aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/draft/glphbm.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/draft/glphbm.c')
-rw-r--r--test/monniaux/glpk-4.65/src/draft/glphbm.c533
1 files changed, 533 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/draft/glphbm.c b/test/monniaux/glpk-4.65/src/draft/glphbm.c
new file mode 100644
index 00000000..8b33c172
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/draft/glphbm.c
@@ -0,0 +1,533 @@
+/* glphbm.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+* 2009, 2010, 2011, 2013, 2017 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "glphbm.h"
+#include "misc.h"
+
+/***********************************************************************
+* NAME
+*
+* hbm_read_mat - read sparse matrix in Harwell-Boeing format
+*
+* SYNOPSIS
+*
+* #include "glphbm.h"
+* HBM *hbm_read_mat(const char *fname);
+*
+* DESCRIPTION
+*
+* The routine hbm_read_mat reads a sparse matrix in the Harwell-Boeing
+* format from a text file whose name is the character string fname.
+*
+* Detailed description of the Harwell-Boeing format recognised by this
+* routine is given in the following report:
+*
+* I.S.Duff, R.G.Grimes, J.G.Lewis. User's Guide for the Harwell-Boeing
+* Sparse Matrix Collection (Release I), TR/PA/92/86, October 1992.
+*
+* RETURNS
+*
+* If no error occured, the routine hbm_read_mat returns a pointer to
+* a data structure containing the matrix. In case of error the routine
+* prints an appropriate error message and returns NULL. */
+
+struct dsa
+{ /* working area used by routine hbm_read_mat */
+ const char *fname;
+ /* name of input text file */
+ FILE *fp;
+ /* stream assigned to input text file */
+ int seqn;
+ /* card sequential number */
+ char card[80+1];
+ /* card image buffer */
+ int fmt_p;
+ /* scale factor */
+ int fmt_k;
+ /* iterator */
+ int fmt_f;
+ /* format code */
+ int fmt_w;
+ /* field width */
+ int fmt_d;
+ /* number of decimal places after point */
+};
+
+/***********************************************************************
+* read_card - read next data card
+*
+* This routine reads the next 80-column card from the input text file
+* and stores its image into the character string card. If the card was
+* read successfully, the routine returns zero, otherwise non-zero. */
+
+#if 1 /* 11/III-2012 */
+static int read_card(struct dsa *dsa)
+{ int c, len = 0;
+ char buf[255+1];
+ dsa->seqn++;
+ for (;;)
+ { c = fgetc(dsa->fp);
+ if (c == EOF)
+ { if (ferror(dsa->fp))
+ xprintf("%s:%d: read error\n",
+ dsa->fname, dsa->seqn);
+ else
+ xprintf("%s:%d: unexpected end-of-file\n",
+ dsa->fname, dsa->seqn);
+ return 1;
+ }
+ else if (c == '\r')
+ /* nop */;
+ else if (c == '\n')
+ break;
+ else if (iscntrl(c))
+ { xprintf("%s:%d: invalid control character\n",
+ dsa->fname, dsa->seqn, c);
+ return 1;
+ }
+ else
+ { if (len == sizeof(buf)-1)
+ goto err;
+ buf[len++] = (char)c;
+ }
+ }
+ /* remove trailing spaces */
+ while (len > 80 && buf[len-1] == ' ')
+ len--;
+ buf[len] = '\0';
+ /* line should not be longer than 80 chars */
+ if (len > 80)
+err: { xerror("%s:%d: card image too long\n",
+ dsa->fname, dsa->seqn);
+ return 1;
+ }
+ /* padd by spaces to 80-column card image */
+ strcpy(dsa->card, buf);
+ memset(&dsa->card[len], ' ', 80 - len);
+ dsa->card[80] = '\0';
+ return 0;
+}
+#endif
+
+/***********************************************************************
+* scan_int - scan integer value from the current card
+*
+* This routine scans an integer value from the current card, where fld
+* is the name of the field, pos is the position of the field, width is
+* the width of the field, val points to a location to which the scanned
+* value should be stored. If the value was scanned successfully, the
+* routine returns zero, otherwise non-zero. */
+
+static int scan_int(struct dsa *dsa, char *fld, int pos, int width,
+ int *val)
+{ char str[80+1];
+ xassert(1 <= width && width <= 80);
+ memcpy(str, dsa->card + pos, width), str[width] = '\0';
+ if (str2int(strspx(str), val))
+ { xprintf("%s:%d: field '%s' contains invalid value '%s'\n",
+ dsa->fname, dsa->seqn, fld, str);
+ return 1;
+ }
+ return 0;
+}
+
+/***********************************************************************
+* parse_fmt - parse Fortran format specification
+*
+* This routine parses the Fortran format specification represented as
+* character string which fmt points to and stores format elements into
+* appropriate static locations. Should note that not all valid Fortran
+* format specifications may be recognised. If the format specification
+* was recognised, the routine returns zero, otherwise non-zero. */
+
+static int parse_fmt(struct dsa *dsa, char *fmt)
+{ int k, s, val;
+ char str[80+1];
+ /* first character should be left parenthesis */
+ if (fmt[0] != '(')
+fail: { xprintf("hbm_read_mat: format '%s' not recognised\n", fmt);
+ return 1;
+ }
+ k = 1;
+ /* optional scale factor */
+ dsa->fmt_p = 0;
+ if (isdigit((unsigned char)fmt[k]))
+ { s = 0;
+ while (isdigit((unsigned char)fmt[k]))
+ { if (s == 80) goto fail;
+ str[s++] = fmt[k++];
+ }
+ str[s] = '\0';
+ if (str2int(str, &val)) goto fail;
+ if (toupper((unsigned char)fmt[k]) != 'P') goto iter;
+ dsa->fmt_p = val, k++;
+ if (!(0 <= dsa->fmt_p && dsa->fmt_p <= 255)) goto fail;
+ /* optional comma may follow scale factor */
+ if (fmt[k] == ',') k++;
+ }
+ /* optional iterator */
+ dsa->fmt_k = 1;
+ if (isdigit((unsigned char)fmt[k]))
+ { s = 0;
+ while (isdigit((unsigned char)fmt[k]))
+ { if (s == 80) goto fail;
+ str[s++] = fmt[k++];
+ }
+ str[s] = '\0';
+ if (str2int(str, &val)) goto fail;
+iter: dsa->fmt_k = val;
+ if (!(1 <= dsa->fmt_k && dsa->fmt_k <= 255)) goto fail;
+ }
+ /* format code */
+ dsa->fmt_f = toupper((unsigned char)fmt[k++]);
+ if (!(dsa->fmt_f == 'D' || dsa->fmt_f == 'E' ||
+ dsa->fmt_f == 'F' || dsa->fmt_f == 'G' ||
+ dsa->fmt_f == 'I')) goto fail;
+ /* field width */
+ if (!isdigit((unsigned char)fmt[k])) goto fail;
+ s = 0;
+ while (isdigit((unsigned char)fmt[k]))
+ { if (s == 80) goto fail;
+ str[s++] = fmt[k++];
+ }
+ str[s] = '\0';
+ if (str2int(str, &dsa->fmt_w)) goto fail;
+ if (!(1 <= dsa->fmt_w && dsa->fmt_w <= 255)) goto fail;
+ /* optional number of decimal places after point */
+ dsa->fmt_d = 0;
+ if (fmt[k] == '.')
+ { k++;
+ if (!isdigit((unsigned char)fmt[k])) goto fail;
+ s = 0;
+ while (isdigit((unsigned char)fmt[k]))
+ { if (s == 80) goto fail;
+ str[s++] = fmt[k++];
+ }
+ str[s] = '\0';
+ if (str2int(str, &dsa->fmt_d)) goto fail;
+ if (!(0 <= dsa->fmt_d && dsa->fmt_d <= 255)) goto fail;
+ }
+ /* last character should be right parenthesis */
+ if (!(fmt[k] == ')' && fmt[k+1] == '\0')) goto fail;
+ return 0;
+}
+
+/***********************************************************************
+* read_int_array - read array of integer type
+*
+* This routine reads an integer array from the input text file, where
+* name is array name, fmt is Fortran format specification that controls
+* reading, n is number of array elements, val is array of integer type.
+* If the array was read successful, the routine returns zero, otherwise
+* non-zero. */
+
+static int read_int_array(struct dsa *dsa, char *name, char *fmt,
+ int n, int val[])
+{ int k, pos;
+ char str[80+1];
+ if (parse_fmt(dsa, fmt)) return 1;
+ if (!(dsa->fmt_f == 'I' && dsa->fmt_w <= 80 &&
+ dsa->fmt_k * dsa->fmt_w <= 80))
+ { xprintf(
+ "%s:%d: can't read array '%s' - invalid format '%s'\n",
+ dsa->fname, dsa->seqn, name, fmt);
+ return 1;
+ }
+ for (k = 1, pos = INT_MAX; k <= n; k++, pos++)
+ { if (pos >= dsa->fmt_k)
+ { if (read_card(dsa)) return 1;
+ pos = 0;
+ }
+ memcpy(str, dsa->card + dsa->fmt_w * pos, dsa->fmt_w);
+ str[dsa->fmt_w] = '\0';
+ strspx(str);
+ if (str2int(str, &val[k]))
+ { xprintf(
+ "%s:%d: can't read array '%s' - invalid value '%s'\n",
+ dsa->fname, dsa->seqn, name, str);
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/***********************************************************************
+* read_real_array - read array of real type
+*
+* This routine reads a real array from the input text file, where name
+* is array name, fmt is Fortran format specification that controls
+* reading, n is number of array elements, val is array of real type.
+* If the array was read successful, the routine returns zero, otherwise
+* non-zero. */
+
+static int read_real_array(struct dsa *dsa, char *name, char *fmt,
+ int n, double val[])
+{ int k, pos;
+ char str[80+1], *ptr;
+ if (parse_fmt(dsa, fmt)) return 1;
+ if (!(dsa->fmt_f != 'I' && dsa->fmt_w <= 80 &&
+ dsa->fmt_k * dsa->fmt_w <= 80))
+ { xprintf(
+ "%s:%d: can't read array '%s' - invalid format '%s'\n",
+ dsa->fname, dsa->seqn, name, fmt);
+ return 1;
+ }
+ for (k = 1, pos = INT_MAX; k <= n; k++, pos++)
+ { if (pos >= dsa->fmt_k)
+ { if (read_card(dsa)) return 1;
+ pos = 0;
+ }
+ memcpy(str, dsa->card + dsa->fmt_w * pos, dsa->fmt_w);
+ str[dsa->fmt_w] = '\0';
+ strspx(str);
+ if (strchr(str, '.') == NULL && strcmp(str, "0"))
+ { xprintf("%s(%d): can't read array '%s' - value '%s' has no "
+ "decimal point\n", dsa->fname, dsa->seqn, name, str);
+ return 1;
+ }
+ /* sometimes lower case letters appear */
+ for (ptr = str; *ptr; ptr++)
+ *ptr = (char)toupper((unsigned char)*ptr);
+ ptr = strchr(str, 'D');
+ if (ptr != NULL) *ptr = 'E';
+ /* value may appear with decimal exponent but without letters
+ E or D (for example, -123.456-012), so missing letter should
+ be inserted */
+ ptr = strchr(str+1, '+');
+ if (ptr == NULL) ptr = strchr(str+1, '-');
+ if (ptr != NULL && *(ptr-1) != 'E')
+ { xassert(strlen(str) < 80);
+ memmove(ptr+1, ptr, strlen(ptr)+1);
+ *ptr = 'E';
+ }
+ if (str2num(str, &val[k]))
+ { xprintf(
+ "%s:%d: can't read array '%s' - invalid value '%s'\n",
+ dsa->fname, dsa->seqn, name, str);
+ return 1;
+ }
+ }
+ return 0;
+}
+
+HBM *hbm_read_mat(const char *fname)
+{ struct dsa _dsa, *dsa = &_dsa;
+ HBM *hbm = NULL;
+ dsa->fname = fname;
+ xprintf("hbm_read_mat: reading matrix from '%s'...\n",
+ dsa->fname);
+ dsa->fp = fopen(dsa->fname, "r");
+ if (dsa->fp == NULL)
+ { xprintf("hbm_read_mat: unable to open '%s' - %s\n",
+#if 0 /* 29/I-2017 */
+ dsa->fname, strerror(errno));
+#else
+ dsa->fname, xstrerr(errno));
+#endif
+ goto fail;
+ }
+ dsa->seqn = 0;
+ hbm = xmalloc(sizeof(HBM));
+ memset(hbm, 0, sizeof(HBM));
+ /* read the first heading card */
+ if (read_card(dsa)) goto fail;
+ memcpy(hbm->title, dsa->card, 72), hbm->title[72] = '\0';
+ strtrim(hbm->title);
+ xprintf("%s\n", hbm->title);
+ memcpy(hbm->key, dsa->card+72, 8), hbm->key[8] = '\0';
+ strspx(hbm->key);
+ xprintf("key = %s\n", hbm->key);
+ /* read the second heading card */
+ if (read_card(dsa)) goto fail;
+ if (scan_int(dsa, "totcrd", 0, 14, &hbm->totcrd)) goto fail;
+ if (scan_int(dsa, "ptrcrd", 14, 14, &hbm->ptrcrd)) goto fail;
+ if (scan_int(dsa, "indcrd", 28, 14, &hbm->indcrd)) goto fail;
+ if (scan_int(dsa, "valcrd", 42, 14, &hbm->valcrd)) goto fail;
+ if (scan_int(dsa, "rhscrd", 56, 14, &hbm->rhscrd)) goto fail;
+ xprintf("totcrd = %d; ptrcrd = %d; indcrd = %d; valcrd = %d; rhsc"
+ "rd = %d\n", hbm->totcrd, hbm->ptrcrd, hbm->indcrd,
+ hbm->valcrd, hbm->rhscrd);
+ /* read the third heading card */
+ if (read_card(dsa)) goto fail;
+ memcpy(hbm->mxtype, dsa->card, 3), hbm->mxtype[3] = '\0';
+ if (strchr("RCP", hbm->mxtype[0]) == NULL ||
+ strchr("SUHZR", hbm->mxtype[1]) == NULL ||
+ strchr("AE", hbm->mxtype[2]) == NULL)
+ { xprintf("%s:%d: matrix type '%s' not recognised\n",
+ dsa->fname, dsa->seqn, hbm->mxtype);
+ goto fail;
+ }
+ if (scan_int(dsa, "nrow", 14, 14, &hbm->nrow)) goto fail;
+ if (scan_int(dsa, "ncol", 28, 14, &hbm->ncol)) goto fail;
+ if (scan_int(dsa, "nnzero", 42, 14, &hbm->nnzero)) goto fail;
+ if (scan_int(dsa, "neltvl", 56, 14, &hbm->neltvl)) goto fail;
+ xprintf("mxtype = %s; nrow = %d; ncol = %d; nnzero = %d; neltvl ="
+ " %d\n", hbm->mxtype, hbm->nrow, hbm->ncol, hbm->nnzero,
+ hbm->neltvl);
+ /* read the fourth heading card */
+ if (read_card(dsa)) goto fail;
+ memcpy(hbm->ptrfmt, dsa->card, 16), hbm->ptrfmt[16] = '\0';
+ strspx(hbm->ptrfmt);
+ memcpy(hbm->indfmt, dsa->card+16, 16), hbm->indfmt[16] = '\0';
+ strspx(hbm->indfmt);
+ memcpy(hbm->valfmt, dsa->card+32, 20), hbm->valfmt[20] = '\0';
+ strspx(hbm->valfmt);
+ memcpy(hbm->rhsfmt, dsa->card+52, 20), hbm->rhsfmt[20] = '\0';
+ strspx(hbm->rhsfmt);
+ xprintf("ptrfmt = %s; indfmt = %s; valfmt = %s; rhsfmt = %s\n",
+ hbm->ptrfmt, hbm->indfmt, hbm->valfmt, hbm->rhsfmt);
+ /* read the fifth heading card (optional) */
+ if (hbm->rhscrd <= 0)
+ { strcpy(hbm->rhstyp, "???");
+ hbm->nrhs = 0;
+ hbm->nrhsix = 0;
+ }
+ else
+ { if (read_card(dsa)) goto fail;
+ memcpy(hbm->rhstyp, dsa->card, 3), hbm->rhstyp[3] = '\0';
+ if (scan_int(dsa, "nrhs", 14, 14, &hbm->nrhs)) goto fail;
+ if (scan_int(dsa, "nrhsix", 28, 14, &hbm->nrhsix)) goto fail;
+ xprintf("rhstyp = '%s'; nrhs = %d; nrhsix = %d\n",
+ hbm->rhstyp, hbm->nrhs, hbm->nrhsix);
+ }
+ /* read matrix structure */
+ hbm->colptr = xcalloc(1+hbm->ncol+1, sizeof(int));
+ if (read_int_array(dsa, "colptr", hbm->ptrfmt, hbm->ncol+1,
+ hbm->colptr)) goto fail;
+ hbm->rowind = xcalloc(1+hbm->nnzero, sizeof(int));
+ if (read_int_array(dsa, "rowind", hbm->indfmt, hbm->nnzero,
+ hbm->rowind)) goto fail;
+ /* read matrix values */
+ if (hbm->valcrd <= 0) goto done;
+ if (hbm->mxtype[2] == 'A')
+ { /* assembled matrix */
+ hbm->values = xcalloc(1+hbm->nnzero, sizeof(double));
+ if (read_real_array(dsa, "values", hbm->valfmt, hbm->nnzero,
+ hbm->values)) goto fail;
+ }
+ else
+ { /* elemental (unassembled) matrix */
+ hbm->values = xcalloc(1+hbm->neltvl, sizeof(double));
+ if (read_real_array(dsa, "values", hbm->valfmt, hbm->neltvl,
+ hbm->values)) goto fail;
+ }
+ /* read right-hand sides */
+ if (hbm->nrhs <= 0) goto done;
+ if (hbm->rhstyp[0] == 'F')
+ { /* dense format */
+ hbm->nrhsvl = hbm->nrow * hbm->nrhs;
+ hbm->rhsval = xcalloc(1+hbm->nrhsvl, sizeof(double));
+ if (read_real_array(dsa, "rhsval", hbm->rhsfmt, hbm->nrhsvl,
+ hbm->rhsval)) goto fail;
+ }
+ else if (hbm->rhstyp[0] == 'M' && hbm->mxtype[2] == 'A')
+ { /* sparse format */
+ /* read pointers */
+ hbm->rhsptr = xcalloc(1+hbm->nrhs+1, sizeof(int));
+ if (read_int_array(dsa, "rhsptr", hbm->ptrfmt, hbm->nrhs+1,
+ hbm->rhsptr)) goto fail;
+ /* read sparsity pattern */
+ hbm->rhsind = xcalloc(1+hbm->nrhsix, sizeof(int));
+ if (read_int_array(dsa, "rhsind", hbm->indfmt, hbm->nrhsix,
+ hbm->rhsind)) goto fail;
+ /* read values */
+ hbm->rhsval = xcalloc(1+hbm->nrhsix, sizeof(double));
+ if (read_real_array(dsa, "rhsval", hbm->rhsfmt, hbm->nrhsix,
+ hbm->rhsval)) goto fail;
+ }
+ else if (hbm->rhstyp[0] == 'M' && hbm->mxtype[2] == 'E')
+ { /* elemental format */
+ hbm->rhsval = xcalloc(1+hbm->nrhsvl, sizeof(double));
+ if (read_real_array(dsa, "rhsval", hbm->rhsfmt, hbm->nrhsvl,
+ hbm->rhsval)) goto fail;
+ }
+ else
+ { xprintf("%s:%d: right-hand side type '%c' not recognised\n",
+ dsa->fname, dsa->seqn, hbm->rhstyp[0]);
+ goto fail;
+ }
+ /* read starting guesses */
+ if (hbm->rhstyp[1] == 'G')
+ { hbm->nguess = hbm->nrow * hbm->nrhs;
+ hbm->sguess = xcalloc(1+hbm->nguess, sizeof(double));
+ if (read_real_array(dsa, "sguess", hbm->rhsfmt, hbm->nguess,
+ hbm->sguess)) goto fail;
+ }
+ /* read solution vectors */
+ if (hbm->rhstyp[2] == 'X')
+ { hbm->nexact = hbm->nrow * hbm->nrhs;
+ hbm->xexact = xcalloc(1+hbm->nexact, sizeof(double));
+ if (read_real_array(dsa, "xexact", hbm->rhsfmt, hbm->nexact,
+ hbm->xexact)) goto fail;
+ }
+done: /* reading has been completed */
+ xprintf("hbm_read_mat: %d cards were read\n", dsa->seqn);
+ fclose(dsa->fp);
+ return hbm;
+fail: /* something wrong in Danish kingdom */
+ if (hbm != NULL)
+ { if (hbm->colptr != NULL) xfree(hbm->colptr);
+ if (hbm->rowind != NULL) xfree(hbm->rowind);
+ if (hbm->rhsptr != NULL) xfree(hbm->rhsptr);
+ if (hbm->rhsind != NULL) xfree(hbm->rhsind);
+ if (hbm->values != NULL) xfree(hbm->values);
+ if (hbm->rhsval != NULL) xfree(hbm->rhsval);
+ if (hbm->sguess != NULL) xfree(hbm->sguess);
+ if (hbm->xexact != NULL) xfree(hbm->xexact);
+ xfree(hbm);
+ }
+ if (dsa->fp != NULL) fclose(dsa->fp);
+ return NULL;
+}
+
+/***********************************************************************
+* NAME
+*
+* hbm_free_mat - free sparse matrix in Harwell-Boeing format
+*
+* SYNOPSIS
+*
+* #include "glphbm.h"
+* void hbm_free_mat(HBM *hbm);
+*
+* DESCRIPTION
+*
+* The hbm_free_mat routine frees all the memory allocated to the data
+* structure containing a sparse matrix in the Harwell-Boeing format. */
+
+void hbm_free_mat(HBM *hbm)
+{ if (hbm->colptr != NULL) xfree(hbm->colptr);
+ if (hbm->rowind != NULL) xfree(hbm->rowind);
+ if (hbm->rhsptr != NULL) xfree(hbm->rhsptr);
+ if (hbm->rhsind != NULL) xfree(hbm->rhsind);
+ if (hbm->values != NULL) xfree(hbm->values);
+ if (hbm->rhsval != NULL) xfree(hbm->rhsval);
+ if (hbm->sguess != NULL) xfree(hbm->sguess);
+ if (hbm->xexact != NULL) xfree(hbm->xexact);
+ xfree(hbm);
+ return;
+}
+
+/* eof */