aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/draft/glpapi07.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/draft/glpapi07.c')
-rw-r--r--test/monniaux/glpk-4.65/src/draft/glpapi07.c499
1 files changed, 499 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/draft/glpapi07.c b/test/monniaux/glpk-4.65/src/draft/glpapi07.c
new file mode 100644
index 00000000..9ac294bd
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/draft/glpapi07.c
@@ -0,0 +1,499 @@
+/* glpapi07.c (exact simplex solver) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+* 2009, 2010, 2011, 2013, 2017 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "draft.h"
+#include "glpssx.h"
+#include "misc.h"
+#include "prob.h"
+
+/***********************************************************************
+* NAME
+*
+* glp_exact - solve LP problem in exact arithmetic
+*
+* SYNOPSIS
+*
+* int glp_exact(glp_prob *lp, const glp_smcp *parm);
+*
+* DESCRIPTION
+*
+* The routine glp_exact is a tentative implementation of the primal
+* two-phase simplex method based on exact (rational) arithmetic. It is
+* similar to the routine glp_simplex, however, for all internal
+* computations it uses arithmetic of rational numbers, which is exact
+* in mathematical sense, i.e. free of round-off errors unlike floating
+* point arithmetic.
+*
+* Note that the routine glp_exact uses inly two control parameters
+* passed in the structure glp_smcp, namely, it_lim and tm_lim.
+*
+* RETURNS
+*
+* 0 The LP problem instance has been successfully solved. This code
+* does not necessarily mean that the solver has found optimal
+* solution. It only means that the solution process was successful.
+*
+* GLP_EBADB
+* Unable to start the search, because the initial basis specified
+* in the problem object is invalid--the number of basic (auxiliary
+* and structural) variables is not the same as the number of rows in
+* the problem object.
+*
+* GLP_ESING
+* Unable to start the search, because the basis matrix correspodning
+* to the initial basis is exactly singular.
+*
+* GLP_EBOUND
+* Unable to start the search, because some double-bounded variables
+* have incorrect bounds.
+*
+* GLP_EFAIL
+* The problem has no rows/columns.
+*
+* GLP_EITLIM
+* The search was prematurely terminated, because the simplex
+* iteration limit has been exceeded.
+*
+* GLP_ETMLIM
+* The search was prematurely terminated, because the time limit has
+* been exceeded. */
+
+static void set_d_eps(mpq_t x, double val)
+{ /* convert double val to rational x obtaining a more adequate
+ fraction than provided by mpq_set_d due to allowing a small
+ approximation error specified by a given relative tolerance;
+ for example, mpq_set_d would give the following
+ 1/3 ~= 0.333333333333333314829616256247391... ->
+ -> 6004799503160661/18014398509481984
+ while this routine gives exactly 1/3 */
+ int s, n, j;
+ double f, p, q, eps = 1e-9;
+ mpq_t temp;
+ xassert(-DBL_MAX <= val && val <= +DBL_MAX);
+#if 1 /* 30/VII-2008 */
+ if (val == floor(val))
+ { /* if val is integral, do not approximate */
+ mpq_set_d(x, val);
+ goto done;
+ }
+#endif
+ if (val > 0.0)
+ s = +1;
+ else if (val < 0.0)
+ s = -1;
+ else
+ { mpq_set_si(x, 0, 1);
+ goto done;
+ }
+ f = frexp(fabs(val), &n);
+ /* |val| = f * 2^n, where 0.5 <= f < 1.0 */
+ fp2rat(f, 0.1 * eps, &p, &q);
+ /* f ~= p / q, where p and q are integers */
+ mpq_init(temp);
+ mpq_set_d(x, p);
+ mpq_set_d(temp, q);
+ mpq_div(x, x, temp);
+ mpq_set_si(temp, 1, 1);
+ for (j = 1; j <= abs(n); j++)
+ mpq_add(temp, temp, temp);
+ if (n > 0)
+ mpq_mul(x, x, temp);
+ else if (n < 0)
+ mpq_div(x, x, temp);
+ mpq_clear(temp);
+ if (s < 0) mpq_neg(x, x);
+ /* check that the desired tolerance has been attained */
+ xassert(fabs(val - mpq_get_d(x)) <= eps * (1.0 + fabs(val)));
+done: return;
+}
+
+static void load_data(SSX *ssx, glp_prob *lp)
+{ /* load LP problem data into simplex solver workspace */
+ int m = ssx->m;
+ int n = ssx->n;
+ int nnz = ssx->A_ptr[n+1]-1;
+ int j, k, type, loc, len, *ind;
+ double lb, ub, coef, *val;
+ xassert(lp->m == m);
+ xassert(lp->n == n);
+ xassert(lp->nnz == nnz);
+ /* types and bounds of rows and columns */
+ for (k = 1; k <= m+n; k++)
+ { if (k <= m)
+ { type = lp->row[k]->type;
+ lb = lp->row[k]->lb;
+ ub = lp->row[k]->ub;
+ }
+ else
+ { type = lp->col[k-m]->type;
+ lb = lp->col[k-m]->lb;
+ ub = lp->col[k-m]->ub;
+ }
+ switch (type)
+ { case GLP_FR: type = SSX_FR; break;
+ case GLP_LO: type = SSX_LO; break;
+ case GLP_UP: type = SSX_UP; break;
+ case GLP_DB: type = SSX_DB; break;
+ case GLP_FX: type = SSX_FX; break;
+ default: xassert(type != type);
+ }
+ ssx->type[k] = type;
+ set_d_eps(ssx->lb[k], lb);
+ set_d_eps(ssx->ub[k], ub);
+ }
+ /* optimization direction */
+ switch (lp->dir)
+ { case GLP_MIN: ssx->dir = SSX_MIN; break;
+ case GLP_MAX: ssx->dir = SSX_MAX; break;
+ default: xassert(lp != lp);
+ }
+ /* objective coefficients */
+ for (k = 0; k <= m+n; k++)
+ { if (k == 0)
+ coef = lp->c0;
+ else if (k <= m)
+ coef = 0.0;
+ else
+ coef = lp->col[k-m]->coef;
+ set_d_eps(ssx->coef[k], coef);
+ }
+ /* constraint coefficients */
+ ind = xcalloc(1+m, sizeof(int));
+ val = xcalloc(1+m, sizeof(double));
+ loc = 0;
+ for (j = 1; j <= n; j++)
+ { ssx->A_ptr[j] = loc+1;
+ len = glp_get_mat_col(lp, j, ind, val);
+ for (k = 1; k <= len; k++)
+ { loc++;
+ ssx->A_ind[loc] = ind[k];
+ set_d_eps(ssx->A_val[loc], val[k]);
+ }
+ }
+ xassert(loc == nnz);
+ xfree(ind);
+ xfree(val);
+ return;
+}
+
+static int load_basis(SSX *ssx, glp_prob *lp)
+{ /* load current LP basis into simplex solver workspace */
+ int m = ssx->m;
+ int n = ssx->n;
+ int *type = ssx->type;
+ int *stat = ssx->stat;
+ int *Q_row = ssx->Q_row;
+ int *Q_col = ssx->Q_col;
+ int i, j, k;
+ xassert(lp->m == m);
+ xassert(lp->n == n);
+ /* statuses of rows and columns */
+ for (k = 1; k <= m+n; k++)
+ { if (k <= m)
+ stat[k] = lp->row[k]->stat;
+ else
+ stat[k] = lp->col[k-m]->stat;
+ switch (stat[k])
+ { case GLP_BS:
+ stat[k] = SSX_BS;
+ break;
+ case GLP_NL:
+ stat[k] = SSX_NL;
+ xassert(type[k] == SSX_LO || type[k] == SSX_DB);
+ break;
+ case GLP_NU:
+ stat[k] = SSX_NU;
+ xassert(type[k] == SSX_UP || type[k] == SSX_DB);
+ break;
+ case GLP_NF:
+ stat[k] = SSX_NF;
+ xassert(type[k] == SSX_FR);
+ break;
+ case GLP_NS:
+ stat[k] = SSX_NS;
+ xassert(type[k] == SSX_FX);
+ break;
+ default:
+ xassert(stat != stat);
+ }
+ }
+ /* build permutation matix Q */
+ i = j = 0;
+ for (k = 1; k <= m+n; k++)
+ { if (stat[k] == SSX_BS)
+ { i++;
+ if (i > m) return 1;
+ Q_row[k] = i, Q_col[i] = k;
+ }
+ else
+ { j++;
+ if (j > n) return 1;
+ Q_row[k] = m+j, Q_col[m+j] = k;
+ }
+ }
+ xassert(i == m && j == n);
+ return 0;
+}
+
+int glp_exact(glp_prob *lp, const glp_smcp *parm)
+{ glp_smcp _parm;
+ SSX *ssx;
+ int m = lp->m;
+ int n = lp->n;
+ int nnz = lp->nnz;
+ int i, j, k, type, pst, dst, ret, stat;
+ double lb, ub, prim, dual, sum;
+ if (parm == NULL)
+ parm = &_parm, glp_init_smcp((glp_smcp *)parm);
+ /* check control parameters */
+#if 1 /* 25/XI-2017 */
+ switch (parm->msg_lev)
+ { case GLP_MSG_OFF:
+ case GLP_MSG_ERR:
+ case GLP_MSG_ON:
+ case GLP_MSG_ALL:
+ case GLP_MSG_DBG:
+ break;
+ default:
+ xerror("glp_exact: msg_lev = %d; invalid parameter\n",
+ parm->msg_lev);
+ }
+#endif
+ if (parm->it_lim < 0)
+ xerror("glp_exact: it_lim = %d; invalid parameter\n",
+ parm->it_lim);
+ if (parm->tm_lim < 0)
+ xerror("glp_exact: tm_lim = %d; invalid parameter\n",
+ parm->tm_lim);
+ /* the problem must have at least one row and one column */
+ if (!(m > 0 && n > 0))
+#if 0 /* 25/XI-2017 */
+ { xprintf("glp_exact: problem has no rows/columns\n");
+#else
+ { if (parm->msg_lev >= GLP_MSG_ERR)
+ xprintf("glp_exact: problem has no rows/columns\n");
+#endif
+ return GLP_EFAIL;
+ }
+#if 1
+ /* basic solution is currently undefined */
+ lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
+ lp->obj_val = 0.0;
+ lp->some = 0;
+#endif
+ /* check that all double-bounded variables have correct bounds */
+ for (k = 1; k <= m+n; k++)
+ { if (k <= m)
+ { type = lp->row[k]->type;
+ lb = lp->row[k]->lb;
+ ub = lp->row[k]->ub;
+ }
+ else
+ { type = lp->col[k-m]->type;
+ lb = lp->col[k-m]->lb;
+ ub = lp->col[k-m]->ub;
+ }
+ if (type == GLP_DB && lb >= ub)
+#if 0 /* 25/XI-2017 */
+ { xprintf("glp_exact: %s %d has invalid bounds\n",
+ k <= m ? "row" : "column", k <= m ? k : k-m);
+#else
+ { if (parm->msg_lev >= GLP_MSG_ERR)
+ xprintf("glp_exact: %s %d has invalid bounds\n",
+ k <= m ? "row" : "column", k <= m ? k : k-m);
+#endif
+ return GLP_EBOUND;
+ }
+ }
+ /* create the simplex solver workspace */
+#if 1 /* 25/XI-2017 */
+ if (parm->msg_lev >= GLP_MSG_ALL)
+ {
+#endif
+ xprintf("glp_exact: %d rows, %d columns, %d non-zeros\n",
+ m, n, nnz);
+#ifdef HAVE_GMP
+ xprintf("GNU MP bignum library is being used\n");
+#else
+ xprintf("GLPK bignum module is being used\n");
+ xprintf("(Consider installing GNU MP to attain a much better perf"
+ "ormance.)\n");
+#endif
+#if 1 /* 25/XI-2017 */
+ }
+#endif
+ ssx = ssx_create(m, n, nnz);
+ /* load LP problem data into the workspace */
+ load_data(ssx, lp);
+ /* load current LP basis into the workspace */
+ if (load_basis(ssx, lp))
+#if 0 /* 25/XI-2017 */
+ { xprintf("glp_exact: initial LP basis is invalid\n");
+#else
+ { if (parm->msg_lev >= GLP_MSG_ERR)
+ xprintf("glp_exact: initial LP basis is invalid\n");
+#endif
+ ret = GLP_EBADB;
+ goto done;
+ }
+#if 0
+ /* inherit some control parameters from the LP object */
+ ssx->it_lim = lpx_get_int_parm(lp, LPX_K_ITLIM);
+ ssx->it_cnt = lpx_get_int_parm(lp, LPX_K_ITCNT);
+ ssx->tm_lim = lpx_get_real_parm(lp, LPX_K_TMLIM);
+#else
+#if 1 /* 25/XI-2017 */
+ ssx->msg_lev = parm->msg_lev;
+#endif
+ ssx->it_lim = parm->it_lim;
+ ssx->it_cnt = lp->it_cnt;
+ ssx->tm_lim = (double)parm->tm_lim / 1000.0;
+#endif
+ ssx->out_frq = 5.0;
+ ssx->tm_beg = xtime();
+#if 0 /* 10/VI-2013 */
+ ssx->tm_lag = xlset(0);
+#else
+ ssx->tm_lag = 0.0;
+#endif
+ /* solve LP */
+ ret = ssx_driver(ssx);
+#if 0
+ /* copy back some statistics to the LP object */
+ lpx_set_int_parm(lp, LPX_K_ITLIM, ssx->it_lim);
+ lpx_set_int_parm(lp, LPX_K_ITCNT, ssx->it_cnt);
+ lpx_set_real_parm(lp, LPX_K_TMLIM, ssx->tm_lim);
+#else
+ lp->it_cnt = ssx->it_cnt;
+#endif
+ /* analyze the return code */
+ switch (ret)
+ { case 0:
+ /* optimal solution found */
+ ret = 0;
+ pst = dst = GLP_FEAS;
+ break;
+ case 1:
+ /* problem has no feasible solution */
+ ret = 0;
+ pst = GLP_NOFEAS, dst = GLP_INFEAS;
+ break;
+ case 2:
+ /* problem has unbounded solution */
+ ret = 0;
+ pst = GLP_FEAS, dst = GLP_NOFEAS;
+#if 1
+ xassert(1 <= ssx->q && ssx->q <= n);
+ lp->some = ssx->Q_col[m + ssx->q];
+ xassert(1 <= lp->some && lp->some <= m+n);
+#endif
+ break;
+ case 3:
+ /* iteration limit exceeded (phase I) */
+ ret = GLP_EITLIM;
+ pst = dst = GLP_INFEAS;
+ break;
+ case 4:
+ /* iteration limit exceeded (phase II) */
+ ret = GLP_EITLIM;
+ pst = GLP_FEAS, dst = GLP_INFEAS;
+ break;
+ case 5:
+ /* time limit exceeded (phase I) */
+ ret = GLP_ETMLIM;
+ pst = dst = GLP_INFEAS;
+ break;
+ case 6:
+ /* time limit exceeded (phase II) */
+ ret = GLP_ETMLIM;
+ pst = GLP_FEAS, dst = GLP_INFEAS;
+ break;
+ case 7:
+ /* initial basis matrix is singular */
+ ret = GLP_ESING;
+ goto done;
+ default:
+ xassert(ret != ret);
+ }
+ /* store final basic solution components into LP object */
+ lp->pbs_stat = pst;
+ lp->dbs_stat = dst;
+ sum = lp->c0;
+ for (k = 1; k <= m+n; k++)
+ { if (ssx->stat[k] == SSX_BS)
+ { i = ssx->Q_row[k]; /* x[k] = xB[i] */
+ xassert(1 <= i && i <= m);
+ stat = GLP_BS;
+ prim = mpq_get_d(ssx->bbar[i]);
+ dual = 0.0;
+ }
+ else
+ { j = ssx->Q_row[k] - m; /* x[k] = xN[j] */
+ xassert(1 <= j && j <= n);
+ switch (ssx->stat[k])
+ { case SSX_NF:
+ stat = GLP_NF;
+ prim = 0.0;
+ break;
+ case SSX_NL:
+ stat = GLP_NL;
+ prim = mpq_get_d(ssx->lb[k]);
+ break;
+ case SSX_NU:
+ stat = GLP_NU;
+ prim = mpq_get_d(ssx->ub[k]);
+ break;
+ case SSX_NS:
+ stat = GLP_NS;
+ prim = mpq_get_d(ssx->lb[k]);
+ break;
+ default:
+ xassert(ssx != ssx);
+ }
+ dual = mpq_get_d(ssx->cbar[j]);
+ }
+ if (k <= m)
+ { glp_set_row_stat(lp, k, stat);
+ lp->row[k]->prim = prim;
+ lp->row[k]->dual = dual;
+ }
+ else
+ { glp_set_col_stat(lp, k-m, stat);
+ lp->col[k-m]->prim = prim;
+ lp->col[k-m]->dual = dual;
+ sum += lp->col[k-m]->coef * prim;
+ }
+ }
+ lp->obj_val = sum;
+done: /* delete the simplex solver workspace */
+ ssx_delete(ssx);
+#if 1 /* 23/XI-2015 */
+ xassert(gmp_pool_count() == 0);
+ gmp_free_mem();
+#endif
+ /* return to the application program */
+ return ret;
+}
+
+/* eof */