aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/draft/glpios01.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/draft/glpios01.c')
-rw-r--r--test/monniaux/glpk-4.65/src/draft/glpios01.c1685
1 files changed, 1685 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/draft/glpios01.c b/test/monniaux/glpk-4.65/src/draft/glpios01.c
new file mode 100644
index 00000000..cb1a0dab
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/draft/glpios01.c
@@ -0,0 +1,1685 @@
+/* glpios01.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+* 2009, 2010, 2011, 2013, 2018 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "ios.h"
+#include "misc.h"
+
+static int lpx_eval_tab_row(glp_prob *lp, int k, int ind[],
+ double val[])
+{ /* compute row of the simplex tableau */
+ return glp_eval_tab_row(lp, k, ind, val);
+}
+
+static int lpx_dual_ratio_test(glp_prob *lp, int len, const int ind[],
+ const double val[], int how, double tol)
+{ /* perform dual ratio test */
+ int piv;
+ piv = glp_dual_rtest(lp, len, ind, val, how, tol);
+ xassert(0 <= piv && piv <= len);
+ return piv == 0 ? 0 : ind[piv];
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_create_tree - create branch-and-bound tree
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* glp_tree *ios_create_tree(glp_prob *mip, const glp_iocp *parm);
+*
+* DESCRIPTION
+*
+* The routine ios_create_tree creates the branch-and-bound tree.
+*
+* Being created the tree consists of the only root subproblem whose
+* reference number is 1. Note that initially the root subproblem is in
+* frozen state and therefore needs to be revived.
+*
+* RETURNS
+*
+* The routine returns a pointer to the tree created. */
+
+static IOSNPD *new_node(glp_tree *tree, IOSNPD *parent);
+
+glp_tree *ios_create_tree(glp_prob *mip, const glp_iocp *parm)
+{ int m = mip->m;
+ int n = mip->n;
+ glp_tree *tree;
+ int i, j;
+ xassert(mip->tree == NULL);
+ mip->tree = tree = xmalloc(sizeof(glp_tree));
+ tree->pool = dmp_create_pool();
+ tree->n = n;
+ /* save original problem components */
+ tree->orig_m = m;
+ tree->orig_type = xcalloc(1+m+n, sizeof(char));
+ tree->orig_lb = xcalloc(1+m+n, sizeof(double));
+ tree->orig_ub = xcalloc(1+m+n, sizeof(double));
+ tree->orig_stat = xcalloc(1+m+n, sizeof(char));
+ tree->orig_prim = xcalloc(1+m+n, sizeof(double));
+ tree->orig_dual = xcalloc(1+m+n, sizeof(double));
+ for (i = 1; i <= m; i++)
+ { GLPROW *row = mip->row[i];
+ tree->orig_type[i] = (char)row->type;
+ tree->orig_lb[i] = row->lb;
+ tree->orig_ub[i] = row->ub;
+ tree->orig_stat[i] = (char)row->stat;
+ tree->orig_prim[i] = row->prim;
+ tree->orig_dual[i] = row->dual;
+ }
+ for (j = 1; j <= n; j++)
+ { GLPCOL *col = mip->col[j];
+ tree->orig_type[m+j] = (char)col->type;
+ tree->orig_lb[m+j] = col->lb;
+ tree->orig_ub[m+j] = col->ub;
+ tree->orig_stat[m+j] = (char)col->stat;
+ tree->orig_prim[m+j] = col->prim;
+ tree->orig_dual[m+j] = col->dual;
+ }
+ tree->orig_obj = mip->obj_val;
+ /* initialize the branch-and-bound tree */
+ tree->nslots = 0;
+ tree->avail = 0;
+ tree->slot = NULL;
+ tree->head = tree->tail = NULL;
+ tree->a_cnt = tree->n_cnt = tree->t_cnt = 0;
+ /* the root subproblem is not solved yet, so its final components
+ are unknown so far */
+ tree->root_m = 0;
+ tree->root_type = NULL;
+ tree->root_lb = tree->root_ub = NULL;
+ tree->root_stat = NULL;
+ /* the current subproblem does not exist yet */
+ tree->curr = NULL;
+ tree->mip = mip;
+ /*tree->solved = 0;*/
+ tree->non_int = xcalloc(1+n, sizeof(char));
+ memset(&tree->non_int[1], 0, n);
+ /* arrays to save parent subproblem components will be allocated
+ later */
+ tree->pred_m = tree->pred_max = 0;
+ tree->pred_type = NULL;
+ tree->pred_lb = tree->pred_ub = NULL;
+ tree->pred_stat = NULL;
+ /* cut generators */
+ tree->local = ios_create_pool(tree);
+ /*tree->first_attempt = 1;*/
+ /*tree->max_added_cuts = 0;*/
+ /*tree->min_eff = 0.0;*/
+ /*tree->miss = 0;*/
+ /*tree->just_selected = 0;*/
+#ifdef NEW_COVER /* 13/II-2018 */
+ tree->cov_gen = NULL;
+#endif
+ tree->mir_gen = NULL;
+ tree->clq_gen = NULL;
+ /*tree->round = 0;*/
+#if 0
+ /* create the conflict graph */
+ tree->n_ref = xcalloc(1+n, sizeof(int));
+ memset(&tree->n_ref[1], 0, n * sizeof(int));
+ tree->c_ref = xcalloc(1+n, sizeof(int));
+ memset(&tree->c_ref[1], 0, n * sizeof(int));
+ tree->g = scg_create_graph(0);
+ tree->j_ref = xcalloc(1+tree->g->n_max, sizeof(int));
+#endif
+ /* pseudocost branching */
+ tree->pcost = NULL;
+ tree->iwrk = xcalloc(1+n, sizeof(int));
+ tree->dwrk = xcalloc(1+n, sizeof(double));
+ /* initialize control parameters */
+ tree->parm = parm;
+ tree->tm_beg = xtime();
+#if 0 /* 10/VI-2013 */
+ tree->tm_lag = xlset(0);
+#else
+ tree->tm_lag = 0.0;
+#endif
+ tree->sol_cnt = 0;
+#if 1 /* 11/VII-2013 */
+ tree->P = NULL;
+ tree->npp = NULL;
+ tree->save_sol = parm->save_sol;
+ tree->save_cnt = 0;
+#endif
+ /* initialize advanced solver interface */
+ tree->reason = 0;
+ tree->reopt = 0;
+ tree->reinv = 0;
+ tree->br_var = 0;
+ tree->br_sel = 0;
+ tree->child = 0;
+ tree->next_p = 0;
+ /*tree->btrack = NULL;*/
+ tree->stop = 0;
+ /* create the root subproblem, which initially is identical to
+ the original MIP */
+ new_node(tree, NULL);
+ return tree;
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_revive_node - revive specified subproblem
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* void ios_revive_node(glp_tree *tree, int p);
+*
+* DESCRIPTION
+*
+* The routine ios_revive_node revives the specified subproblem, whose
+* reference number is p, and thereby makes it the current subproblem.
+* Note that the specified subproblem must be active. Besides, if the
+* current subproblem already exists, it must be frozen before reviving
+* another subproblem. */
+
+void ios_revive_node(glp_tree *tree, int p)
+{ glp_prob *mip = tree->mip;
+ IOSNPD *node, *root;
+ /* obtain pointer to the specified subproblem */
+ xassert(1 <= p && p <= tree->nslots);
+ node = tree->slot[p].node;
+ xassert(node != NULL);
+ /* the specified subproblem must be active */
+ xassert(node->count == 0);
+ /* the current subproblem must not exist */
+ xassert(tree->curr == NULL);
+ /* the specified subproblem becomes current */
+ tree->curr = node;
+ /*tree->solved = 0;*/
+ /* obtain pointer to the root subproblem */
+ root = tree->slot[1].node;
+ xassert(root != NULL);
+ /* at this point problem object components correspond to the root
+ subproblem, so if the root subproblem should be revived, there
+ is nothing more to do */
+ if (node == root) goto done;
+ xassert(mip->m == tree->root_m);
+ /* build path from the root to the current node */
+ node->temp = NULL;
+ for (node = node; node != NULL; node = node->up)
+ { if (node->up == NULL)
+ xassert(node == root);
+ else
+ node->up->temp = node;
+ }
+ /* go down from the root to the current node and make necessary
+ changes to restore components of the current subproblem */
+ for (node = root; node != NULL; node = node->temp)
+ { int m = mip->m;
+ int n = mip->n;
+ /* if the current node is reached, the problem object at this
+ point corresponds to its parent, so save attributes of rows
+ and columns for the parent subproblem */
+ if (node->temp == NULL)
+ { int i, j;
+ tree->pred_m = m;
+ /* allocate/reallocate arrays, if necessary */
+ if (tree->pred_max < m + n)
+ { int new_size = m + n + 100;
+ if (tree->pred_type != NULL) xfree(tree->pred_type);
+ if (tree->pred_lb != NULL) xfree(tree->pred_lb);
+ if (tree->pred_ub != NULL) xfree(tree->pred_ub);
+ if (tree->pred_stat != NULL) xfree(tree->pred_stat);
+ tree->pred_max = new_size;
+ tree->pred_type = xcalloc(1+new_size, sizeof(char));
+ tree->pred_lb = xcalloc(1+new_size, sizeof(double));
+ tree->pred_ub = xcalloc(1+new_size, sizeof(double));
+ tree->pred_stat = xcalloc(1+new_size, sizeof(char));
+ }
+ /* save row attributes */
+ for (i = 1; i <= m; i++)
+ { GLPROW *row = mip->row[i];
+ tree->pred_type[i] = (char)row->type;
+ tree->pred_lb[i] = row->lb;
+ tree->pred_ub[i] = row->ub;
+ tree->pred_stat[i] = (char)row->stat;
+ }
+ /* save column attributes */
+ for (j = 1; j <= n; j++)
+ { GLPCOL *col = mip->col[j];
+ tree->pred_type[mip->m+j] = (char)col->type;
+ tree->pred_lb[mip->m+j] = col->lb;
+ tree->pred_ub[mip->m+j] = col->ub;
+ tree->pred_stat[mip->m+j] = (char)col->stat;
+ }
+ }
+ /* change bounds of rows and columns */
+ { IOSBND *b;
+ for (b = node->b_ptr; b != NULL; b = b->next)
+ { if (b->k <= m)
+ glp_set_row_bnds(mip, b->k, b->type, b->lb, b->ub);
+ else
+ glp_set_col_bnds(mip, b->k-m, b->type, b->lb, b->ub);
+ }
+ }
+ /* change statuses of rows and columns */
+ { IOSTAT *s;
+ for (s = node->s_ptr; s != NULL; s = s->next)
+ { if (s->k <= m)
+ glp_set_row_stat(mip, s->k, s->stat);
+ else
+ glp_set_col_stat(mip, s->k-m, s->stat);
+ }
+ }
+ /* add new rows */
+ if (node->r_ptr != NULL)
+ { IOSROW *r;
+ IOSAIJ *a;
+ int i, len, *ind;
+ double *val;
+ ind = xcalloc(1+n, sizeof(int));
+ val = xcalloc(1+n, sizeof(double));
+ for (r = node->r_ptr; r != NULL; r = r->next)
+ { i = glp_add_rows(mip, 1);
+ glp_set_row_name(mip, i, r->name);
+#if 1 /* 20/IX-2008 */
+ xassert(mip->row[i]->level == 0);
+ mip->row[i]->level = node->level;
+ mip->row[i]->origin = r->origin;
+ mip->row[i]->klass = r->klass;
+#endif
+ glp_set_row_bnds(mip, i, r->type, r->lb, r->ub);
+ len = 0;
+ for (a = r->ptr; a != NULL; a = a->next)
+ len++, ind[len] = a->j, val[len] = a->val;
+ glp_set_mat_row(mip, i, len, ind, val);
+ glp_set_rii(mip, i, r->rii);
+ glp_set_row_stat(mip, i, r->stat);
+ }
+ xfree(ind);
+ xfree(val);
+ }
+#if 0
+ /* add new edges to the conflict graph */
+ /* add new cliques to the conflict graph */
+ /* (not implemented yet) */
+ xassert(node->own_nn == 0);
+ xassert(node->own_nc == 0);
+ xassert(node->e_ptr == NULL);
+#endif
+ }
+ /* the specified subproblem has been revived */
+ node = tree->curr;
+ /* delete its bound change list */
+ while (node->b_ptr != NULL)
+ { IOSBND *b;
+ b = node->b_ptr;
+ node->b_ptr = b->next;
+ dmp_free_atom(tree->pool, b, sizeof(IOSBND));
+ }
+ /* delete its status change list */
+ while (node->s_ptr != NULL)
+ { IOSTAT *s;
+ s = node->s_ptr;
+ node->s_ptr = s->next;
+ dmp_free_atom(tree->pool, s, sizeof(IOSTAT));
+ }
+#if 1 /* 20/XI-2009 */
+ /* delete its row addition list (additional rows may appear, for
+ example, due to branching on GUB constraints */
+ while (node->r_ptr != NULL)
+ { IOSROW *r;
+ r = node->r_ptr;
+ node->r_ptr = r->next;
+ xassert(r->name == NULL);
+ while (r->ptr != NULL)
+ { IOSAIJ *a;
+ a = r->ptr;
+ r->ptr = a->next;
+ dmp_free_atom(tree->pool, a, sizeof(IOSAIJ));
+ }
+ dmp_free_atom(tree->pool, r, sizeof(IOSROW));
+ }
+#endif
+done: return;
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_freeze_node - freeze current subproblem
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* void ios_freeze_node(glp_tree *tree);
+*
+* DESCRIPTION
+*
+* The routine ios_freeze_node freezes the current subproblem. */
+
+void ios_freeze_node(glp_tree *tree)
+{ glp_prob *mip = tree->mip;
+ int m = mip->m;
+ int n = mip->n;
+ IOSNPD *node;
+ /* obtain pointer to the current subproblem */
+ node = tree->curr;
+ xassert(node != NULL);
+ if (node->up == NULL)
+ { /* freeze the root subproblem */
+ int k;
+ xassert(node->p == 1);
+ xassert(tree->root_m == 0);
+ xassert(tree->root_type == NULL);
+ xassert(tree->root_lb == NULL);
+ xassert(tree->root_ub == NULL);
+ xassert(tree->root_stat == NULL);
+ tree->root_m = m;
+ tree->root_type = xcalloc(1+m+n, sizeof(char));
+ tree->root_lb = xcalloc(1+m+n, sizeof(double));
+ tree->root_ub = xcalloc(1+m+n, sizeof(double));
+ tree->root_stat = xcalloc(1+m+n, sizeof(char));
+ for (k = 1; k <= m+n; k++)
+ { if (k <= m)
+ { GLPROW *row = mip->row[k];
+ tree->root_type[k] = (char)row->type;
+ tree->root_lb[k] = row->lb;
+ tree->root_ub[k] = row->ub;
+ tree->root_stat[k] = (char)row->stat;
+ }
+ else
+ { GLPCOL *col = mip->col[k-m];
+ tree->root_type[k] = (char)col->type;
+ tree->root_lb[k] = col->lb;
+ tree->root_ub[k] = col->ub;
+ tree->root_stat[k] = (char)col->stat;
+ }
+ }
+ }
+ else
+ { /* freeze non-root subproblem */
+ int root_m = tree->root_m;
+ int pred_m = tree->pred_m;
+ int i, j, k;
+ xassert(pred_m <= m);
+ /* build change lists for rows and columns which exist in the
+ parent subproblem */
+ xassert(node->b_ptr == NULL);
+ xassert(node->s_ptr == NULL);
+ for (k = 1; k <= pred_m + n; k++)
+ { int pred_type, pred_stat, type, stat;
+ double pred_lb, pred_ub, lb, ub;
+ /* determine attributes in the parent subproblem */
+ pred_type = tree->pred_type[k];
+ pred_lb = tree->pred_lb[k];
+ pred_ub = tree->pred_ub[k];
+ pred_stat = tree->pred_stat[k];
+ /* determine attributes in the current subproblem */
+ if (k <= pred_m)
+ { GLPROW *row = mip->row[k];
+ type = row->type;
+ lb = row->lb;
+ ub = row->ub;
+ stat = row->stat;
+ }
+ else
+ { GLPCOL *col = mip->col[k - pred_m];
+ type = col->type;
+ lb = col->lb;
+ ub = col->ub;
+ stat = col->stat;
+ }
+ /* save type and bounds of a row/column, if changed */
+ if (!(pred_type == type && pred_lb == lb && pred_ub == ub))
+ { IOSBND *b;
+ b = dmp_get_atom(tree->pool, sizeof(IOSBND));
+ b->k = k;
+ b->type = (unsigned char)type;
+ b->lb = lb;
+ b->ub = ub;
+ b->next = node->b_ptr;
+ node->b_ptr = b;
+ }
+ /* save status of a row/column, if changed */
+ if (pred_stat != stat)
+ { IOSTAT *s;
+ s = dmp_get_atom(tree->pool, sizeof(IOSTAT));
+ s->k = k;
+ s->stat = (unsigned char)stat;
+ s->next = node->s_ptr;
+ node->s_ptr = s;
+ }
+ }
+ /* save new rows added to the current subproblem */
+ xassert(node->r_ptr == NULL);
+ if (pred_m < m)
+ { int i, len, *ind;
+ double *val;
+ ind = xcalloc(1+n, sizeof(int));
+ val = xcalloc(1+n, sizeof(double));
+ for (i = m; i > pred_m; i--)
+ { GLPROW *row = mip->row[i];
+ IOSROW *r;
+ const char *name;
+ r = dmp_get_atom(tree->pool, sizeof(IOSROW));
+ name = glp_get_row_name(mip, i);
+ if (name == NULL)
+ r->name = NULL;
+ else
+ { r->name = dmp_get_atom(tree->pool, strlen(name)+1);
+ strcpy(r->name, name);
+ }
+#if 1 /* 20/IX-2008 */
+ r->origin = row->origin;
+ r->klass = row->klass;
+#endif
+ r->type = (unsigned char)row->type;
+ r->lb = row->lb;
+ r->ub = row->ub;
+ r->ptr = NULL;
+ len = glp_get_mat_row(mip, i, ind, val);
+ for (k = 1; k <= len; k++)
+ { IOSAIJ *a;
+ a = dmp_get_atom(tree->pool, sizeof(IOSAIJ));
+ a->j = ind[k];
+ a->val = val[k];
+ a->next = r->ptr;
+ r->ptr = a;
+ }
+ r->rii = row->rii;
+ r->stat = (unsigned char)row->stat;
+ r->next = node->r_ptr;
+ node->r_ptr = r;
+ }
+ xfree(ind);
+ xfree(val);
+ }
+ /* remove all rows missing in the root subproblem */
+ if (m != root_m)
+ { int nrs, *num;
+ nrs = m - root_m;
+ xassert(nrs > 0);
+ num = xcalloc(1+nrs, sizeof(int));
+ for (i = 1; i <= nrs; i++) num[i] = root_m + i;
+ glp_del_rows(mip, nrs, num);
+ xfree(num);
+ }
+ m = mip->m;
+ /* and restore attributes of all rows and columns for the root
+ subproblem */
+ xassert(m == root_m);
+ for (i = 1; i <= m; i++)
+ { glp_set_row_bnds(mip, i, tree->root_type[i],
+ tree->root_lb[i], tree->root_ub[i]);
+ glp_set_row_stat(mip, i, tree->root_stat[i]);
+ }
+ for (j = 1; j <= n; j++)
+ { glp_set_col_bnds(mip, j, tree->root_type[m+j],
+ tree->root_lb[m+j], tree->root_ub[m+j]);
+ glp_set_col_stat(mip, j, tree->root_stat[m+j]);
+ }
+#if 1
+ /* remove all edges and cliques missing in the conflict graph
+ for the root subproblem */
+ /* (not implemented yet) */
+#endif
+ }
+ /* the current subproblem has been frozen */
+ tree->curr = NULL;
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_clone_node - clone specified subproblem
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* void ios_clone_node(glp_tree *tree, int p, int nnn, int ref[]);
+*
+* DESCRIPTION
+*
+* The routine ios_clone_node clones the specified subproblem, whose
+* reference number is p, creating its nnn exact copies. Note that the
+* specified subproblem must be active and must be in the frozen state
+* (i.e. it must not be the current subproblem).
+*
+* Each clone, an exact copy of the specified subproblem, becomes a new
+* active subproblem added to the end of the active list. After cloning
+* the specified subproblem becomes inactive.
+*
+* The reference numbers of clone subproblems are stored to locations
+* ref[1], ..., ref[nnn]. */
+
+static int get_slot(glp_tree *tree)
+{ int p;
+ /* if no free slots are available, increase the room */
+ if (tree->avail == 0)
+ { int nslots = tree->nslots;
+ IOSLOT *save = tree->slot;
+ if (nslots == 0)
+ tree->nslots = 20;
+ else
+ { tree->nslots = nslots + nslots;
+ xassert(tree->nslots > nslots);
+ }
+ tree->slot = xcalloc(1+tree->nslots, sizeof(IOSLOT));
+ if (save != NULL)
+ { memcpy(&tree->slot[1], &save[1], nslots * sizeof(IOSLOT));
+ xfree(save);
+ }
+ /* push more free slots into the stack */
+ for (p = tree->nslots; p > nslots; p--)
+ { tree->slot[p].node = NULL;
+ tree->slot[p].next = tree->avail;
+ tree->avail = p;
+ }
+ }
+ /* pull a free slot from the stack */
+ p = tree->avail;
+ tree->avail = tree->slot[p].next;
+ xassert(tree->slot[p].node == NULL);
+ tree->slot[p].next = 0;
+ return p;
+}
+
+static IOSNPD *new_node(glp_tree *tree, IOSNPD *parent)
+{ IOSNPD *node;
+ int p;
+ /* pull a free slot for the new node */
+ p = get_slot(tree);
+ /* create descriptor of the new subproblem */
+ node = dmp_get_atom(tree->pool, sizeof(IOSNPD));
+ tree->slot[p].node = node;
+ node->p = p;
+ node->up = parent;
+ node->level = (parent == NULL ? 0 : parent->level + 1);
+ node->count = 0;
+ node->b_ptr = NULL;
+ node->s_ptr = NULL;
+ node->r_ptr = NULL;
+ node->solved = 0;
+#if 0
+ node->own_nn = node->own_nc = 0;
+ node->e_ptr = NULL;
+#endif
+#if 1 /* 04/X-2008 */
+ node->lp_obj = (parent == NULL ? (tree->mip->dir == GLP_MIN ?
+ -DBL_MAX : +DBL_MAX) : parent->lp_obj);
+#endif
+ node->bound = (parent == NULL ? (tree->mip->dir == GLP_MIN ?
+ -DBL_MAX : +DBL_MAX) : parent->bound);
+ node->br_var = 0;
+ node->br_val = 0.0;
+ node->ii_cnt = 0;
+ node->ii_sum = 0.0;
+#if 1 /* 30/XI-2009 */
+ node->changed = 0;
+#endif
+ if (tree->parm->cb_size == 0)
+ node->data = NULL;
+ else
+ { node->data = dmp_get_atom(tree->pool, tree->parm->cb_size);
+ memset(node->data, 0, tree->parm->cb_size);
+ }
+ node->temp = NULL;
+ node->prev = tree->tail;
+ node->next = NULL;
+ /* add the new subproblem to the end of the active list */
+ if (tree->head == NULL)
+ tree->head = node;
+ else
+ tree->tail->next = node;
+ tree->tail = node;
+ tree->a_cnt++;
+ tree->n_cnt++;
+ tree->t_cnt++;
+ /* increase the number of child subproblems */
+ if (parent == NULL)
+ xassert(p == 1);
+ else
+ parent->count++;
+ return node;
+}
+
+void ios_clone_node(glp_tree *tree, int p, int nnn, int ref[])
+{ IOSNPD *node;
+ int k;
+ /* obtain pointer to the subproblem to be cloned */
+ xassert(1 <= p && p <= tree->nslots);
+ node = tree->slot[p].node;
+ xassert(node != NULL);
+ /* the specified subproblem must be active */
+ xassert(node->count == 0);
+ /* and must be in the frozen state */
+ xassert(tree->curr != node);
+ /* remove the specified subproblem from the active list, because
+ it becomes inactive */
+ if (node->prev == NULL)
+ tree->head = node->next;
+ else
+ node->prev->next = node->next;
+ if (node->next == NULL)
+ tree->tail = node->prev;
+ else
+ node->next->prev = node->prev;
+ node->prev = node->next = NULL;
+ tree->a_cnt--;
+ /* create clone subproblems */
+ xassert(nnn > 0);
+ for (k = 1; k <= nnn; k++)
+ ref[k] = new_node(tree, node)->p;
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_delete_node - delete specified subproblem
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* void ios_delete_node(glp_tree *tree, int p);
+*
+* DESCRIPTION
+*
+* The routine ios_delete_node deletes the specified subproblem, whose
+* reference number is p. The subproblem must be active and must be in
+* the frozen state (i.e. it must not be the current subproblem).
+*
+* Note that deletion is performed recursively, i.e. if a subproblem to
+* be deleted is the only child of its parent, the parent subproblem is
+* also deleted, etc. */
+
+void ios_delete_node(glp_tree *tree, int p)
+{ IOSNPD *node, *temp;
+ /* obtain pointer to the subproblem to be deleted */
+ xassert(1 <= p && p <= tree->nslots);
+ node = tree->slot[p].node;
+ xassert(node != NULL);
+ /* the specified subproblem must be active */
+ xassert(node->count == 0);
+ /* and must be in the frozen state */
+ xassert(tree->curr != node);
+ /* remove the specified subproblem from the active list, because
+ it is gone from the tree */
+ if (node->prev == NULL)
+ tree->head = node->next;
+ else
+ node->prev->next = node->next;
+ if (node->next == NULL)
+ tree->tail = node->prev;
+ else
+ node->next->prev = node->prev;
+ node->prev = node->next = NULL;
+ tree->a_cnt--;
+loop: /* recursive deletion starts here */
+ /* delete the bound change list */
+ { IOSBND *b;
+ while (node->b_ptr != NULL)
+ { b = node->b_ptr;
+ node->b_ptr = b->next;
+ dmp_free_atom(tree->pool, b, sizeof(IOSBND));
+ }
+ }
+ /* delete the status change list */
+ { IOSTAT *s;
+ while (node->s_ptr != NULL)
+ { s = node->s_ptr;
+ node->s_ptr = s->next;
+ dmp_free_atom(tree->pool, s, sizeof(IOSTAT));
+ }
+ }
+ /* delete the row addition list */
+ while (node->r_ptr != NULL)
+ { IOSROW *r;
+ r = node->r_ptr;
+ if (r->name != NULL)
+ dmp_free_atom(tree->pool, r->name, strlen(r->name)+1);
+ while (r->ptr != NULL)
+ { IOSAIJ *a;
+ a = r->ptr;
+ r->ptr = a->next;
+ dmp_free_atom(tree->pool, a, sizeof(IOSAIJ));
+ }
+ node->r_ptr = r->next;
+ dmp_free_atom(tree->pool, r, sizeof(IOSROW));
+ }
+#if 0
+ /* delete the edge addition list */
+ /* delete the clique addition list */
+ /* (not implemented yet) */
+ xassert(node->own_nn == 0);
+ xassert(node->own_nc == 0);
+ xassert(node->e_ptr == NULL);
+#endif
+ /* free application-specific data */
+ if (tree->parm->cb_size == 0)
+ xassert(node->data == NULL);
+ else
+ dmp_free_atom(tree->pool, node->data, tree->parm->cb_size);
+ /* free the corresponding node slot */
+ p = node->p;
+ xassert(tree->slot[p].node == node);
+ tree->slot[p].node = NULL;
+ tree->slot[p].next = tree->avail;
+ tree->avail = p;
+ /* save pointer to the parent subproblem */
+ temp = node->up;
+ /* delete the subproblem descriptor */
+ dmp_free_atom(tree->pool, node, sizeof(IOSNPD));
+ tree->n_cnt--;
+ /* take pointer to the parent subproblem */
+ node = temp;
+ if (node != NULL)
+ { /* the parent subproblem exists; decrease the number of its
+ child subproblems */
+ xassert(node->count > 0);
+ node->count--;
+ /* if now the parent subproblem has no childs, it also must be
+ deleted */
+ if (node->count == 0) goto loop;
+ }
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_delete_tree - delete branch-and-bound tree
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* void ios_delete_tree(glp_tree *tree);
+*
+* DESCRIPTION
+*
+* The routine ios_delete_tree deletes the branch-and-bound tree, which
+* the parameter tree points to, and frees all the memory allocated to
+* this program object.
+*
+* On exit components of the problem object are restored to correspond
+* to the original MIP passed to the routine ios_create_tree. */
+
+void ios_delete_tree(glp_tree *tree)
+{ glp_prob *mip = tree->mip;
+ int i, j;
+ int m = mip->m;
+ int n = mip->n;
+ xassert(mip->tree == tree);
+ /* remove all additional rows */
+ if (m != tree->orig_m)
+ { int nrs, *num;
+ nrs = m - tree->orig_m;
+ xassert(nrs > 0);
+ num = xcalloc(1+nrs, sizeof(int));
+ for (i = 1; i <= nrs; i++) num[i] = tree->orig_m + i;
+ glp_del_rows(mip, nrs, num);
+ xfree(num);
+ }
+ m = tree->orig_m;
+ /* restore original attributes of rows and columns */
+ xassert(m == tree->orig_m);
+ xassert(n == tree->n);
+ for (i = 1; i <= m; i++)
+ { glp_set_row_bnds(mip, i, tree->orig_type[i],
+ tree->orig_lb[i], tree->orig_ub[i]);
+ glp_set_row_stat(mip, i, tree->orig_stat[i]);
+ mip->row[i]->prim = tree->orig_prim[i];
+ mip->row[i]->dual = tree->orig_dual[i];
+ }
+ for (j = 1; j <= n; j++)
+ { glp_set_col_bnds(mip, j, tree->orig_type[m+j],
+ tree->orig_lb[m+j], tree->orig_ub[m+j]);
+ glp_set_col_stat(mip, j, tree->orig_stat[m+j]);
+ mip->col[j]->prim = tree->orig_prim[m+j];
+ mip->col[j]->dual = tree->orig_dual[m+j];
+ }
+ mip->pbs_stat = mip->dbs_stat = GLP_FEAS;
+ mip->obj_val = tree->orig_obj;
+ /* delete the branch-and-bound tree */
+ xassert(tree->local != NULL);
+ ios_delete_pool(tree, tree->local);
+ dmp_delete_pool(tree->pool);
+ xfree(tree->orig_type);
+ xfree(tree->orig_lb);
+ xfree(tree->orig_ub);
+ xfree(tree->orig_stat);
+ xfree(tree->orig_prim);
+ xfree(tree->orig_dual);
+ xfree(tree->slot);
+ if (tree->root_type != NULL) xfree(tree->root_type);
+ if (tree->root_lb != NULL) xfree(tree->root_lb);
+ if (tree->root_ub != NULL) xfree(tree->root_ub);
+ if (tree->root_stat != NULL) xfree(tree->root_stat);
+ xfree(tree->non_int);
+#if 0
+ xfree(tree->n_ref);
+ xfree(tree->c_ref);
+ xfree(tree->j_ref);
+#endif
+ if (tree->pcost != NULL) ios_pcost_free(tree);
+ xfree(tree->iwrk);
+ xfree(tree->dwrk);
+#if 0
+ scg_delete_graph(tree->g);
+#endif
+ if (tree->pred_type != NULL) xfree(tree->pred_type);
+ if (tree->pred_lb != NULL) xfree(tree->pred_lb);
+ if (tree->pred_ub != NULL) xfree(tree->pred_ub);
+ if (tree->pred_stat != NULL) xfree(tree->pred_stat);
+#if 0
+ xassert(tree->cut_gen == NULL);
+#endif
+ xassert(tree->mir_gen == NULL);
+ xassert(tree->clq_gen == NULL);
+ xfree(tree);
+ mip->tree = NULL;
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_eval_degrad - estimate obj. degrad. for down- and up-branches
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* void ios_eval_degrad(glp_tree *tree, int j, double *dn, double *up);
+*
+* DESCRIPTION
+*
+* Given optimal basis to LP relaxation of the current subproblem the
+* routine ios_eval_degrad performs the dual ratio test to compute the
+* objective values in the adjacent basis for down- and up-branches,
+* which are stored in locations *dn and *up, assuming that x[j] is a
+* variable chosen to branch upon. */
+
+void ios_eval_degrad(glp_tree *tree, int j, double *dn, double *up)
+{ glp_prob *mip = tree->mip;
+ int m = mip->m, n = mip->n;
+ int len, kase, k, t, stat;
+ double alfa, beta, gamma, delta, dz;
+ int *ind = tree->iwrk;
+ double *val = tree->dwrk;
+ /* current basis must be optimal */
+ xassert(glp_get_status(mip) == GLP_OPT);
+ /* basis factorization must exist */
+ xassert(glp_bf_exists(mip));
+ /* obtain (fractional) value of x[j] in optimal basic solution
+ to LP relaxation of the current subproblem */
+ xassert(1 <= j && j <= n);
+ beta = mip->col[j]->prim;
+ /* since the value of x[j] is fractional, it is basic; compute
+ corresponding row of the simplex table */
+ len = lpx_eval_tab_row(mip, m+j, ind, val);
+ /* kase < 0 means down-branch; kase > 0 means up-branch */
+ for (kase = -1; kase <= +1; kase += 2)
+ { /* for down-branch we introduce new upper bound floor(beta)
+ for x[j]; similarly, for up-branch we introduce new lower
+ bound ceil(beta) for x[j]; in the current basis this new
+ upper/lower bound is violated, so in the adjacent basis
+ x[j] will leave the basis and go to its new upper/lower
+ bound; we need to know which non-basic variable x[k] should
+ enter the basis to keep dual feasibility */
+#if 0 /* 23/XI-2009 */
+ k = lpx_dual_ratio_test(mip, len, ind, val, kase, 1e-7);
+#else
+ k = lpx_dual_ratio_test(mip, len, ind, val, kase, 1e-9);
+#endif
+ /* if no variable has been chosen, current basis being primal
+ infeasible due to the new upper/lower bound of x[j] is dual
+ unbounded, therefore, LP relaxation to corresponding branch
+ has no primal feasible solution */
+ if (k == 0)
+ { if (mip->dir == GLP_MIN)
+ { if (kase < 0)
+ *dn = +DBL_MAX;
+ else
+ *up = +DBL_MAX;
+ }
+ else if (mip->dir == GLP_MAX)
+ { if (kase < 0)
+ *dn = -DBL_MAX;
+ else
+ *up = -DBL_MAX;
+ }
+ else
+ xassert(mip != mip);
+ continue;
+ }
+ xassert(1 <= k && k <= m+n);
+ /* row of the simplex table corresponding to specified basic
+ variable x[j] is the following:
+ x[j] = ... + alfa * x[k] + ... ;
+ we need to know influence coefficient, alfa, at non-basic
+ variable x[k] chosen with the dual ratio test */
+ for (t = 1; t <= len; t++)
+ if (ind[t] == k) break;
+ xassert(1 <= t && t <= len);
+ alfa = val[t];
+ /* determine status and reduced cost of variable x[k] */
+ if (k <= m)
+ { stat = mip->row[k]->stat;
+ gamma = mip->row[k]->dual;
+ }
+ else
+ { stat = mip->col[k-m]->stat;
+ gamma = mip->col[k-m]->dual;
+ }
+ /* x[k] cannot be basic or fixed non-basic */
+ xassert(stat == GLP_NL || stat == GLP_NU || stat == GLP_NF);
+ /* if the current basis is dual degenerative, some reduced
+ costs, which are close to zero, may have wrong sign due to
+ round-off errors, so correct the sign of gamma */
+ if (mip->dir == GLP_MIN)
+ { if (stat == GLP_NL && gamma < 0.0 ||
+ stat == GLP_NU && gamma > 0.0 ||
+ stat == GLP_NF) gamma = 0.0;
+ }
+ else if (mip->dir == GLP_MAX)
+ { if (stat == GLP_NL && gamma > 0.0 ||
+ stat == GLP_NU && gamma < 0.0 ||
+ stat == GLP_NF) gamma = 0.0;
+ }
+ else
+ xassert(mip != mip);
+ /* determine the change of x[j] in the adjacent basis:
+ delta x[j] = new x[j] - old x[j] */
+ delta = (kase < 0 ? floor(beta) : ceil(beta)) - beta;
+ /* compute the change of x[k] in the adjacent basis:
+ delta x[k] = new x[k] - old x[k] = delta x[j] / alfa */
+ delta /= alfa;
+ /* compute the change of the objective in the adjacent basis:
+ delta z = new z - old z = gamma * delta x[k] */
+ dz = gamma * delta;
+ if (mip->dir == GLP_MIN)
+ xassert(dz >= 0.0);
+ else if (mip->dir == GLP_MAX)
+ xassert(dz <= 0.0);
+ else
+ xassert(mip != mip);
+ /* compute the new objective value in the adjacent basis:
+ new z = old z + delta z */
+ if (kase < 0)
+ *dn = mip->obj_val + dz;
+ else
+ *up = mip->obj_val + dz;
+ }
+ /*xprintf("obj = %g; dn = %g; up = %g\n",
+ mip->obj_val, *dn, *up);*/
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_round_bound - improve local bound by rounding
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* double ios_round_bound(glp_tree *tree, double bound);
+*
+* RETURNS
+*
+* For the given local bound for any integer feasible solution to the
+* current subproblem the routine ios_round_bound returns an improved
+* local bound for the same integer feasible solution.
+*
+* BACKGROUND
+*
+* Let the current subproblem has the following objective function:
+*
+* z = sum c[j] * x[j] + s >= b, (1)
+* j in J
+*
+* where J = {j: c[j] is non-zero and integer, x[j] is integer}, s is
+* the sum of terms corresponding to fixed variables, b is an initial
+* local bound (minimization).
+*
+* From (1) it follows that:
+*
+* d * sum (c[j] / d) * x[j] + s >= b, (2)
+* j in J
+*
+* or, equivalently,
+*
+* sum (c[j] / d) * x[j] >= (b - s) / d = h, (3)
+* j in J
+*
+* where d = gcd(c[j]). Since the left-hand side of (3) is integer,
+* h = (b - s) / d can be rounded up to the nearest integer:
+*
+* h' = ceil(h) = (b' - s) / d, (4)
+*
+* that gives an rounded, improved local bound:
+*
+* b' = d * h' + s. (5)
+*
+* In case of maximization '>=' in (1) should be replaced by '<=' that
+* leads to the following formula:
+*
+* h' = floor(h) = (b' - s) / d, (6)
+*
+* which should used in the same way as (4).
+*
+* NOTE: If b is a valid local bound for a child of the current
+* subproblem, b' is also valid for that child subproblem. */
+
+double ios_round_bound(glp_tree *tree, double bound)
+{ glp_prob *mip = tree->mip;
+ int n = mip->n;
+ int d, j, nn, *c = tree->iwrk;
+ double s, h;
+ /* determine c[j] and compute s */
+ nn = 0, s = mip->c0, d = 0;
+ for (j = 1; j <= n; j++)
+ { GLPCOL *col = mip->col[j];
+ if (col->coef == 0.0) continue;
+ if (col->type == GLP_FX)
+ { /* fixed variable */
+ s += col->coef * col->prim;
+ }
+ else
+ { /* non-fixed variable */
+ if (col->kind != GLP_IV) goto skip;
+ if (col->coef != floor(col->coef)) goto skip;
+ if (fabs(col->coef) <= (double)INT_MAX)
+ c[++nn] = (int)fabs(col->coef);
+ else
+ d = 1;
+ }
+ }
+ /* compute d = gcd(c[1],...c[nn]) */
+ if (d == 0)
+ { if (nn == 0) goto skip;
+ d = gcdn(nn, c);
+ }
+ xassert(d > 0);
+ /* compute new local bound */
+ if (mip->dir == GLP_MIN)
+ { if (bound != +DBL_MAX)
+ { h = (bound - s) / (double)d;
+ if (h >= floor(h) + 0.001)
+ { /* round up */
+ h = ceil(h);
+ /*xprintf("d = %d; old = %g; ", d, bound);*/
+ bound = (double)d * h + s;
+ /*xprintf("new = %g\n", bound);*/
+ }
+ }
+ }
+ else if (mip->dir == GLP_MAX)
+ { if (bound != -DBL_MAX)
+ { h = (bound - s) / (double)d;
+ if (h <= ceil(h) - 0.001)
+ { /* round down */
+ h = floor(h);
+ bound = (double)d * h + s;
+ }
+ }
+ }
+ else
+ xassert(mip != mip);
+skip: return bound;
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_is_hopeful - check if subproblem is hopeful
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* int ios_is_hopeful(glp_tree *tree, double bound);
+*
+* DESCRIPTION
+*
+* Given the local bound of a subproblem the routine ios_is_hopeful
+* checks if the subproblem can have an integer optimal solution which
+* is better than the best one currently known.
+*
+* RETURNS
+*
+* If the subproblem can have a better integer optimal solution, the
+* routine returns non-zero; otherwise, if the corresponding branch can
+* be pruned, the routine returns zero. */
+
+int ios_is_hopeful(glp_tree *tree, double bound)
+{ glp_prob *mip = tree->mip;
+ int ret = 1;
+ double eps;
+ if (mip->mip_stat == GLP_FEAS)
+ { eps = tree->parm->tol_obj * (1.0 + fabs(mip->mip_obj));
+ switch (mip->dir)
+ { case GLP_MIN:
+ if (bound >= mip->mip_obj - eps) ret = 0;
+ break;
+ case GLP_MAX:
+ if (bound <= mip->mip_obj + eps) ret = 0;
+ break;
+ default:
+ xassert(mip != mip);
+ }
+ }
+ else
+ { switch (mip->dir)
+ { case GLP_MIN:
+ if (bound == +DBL_MAX) ret = 0;
+ break;
+ case GLP_MAX:
+ if (bound == -DBL_MAX) ret = 0;
+ break;
+ default:
+ xassert(mip != mip);
+ }
+ }
+ return ret;
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_best_node - find active node with best local bound
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* int ios_best_node(glp_tree *tree);
+*
+* DESCRIPTION
+*
+* The routine ios_best_node finds an active node whose local bound is
+* best among other active nodes.
+*
+* It is understood that the integer optimal solution of the original
+* mip problem cannot be better than the best bound, so the best bound
+* is an lower (minimization) or upper (maximization) global bound for
+* the original problem.
+*
+* RETURNS
+*
+* The routine ios_best_node returns the subproblem reference number
+* for the best node. However, if the tree is empty, it returns zero. */
+
+int ios_best_node(glp_tree *tree)
+{ IOSNPD *node, *best = NULL;
+ switch (tree->mip->dir)
+ { case GLP_MIN:
+ /* minimization */
+ for (node = tree->head; node != NULL; node = node->next)
+ if (best == NULL || best->bound > node->bound)
+ best = node;
+ break;
+ case GLP_MAX:
+ /* maximization */
+ for (node = tree->head; node != NULL; node = node->next)
+ if (best == NULL || best->bound < node->bound)
+ best = node;
+ break;
+ default:
+ xassert(tree != tree);
+ }
+ return best == NULL ? 0 : best->p;
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_relative_gap - compute relative mip gap
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* double ios_relative_gap(glp_tree *tree);
+*
+* DESCRIPTION
+*
+* The routine ios_relative_gap computes the relative mip gap using the
+* formula:
+*
+* gap = |best_mip - best_bnd| / (|best_mip| + DBL_EPSILON),
+*
+* where best_mip is the best integer feasible solution found so far,
+* best_bnd is the best (global) bound. If no integer feasible solution
+* has been found yet, rel_gap is set to DBL_MAX.
+*
+* RETURNS
+*
+* The routine ios_relative_gap returns the relative mip gap. */
+
+double ios_relative_gap(glp_tree *tree)
+{ glp_prob *mip = tree->mip;
+ int p;
+ double best_mip, best_bnd, gap;
+ if (mip->mip_stat == GLP_FEAS)
+ { best_mip = mip->mip_obj;
+ p = ios_best_node(tree);
+ if (p == 0)
+ { /* the tree is empty */
+ gap = 0.0;
+ }
+ else
+ { best_bnd = tree->slot[p].node->bound;
+ gap = fabs(best_mip - best_bnd) / (fabs(best_mip) +
+ DBL_EPSILON);
+ }
+ }
+ else
+ { /* no integer feasible solution has been found yet */
+ gap = DBL_MAX;
+ }
+ return gap;
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_solve_node - solve LP relaxation of current subproblem
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* int ios_solve_node(glp_tree *tree);
+*
+* DESCRIPTION
+*
+* The routine ios_solve_node re-optimizes LP relaxation of the current
+* subproblem using the dual simplex method.
+*
+* RETURNS
+*
+* The routine returns the code which is reported by glp_simplex. */
+
+int ios_solve_node(glp_tree *tree)
+{ glp_prob *mip = tree->mip;
+ glp_smcp parm;
+ int ret;
+ /* the current subproblem must exist */
+ xassert(tree->curr != NULL);
+ /* set some control parameters */
+ glp_init_smcp(&parm);
+ switch (tree->parm->msg_lev)
+ { case GLP_MSG_OFF:
+ parm.msg_lev = GLP_MSG_OFF; break;
+ case GLP_MSG_ERR:
+ parm.msg_lev = GLP_MSG_ERR; break;
+ case GLP_MSG_ON:
+ case GLP_MSG_ALL:
+ parm.msg_lev = GLP_MSG_ON; break;
+ case GLP_MSG_DBG:
+ parm.msg_lev = GLP_MSG_ALL; break;
+ default:
+ xassert(tree != tree);
+ }
+ parm.meth = GLP_DUALP;
+#if 1 /* 16/III-2016 */
+ if (tree->parm->flip)
+ parm.r_test = GLP_RT_FLIP;
+#endif
+ /* respect time limit */
+ if (tree->parm->tm_lim < INT_MAX)
+ parm.tm_lim = tree->parm->tm_lim - (glp_time() - tree->tm_beg);
+ if (parm.tm_lim < 0)
+ parm.tm_lim = 0;
+ if (tree->parm->msg_lev < GLP_MSG_DBG)
+ parm.out_dly = tree->parm->out_dly;
+ else
+ parm.out_dly = 0;
+ /* if the incumbent objective value is already known, use it to
+ prematurely terminate the dual simplex search */
+ if (mip->mip_stat == GLP_FEAS)
+ { switch (tree->mip->dir)
+ { case GLP_MIN:
+ parm.obj_ul = mip->mip_obj;
+ break;
+ case GLP_MAX:
+ parm.obj_ll = mip->mip_obj;
+ break;
+ default:
+ xassert(mip != mip);
+ }
+ }
+ /* try to solve/re-optimize the LP relaxation */
+ ret = glp_simplex(mip, &parm);
+#if 1 /* 21/II-2016 by Chris */
+ if (ret == GLP_EFAIL)
+ { /* retry with a new basis */
+ glp_adv_basis(mip, 0);
+ ret = glp_simplex(mip, &parm);
+ }
+#endif
+ tree->curr->solved++;
+#if 0
+ xprintf("ret = %d; status = %d; pbs = %d; dbs = %d; some = %d\n",
+ ret, glp_get_status(mip), mip->pbs_stat, mip->dbs_stat,
+ mip->some);
+ lpx_print_sol(mip, "sol");
+#endif
+ return ret;
+}
+
+/**********************************************************************/
+
+#ifdef NEW_LOCAL /* 02/II-2018 */
+IOSPOOL *ios_create_pool(glp_tree *tree)
+{ /* create cut pool */
+ IOSPOOL *pool;
+ pool = glp_create_prob();
+ glp_add_cols(pool, tree->mip->n);
+ return pool;
+}
+#else
+IOSPOOL *ios_create_pool(glp_tree *tree)
+{ /* create cut pool */
+ IOSPOOL *pool;
+#if 0
+ pool = dmp_get_atom(tree->pool, sizeof(IOSPOOL));
+#else
+ xassert(tree == tree);
+ pool = xmalloc(sizeof(IOSPOOL));
+#endif
+ pool->size = 0;
+ pool->head = pool->tail = NULL;
+ pool->ord = 0, pool->curr = NULL;
+ return pool;
+}
+#endif
+
+#ifdef NEW_LOCAL /* 02/II-2018 */
+int ios_add_row(glp_tree *tree, IOSPOOL *pool,
+ const char *name, int klass, int flags, int len, const int ind[],
+ const double val[], int type, double rhs)
+{ /* add row (constraint) to the cut pool */
+ int i;
+ i = glp_add_rows(pool, 1);
+ glp_set_row_name(pool, i, name);
+ pool->row[i]->klass = klass;
+ xassert(flags == 0);
+ glp_set_mat_row(pool, i, len, ind, val);
+ glp_set_row_bnds(pool, i, type, rhs, rhs);
+ return i;
+}
+#else
+int ios_add_row(glp_tree *tree, IOSPOOL *pool,
+ const char *name, int klass, int flags, int len, const int ind[],
+ const double val[], int type, double rhs)
+{ /* add row (constraint) to the cut pool */
+ IOSCUT *cut;
+ IOSAIJ *aij;
+ int k;
+ xassert(pool != NULL);
+ cut = dmp_get_atom(tree->pool, sizeof(IOSCUT));
+ if (name == NULL || name[0] == '\0')
+ cut->name = NULL;
+ else
+ { for (k = 0; name[k] != '\0'; k++)
+ { if (k == 256)
+ xerror("glp_ios_add_row: cut name too long\n");
+ if (iscntrl((unsigned char)name[k]))
+ xerror("glp_ios_add_row: cut name contains invalid chara"
+ "cter(s)\n");
+ }
+ cut->name = dmp_get_atom(tree->pool, strlen(name)+1);
+ strcpy(cut->name, name);
+ }
+ if (!(0 <= klass && klass <= 255))
+ xerror("glp_ios_add_row: klass = %d; invalid cut class\n",
+ klass);
+ cut->klass = (unsigned char)klass;
+ if (flags != 0)
+ xerror("glp_ios_add_row: flags = %d; invalid cut flags\n",
+ flags);
+ cut->ptr = NULL;
+ if (!(0 <= len && len <= tree->n))
+ xerror("glp_ios_add_row: len = %d; invalid cut length\n",
+ len);
+ for (k = 1; k <= len; k++)
+ { aij = dmp_get_atom(tree->pool, sizeof(IOSAIJ));
+ if (!(1 <= ind[k] && ind[k] <= tree->n))
+ xerror("glp_ios_add_row: ind[%d] = %d; column index out of "
+ "range\n", k, ind[k]);
+ aij->j = ind[k];
+ aij->val = val[k];
+ aij->next = cut->ptr;
+ cut->ptr = aij;
+ }
+ if (!(type == GLP_LO || type == GLP_UP || type == GLP_FX))
+ xerror("glp_ios_add_row: type = %d; invalid cut type\n",
+ type);
+ cut->type = (unsigned char)type;
+ cut->rhs = rhs;
+ cut->prev = pool->tail;
+ cut->next = NULL;
+ if (cut->prev == NULL)
+ pool->head = cut;
+ else
+ cut->prev->next = cut;
+ pool->tail = cut;
+ pool->size++;
+ return pool->size;
+}
+#endif
+
+#ifdef NEW_LOCAL /* 02/II-2018 */
+IOSCUT *ios_find_row(IOSPOOL *pool, int i)
+{ /* find row (constraint) in the cut pool */
+ xassert(0);
+}
+#else
+IOSCUT *ios_find_row(IOSPOOL *pool, int i)
+{ /* find row (constraint) in the cut pool */
+ /* (smart linear search) */
+ xassert(pool != NULL);
+ xassert(1 <= i && i <= pool->size);
+ if (pool->ord == 0)
+ { xassert(pool->curr == NULL);
+ pool->ord = 1;
+ pool->curr = pool->head;
+ }
+ xassert(pool->curr != NULL);
+ if (i < pool->ord)
+ { if (i < pool->ord - i)
+ { pool->ord = 1;
+ pool->curr = pool->head;
+ while (pool->ord != i)
+ { pool->ord++;
+ xassert(pool->curr != NULL);
+ pool->curr = pool->curr->next;
+ }
+ }
+ else
+ { while (pool->ord != i)
+ { pool->ord--;
+ xassert(pool->curr != NULL);
+ pool->curr = pool->curr->prev;
+ }
+ }
+ }
+ else if (i > pool->ord)
+ { if (i - pool->ord < pool->size - i)
+ { while (pool->ord != i)
+ { pool->ord++;
+ xassert(pool->curr != NULL);
+ pool->curr = pool->curr->next;
+ }
+ }
+ else
+ { pool->ord = pool->size;
+ pool->curr = pool->tail;
+ while (pool->ord != i)
+ { pool->ord--;
+ xassert(pool->curr != NULL);
+ pool->curr = pool->curr->prev;
+ }
+ }
+ }
+ xassert(pool->ord == i);
+ xassert(pool->curr != NULL);
+ return pool->curr;
+}
+#endif
+
+#ifdef NEW_LOCAL /* 02/II-2018 */
+void ios_del_row(glp_tree *tree, IOSPOOL *pool, int i)
+{ /* remove row (constraint) from the cut pool */
+ xassert(0);
+}
+#else
+void ios_del_row(glp_tree *tree, IOSPOOL *pool, int i)
+{ /* remove row (constraint) from the cut pool */
+ IOSCUT *cut;
+ IOSAIJ *aij;
+ xassert(pool != NULL);
+ if (!(1 <= i && i <= pool->size))
+ xerror("glp_ios_del_row: i = %d; cut number out of range\n",
+ i);
+ cut = ios_find_row(pool, i);
+ xassert(pool->curr == cut);
+ if (cut->next != NULL)
+ pool->curr = cut->next;
+ else if (cut->prev != NULL)
+ pool->ord--, pool->curr = cut->prev;
+ else
+ pool->ord = 0, pool->curr = NULL;
+ if (cut->name != NULL)
+ dmp_free_atom(tree->pool, cut->name, strlen(cut->name)+1);
+ if (cut->prev == NULL)
+ { xassert(pool->head == cut);
+ pool->head = cut->next;
+ }
+ else
+ { xassert(cut->prev->next == cut);
+ cut->prev->next = cut->next;
+ }
+ if (cut->next == NULL)
+ { xassert(pool->tail == cut);
+ pool->tail = cut->prev;
+ }
+ else
+ { xassert(cut->next->prev == cut);
+ cut->next->prev = cut->prev;
+ }
+ while (cut->ptr != NULL)
+ { aij = cut->ptr;
+ cut->ptr = aij->next;
+ dmp_free_atom(tree->pool, aij, sizeof(IOSAIJ));
+ }
+ dmp_free_atom(tree->pool, cut, sizeof(IOSCUT));
+ pool->size--;
+ return;
+}
+#endif
+
+#ifdef NEW_LOCAL /* 02/II-2018 */
+void ios_clear_pool(glp_tree *tree, IOSPOOL *pool)
+{ /* remove all rows (constraints) from the cut pool */
+ if (pool->m > 0)
+ { int i, *num;
+ num = talloc(1+pool->m, int);
+ for (i = 1; i <= pool->m; i++)
+ num[i] = i;
+ glp_del_rows(pool, pool->m, num);
+ tfree(num);
+ }
+ return;
+}
+#else
+void ios_clear_pool(glp_tree *tree, IOSPOOL *pool)
+{ /* remove all rows (constraints) from the cut pool */
+ xassert(pool != NULL);
+ while (pool->head != NULL)
+ { IOSCUT *cut = pool->head;
+ pool->head = cut->next;
+ if (cut->name != NULL)
+ dmp_free_atom(tree->pool, cut->name, strlen(cut->name)+1);
+ while (cut->ptr != NULL)
+ { IOSAIJ *aij = cut->ptr;
+ cut->ptr = aij->next;
+ dmp_free_atom(tree->pool, aij, sizeof(IOSAIJ));
+ }
+ dmp_free_atom(tree->pool, cut, sizeof(IOSCUT));
+ }
+ pool->size = 0;
+ pool->head = pool->tail = NULL;
+ pool->ord = 0, pool->curr = NULL;
+ return;
+}
+#endif
+
+#ifdef NEW_LOCAL /* 02/II-2018 */
+void ios_delete_pool(glp_tree *tree, IOSPOOL *pool)
+{ /* delete cut pool */
+ xassert(pool != NULL);
+ glp_delete_prob(pool);
+ return;
+}
+#else
+void ios_delete_pool(glp_tree *tree, IOSPOOL *pool)
+{ /* delete cut pool */
+ xassert(pool != NULL);
+ ios_clear_pool(tree, pool);
+ xfree(pool);
+ return;
+}
+#endif
+
+#if 1 /* 11/VII-2013 */
+#include "npp.h"
+
+void ios_process_sol(glp_tree *T)
+{ /* process integer feasible solution just found */
+ if (T->npp != NULL)
+ { /* postprocess solution from transformed mip */
+ npp_postprocess(T->npp, T->mip);
+ /* store solution to problem passed to glp_intopt */
+ npp_unload_sol(T->npp, T->P);
+ }
+ xassert(T->P != NULL);
+ /* save solution to text file, if requested */
+ if (T->save_sol != NULL)
+ { char *fn, *mark;
+ fn = talloc(strlen(T->save_sol) + 50, char);
+ mark = strrchr(T->save_sol, '*');
+ if (mark == NULL)
+ strcpy(fn, T->save_sol);
+ else
+ { memcpy(fn, T->save_sol, mark - T->save_sol);
+ fn[mark - T->save_sol] = '\0';
+ sprintf(fn + strlen(fn), "%03d", ++(T->save_cnt));
+ strcat(fn, &mark[1]);
+ }
+ glp_write_mip(T->P, fn);
+ tfree(fn);
+ }
+ return;
+}
+#endif
+
+/* eof */