== */
+
+ mnz = perm [n] ;
+ n_row = mnz / 2 ;
+ Mlen = COLAMD_recommended (mnz, n_row, n) ;
+ M = (Int *) ((*allocate) (Mlen, sizeof (Int))) ;
+ DEBUG0 (("symamd: M is %d-by-%d with %d entries, Mlen = %g\n",
+ n_row, n, mnz, (double) Mlen)) ;
+
+ if (!M)
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
+ (*release) ((void *) count) ;
+ (*release) ((void *) mark) ;
+ DEBUG0 (("symamd: allocate M (size %g) failed\n", (double) Mlen)) ;
+ return (FALSE) ;
+ }
+
+ k = 0 ;
+
+ if (stats [COLAMD_STATUS] == COLAMD_OK)
+ {
+ /* Matrix is OK */
+ for (j = 0 ; j < n ; j++)
+ {
+ ASSERT (p [j+1] - p [j] >= 0) ;
+ for (pp = p [j] ; pp < p [j+1] ; pp++)
+ {
+ i = A [pp] ;
+ ASSERT (i >= 0 && i < n) ;
+ if (i > j)
+ {
+ /* row k of M contains column indices i and j */
+ M [count [i]++] = k ;
+ M [count [j]++] = k ;
+ k++ ;
+ }
+ }
+ }
+ }
+ else
+ {
+ /* Matrix is jumbled. Do not add duplicates to M. Unsorted cols OK. */
+ DEBUG0 (("symamd: Duplicates in A.\n")) ;
+ for (i = 0 ; i < n ; i++)
+ {
+ mark [i] = -1 ;
+ }
+ for (j = 0 ; j < n ; j++)
+ {
+ ASSERT (p [j+1] - p [j] >= 0) ;
+ for (pp = p [j] ; pp < p [j+1] ; pp++)
+ {
+ i = A [pp] ;
+ ASSERT (i >= 0 && i < n) ;
+ if (i > j && mark [i] != j)
+ {
+ /* row k of M contains column indices i and j */
+ M [count [i]++] = k ;
+ M [count [j]++] = k ;
+ k++ ;
+ mark [i] = j ;
+ }
+ }
+ }
+ /* v2.4: free(mark) moved below */
+ }
+
+ /* count and mark no longer needed */
+ (*release) ((void *) count) ;
+ (*release) ((void *) mark) ; /* v2.4: free (mark) moved here */
+ ASSERT (k == n_row) ;
+
+ /* === Adjust the knobs for M =========================================== */
+
+ for (i = 0 ; i < COLAMD_KNOBS ; i++)
+ {
+ cknobs [i] = knobs [i] ;
+ }
+
+ /* there are no dense rows in M */
+ cknobs [COLAMD_DENSE_ROW] = -1 ;
+ cknobs [COLAMD_DENSE_COL] = knobs [COLAMD_DENSE_ROW] ;
+
+ /* === Order the columns of M =========================================== */
+
+ /* v2.4: colamd cannot fail here, so the error check is removed */
+ (void) COLAMD_MAIN (n_row, n, (Int) Mlen, M, perm, cknobs, stats) ;
+
+ /* Note that the output permutation is now in perm */
+
+ /* === get the statistics for symamd from colamd ======================== */
+
+ /* a dense column in colamd means a dense row and col in symamd */
+ stats [COLAMD_DENSE_ROW] = stats [COLAMD_DENSE_COL] ;
+
+ /* === Free M =========================================================== */
+
+ (*release) ((void *) M) ;
+ DEBUG0 (("symamd: done.\n")) ;
+ return (TRUE) ;
+
+}
+
+/* ========================================================================== */
+/* === colamd =============================================================== */
+/* ========================================================================== */
+
+/*
+ The colamd routine computes a column ordering Q of a sparse matrix
+ A such that the LU factorization P(AQ) = LU remains sparse, where P is
+ selected via partial pivoting. The routine can also be viewed as
+ providing a permutation Q such that the Cholesky factorization
+ (AQ)'(AQ) = LL' remains sparse.
+*/
+
+PUBLIC Int COLAMD_MAIN /* returns TRUE if successful, FALSE otherwise*/
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row, /* number of rows in A */
+ Int n_col, /* number of columns in A */
+ Int Alen, /* length of A */
+ Int A [], /* row indices of A */
+ Int p [], /* pointers to columns in A */
+ double knobs [COLAMD_KNOBS],/* parameters (uses defaults if NULL) */
+ Int stats [COLAMD_STATS] /* output statistics and error codes */
+)
+{
+ /* === Local variables ================================================== */
+
+ Int i ; /* loop index */
+ Int nnz ; /* nonzeros in A */
+ size_t Row_size ; /* size of Row [], in integers */
+ size_t Col_size ; /* size of Col [], in integers */
+ size_t need ; /* minimum required length of A */
+ Colamd_Row *Row ; /* pointer into A of Row [0..n_row] array */
+ Colamd_Col *Col ; /* pointer into A of Col [0..n_col] array */
+ Int n_col2 ; /* number of non-dense, non-empty columns */
+ Int n_row2 ; /* number of non-dense, non-empty rows */
+ Int ngarbage ; /* number of garbage collections performed */
+ Int max_deg ; /* maximum row degree */
+ double default_knobs [COLAMD_KNOBS] ; /* default knobs array */
+ Int aggressive ; /* do aggressive absorption */
+ int ok ;
+
+#ifndef NDEBUG
+ colamd_get_debug ("colamd") ;
+#endif /* NDEBUG */
+
+ /* === Check the input arguments ======================================== */
+
+ if (!stats)
+ {
+ DEBUG0 (("colamd: stats not present\n")) ;
+ return (FALSE) ;
+ }
+ for (i = 0 ; i < COLAMD_STATS ; i++)
+ {
+ stats [i] = 0 ;
+ }
+ stats [COLAMD_STATUS] = COLAMD_OK ;
+ stats [COLAMD_INFO1] = -1 ;
+ stats [COLAMD_INFO2] = -1 ;
+
+ if (!A) /* A is not present */
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
+ DEBUG0 (("colamd: A not present\n")) ;
+ return (FALSE) ;
+ }
+
+ if (!p) /* p is not present */
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
+ DEBUG0 (("colamd: p not present\n")) ;
+ return (FALSE) ;
+ }
+
+ if (n_row < 0) /* n_row must be >= 0 */
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
+ stats [COLAMD_INFO1] = n_row ;
+ DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
+ return (FALSE) ;
+ }
+
+ if (n_col < 0) /* n_col must be >= 0 */
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
+ stats [COLAMD_INFO1] = n_col ;
+ DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
+ return (FALSE) ;
+ }
+
+ nnz = p [n_col] ;
+ if (nnz < 0) /* nnz must be >= 0 */
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
+ stats [COLAMD_INFO1] = nnz ;
+ DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
+ return (FALSE) ;
+ }
+
+ if (p [0] != 0)
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
+ stats [COLAMD_INFO1] = p [0] ;
+ DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
+ return (FALSE) ;
+ }
+
+ /* === If no knobs, set default knobs =================================== */
+
+ if (!knobs)
+ {
+ COLAMD_set_defaults (default_knobs) ;
+ knobs = default_knobs ;
+ }
+
+ aggressive = (knobs [COLAMD_AGGRESSIVE] != FALSE) ;
+
+ /* === Allocate the Row and Col arrays from array A ===================== */
+
+ ok = TRUE ;
+ Col_size = COLAMD_C (n_col, &ok) ; /* size of Col array of structs */
+ Row_size = COLAMD_R (n_row, &ok) ; /* size of Row array of structs */
+
+ /* need = 2*nnz + n_col + Col_size + Row_size ; */
+ need = t_mult (nnz, 2, &ok) ;
+ need = t_add (need, n_col, &ok) ;
+ need = t_add (need, Col_size, &ok) ;
+ need = t_add (need, Row_size, &ok) ;
+
+ if (!ok || need > (size_t) Alen || need > Int_MAX)
+ {
+ /* not enough space in array A to perform the ordering */
+ stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
+ stats [COLAMD_INFO1] = need ;
+ stats [COLAMD_INFO2] = Alen ;
+ DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
+ return (FALSE) ;
+ }
+
+ Alen -= Col_size + Row_size ;
+ Col = (Colamd_Col *) &A [Alen] ;
+ Row = (Colamd_Row *) &A [Alen + Col_size] ;
+
+ /* === Construct the row and column data structures ===================== */
+
+ if (!init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
+ {
+ /* input matrix is invalid */
+ DEBUG0 (("colamd: Matrix invalid\n")) ;
+ return (FALSE) ;
+ }
+
+ /* === Initialize scores, kill dense rows/columns ======================= */
+
+ init_scoring (n_row, n_col, Row, Col, A, p, knobs,
+ &n_row2, &n_col2, &max_deg) ;
+
+ /* === Order the supercolumns =========================================== */
+
+ ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p,
+ n_col2, max_deg, 2*nnz, aggressive) ;
+
+ /* === Order the non-principal columns ================================== */
+
+ order_children (n_col, Col, p) ;
+
+ /* === Return statistics in stats ======================================= */
+
+ stats [COLAMD_DENSE_ROW] = n_row - n_row2 ;
+ stats [COLAMD_DENSE_COL] = n_col - n_col2 ;
+ stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
+ DEBUG0 (("colamd: done.\n")) ;
+ return (TRUE) ;
+}
+
+
+/* ========================================================================== */
+/* === colamd_report ======================================================== */
+/* ========================================================================== */
+
+PUBLIC void COLAMD_report
+(
+ Int stats [COLAMD_STATS]
+)
+{
+ print_report ("colamd", stats) ;
+}
+
+
+/* ========================================================================== */
+/* === symamd_report ======================================================== */
+/* ========================================================================== */
+
+PUBLIC void SYMAMD_report
+(
+ Int stats [COLAMD_STATS]
+)
+{
+ print_report ("symamd", stats) ;
+}
+
+
+
+/* ========================================================================== */
+/* === NON-USER-CALLABLE ROUTINES: ========================================== */
+/* ========================================================================== */
+
+/* There are no user-callable routines beyond this point in the file */
+
+
+/* ========================================================================== */
+/* === init_rows_cols ======================================================= */
+/* ========================================================================== */
+
+/*
+ Takes the column form of the matrix in A and creates the row form of the
+ matrix. Also, row and column attributes are stored in the Col and Row
+ structs. If the columns are un-sorted or contain duplicate row indices,
+ this routine will also sort and remove duplicate row indices from the
+ column form of the matrix. Returns FALSE if the matrix is invalid,
+ TRUE otherwise. Not user-callable.
+*/
+
+PRIVATE Int init_rows_cols /* returns TRUE if OK, or FALSE otherwise */
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row, /* number of rows of A */
+ Int n_col, /* number of columns of A */
+ Colamd_Row Row [], /* of size n_row+1 */
+ Colamd_Col Col [], /* of size n_col+1 */
+ Int A [], /* row indices of A, of size Alen */
+ Int p [], /* pointers to columns in A, of size n_col+1 */
+ Int stats [COLAMD_STATS] /* colamd statistics */
+)
+{
+ /* === Local variables ================================================== */
+
+ Int col ; /* a column index */
+ Int row ; /* a row index */
+ Int *cp ; /* a column pointer */
+ Int *cp_end ; /* a pointer to the end of a column */
+ Int *rp ; /* a row pointer */
+ Int *rp_end ; /* a pointer to the end of a row */
+ Int last_row ; /* previous row */
+
+ /* === Initialize columns, and check column pointers ==================== */
+
+ for (col = 0 ; col < n_col ; col++)
+ {
+ Col [col].start = p [col] ;
+ Col [col].length = p [col+1] - p [col] ;
+
+ if (Col [col].length < 0)
+ {
+ /* column pointers must be non-decreasing */
+ stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
+ stats [COLAMD_INFO1] = col ;
+ stats [COLAMD_INFO2] = Col [col].length ;
+ DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
+ return (FALSE) ;
+ }
+
+ Col [col].shared1.thickness = 1 ;
+ Col [col].shared2.score = 0 ;
+ Col [col].shared3.prev = EMPTY ;
+ Col [col].shared4.degree_next = EMPTY ;
+ }
+
+ /* p [0..n_col] no longer needed, used as "head" in subsequent routines */
+
+ /* === Scan columns, compute row degrees, and check row indices ========= */
+
+ stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
+
+ for (row = 0 ; row < n_row ; row++)
+ {
+ Row [row].length = 0 ;
+ Row [row].shared2.mark = -1 ;
+ }
+
+ for (col = 0 ; col < n_col ; col++)
+ {
+ last_row = -1 ;
+
+ cp = &A [p [col]] ;
+ cp_end = &A [p [col+1]] ;
+
+ while (cp < cp_end)
+ {
+ row = *cp++ ;
+
+ /* make sure row indices within range */
+ if (row < 0 || row >= n_row)
+ {
+ stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
+ stats [COLAMD_INFO1] = col ;
+ stats [COLAMD_INFO2] = row ;
+ stats [COLAMD_INFO3] = n_row ;
+ DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
+ return (FALSE) ;
+ }
+
+ if (row <= last_row || Row [row].shared2.mark == col)
+ {
+ /* row index are unsorted or repeated (or both), thus col */
+ /* is jumbled. This is a notice, not an error condition. */
+ stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
+ stats [COLAMD_INFO1] = col ;
+ stats [COLAMD_INFO2] = row ;
+ (stats [COLAMD_INFO3]) ++ ;
+ DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
+ }
+
+ if (Row [row].shared2.mark != col)
+ {
+ Row [row].length++ ;
+ }
+ else
+ {
+ /* this is a repeated entry in the column, */
+ /* it will be removed */
+ Col [col].length-- ;
+ }
+
+ /* mark the row as having been seen in this column */
+ Row [row].shared2.mark = col ;
+
+ last_row = row ;
+ }
+ }
+
+ /* === Compute row pointers ============================================= */
+
+ /* row form of the matrix starts directly after the column */
+ /* form of matrix in A */
+ Row [0].start = p [n_col] ;
+ Row [0].shared1.p = Row [0].start ;
+ Row [0].shared2.mark = -1 ;
+ for (row = 1 ; row < n_row ; row++)
+ {
+ Row [row].start = Row [row-1].start + Row [row-1].length ;
+ Row [row].shared1.p = Row [row].start ;
+ Row [row].shared2.mark = -1 ;
+ }
+
+ /* === Create row form ================================================== */
+
+ if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
+ {
+ /* if cols jumbled, watch for repeated row indices */
+ for (col = 0 ; col < n_col ; col++)
+ {
+ cp = &A [p [col]] ;
+ cp_end = &A [p [col+1]] ;
+ while (cp < cp_end)
+ {
+ row = *cp++ ;
+ if (Row [row].shared2.mark != col)
+ {
+ A [(Row [row].shared1.p)++] = col ;
+ Row [row].shared2.mark = col ;
+ }
+ }
+ }
+ }
+ else
+ {
+ /* if cols not jumbled, we don't need the mark (this is faster) */
+ for (col = 0 ; col < n_col ; col++)
+ {
+ cp = &A [p [col]] ;
+ cp_end = &A [p [col+1]] ;
+ while (cp < cp_end)
+ {
+ A [(Row [*cp++].shared1.p)++] = col ;
+ }
+ }
+ }
+
+ /* === Clear the row marks and set row degrees ========================== */
+
+ for (row = 0 ; row < n_row ; row++)
+ {
+ Row [row].shared2.mark = 0 ;
+ Row [row].shared1.degree = Row [row].length ;
+ }
+
+ /* === See if we need to re-create columns ============================== */
+
+ if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
+ {
+ DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;
+
+#ifndef NDEBUG
+ /* make sure column lengths are correct */
+ for (col = 0 ; col < n_col ; col++)
+ {
+ p [col] = Col [col].length ;
+ }
+ for (row = 0 ; row < n_row ; row++)
+ {
+ rp = &A [Row [row].start] ;
+ rp_end = rp + Row [row].length ;
+ while (rp < rp_end)
+ {
+ p [*rp++]-- ;
+ }
+ }
+ for (col = 0 ; col < n_col ; col++)
+ {
+ ASSERT (p [col] == 0) ;
+ }
+ /* now p is all zero (different than when debugging is turned off) */
+#endif /* NDEBUG */
+
+ /* === Compute col pointers ========================================= */
+
+ /* col form of the matrix starts at A [0]. */
+ /* Note, we may have a gap between the col form and the row */
+ /* form if there were duplicate entries, if so, it will be */
+ /* removed upon the first garbage collection */
+ Col [0].start = 0 ;
+ p [0] = Col [0].start ;
+ for (col = 1 ; col < n_col ; col++)
+ {
+ /* note that the lengths here are for pruned columns, i.e. */
+ /* no duplicate row indices will exist for these columns */
+ Col [col].start = Col [col-1].start + Col [col-1].length ;
+ p [col] = Col [col].start ;
+ }
+
+ /* === Re-create col form =========================================== */
+
+ for (row = 0 ; row < n_row ; row++)
+ {
+ rp = &A [Row [row].start] ;
+ rp_end = rp + Row [row].length ;
+ while (rp < rp_end)
+ {
+ A [(p [*rp++])++] = row ;
+ }
+ }
+ }
+
+ /* === Done. Matrix is not (or no longer) jumbled ====================== */
+
+ return (TRUE) ;
+}
+
+
+/* ========================================================================== */
+/* === init_scoring ========================================================= */
+/* ========================================================================== */
+
+/*
+ Kills dense or empty columns and rows, calculates an initial score for
+ each column, and places all columns in the degree lists. Not user-callable.
+*/
+
+PRIVATE void init_scoring
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row, /* number of rows of A */
+ Int n_col, /* number of columns of A */
+ Colamd_Row Row [], /* of size n_row+1 */
+ Colamd_Col Col [], /* of size n_col+1 */
+ Int A [], /* column form and row form of A */
+ Int head [], /* of size n_col+1 */
+ double knobs [COLAMD_KNOBS],/* parameters */
+ Int *p_n_row2, /* number of non-dense, non-empty rows */
+ Int *p_n_col2, /* number of non-dense, non-empty columns */
+ Int *p_max_deg /* maximum row degree */
+)
+{
+ /* === Local variables ================================================== */
+
+ Int c ; /* a column index */
+ Int r, row ; /* a row index */
+ Int *cp ; /* a column pointer */
+ Int deg ; /* degree of a row or column */
+ Int *cp_end ; /* a pointer to the end of a column */
+ Int *new_cp ; /* new column pointer */
+ Int col_length ; /* length of pruned column */
+ Int score ; /* current column score */
+ Int n_col2 ; /* number of non-dense, non-empty columns */
+ Int n_row2 ; /* number of non-dense, non-empty rows */
+ Int dense_row_count ; /* remove rows with more entries than this */
+ Int dense_col_count ; /* remove cols with more entries than this */
+ Int min_score ; /* smallest column score */
+ Int max_deg ; /* maximum row degree */
+ Int next_col ; /* Used to add to degree list.*/
+
+#ifndef NDEBUG
+ Int debug_count ; /* debug only. */
+#endif /* NDEBUG */
+
+ /* === Extract knobs ==================================================== */
+
+ /* Note: if knobs contains a NaN, this is undefined: */
+ if (knobs [COLAMD_DENSE_ROW] < 0)
+ {
+ /* only remove completely dense rows */
+ dense_row_count = n_col-1 ;
+ }
+ else
+ {
+ dense_row_count = DENSE_DEGREE (knobs [COLAMD_DENSE_ROW], n_col) ;
+ }
+ if (knobs [COLAMD_DENSE_COL] < 0)
+ {
+ /* only remove completely dense columns */
+ dense_col_count = n_row-1 ;
+ }
+ else
+ {
+ dense_col_count =
+ DENSE_DEGREE (knobs [COLAMD_DENSE_COL], MIN (n_row, n_col)) ;
+ }
+
+ DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
+ max_deg = 0 ;
+ n_col2 = n_col ;
+ n_row2 = n_row ;
+
+ /* === Kill empty columns =============================================== */
+
+ /* Put the empty columns at the end in their natural order, so that LU */
+ /* factorization can proceed as far as possible. */
+ for (c = n_col-1 ; c >= 0 ; c--)
+ {
+ deg = Col [c].length ;
+ if (deg == 0)
+ {
+ /* this is a empty column, kill and order it last */
+ Col [c].shared2.order = --n_col2 ;
+ KILL_PRINCIPAL_COL (c) ;
+ }
+ }
+ DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;
+
+ /* === Kill dense columns =============================================== */
+
+ /* Put the dense columns at the end, in their natural order */
+ for (c = n_col-1 ; c >= 0 ; c--)
+ {
+ /* skip any dead columns */
+ if (COL_IS_DEAD (c))
+ {
+ continue ;
+ }
+ deg = Col [c].length ;
+ if (deg > dense_col_count)
+ {
+ /* this is a dense column, kill and order it last */
+ Col [c].shared2.order = --n_col2 ;
+ /* decrement the row degrees */
+ cp = &A [Col [c].start] ;
+ cp_end = cp + Col [c].length ;
+ while (cp < cp_end)
+ {
+ Row [*cp++].shared1.degree-- ;
+ }
+ KILL_PRINCIPAL_COL (c) ;
+ }
+ }
+ DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;
+
+ /* === Kill dense and empty rows ======================================== */
+
+ for (r = 0 ; r < n_row ; r++)
+ {
+ deg = Row [r].shared1.degree ;
+ ASSERT (deg >= 0 && deg <= n_col) ;
+ if (deg > dense_row_count || deg == 0)
+ {
+ /* kill a dense or empty row */
+ KILL_ROW (r) ;
+ --n_row2 ;
+ }
+ else
+ {
+ /* keep track of max degree of remaining rows */
+ max_deg = MAX (max_deg, deg) ;
+ }
+ }
+ DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;
+
+ /* === Compute initial column scores ==================================== */
+
+ /* At this point the row degrees are accurate. They reflect the number */
+ /* of "live" (non-dense) columns in each row. No empty rows exist. */
+ /* Some "live" columns may contain only dead rows, however. These are */
+ /* pruned in the code below. */
+
+ /* now find the initial matlab score for each column */
+ for (c = n_col-1 ; c >= 0 ; c--)
+ {
+ /* skip dead column */
+ if (COL_IS_DEAD (c))
+ {
+ continue ;
+ }
+ score = 0 ;
+ cp = &A [Col [c].start] ;
+ new_cp = cp ;
+ cp_end = cp + Col [c].length ;
+ while (cp < cp_end)
+ {
+ /* get a row */
+ row = *cp++ ;
+ /* skip if dead */
+ if (ROW_IS_DEAD (row))
+ {
+ continue ;
+ }
+ /* compact the column */
+ *new_cp++ = row ;
+ /* add row's external degree */
+ score += Row [row].shared1.degree - 1 ;
+ /* guard against integer overflow */
+ score = MIN (score, n_col) ;
+ }
+ /* determine pruned column length */
+ col_length = (Int) (new_cp - &A [Col [c].start]) ;
+ if (col_length == 0)
+ {
+ /* a newly-made null column (all rows in this col are "dense" */
+ /* and have already been killed) */
+ DEBUG2 (("Newly null killed: %d\n", c)) ;
+ Col [c].shared2.order = --n_col2 ;
+ KILL_PRINCIPAL_COL (c) ;
+ }
+ else
+ {
+ /* set column length and set score */
+ ASSERT (score >= 0) ;
+ ASSERT (score <= n_col) ;
+ Col [c].length = col_length ;
+ Col [c].shared2.score = score ;
+ }
+ }
+ DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
+ n_col-n_col2)) ;
+
+ /* At this point, all empty rows and columns are dead. All live columns */
+ /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
+ /* yet). Rows may contain dead columns, but all live rows contain at */
+ /* least one live column. */
+
+#ifndef NDEBUG
+ debug_structures (n_row, n_col, Row, Col, A, n_col2) ;
+#endif /* NDEBUG */
+
+ /* === Initialize degree lists ========================================== */
+
+#ifndef NDEBUG
+ debug_count = 0 ;
+#endif /* NDEBUG */
+
+ /* clear the hash buckets */
+ for (c = 0 ; c <= n_col ; c++)
+ {
+ head [c] = EMPTY ;
+ }
+ min_score = n_col ;
+ /* place in reverse order, so low column indices are at the front */
+ /* of the lists. This is to encourage natural tie-breaking */
+ for (c = n_col-1 ; c >= 0 ; c--)
+ {
+ /* only add principal columns to degree lists */
+ if (COL_IS_ALIVE (c))
+ {
+ DEBUG4 (("place %d score %d minscore %d ncol %d\n",
+ c, Col [c].shared2.score, min_score, n_col)) ;
+
+ /* === Add columns score to DList =============================== */
+
+ score = Col [c].shared2.score ;
+
+ ASSERT (min_score >= 0) ;
+ ASSERT (min_score <= n_col) ;
+ ASSERT (score >= 0) ;
+ ASSERT (score <= n_col) ;
+ ASSERT (head [score] >= EMPTY) ;
+
+ /* now add this column to dList at proper score location */
+ next_col = head [score] ;
+ Col [c].shared3.prev = EMPTY ;
+ Col [c].shared4.degree_next = next_col ;
+
+ /* if there already was a column with the same score, set its */
+ /* previous pointer to this new column */
+ if (next_col != EMPTY)
+ {
+ Col [next_col].shared3.prev = c ;
+ }
+ head [score] = c ;
+
+ /* see if this score is less than current min */
+ min_score = MIN (min_score, score) ;
+
+#ifndef NDEBUG
+ debug_count++ ;
+#endif /* NDEBUG */
+
+ }
+ }
+
+#ifndef NDEBUG
+ DEBUG1 (("colamd: Live cols %d out of %d, non-princ: %d\n",
+ debug_count, n_col, n_col-debug_count)) ;
+ ASSERT (debug_count == n_col2) ;
+ debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ;
+#endif /* NDEBUG */
+
+ /* === Return number of remaining columns, and max row degree =========== */
+
+ *p_n_col2 = n_col2 ;
+ *p_n_row2 = n_row2 ;
+ *p_max_deg = max_deg ;
+}
+
+
+/* ========================================================================== */
+/* === find_ordering ======================================================== */
+/* ========================================================================== */
+
+/*
+ Order the principal columns of the supercolumn form of the matrix
+ (no supercolumns on input). Uses a minimum approximate column minimum
+ degree ordering method. Not user-callable.
+*/
+
+PRIVATE Int find_ordering /* return the number of garbage collections */
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row, /* number of rows of A */
+ Int n_col, /* number of columns of A */
+ Int Alen, /* size of A, 2*nnz + n_col or larger */
+ Colamd_Row Row [], /* of size n_row+1 */
+ Colamd_Col Col [], /* of size n_col+1 */
+ Int A [], /* column form and row form of A */
+ Int head [], /* of size n_col+1 */
+ Int n_col2, /* Remaining columns to order */
+ Int max_deg, /* Maximum row degree */
+ Int pfree, /* index of first free slot (2*nnz on entry) */
+ Int aggressive
+)
+{
+ /* === Local variables ================================================== */
+
+ Int k ; /* current pivot ordering step */
+ Int pivot_col ; /* current pivot column */
+ Int *cp ; /* a column pointer */
+ Int *rp ; /* a row pointer */
+ Int pivot_row ; /* current pivot row */
+ Int *new_cp ; /* modified column pointer */
+ Int *new_rp ; /* modified row pointer */
+ Int pivot_row_start ; /* pointer to start of pivot row */
+ Int pivot_row_degree ; /* number of columns in pivot row */
+ Int pivot_row_length ; /* number of supercolumns in pivot row */
+ Int pivot_col_score ; /* score of pivot column */
+ Int needed_memory ; /* free space needed for pivot row */
+ Int *cp_end ; /* pointer to the end of a column */
+ Int *rp_end ; /* pointer to the end of a row */
+ Int row ; /* a row index */
+ Int col ; /* a column index */
+ Int max_score ; /* maximum possible score */
+ Int cur_score ; /* score of current column */
+ unsigned Int hash ; /* hash value for supernode detection */
+ Int head_column ; /* head of hash bucket */
+ Int first_col ; /* first column in hash bucket */
+ Int tag_mark ; /* marker value for mark array */
+ Int row_mark ; /* Row [row].shared2.mark */
+ Int set_difference ; /* set difference size of row with pivot row */
+ Int min_score ; /* smallest column score */
+ Int col_thickness ; /* "thickness" (no. of columns in a supercol) */
+ Int max_mark ; /* maximum value of tag_mark */
+ Int pivot_col_thickness ; /* number of columns represented by pivot col */
+ Int prev_col ; /* Used by Dlist operations. */
+ Int next_col ; /* Used by Dlist operations. */
+ Int ngarbage ; /* number of garbage collections performed */
+
+#ifndef NDEBUG
+ Int debug_d ; /* debug loop counter */
+ Int debug_step = 0 ; /* debug loop counter */
+#endif /* NDEBUG */
+
+ /* === Initialization and clear mark ==================================== */
+
+ max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */
+ tag_mark = clear_mark (0, max_mark, n_row, Row) ;
+ min_score = 0 ;
+ ngarbage = 0 ;
+ DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;
+
+ /* === Order the columns ================================================ */
+
+ for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
+ {
+
+#ifndef NDEBUG
+ if (debug_step % 100 == 0)
+ {
+ DEBUG2 (("\n... Step k: %d out of n_col2: %d\n", k, n_col2)) ;
+ }
+ else
+ {
+ DEBUG3 (("\n----------Step k: %d out of n_col2: %d\n", k, n_col2)) ;
+ }
+ debug_step++ ;
+ debug_deg_lists (n_row, n_col, Row, Col, head,
+ min_score, n_col2-k, max_deg) ;
+ debug_matrix (n_row, n_col, Row, Col, A) ;
+#endif /* NDEBUG */
+
+ /* === Select pivot column, and order it ============================ */
+
+ /* make sure degree list isn't empty */
+ ASSERT (min_score >= 0) ;
+ ASSERT (min_score <= n_col) ;
+ ASSERT (head [min_score] >= EMPTY) ;
+
+#ifndef NDEBUG
+ for (debug_d = 0 ; debug_d < min_score ; debug_d++)
+ {
+ ASSERT (head [debug_d] == EMPTY) ;
+ }
+#endif /* NDEBUG */
+
+ /* get pivot column from head of minimum degree list */
+ while (head [min_score] == EMPTY && min_score < n_col)
+ {
+ min_score++ ;
+ }
+ pivot_col = head [min_score] ;
+ ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
+ next_col = Col [pivot_col].shared4.degree_next ;
+ head [min_score] = next_col ;
+ if (next_col != EMPTY)
+ {
+ Col [next_col].shared3.prev = EMPTY ;
+ }
+
+ ASSERT (COL_IS_ALIVE (pivot_col)) ;
+
+ /* remember score for defrag check */
+ pivot_col_score = Col [pivot_col].shared2.score ;
+
+ /* the pivot column is the kth column in the pivot order */
+ Col [pivot_col].shared2.order = k ;
+
+ /* increment order count by column thickness */
+ pivot_col_thickness = Col [pivot_col].shared1.thickness ;
+ k += pivot_col_thickness ;
+ ASSERT (pivot_col_thickness > 0) ;
+ DEBUG3 (("Pivot col: %d thick %d\n", pivot_col, pivot_col_thickness)) ;
+
+ /* === Garbage_collection, if necessary ============================= */
+
+ needed_memory = MIN (pivot_col_score, n_col - k) ;
+ if (pfree + needed_memory >= Alen)
+ {
+ pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
+ ngarbage++ ;
+ /* after garbage collection we will have enough */
+ ASSERT (pfree + needed_memory < Alen) ;
+ /* garbage collection has wiped out the Row[].shared2.mark array */
+ tag_mark = clear_mark (0, max_mark, n_row, Row) ;
+
+#ifndef NDEBUG
+ debug_matrix (n_row, n_col, Row, Col, A) ;
+#endif /* NDEBUG */
+ }
+
+ /* === Compute pivot row pattern ==================================== */
+
+ /* get starting location for this new merged row */
+ pivot_row_start = pfree ;
+
+ /* initialize new row counts to zero */
+ pivot_row_degree = 0 ;
+
+ /* tag pivot column as having been visited so it isn't included */
+ /* in merged pivot row */
+ Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
+
+ /* pivot row is the union of all rows in the pivot column pattern */
+ cp = &A [Col [pivot_col].start] ;
+ cp_end = cp + Col [pivot_col].length ;
+ while (cp < cp_end)
+ {
+ /* get a row */
+ row = *cp++ ;
+ DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
+ /* skip if row is dead */
+ if (ROW_IS_ALIVE (row))
+ {
+ rp = &A [Row [row].start] ;
+ rp_end = rp + Row [row].length ;
+ while (rp < rp_end)
+ {
+ /* get a column */
+ col = *rp++ ;
+ /* add the column, if alive and untagged */
+ col_thickness = Col [col].shared1.thickness ;
+ if (col_thickness > 0 && COL_IS_ALIVE (col))
+ {
+ /* tag column in pivot row */
+ Col [col].shared1.thickness = -col_thickness ;
+ ASSERT (pfree < Alen) ;
+ /* place column in pivot row */
+ A [pfree++] = col ;
+ pivot_row_degree += col_thickness ;
+ }
+ }
+ }
+ }
+
+ /* clear tag on pivot column */
+ Col [pivot_col].shared1.thickness = pivot_col_thickness ;
+ max_deg = MAX (max_deg, pivot_row_degree) ;
+
+#ifndef NDEBUG
+ DEBUG3 (("check2\n")) ;
+ debug_mark (n_row, Row, tag_mark, max_mark) ;
+#endif /* NDEBUG */
+
+ /* === Kill all rows used to construct pivot row ==================== */
+
+ /* also kill pivot row, temporarily */
+ cp = &A [Col [pivot_col].start] ;
+ cp_end = cp + Col [pivot_col].length ;
+ while (cp < cp_end)
+ {
+ /* may be killing an already dead row */
+ row = *cp++ ;
+ DEBUG3 (("Kill row in pivot col: %d\n", row)) ;
+ KILL_ROW (row) ;
+ }
+
+ /* === Select a row index to use as the new pivot row =============== */
+
+ pivot_row_length = pfree - pivot_row_start ;
+ if (pivot_row_length > 0)
+ {
+ /* pick the "pivot" row arbitrarily (first row in col) */
+ pivot_row = A [Col [pivot_col].start] ;
+ DEBUG3 (("Pivotal row is %d\n", pivot_row)) ;
+ }
+ else
+ {
+ /* there is no pivot row, since it is of zero length */
+ pivot_row = EMPTY ;
+ ASSERT (pivot_row_length == 0) ;
+ }
+ ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
+
+ /* === Approximate degree computation =============================== */
+
+ /* Here begins the computation of the approximate degree. The column */
+ /* score is the sum of the pivot row "length", plus the size of the */
+ /* set differences of each row in the column minus the pattern of the */
+ /* pivot row itself. The column ("thickness") itself is also */
+ /* excluded from the column score (we thus use an approximate */
+ /* external degree). */
+
+ /* The time taken by the following code (compute set differences, and */
+ /* add them up) is proportional to the size of the data structure */
+ /* being scanned - that is, the sum of the sizes of each column in */
+ /* the pivot row. Thus, the amortized time to compute a column score */
+ /* is proportional to the size of that column (where size, in this */
+ /* context, is the column "length", or the number of row indices */
+ /* in that column). The number of row indices in a column is */
+ /* monotonically non-decreasing, from the length of the original */
+ /* column on input to colamd. */
+
+ /* === Compute set differences ====================================== */
+
+ DEBUG3 (("** Computing set differences phase. **\n")) ;
+
+ /* pivot row is currently dead - it will be revived later. */
+
+ DEBUG3 (("Pivot row: ")) ;
+ /* for each column in pivot row */
+ rp = &A [pivot_row_start] ;
+ rp_end = rp + pivot_row_length ;
+ while (rp < rp_end)
+ {
+ col = *rp++ ;
+ ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
+ DEBUG3 (("Col: %d\n", col)) ;
+
+ /* clear tags used to construct pivot row pattern */
+ col_thickness = -Col [col].shared1.thickness ;
+ ASSERT (col_thickness > 0) ;
+ Col [col].shared1.thickness = col_thickness ;
+
+ /* === Remove column from degree list =========================== */
+
+ cur_score = Col [col].shared2.score ;
+ prev_col = Col [col].shared3.prev ;
+ next_col = Col [col].shared4.degree_next ;
+ ASSERT (cur_score >= 0) ;
+ ASSERT (cur_score <= n_col) ;
+ ASSERT (cur_score >= EMPTY) ;
+ if (prev_col == EMPTY)
+ {
+ head [cur_score] = next_col ;
+ }
+ else
+ {
+ Col [prev_col].shared4.degree_next = next_col ;
+ }
+ if (next_col != EMPTY)
+ {
+ Col [next_col].shared3.prev = prev_col ;
+ }
+
+ /* === Scan the column ========================================== */
+
+ cp = &A [Col [col].start] ;
+ cp_end = cp + Col [col].length ;
+ while (cp < cp_end)
+ {
+ /* get a row */
+ row = *cp++ ;
+ row_mark = Row [row].shared2.mark ;
+ /* skip if dead */
+ if (ROW_IS_MARKED_DEAD (row_mark))
+ {
+ continue ;
+ }
+ ASSERT (row != pivot_row) ;
+ set_difference = row_mark - tag_mark ;
+ /* check if the row has been seen yet */
+ if (set_difference < 0)
+ {
+ ASSERT (Row [row].shared1.degree <= max_deg) ;
+ set_difference = Row [row].shared1.degree ;
+ }
+ /* subtract column thickness from this row's set difference */
+ set_difference -= col_thickness ;
+ ASSERT (set_difference >= 0) ;
+ /* absorb this row if the set difference becomes zero */
+ if (set_difference == 0 && aggressive)
+ {
+ DEBUG3 (("aggressive absorption. Row: %d\n", row)) ;
+ KILL_ROW (row) ;
+ }
+ else
+ {
+ /* save the new mark */
+ Row [row].shared2.mark = set_difference + tag_mark ;
+ }
+ }
+ }
+
+#ifndef NDEBUG
+ debug_deg_lists (n_row, n_col, Row, Col, head,
+ min_score, n_col2-k-pivot_row_degree, max_deg) ;
+#endif /* NDEBUG */
+
+ /* === Add up set differences for each column ======================= */
+
+ DEBUG3 (("** Adding set differences phase. **\n")) ;
+
+ /* for each column in pivot row */
+ rp = &A [pivot_row_start] ;
+ rp_end = rp + pivot_row_length ;
+ while (rp < rp_end)
+ {
+ /* get a column */
+ col = *rp++ ;
+ ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
+ hash = 0 ;
+ cur_score = 0 ;
+ cp = &A [Col [col].start] ;
+ /* compact the column */
+ new_cp = cp ;
+ cp_end = cp + Col [col].length ;
+
+ DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ;
+
+ while (cp < cp_end)
+ {
+ /* get a row */
+ row = *cp++ ;
+ ASSERT(row >= 0 && row < n_row) ;
+ row_mark = Row [row].shared2.mark ;
+ /* skip if dead */
+ if (ROW_IS_MARKED_DEAD (row_mark))
+ {
+ DEBUG4 ((" Row %d, dead\n", row)) ;
+ continue ;
+ }
+ DEBUG4 ((" Row %d, set diff %d\n", row, row_mark-tag_mark));
+ ASSERT (row_mark >= tag_mark) ;
+ /* compact the column */
+ *new_cp++ = row ;
+ /* compute hash function */
+ hash += row ;
+ /* add set difference */
+ cur_score += row_mark - tag_mark ;
+ /* integer overflow... */
+ cur_score = MIN (cur_score, n_col) ;
+ }
+
+ /* recompute the column's length */
+ Col [col].length = (Int) (new_cp - &A [Col [col].start]) ;
+
+ /* === Further mass elimination ================================= */
+
+ if (Col [col].length == 0)
+ {
+ DEBUG4 (("further mass elimination. Col: %d\n", col)) ;
+ /* nothing left but the pivot row in this column */
+ KILL_PRINCIPAL_COL (col) ;
+ pivot_row_degree -= Col [col].shared1.thickness ;
+ ASSERT (pivot_row_degree >= 0) ;
+ /* order it */
+ Col [col].shared2.order = k ;
+ /* increment order count by column thickness */
+ k += Col [col].shared1.thickness ;
+ }
+ else
+ {
+ /* === Prepare for supercolumn detection ==================== */
+
+ DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ;
+
+ /* save score so far */
+ Col [col].shared2.score = cur_score ;
+
+ /* add column to hash table, for supercolumn detection */
+ hash %= n_col + 1 ;
+
+ DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
+ ASSERT (((Int) hash) <= n_col) ;
+
+ head_column = head [hash] ;
+ if (head_column > EMPTY)
+ {
+ /* degree list "hash" is non-empty, use prev (shared3) of */
+ /* first column in degree list as head of hash bucket */
+ first_col = Col [head_column].shared3.headhash ;
+ Col [head_column].shared3.headhash = col ;
+ }
+ else
+ {
+ /* degree list "hash" is empty, use head as hash bucket */
+ first_col = - (head_column + 2) ;
+ head [hash] = - (col + 2) ;
+ }
+ Col [col].shared4.hash_next = first_col ;
+
+ /* save hash function in Col [col].shared3.hash */
+ Col [col].shared3.hash = (Int) hash ;
+ ASSERT (COL_IS_ALIVE (col)) ;
+ }
+ }
+
+ /* The approximate external column degree is now computed. */
+
+ /* === Supercolumn detection ======================================== */
+
+ DEBUG3 (("** Supercolumn detection phase. **\n")) ;
+
+ detect_super_cols (
+
+#ifndef NDEBUG
+ n_col, Row,
+#endif /* NDEBUG */
+
+ Col, A, head, pivot_row_start, pivot_row_length) ;
+
+ /* === Kill the pivotal column ====================================== */
+
+ KILL_PRINCIPAL_COL (pivot_col) ;
+
+ /* === Clear mark =================================================== */
+
+ tag_mark = clear_mark (tag_mark+max_deg+1, max_mark, n_row, Row) ;
+
+#ifndef NDEBUG
+ DEBUG3 (("check3\n")) ;
+ debug_mark (n_row, Row, tag_mark, max_mark) ;
+#endif /* NDEBUG */
+
+ /* === Finalize the new pivot row, and column scores ================ */
+
+ DEBUG3 (("** Finalize scores phase. **\n")) ;
+
+ /* for each column in pivot row */
+ rp = &A [pivot_row_start] ;
+ /* compact the pivot row */
+ new_rp = rp ;
+ rp_end = rp + pivot_row_length ;
+ while (rp < rp_end)
+ {
+ col = *rp++ ;
+ /* skip dead columns */
+ if (COL_IS_DEAD (col))
+ {
+ continue ;
+ }
+ *new_rp++ = col ;
+ /* add new pivot row to column */
+ A [Col [col].start + (Col [col].length++)] = pivot_row ;
+
+ /* retrieve score so far and add on pivot row's degree. */
+ /* (we wait until here for this in case the pivot */
+ /* row's degree was reduced due to mass elimination). */
+ cur_score = Col [col].shared2.score + pivot_row_degree ;
+
+ /* calculate the max possible score as the number of */
+ /* external columns minus the 'k' value minus the */
+ /* columns thickness */
+ max_score = n_col - k - Col [col].shared1.thickness ;
+
+ /* make the score the external degree of the union-of-rows */
+ cur_score -= Col [col].shared1.thickness ;
+
+ /* make sure score is less or equal than the max score */
+ cur_score = MIN (cur_score, max_score) ;
+ ASSERT (cur_score >= 0) ;
+
+ /* store updated score */
+ Col [col].shared2.score = cur_score ;
+
+ /* === Place column back in degree list ========================= */
+
+ ASSERT (min_score >= 0) ;
+ ASSERT (min_score <= n_col) ;
+ ASSERT (cur_score >= 0) ;
+ ASSERT (cur_score <= n_col) ;
+ ASSERT (head [cur_score] >= EMPTY) ;
+ next_col = head [cur_score] ;
+ Col [col].shared4.degree_next = next_col ;
+ Col [col].shared3.prev = EMPTY ;
+ if (next_col != EMPTY)
+ {
+ Col [next_col].shared3.prev = col ;
+ }
+ head [cur_score] = col ;
+
+ /* see if this score is less than current min */
+ min_score = MIN (min_score, cur_score) ;
+
+ }
+
+#ifndef NDEBUG
+ debug_deg_lists (n_row, n_col, Row, Col, head,
+ min_score, n_col2-k, max_deg) ;
+#endif /* NDEBUG */
+
+ /* === Resurrect the new pivot row ================================== */
+
+ if (pivot_row_degree > 0)
+ {
+ /* update pivot row length to reflect any cols that were killed */
+ /* during super-col detection and mass elimination */
+ Row [pivot_row].start = pivot_row_start ;
+ Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ;
+ ASSERT (Row [pivot_row].length > 0) ;
+ Row [pivot_row].shared1.degree = pivot_row_degree ;
+ Row [pivot_row].shared2.mark = 0 ;
+ /* pivot row is no longer dead */
+
+ DEBUG1 (("Resurrect Pivot_row %d deg: %d\n",
+ pivot_row, pivot_row_degree)) ;
+ }
+ }
+
+ /* === All principal columns have now been ordered ====================== */
+
+ return (ngarbage) ;
+}
+
+
+/* ========================================================================== */
+/* === order_children ======================================================= */
+/* ========================================================================== */
+
+/*
+ The find_ordering routine has ordered all of the principal columns (the
+ representatives of the supercolumns). The non-principal columns have not
+ yet been ordered. This routine orders those columns by walking up the
+ parent tree (a column is a child of the column which absorbed it). The
+ final permutation vector is then placed in p [0 ... n_col-1], with p [0]
+ being the first column, and p [n_col-1] being the last. It doesn't look
+ like it at first glance, but be assured that this routine takes time linear
+ in the number of columns. Although not immediately obvious, the time
+ taken by this routine is O (n_col), that is, linear in the number of
+ columns. Not user-callable.
+*/
+
+PRIVATE void order_children
+(
+ /* === Parameters ======================================================= */
+
+ Int n_col, /* number of columns of A */
+ Colamd_Col Col [], /* of size n_col+1 */
+ Int p [] /* p [0 ... n_col-1] is the column permutation*/
+)
+{
+ /* === Local variables ================================================== */
+
+ Int i ; /* loop counter for all columns */
+ Int c ; /* column index */
+ Int parent ; /* index of column's parent */
+ Int order ; /* column's order */
+
+ /* === Order each non-principal column ================================== */
+
+ for (i = 0 ; i < n_col ; i++)
+ {
+ /* find an un-ordered non-principal column */
+ ASSERT (COL_IS_DEAD (i)) ;
+ if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == EMPTY)
+ {
+ parent = i ;
+ /* once found, find its principal parent */
+ do
+ {
+ parent = Col [parent].shared1.parent ;
+ } while (!COL_IS_DEAD_PRINCIPAL (parent)) ;
+
+ /* now, order all un-ordered non-principal columns along path */
+ /* to this parent. collapse tree at the same time */
+ c = i ;
+ /* get order of parent */
+ order = Col [parent].shared2.order ;
+
+ do
+ {
+ ASSERT (Col [c].shared2.order == EMPTY) ;
+
+ /* order this column */
+ Col [c].shared2.order = order++ ;
+ /* collaps tree */
+ Col [c].shared1.parent = parent ;
+
+ /* get immediate parent of this column */
+ c = Col [c].shared1.parent ;
+
+ /* continue until we hit an ordered column. There are */
+ /* guarranteed not to be anymore unordered columns */
+ /* above an ordered column */
+ } while (Col [c].shared2.order == EMPTY) ;
+
+ /* re-order the super_col parent to largest order for this group */
+ Col [parent].shared2.order = order ;
+ }
+ }
+
+ /* === Generate the permutation ========================================= */
+
+ for (c = 0 ; c < n_col ; c++)
+ {
+ p [Col [c].shared2.order] = c ;
+ }
+}
+
+
+/* ========================================================================== */
+/* === detect_super_cols ==================================================== */
+/* ========================================================================== */
+
+/*
+ Detects supercolumns by finding matches between columns in the hash buckets.
+ Check amongst columns in the set A [row_start ... row_start + row_length-1].
+ The columns under consideration are currently *not* in the degree lists,
+ and have already been placed in the hash buckets.
+
+ The hash bucket for columns whose hash function is equal to h is stored
+ as follows:
+
+ if head [h] is >= 0, then head [h] contains a degree list, so:
+
+ head [h] is the first column in degree bucket h.
+ Col [head [h]].headhash gives the first column in hash bucket h.
+
+ otherwise, the degree list is empty, and:
+
+ -(head [h] + 2) is the first column in hash bucket h.
+
+ For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
+ column" pointer. Col [c].shared3.hash is used instead as the hash number
+ for that column. The value of Col [c].shared4.hash_next is the next column
+ in the same hash bucket.
+
+ Assuming no, or "few" hash collisions, the time taken by this routine is
+ linear in the sum of the sizes (lengths) of each column whose score has
+ just been computed in the approximate degree computation.
+ Not user-callable.
+*/
+
+PRIVATE void detect_super_cols
+(
+ /* === Parameters ======================================================= */
+
+#ifndef NDEBUG
+ /* these two parameters are only needed when debugging is enabled: */
+ Int n_col, /* number of columns of A */
+ Colamd_Row Row [], /* of size n_row+1 */
+#endif /* NDEBUG */
+
+ Colamd_Col Col [], /* of size n_col+1 */
+ Int A [], /* row indices of A */
+ Int head [], /* head of degree lists and hash buckets */
+ Int row_start, /* pointer to set of columns to check */
+ Int row_length /* number of columns to check */
+)
+{
+ /* === Local variables ================================================== */
+
+ Int hash ; /* hash value for a column */
+ Int *rp ; /* pointer to a row */
+ Int c ; /* a column index */
+ Int super_c ; /* column index of the column to absorb into */
+ Int *cp1 ; /* column pointer for column super_c */
+ Int *cp2 ; /* column pointer for column c */
+ Int length ; /* length of column super_c */
+ Int prev_c ; /* column preceding c in hash bucket */
+ Int i ; /* loop counter */
+ Int *rp_end ; /* pointer to the end of the row */
+ Int col ; /* a column index in the row to check */
+ Int head_column ; /* first column in hash bucket or degree list */
+ Int first_col ; /* first column in hash bucket */
+
+ /* === Consider each column in the row ================================== */
+
+ rp = &A [row_start] ;
+ rp_end = rp + row_length ;
+ while (rp < rp_end)
+ {
+ col = *rp++ ;
+ if (COL_IS_DEAD (col))
+ {
+ continue ;
+ }
+
+ /* get hash number for this column */
+ hash = Col [col].shared3.hash ;
+ ASSERT (hash <= n_col) ;
+
+ /* === Get the first column in this hash bucket ===================== */
+
+ head_column = head [hash] ;
+ if (head_column > EMPTY)
+ {
+ first_col = Col [head_column].shared3.headhash ;
+ }
+ else
+ {
+ first_col = - (head_column + 2) ;
+ }
+
+ /* === Consider each column in the hash bucket ====================== */
+
+ for (super_c = first_col ; super_c != EMPTY ;
+ super_c = Col [super_c].shared4.hash_next)
+ {
+ ASSERT (COL_IS_ALIVE (super_c)) ;
+ ASSERT (Col [super_c].shared3.hash == hash) ;
+ length = Col [super_c].length ;
+
+ /* prev_c is the column preceding column c in the hash bucket */
+ prev_c = super_c ;
+
+ /* === Compare super_c with all columns after it ================ */
+
+ for (c = Col [super_c].shared4.hash_next ;
+ c != EMPTY ; c = Col [c].shared4.hash_next)
+ {
+ ASSERT (c != super_c) ;
+ ASSERT (COL_IS_ALIVE (c)) ;
+ ASSERT (Col [c].shared3.hash == hash) ;
+
+ /* not identical if lengths or scores are different */
+ if (Col [c].length != length ||
+ Col [c].shared2.score != Col [super_c].shared2.score)
+ {
+ prev_c = c ;
+ continue ;
+ }
+
+ /* compare the two columns */
+ cp1 = &A [Col [super_c].start] ;
+ cp2 = &A [Col [c].start] ;
+
+ for (i = 0 ; i < length ; i++)
+ {
+ /* the columns are "clean" (no dead rows) */
+ ASSERT (ROW_IS_ALIVE (*cp1)) ;
+ ASSERT (ROW_IS_ALIVE (*cp2)) ;
+ /* row indices will same order for both supercols, */
+ /* no gather scatter nessasary */
+ if (*cp1++ != *cp2++)
+ {
+ break ;
+ }
+ }
+
+ /* the two columns are different if the for-loop "broke" */
+ if (i != length)
+ {
+ prev_c = c ;
+ continue ;
+ }
+
+ /* === Got it! two columns are identical =================== */
+
+ ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;
+
+ Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
+ Col [c].shared1.parent = super_c ;
+ KILL_NON_PRINCIPAL_COL (c) ;
+ /* order c later, in order_children() */
+ Col [c].shared2.order = EMPTY ;
+ /* remove c from hash bucket */
+ Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
+ }
+ }
+
+ /* === Empty this hash bucket ======================================= */
+
+ if (head_column > EMPTY)
+ {
+ /* corresponding degree list "hash" is not empty */
+ Col [head_column].shared3.headhash = EMPTY ;
+ }
+ else
+ {
+ /* corresponding degree list "hash" is empty */
+ head [hash] = EMPTY ;
+ }
+ }
+}
+
+
+/* ========================================================================== */
+/* === garbage_collection =================================================== */
+/* ========================================================================== */
+
+/*
+ Defragments and compacts columns and rows in the workspace A. Used when
+ all avaliable memory has been used while performing row merging. Returns
+ the index of the first free position in A, after garbage collection. The
+ time taken by this routine is linear is the size of the array A, which is
+ itself linear in the number of nonzeros in the input matrix.
+ Not user-callable.
+*/
+
+PRIVATE Int garbage_collection /* returns the new value of pfree */
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row, /* number of rows */
+ Int n_col, /* number of columns */
+ Colamd_Row Row [], /* row info */
+ Colamd_Col Col [], /* column info */
+ Int A [], /* A [0 ... Alen-1] holds the matrix */
+ Int *pfree /* &A [0] ... pfree is in use */
+)
+{
+ /* === Local variables ================================================== */
+
+ Int *psrc ; /* source pointer */
+ Int *pdest ; /* destination pointer */
+ Int j ; /* counter */
+ Int r ; /* a row index */
+ Int c ; /* a column index */
+ Int length ; /* length of a row or column */
+
+#ifndef NDEBUG
+ Int debug_rows ;
+ DEBUG2 (("Defrag..\n")) ;
+ for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ;
+ debug_rows = 0 ;
+#endif /* NDEBUG */
+
+ /* === Defragment the columns =========================================== */
+
+ pdest = &A[0] ;
+ for (c = 0 ; c < n_col ; c++)
+ {
+ if (COL_IS_ALIVE (c))
+ {
+ psrc = &A [Col [c].start] ;
+
+ /* move and compact the column */
+ ASSERT (pdest <= psrc) ;
+ Col [c].start = (Int) (pdest - &A [0]) ;
+ length = Col [c].length ;
+ for (j = 0 ; j < length ; j++)
+ {
+ r = *psrc++ ;
+ if (ROW_IS_ALIVE (r))
+ {
+ *pdest++ = r ;
+ }
+ }
+ Col [c].length = (Int) (pdest - &A [Col [c].start]) ;
+ }
+ }
+
+ /* === Prepare to defragment the rows =================================== */
+
+ for (r = 0 ; r < n_row ; r++)
+ {
+ if (ROW_IS_DEAD (r) || (Row [r].length == 0))
+ {
+ /* This row is already dead, or is of zero length. Cannot compact
+ * a row of zero length, so kill it. NOTE: in the current version,
+ * there are no zero-length live rows. Kill the row (for the first
+ * time, or again) just to be safe. */
+ KILL_ROW (r) ;
+ }
+ else
+ {
+ /* save first column index in Row [r].shared2.first_column */
+ psrc = &A [Row [r].start] ;
+ Row [r].shared2.first_column = *psrc ;
+ ASSERT (ROW_IS_ALIVE (r)) ;
+ /* flag the start of the row with the one's complement of row */
+ *psrc = ONES_COMPLEMENT (r) ;
+#ifndef NDEBUG
+ debug_rows++ ;
+#endif /* NDEBUG */
+ }
+ }
+
+ /* === Defragment the rows ============================================== */
+
+ psrc = pdest ;
+ while (psrc < pfree)
+ {
+ /* find a negative number ... the start of a row */
+ if (*psrc++ < 0)
+ {
+ psrc-- ;
+ /* get the row index */
+ r = ONES_COMPLEMENT (*psrc) ;
+ ASSERT (r >= 0 && r < n_row) ;
+ /* restore first column index */
+ *psrc = Row [r].shared2.first_column ;
+ ASSERT (ROW_IS_ALIVE (r)) ;
+ ASSERT (Row [r].length > 0) ;
+ /* move and compact the row */
+ ASSERT (pdest <= psrc) ;
+ Row [r].start = (Int) (pdest - &A [0]) ;
+ length = Row [r].length ;
+ for (j = 0 ; j < length ; j++)
+ {
+ c = *psrc++ ;
+ if (COL_IS_ALIVE (c))
+ {
+ *pdest++ = c ;
+ }
+ }
+ Row [r].length = (Int) (pdest - &A [Row [r].start]) ;
+ ASSERT (Row [r].length > 0) ;
+#ifndef NDEBUG
+ debug_rows-- ;
+#endif /* NDEBUG */
+ }
+ }
+ /* ensure we found all the rows */
+ ASSERT (debug_rows == 0) ;
+
+ /* === Return the new value of pfree ==================================== */
+
+ return ((Int) (pdest - &A [0])) ;
+}
+
+
+/* ========================================================================== */
+/* === clear_mark =========================================================== */
+/* ========================================================================== */
+
+/*
+ Clears the Row [].shared2.mark array, and returns the new tag_mark.
+ Return value is the new tag_mark. Not user-callable.
+*/
+
+PRIVATE Int clear_mark /* return the new value for tag_mark */
+(
+ /* === Parameters ======================================================= */
+
+ Int tag_mark, /* new value of tag_mark */
+ Int max_mark, /* max allowed value of tag_mark */
+
+ Int n_row, /* number of rows in A */
+ Colamd_Row Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
+)
+{
+ /* === Local variables ================================================== */
+
+ Int r ;
+
+ if (tag_mark <= 0 || tag_mark >= max_mark)
+ {
+ for (r = 0 ; r < n_row ; r++)
+ {
+ if (ROW_IS_ALIVE (r))
+ {
+ Row [r].shared2.mark = 0 ;
+ }
+ }
+ tag_mark = 1 ;
+ }
+
+ return (tag_mark) ;
+}
+
+
+/* ========================================================================== */
+/* === print_report ========================================================= */
+/* ========================================================================== */
+
+PRIVATE void print_report
+(
+ char *method,
+ Int stats [COLAMD_STATS]
+)
+{
+
+ Int i1, i2, i3 ;
+
+ PRINTF (("\n%s version %d.%d, %s: ", method,
+ COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE)) ;
+
+ if (!stats)
+ {
+ PRINTF (("No statistics available.\n")) ;
+ return ;
+ }
+
+ i1 = stats [COLAMD_INFO1] ;
+ i2 = stats [COLAMD_INFO2] ;
+ i3 = stats [COLAMD_INFO3] ;
+
+ if (stats [COLAMD_STATUS] >= 0)
+ {
+ PRINTF (("OK. ")) ;
+ }
+ else
+ {
+ PRINTF (("ERROR. ")) ;
+ }
+
+ switch (stats [COLAMD_STATUS])
+ {
+
+ case COLAMD_OK_BUT_JUMBLED:
+
+ PRINTF(("Matrix has unsorted or duplicate row indices.\n")) ;
+
+ PRINTF(("%s: number of duplicate or out-of-order row indices: %d\n",
+ method, i3)) ;
+
+ PRINTF(("%s: last seen duplicate or out-of-order row index: %d\n",
+ method, INDEX (i2))) ;
+
+ PRINTF(("%s: last seen in column: %d",
+ method, INDEX (i1))) ;
+
+ /* no break - fall through to next case instead */
+
+ case COLAMD_OK:
+
+ PRINTF(("\n")) ;
+
+ PRINTF(("%s: number of dense or empty rows ignored: %d\n",
+ method, stats [COLAMD_DENSE_ROW])) ;
+
+ PRINTF(("%s: number of dense or empty columns ignored: %d\n",
+ method, stats [COLAMD_DENSE_COL])) ;
+
+ PRINTF(("%s: number of garbage collections performed: %d\n",
+ method, stats [COLAMD_DEFRAG_COUNT])) ;
+ break ;
+
+ case COLAMD_ERROR_A_not_present:
+
+ PRINTF(("Array A (row indices of matrix) not present.\n")) ;
+ break ;
+
+ case COLAMD_ERROR_p_not_present:
+
+ PRINTF(("Array p (column pointers for matrix) not present.\n")) ;
+ break ;
+
+ case COLAMD_ERROR_nrow_negative:
+
+ PRINTF(("Invalid number of rows (%d).\n", i1)) ;
+ break ;
+
+ case COLAMD_ERROR_ncol_negative:
+
+ PRINTF(("Invalid number of columns (%d).\n", i1)) ;
+ break ;
+
+ case COLAMD_ERROR_nnz_negative:
+
+ PRINTF(("Invalid number of nonzero entries (%d).\n", i1)) ;
+ break ;
+
+ case COLAMD_ERROR_p0_nonzero:
+
+ PRINTF(("Invalid column pointer, p [0] = %d, must be zero.\n", i1));
+ break ;
+
+ case COLAMD_ERROR_A_too_small:
+
+ PRINTF(("Array A too small.\n")) ;
+ PRINTF((" Need Alen >= %d, but given only Alen = %d.\n",
+ i1, i2)) ;
+ break ;
+
+ case COLAMD_ERROR_col_length_negative:
+
+ PRINTF
+ (("Column %d has a negative number of nonzero entries (%d).\n",
+ INDEX (i1), i2)) ;
+ break ;
+
+ case COLAMD_ERROR_row_index_out_of_bounds:
+
+ PRINTF
+ (("Row index (row %d) out of bounds (%d to %d) in column %d.\n",
+ INDEX (i2), INDEX (0), INDEX (i3-1), INDEX (i1))) ;
+ break ;
+
+ case COLAMD_ERROR_out_of_memory:
+
+ PRINTF(("Out of memory.\n")) ;
+ break ;
+
+ /* v2.4: internal-error case deleted */
+ }
+}
+
+
+
+
+/* ========================================================================== */
+/* === colamd debugging routines ============================================ */
+/* ========================================================================== */
+
+/* When debugging is disabled, the remainder of this file is ignored. */
+
+#ifndef NDEBUG
+
+
+/* ========================================================================== */
+/* === debug_structures ===================================================== */
+/* ========================================================================== */
+
+/*
+ At this point, all empty rows and columns are dead. All live columns
+ are "clean" (containing no dead rows) and simplicial (no supercolumns
+ yet). Rows may contain dead columns, but all live rows contain at
+ least one live column.
+*/
+
+PRIVATE void debug_structures
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row,
+ Int n_col,
+ Colamd_Row Row [],
+ Colamd_Col Col [],
+ Int A [],
+ Int n_col2
+)
+{
+ /* === Local variables ================================================== */
+
+ Int i ;
+ Int c ;
+ Int *cp ;
+ Int *cp_end ;
+ Int len ;
+ Int score ;
+ Int r ;
+ Int *rp ;
+ Int *rp_end ;
+ Int deg ;
+
+ /* === Check A, Row, and Col ============================================ */
+
+ for (c = 0 ; c < n_col ; c++)
+ {
+ if (COL_IS_ALIVE (c))
+ {
+ len = Col [c].length ;
+ score = Col [c].shared2.score ;
+ DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ;
+ ASSERT (len > 0) ;
+ ASSERT (score >= 0) ;
+ ASSERT (Col [c].shared1.thickness == 1) ;
+ cp = &A [Col [c].start] ;
+ cp_end = cp + len ;
+ while (cp < cp_end)
+ {
+ r = *cp++ ;
+ ASSERT (ROW_IS_ALIVE (r)) ;
+ }
+ }
+ else
+ {
+ i = Col [c].shared2.order ;
+ ASSERT (i >= n_col2 && i < n_col) ;
+ }
+ }
+
+ for (r = 0 ; r < n_row ; r++)
+ {
+ if (ROW_IS_ALIVE (r))
+ {
+ i = 0 ;
+ len = Row [r].length ;
+ deg = Row [r].shared1.degree ;
+ ASSERT (len > 0) ;
+ ASSERT (deg > 0) ;
+ rp = &A [Row [r].start] ;
+ rp_end = rp + len ;
+ while (rp < rp_end)
+ {
+ c = *rp++ ;
+ if (COL_IS_ALIVE (c))
+ {
+ i++ ;
+ }
+ }
+ ASSERT (i > 0) ;
+ }
+ }
+}
+
+
+/* ========================================================================== */
+/* === debug_deg_lists ====================================================== */
+/* ========================================================================== */
+
+/*
+ Prints the contents of the degree lists. Counts the number of columns
+ in the degree list and compares it to the total it should have. Also
+ checks the row degrees.
+*/
+
+PRIVATE void debug_deg_lists
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row,
+ Int n_col,
+ Colamd_Row Row [],
+ Colamd_Col Col [],
+ Int head [],
+ Int min_score,
+ Int should,
+ Int max_deg
+)
+{
+ /* === Local variables ================================================== */
+
+ Int deg ;
+ Int col ;
+ Int have ;
+ Int row ;
+
+ /* === Check the degree lists =========================================== */
+
+ if (n_col > 10000 && colamd_debug <= 0)
+ {
+ return ;
+ }
+ have = 0 ;
+ DEBUG4 (("Degree lists: %d\n", min_score)) ;
+ for (deg = 0 ; deg <= n_col ; deg++)
+ {
+ col = head [deg] ;
+ if (col == EMPTY)
+ {
+ continue ;
+ }
+ DEBUG4 (("%d:", deg)) ;
+ while (col != EMPTY)
+ {
+ DEBUG4 ((" %d", col)) ;
+ have += Col [col].shared1.thickness ;
+ ASSERT (COL_IS_ALIVE (col)) ;
+ col = Col [col].shared4.degree_next ;
+ }
+ DEBUG4 (("\n")) ;
+ }
+ DEBUG4 (("should %d have %d\n", should, have)) ;
+ ASSERT (should == have) ;
+
+ /* === Check the row degrees ============================================ */
+
+ if (n_row > 10000 && colamd_debug <= 0)
+ {
+ return ;
+ }
+ for (row = 0 ; row < n_row ; row++)
+ {
+ if (ROW_IS_ALIVE (row))
+ {
+ ASSERT (Row [row].shared1.degree <= max_deg) ;
+ }
+ }
+}
+
+
+/* ========================================================================== */
+/* === debug_mark =========================================================== */
+/* ========================================================================== */
+
+/*
+ Ensures that the tag_mark is less that the maximum and also ensures that
+ each entry in the mark array is less than the tag mark.
+*/
+
+PRIVATE void debug_mark
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row,
+ Colamd_Row Row [],
+ Int tag_mark,
+ Int max_mark
+)
+{
+ /* === Local variables ================================================== */
+
+ Int r ;
+
+ /* === Check the Row marks ============================================== */
+
+ ASSERT (tag_mark > 0 && tag_mark <= max_mark) ;
+ if (n_row > 10000 && colamd_debug <= 0)
+ {
+ return ;
+ }
+ for (r = 0 ; r < n_row ; r++)
+ {
+ ASSERT (Row [r].shared2.mark < tag_mark) ;
+ }
+}
+
+
+/* ========================================================================== */
+/* === debug_matrix ========================================================= */
+/* ========================================================================== */
+
+/*
+ Prints out the contents of the columns and the rows.
+*/
+
+PRIVATE void debug_matrix
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row,
+ Int n_col,
+ Colamd_Row Row [],
+ Colamd_Col Col [],
+ Int A []
+)
+{
+ /* === Local variables ================================================== */
+
+ Int r ;
+ Int c ;
+ Int *rp ;
+ Int *rp_end ;
+ Int *cp ;
+ Int *cp_end ;
+
+ /* === Dump the rows and columns of the matrix ========================== */
+
+ if (colamd_debug < 3)
+ {
+ return ;
+ }
+ DEBUG3 (("DUMP MATRIX:\n")) ;
+ for (r = 0 ; r < n_row ; r++)
+ {
+ DEBUG3 (("Row %d alive? %d\n", r, ROW_IS_ALIVE (r))) ;
+ if (ROW_IS_DEAD (r))
+ {
+ continue ;
+ }
+ DEBUG3 (("start %d length %d degree %d\n",
+ Row [r].start, Row [r].length, Row [r].shared1.degree)) ;
+ rp = &A [Row [r].start] ;
+ rp_end = rp + Row [r].length ;
+ while (rp < rp_end)
+ {
+ c = *rp++ ;
+ DEBUG4 ((" %d col %d\n", COL_IS_ALIVE (c), c)) ;
+ }
+ }
+
+ for (c = 0 ; c < n_col ; c++)
+ {
+ DEBUG3 (("Col %d alive? %d\n", c, COL_IS_ALIVE (c))) ;
+ if (COL_IS_DEAD (c))
+ {
+ continue ;
+ }
+ DEBUG3 (("start %d length %d shared1 %d shared2 %d\n",
+ Col [c].start, Col [c].length,
+ Col [c].shared1.thickness, Col [c].shared2.score)) ;
+ cp = &A [Col [c].start] ;
+ cp_end = cp + Col [c].length ;
+ while (cp < cp_end)
+ {
+ r = *cp++ ;
+ DEBUG4 ((" %d row %d\n", ROW_IS_ALIVE (r), r)) ;
+ }
+ }
+}
+
+PRIVATE void colamd_get_debug
+(
+ char *method
+)
+{
+ FILE *f ;
+ colamd_debug = 0 ; /* no debug printing */
+ f = fopen ("debug", "r") ;
+ if (f == (FILE *) NULL)
+ {
+ colamd_debug = 0 ;
+ }
+ else
+ {
+ fscanf (f, "%d", &colamd_debug) ;
+ fclose (f) ;
+ }
+ DEBUG0 (("%s: debug version, D = %d (THIS WILL BE SLOW!)\n",
+ method, colamd_debug)) ;
+}
+
+#endif /* NDEBUG */