aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/draft/glpios03.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/draft/glpios03.c')
-rw-r--r--test/monniaux/glpk-4.65/src/draft/glpios03.c1512
1 files changed, 1512 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/draft/glpios03.c b/test/monniaux/glpk-4.65/src/draft/glpios03.c
new file mode 100644
index 00000000..21d6a000
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/draft/glpios03.c
@@ -0,0 +1,1512 @@
+/* glpios03.c (branch-and-cut driver) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+* 2009, 2010, 2011, 2013, 2018 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "ios.h"
+
+/***********************************************************************
+* show_progress - display current progress of the search
+*
+* This routine displays some information about current progress of the
+* search.
+*
+* The information includes:
+*
+* the current number of iterations performed by the simplex solver;
+*
+* the objective value for the best known integer feasible solution,
+* which is upper (minimization) or lower (maximization) global bound
+* for optimal solution of the original mip problem;
+*
+* the best local bound for active nodes, which is lower (minimization)
+* or upper (maximization) global bound for optimal solution of the
+* original mip problem;
+*
+* the relative mip gap, in percents;
+*
+* the number of open (active) subproblems;
+*
+* the number of completely explored subproblems, i.e. whose nodes have
+* been removed from the tree. */
+
+static void show_progress(glp_tree *T, int bingo)
+{ int p;
+ double temp;
+ char best_mip[50], best_bound[50], *rho, rel_gap[50];
+ /* format the best known integer feasible solution */
+ if (T->mip->mip_stat == GLP_FEAS)
+ sprintf(best_mip, "%17.9e", T->mip->mip_obj);
+ else
+ sprintf(best_mip, "%17s", "not found yet");
+ /* determine reference number of an active subproblem whose local
+ bound is best */
+ p = ios_best_node(T);
+ /* format the best bound */
+ if (p == 0)
+ sprintf(best_bound, "%17s", "tree is empty");
+ else
+ { temp = T->slot[p].node->bound;
+ if (temp == -DBL_MAX)
+ sprintf(best_bound, "%17s", "-inf");
+ else if (temp == +DBL_MAX)
+ sprintf(best_bound, "%17s", "+inf");
+ else
+ { if (fabs(temp) < 1e-9)
+ temp = 0;
+ sprintf(best_bound, "%17.9e", temp);
+ }
+ }
+ /* choose the relation sign between global bounds */
+ if (T->mip->dir == GLP_MIN)
+ rho = ">=";
+ else if (T->mip->dir == GLP_MAX)
+ rho = "<=";
+ else
+ xassert(T != T);
+ /* format the relative mip gap */
+ temp = ios_relative_gap(T);
+ if (temp == 0.0)
+ sprintf(rel_gap, " 0.0%%");
+ else if (temp < 0.001)
+ sprintf(rel_gap, "< 0.1%%");
+ else if (temp <= 9.999)
+ sprintf(rel_gap, "%5.1f%%", 100.0 * temp);
+ else
+ sprintf(rel_gap, "%6s", "");
+ /* display progress of the search */
+ xprintf("+%6d: %s %s %s %s %s (%d; %d)\n",
+ T->mip->it_cnt, bingo ? ">>>>>" : "mip =", best_mip, rho,
+ best_bound, rel_gap, T->a_cnt, T->t_cnt - T->n_cnt);
+ T->tm_lag = xtime();
+ return;
+}
+
+/***********************************************************************
+* is_branch_hopeful - check if specified branch is hopeful
+*
+* This routine checks if the specified subproblem can have an integer
+* optimal solution which is better than the best known one.
+*
+* The check is based on comparison of the local objective bound stored
+* in the subproblem descriptor and the incumbent objective value which
+* is the global objective bound.
+*
+* If there is a chance that the specified subproblem can have a better
+* integer optimal solution, the routine returns non-zero. Otherwise, if
+* the corresponding branch can pruned, zero is returned. */
+
+static int is_branch_hopeful(glp_tree *T, int p)
+{ xassert(1 <= p && p <= T->nslots);
+ xassert(T->slot[p].node != NULL);
+ return ios_is_hopeful(T, T->slot[p].node->bound);
+}
+
+/***********************************************************************
+* check_integrality - check integrality of basic solution
+*
+* This routine checks if the basic solution of LP relaxation of the
+* current subproblem satisfies to integrality conditions, i.e. that all
+* variables of integer kind have integral primal values. (The solution
+* is assumed to be optimal.)
+*
+* For each variable of integer kind the routine computes the following
+* quantity:
+*
+* ii(x[j]) = min(x[j] - floor(x[j]), ceil(x[j]) - x[j]), (1)
+*
+* which is a measure of the integer infeasibility (non-integrality) of
+* x[j] (for example, ii(2.1) = 0.1, ii(3.7) = 0.3, ii(5.0) = 0). It is
+* understood that 0 <= ii(x[j]) <= 0.5, and variable x[j] is integer
+* feasible if ii(x[j]) = 0. However, due to floating-point arithmetic
+* the routine checks less restrictive condition:
+*
+* ii(x[j]) <= tol_int, (2)
+*
+* where tol_int is a given tolerance (small positive number) and marks
+* each variable which does not satisfy to (2) as integer infeasible by
+* setting its fractionality flag.
+*
+* In order to characterize integer infeasibility of the basic solution
+* in the whole the routine computes two parameters: ii_cnt, which is
+* the number of variables with the fractionality flag set, and ii_sum,
+* which is the sum of integer infeasibilities (1). */
+
+static void check_integrality(glp_tree *T)
+{ glp_prob *mip = T->mip;
+ int j, type, ii_cnt = 0;
+ double lb, ub, x, temp1, temp2, ii_sum = 0.0;
+ /* walk through the set of columns (structural variables) */
+ for (j = 1; j <= mip->n; j++)
+ { GLPCOL *col = mip->col[j];
+ T->non_int[j] = 0;
+ /* if the column is not integer, skip it */
+ if (col->kind != GLP_IV) continue;
+ /* if the column is non-basic, it is integer feasible */
+ if (col->stat != GLP_BS) continue;
+ /* obtain the type and bounds of the column */
+ type = col->type, lb = col->lb, ub = col->ub;
+ /* obtain value of the column in optimal basic solution */
+ x = col->prim;
+ /* if the column's primal value is close to the lower bound,
+ the column is integer feasible within given tolerance */
+ if (type == GLP_LO || type == GLP_DB || type == GLP_FX)
+ { temp1 = lb - T->parm->tol_int;
+ temp2 = lb + T->parm->tol_int;
+ if (temp1 <= x && x <= temp2) continue;
+#if 0
+ /* the lower bound must not be violated */
+ xassert(x >= lb);
+#else
+ if (x < lb) continue;
+#endif
+ }
+ /* if the column's primal value is close to the upper bound,
+ the column is integer feasible within given tolerance */
+ if (type == GLP_UP || type == GLP_DB || type == GLP_FX)
+ { temp1 = ub - T->parm->tol_int;
+ temp2 = ub + T->parm->tol_int;
+ if (temp1 <= x && x <= temp2) continue;
+#if 0
+ /* the upper bound must not be violated */
+ xassert(x <= ub);
+#else
+ if (x > ub) continue;
+#endif
+ }
+ /* if the column's primal value is close to nearest integer,
+ the column is integer feasible within given tolerance */
+ temp1 = floor(x + 0.5) - T->parm->tol_int;
+ temp2 = floor(x + 0.5) + T->parm->tol_int;
+ if (temp1 <= x && x <= temp2) continue;
+ /* otherwise the column is integer infeasible */
+ T->non_int[j] = 1;
+ /* increase the number of fractional-valued columns */
+ ii_cnt++;
+ /* compute the sum of integer infeasibilities */
+ temp1 = x - floor(x);
+ temp2 = ceil(x) - x;
+ xassert(temp1 > 0.0 && temp2 > 0.0);
+ ii_sum += (temp1 <= temp2 ? temp1 : temp2);
+ }
+ /* store ii_cnt and ii_sum to the current problem descriptor */
+ xassert(T->curr != NULL);
+ T->curr->ii_cnt = ii_cnt;
+ T->curr->ii_sum = ii_sum;
+ /* and also display these parameters */
+ if (T->parm->msg_lev >= GLP_MSG_DBG)
+ { if (ii_cnt == 0)
+ xprintf("There are no fractional columns\n");
+ else if (ii_cnt == 1)
+ xprintf("There is one fractional column, integer infeasibil"
+ "ity is %.3e\n", ii_sum);
+ else
+ xprintf("There are %d fractional columns, integer infeasibi"
+ "lity is %.3e\n", ii_cnt, ii_sum);
+ }
+ return;
+}
+
+/***********************************************************************
+* record_solution - record better integer feasible solution
+*
+* This routine records optimal basic solution of LP relaxation of the
+* current subproblem, which being integer feasible is better than the
+* best known integer feasible solution. */
+
+static void record_solution(glp_tree *T)
+{ glp_prob *mip = T->mip;
+ int i, j;
+ mip->mip_stat = GLP_FEAS;
+ mip->mip_obj = mip->obj_val;
+ for (i = 1; i <= mip->m; i++)
+ { GLPROW *row = mip->row[i];
+ row->mipx = row->prim;
+ }
+ for (j = 1; j <= mip->n; j++)
+ { GLPCOL *col = mip->col[j];
+ if (col->kind == GLP_CV)
+ col->mipx = col->prim;
+ else if (col->kind == GLP_IV)
+ { /* value of the integer column must be integral */
+ col->mipx = floor(col->prim + 0.5);
+ }
+ else
+ xassert(col != col);
+ }
+ T->sol_cnt++;
+ return;
+}
+
+/***********************************************************************
+* fix_by_red_cost - fix non-basic integer columns by reduced costs
+*
+* This routine fixes some non-basic integer columns if their reduced
+* costs indicate that increasing (decreasing) the column at least by
+* one involves the objective value becoming worse than the incumbent
+* objective value. */
+
+static void fix_by_red_cost(glp_tree *T)
+{ glp_prob *mip = T->mip;
+ int j, stat, fixed = 0;
+ double obj, lb, ub, dj;
+ /* the global bound must exist */
+ xassert(T->mip->mip_stat == GLP_FEAS);
+ /* basic solution of LP relaxation must be optimal */
+ xassert(mip->pbs_stat == GLP_FEAS && mip->dbs_stat == GLP_FEAS);
+ /* determine the objective function value */
+ obj = mip->obj_val;
+ /* walk through the column list */
+ for (j = 1; j <= mip->n; j++)
+ { GLPCOL *col = mip->col[j];
+ /* if the column is not integer, skip it */
+ if (col->kind != GLP_IV) continue;
+ /* obtain bounds of j-th column */
+ lb = col->lb, ub = col->ub;
+ /* and determine its status and reduced cost */
+ stat = col->stat, dj = col->dual;
+ /* analyze the reduced cost */
+ switch (mip->dir)
+ { case GLP_MIN:
+ /* minimization */
+ if (stat == GLP_NL)
+ { /* j-th column is non-basic on its lower bound */
+ if (dj < 0.0) dj = 0.0;
+ if (obj + dj >= mip->mip_obj)
+ glp_set_col_bnds(mip, j, GLP_FX, lb, lb), fixed++;
+ }
+ else if (stat == GLP_NU)
+ { /* j-th column is non-basic on its upper bound */
+ if (dj > 0.0) dj = 0.0;
+ if (obj - dj >= mip->mip_obj)
+ glp_set_col_bnds(mip, j, GLP_FX, ub, ub), fixed++;
+ }
+ break;
+ case GLP_MAX:
+ /* maximization */
+ if (stat == GLP_NL)
+ { /* j-th column is non-basic on its lower bound */
+ if (dj > 0.0) dj = 0.0;
+ if (obj + dj <= mip->mip_obj)
+ glp_set_col_bnds(mip, j, GLP_FX, lb, lb), fixed++;
+ }
+ else if (stat == GLP_NU)
+ { /* j-th column is non-basic on its upper bound */
+ if (dj < 0.0) dj = 0.0;
+ if (obj - dj <= mip->mip_obj)
+ glp_set_col_bnds(mip, j, GLP_FX, ub, ub), fixed++;
+ }
+ break;
+ default:
+ xassert(T != T);
+ }
+ }
+ if (T->parm->msg_lev >= GLP_MSG_DBG)
+ { if (fixed == 0)
+ /* nothing to say */;
+ else if (fixed == 1)
+ xprintf("One column has been fixed by reduced cost\n");
+ else
+ xprintf("%d columns have been fixed by reduced costs\n",
+ fixed);
+ }
+ /* fixing non-basic columns on their current bounds does not
+ change the basic solution */
+ xassert(mip->pbs_stat == GLP_FEAS && mip->dbs_stat == GLP_FEAS);
+ return;
+}
+
+/***********************************************************************
+* branch_on - perform branching on specified variable
+*
+* This routine performs branching on j-th column (structural variable)
+* of the current subproblem. The specified column must be of integer
+* kind and must have a fractional value in optimal basic solution of
+* LP relaxation of the current subproblem (i.e. only columns for which
+* the flag non_int[j] is set are valid candidates to branch on).
+*
+* Let x be j-th structural variable, and beta be its primal fractional
+* value in the current basic solution. Branching on j-th variable is
+* dividing the current subproblem into two new subproblems, which are
+* identical to the current subproblem with the following exception: in
+* the first subproblem that begins the down-branch x has a new upper
+* bound x <= floor(beta), and in the second subproblem that begins the
+* up-branch x has a new lower bound x >= ceil(beta).
+*
+* Depending on estimation of local bounds for down- and up-branches
+* this routine returns the following:
+*
+* 0 - both branches have been created;
+* 1 - one branch is hopeless and has been pruned, so now the current
+* subproblem is other branch;
+* 2 - both branches are hopeless and have been pruned; new subproblem
+* selection is needed to continue the search. */
+
+static int branch_on(glp_tree *T, int j, int next)
+{ glp_prob *mip = T->mip;
+ IOSNPD *node;
+ int m = mip->m;
+ int n = mip->n;
+ int type, dn_type, up_type, dn_bad, up_bad, p, ret, clone[1+2];
+ double lb, ub, beta, new_ub, new_lb, dn_lp, up_lp, dn_bnd, up_bnd;
+ /* determine bounds and value of x[j] in optimal solution to LP
+ relaxation of the current subproblem */
+ xassert(1 <= j && j <= n);
+ type = mip->col[j]->type;
+ lb = mip->col[j]->lb;
+ ub = mip->col[j]->ub;
+ beta = mip->col[j]->prim;
+ /* determine new bounds of x[j] for down- and up-branches */
+ new_ub = floor(beta);
+ new_lb = ceil(beta);
+ switch (type)
+ { case GLP_FR:
+ dn_type = GLP_UP;
+ up_type = GLP_LO;
+ break;
+ case GLP_LO:
+ xassert(lb <= new_ub);
+ dn_type = (lb == new_ub ? GLP_FX : GLP_DB);
+ xassert(lb + 1.0 <= new_lb);
+ up_type = GLP_LO;
+ break;
+ case GLP_UP:
+ xassert(new_ub <= ub - 1.0);
+ dn_type = GLP_UP;
+ xassert(new_lb <= ub);
+ up_type = (new_lb == ub ? GLP_FX : GLP_DB);
+ break;
+ case GLP_DB:
+ xassert(lb <= new_ub && new_ub <= ub - 1.0);
+ dn_type = (lb == new_ub ? GLP_FX : GLP_DB);
+ xassert(lb + 1.0 <= new_lb && new_lb <= ub);
+ up_type = (new_lb == ub ? GLP_FX : GLP_DB);
+ break;
+ default:
+ xassert(type != type);
+ }
+ /* compute local bounds to LP relaxation for both branches */
+ ios_eval_degrad(T, j, &dn_lp, &up_lp);
+ /* and improve them by rounding */
+ dn_bnd = ios_round_bound(T, dn_lp);
+ up_bnd = ios_round_bound(T, up_lp);
+ /* check local bounds for down- and up-branches */
+ dn_bad = !ios_is_hopeful(T, dn_bnd);
+ up_bad = !ios_is_hopeful(T, up_bnd);
+ if (dn_bad && up_bad)
+ { if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Both down- and up-branches are hopeless\n");
+ ret = 2;
+ goto done;
+ }
+ else if (up_bad)
+ { if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Up-branch is hopeless\n");
+ glp_set_col_bnds(mip, j, dn_type, lb, new_ub);
+ T->curr->lp_obj = dn_lp;
+ if (mip->dir == GLP_MIN)
+ { if (T->curr->bound < dn_bnd)
+ T->curr->bound = dn_bnd;
+ }
+ else if (mip->dir == GLP_MAX)
+ { if (T->curr->bound > dn_bnd)
+ T->curr->bound = dn_bnd;
+ }
+ else
+ xassert(mip != mip);
+ ret = 1;
+ goto done;
+ }
+ else if (dn_bad)
+ { if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Down-branch is hopeless\n");
+ glp_set_col_bnds(mip, j, up_type, new_lb, ub);
+ T->curr->lp_obj = up_lp;
+ if (mip->dir == GLP_MIN)
+ { if (T->curr->bound < up_bnd)
+ T->curr->bound = up_bnd;
+ }
+ else if (mip->dir == GLP_MAX)
+ { if (T->curr->bound > up_bnd)
+ T->curr->bound = up_bnd;
+ }
+ else
+ xassert(mip != mip);
+ ret = 1;
+ goto done;
+ }
+ /* both down- and up-branches seem to be hopeful */
+ if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Branching on column %d, primal value is %.9e\n",
+ j, beta);
+ /* determine the reference number of the current subproblem */
+ xassert(T->curr != NULL);
+ p = T->curr->p;
+ T->curr->br_var = j;
+ T->curr->br_val = beta;
+ /* freeze the current subproblem */
+ ios_freeze_node(T);
+ /* create two clones of the current subproblem; the first clone
+ begins the down-branch, the second one begins the up-branch */
+ ios_clone_node(T, p, 2, clone);
+ if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Node %d begins down branch, node %d begins up branch "
+ "\n", clone[1], clone[2]);
+ /* set new upper bound of j-th column in the down-branch */
+ node = T->slot[clone[1]].node;
+ xassert(node != NULL);
+ xassert(node->up != NULL);
+ xassert(node->b_ptr == NULL);
+ node->b_ptr = dmp_get_atom(T->pool, sizeof(IOSBND));
+ node->b_ptr->k = m + j;
+ node->b_ptr->type = (unsigned char)dn_type;
+ node->b_ptr->lb = lb;
+ node->b_ptr->ub = new_ub;
+ node->b_ptr->next = NULL;
+ node->lp_obj = dn_lp;
+ if (mip->dir == GLP_MIN)
+ { if (node->bound < dn_bnd)
+ node->bound = dn_bnd;
+ }
+ else if (mip->dir == GLP_MAX)
+ { if (node->bound > dn_bnd)
+ node->bound = dn_bnd;
+ }
+ else
+ xassert(mip != mip);
+ /* set new lower bound of j-th column in the up-branch */
+ node = T->slot[clone[2]].node;
+ xassert(node != NULL);
+ xassert(node->up != NULL);
+ xassert(node->b_ptr == NULL);
+ node->b_ptr = dmp_get_atom(T->pool, sizeof(IOSBND));
+ node->b_ptr->k = m + j;
+ node->b_ptr->type = (unsigned char)up_type;
+ node->b_ptr->lb = new_lb;
+ node->b_ptr->ub = ub;
+ node->b_ptr->next = NULL;
+ node->lp_obj = up_lp;
+ if (mip->dir == GLP_MIN)
+ { if (node->bound < up_bnd)
+ node->bound = up_bnd;
+ }
+ else if (mip->dir == GLP_MAX)
+ { if (node->bound > up_bnd)
+ node->bound = up_bnd;
+ }
+ else
+ xassert(mip != mip);
+ /* suggest the subproblem to be solved next */
+ xassert(T->child == 0);
+ if (next == GLP_NO_BRNCH)
+ T->child = 0;
+ else if (next == GLP_DN_BRNCH)
+ T->child = clone[1];
+ else if (next == GLP_UP_BRNCH)
+ T->child = clone[2];
+ else
+ xassert(next != next);
+ ret = 0;
+done: return ret;
+}
+
+/***********************************************************************
+* cleanup_the_tree - prune hopeless branches from the tree
+*
+* This routine walks through the active list and checks the local
+* bound for every active subproblem. If the local bound indicates that
+* the subproblem cannot have integer optimal solution better than the
+* incumbent objective value, the routine deletes such subproblem that,
+* in turn, involves pruning the corresponding branch of the tree. */
+
+static void cleanup_the_tree(glp_tree *T)
+{ IOSNPD *node, *next_node;
+ int count = 0;
+ /* the global bound must exist */
+ xassert(T->mip->mip_stat == GLP_FEAS);
+ /* walk through the list of active subproblems */
+ for (node = T->head; node != NULL; node = next_node)
+ { /* deleting some active problem node may involve deleting its
+ parents recursively; however, all its parents being created
+ *before* it are always *precede* it in the node list, so
+ the next problem node is never affected by such deletion */
+ next_node = node->next;
+ /* if the branch is hopeless, prune it */
+ if (!is_branch_hopeful(T, node->p))
+ ios_delete_node(T, node->p), count++;
+ }
+ if (T->parm->msg_lev >= GLP_MSG_DBG)
+ { if (count == 1)
+ xprintf("One hopeless branch has been pruned\n");
+ else if (count > 1)
+ xprintf("%d hopeless branches have been pruned\n", count);
+ }
+ return;
+}
+
+/***********************************************************************
+* round_heur - simple rounding heuristic
+*
+* This routine attempts to guess an integer feasible solution by
+* simple rounding values of all integer variables in basic solution to
+* nearest integers. */
+
+static int round_heur(glp_tree *T)
+{ glp_prob *P = T->mip;
+ /*int m = P->m;*/
+ int n = P->n;
+ int i, j, ret;
+ double *x;
+ /* compute rounded values of variables */
+ x = talloc(1+n, double);
+ for (j = 1; j <= n; j++)
+ { GLPCOL *col = P->col[j];
+ if (col->kind == GLP_IV)
+ { /* integer variable */
+ x[j] = floor(col->prim + 0.5);
+ }
+ else if (col->type == GLP_FX)
+ { /* fixed variable */
+ x[j] = col->prim;
+ }
+ else
+ { /* non-integer non-fixed variable */
+ ret = 3;
+ goto done;
+ }
+ }
+ /* check that no constraints are violated */
+ for (i = 1; i <= T->orig_m; i++)
+ { int type = T->orig_type[i];
+ GLPAIJ *aij;
+ double sum;
+ if (type == GLP_FR)
+ continue;
+ /* compute value of linear form */
+ sum = 0.0;
+ for (aij = P->row[i]->ptr; aij != NULL; aij = aij->r_next)
+ sum += aij->val * x[aij->col->j];
+ /* check lower bound */
+ if (type == GLP_LO || type == GLP_DB || type == GLP_FX)
+ { if (sum < T->orig_lb[i] - 1e-9)
+ { /* lower bound is violated */
+ ret = 2;
+ goto done;
+ }
+ }
+ /* check upper bound */
+ if (type == GLP_UP || type == GLP_DB || type == GLP_FX)
+ { if (sum > T->orig_ub[i] + 1e-9)
+ { /* upper bound is violated */
+ ret = 2;
+ goto done;
+ }
+ }
+ }
+ /* rounded solution is integer feasible */
+ if (glp_ios_heur_sol(T, x) == 0)
+ { /* solution is accepted */
+ ret = 0;
+ }
+ else
+ { /* solution is rejected */
+ ret = 1;
+ }
+done: tfree(x);
+ return ret;
+}
+
+/**********************************************************************/
+
+#if 1 /* 08/III-2016 */
+static void gmi_gen(glp_tree *T)
+{ /* generate Gomory's mixed integer cuts */
+ glp_prob *P, *pool;
+ P = T->mip;
+ pool = glp_create_prob();
+ glp_add_cols(pool, P->n);
+ glp_gmi_gen(P, pool, 50);
+ if (pool->m > 0)
+ { int i, len, *ind;
+ double *val;
+ ind = xcalloc(1+P->n, sizeof(int));
+ val = xcalloc(1+P->n, sizeof(double));
+ for (i = 1; i <= pool->m; i++)
+ { len = glp_get_mat_row(pool, i, ind, val);
+ glp_ios_add_row(T, NULL, GLP_RF_GMI, 0, len, ind, val,
+ GLP_LO, pool->row[i]->lb);
+ }
+ xfree(ind);
+ xfree(val);
+ }
+ glp_delete_prob(pool);
+ return;
+}
+#endif
+
+#ifdef NEW_COVER /* 13/II-2018 */
+static void cov_gen(glp_tree *T)
+{ /* generate cover cuts */
+ glp_prob *P, *pool;
+ if (T->cov_gen == NULL)
+ return;
+ P = T->mip;
+ pool = glp_create_prob();
+ glp_add_cols(pool, P->n);
+ glp_cov_gen1(P, T->cov_gen, pool);
+ if (pool->m > 0)
+ { int i, len, *ind;
+ double *val;
+ ind = xcalloc(1+P->n, sizeof(int));
+ val = xcalloc(1+P->n, sizeof(double));
+ for (i = 1; i <= pool->m; i++)
+ { len = glp_get_mat_row(pool, i, ind, val);
+ glp_ios_add_row(T, NULL, GLP_RF_COV, 0, len, ind, val,
+ GLP_UP, pool->row[i]->ub);
+ }
+ xfree(ind);
+ xfree(val);
+ }
+ glp_delete_prob(pool);
+ return;
+}
+#endif
+
+#if 1 /* 08/III-2016 */
+static void mir_gen(glp_tree *T)
+{ /* generate mixed integer rounding cuts */
+ glp_prob *P, *pool;
+ P = T->mip;
+ pool = glp_create_prob();
+ glp_add_cols(pool, P->n);
+ glp_mir_gen(P, T->mir_gen, pool);
+ if (pool->m > 0)
+ { int i, len, *ind;
+ double *val;
+ ind = xcalloc(1+P->n, sizeof(int));
+ val = xcalloc(1+P->n, sizeof(double));
+ for (i = 1; i <= pool->m; i++)
+ { len = glp_get_mat_row(pool, i, ind, val);
+ glp_ios_add_row(T, NULL, GLP_RF_MIR, 0, len, ind, val,
+ GLP_UP, pool->row[i]->ub);
+ }
+ xfree(ind);
+ xfree(val);
+ }
+ glp_delete_prob(pool);
+ return;
+}
+#endif
+
+#if 1 /* 08/III-2016 */
+static void clq_gen(glp_tree *T, glp_cfg *G)
+{ /* generate clique cut from conflict graph */
+ glp_prob *P = T->mip;
+ int n = P->n;
+ int len, *ind;
+ double *val;
+ ind = talloc(1+n, int);
+ val = talloc(1+n, double);
+ len = glp_clq_cut(T->mip, G, ind, val);
+ if (len > 0)
+ glp_ios_add_row(T, NULL, GLP_RF_CLQ, 0, len, ind, val, GLP_UP,
+ val[0]);
+ tfree(ind);
+ tfree(val);
+ return;
+}
+#endif
+
+static void generate_cuts(glp_tree *T)
+{ /* generate generic cuts with built-in generators */
+ if (!(T->parm->mir_cuts == GLP_ON ||
+ T->parm->gmi_cuts == GLP_ON ||
+ T->parm->cov_cuts == GLP_ON ||
+ T->parm->clq_cuts == GLP_ON)) goto done;
+#if 1 /* 20/IX-2008 */
+ { int i, max_cuts, added_cuts;
+ max_cuts = T->n;
+ if (max_cuts < 1000) max_cuts = 1000;
+ added_cuts = 0;
+ for (i = T->orig_m+1; i <= T->mip->m; i++)
+ { if (T->mip->row[i]->origin == GLP_RF_CUT)
+ added_cuts++;
+ }
+ /* xprintf("added_cuts = %d\n", added_cuts); */
+ if (added_cuts >= max_cuts) goto done;
+ }
+#endif
+ /* generate and add to POOL all cuts violated by x* */
+ if (T->parm->gmi_cuts == GLP_ON)
+ { if (T->curr->changed < 7)
+#if 0 /* 08/III-2016 */
+ ios_gmi_gen(T);
+#else
+ gmi_gen(T);
+#endif
+ }
+ if (T->parm->mir_cuts == GLP_ON)
+ { xassert(T->mir_gen != NULL);
+#if 0 /* 08/III-2016 */
+ ios_mir_gen(T, T->mir_gen);
+#else
+ mir_gen(T);
+#endif
+ }
+ if (T->parm->cov_cuts == GLP_ON)
+ { /* cover cuts works well along with mir cuts */
+#ifdef NEW_COVER /* 13/II-2018 */
+ cov_gen(T);
+#else
+ ios_cov_gen(T);
+#endif
+ }
+ if (T->parm->clq_cuts == GLP_ON)
+ { if (T->clq_gen != NULL)
+#if 0 /* 29/VI-2013 */
+ { if (T->curr->level == 0 && T->curr->changed < 50 ||
+ T->curr->level > 0 && T->curr->changed < 5)
+#else /* FIXME */
+ { if (T->curr->level == 0 && T->curr->changed < 500 ||
+ T->curr->level > 0 && T->curr->changed < 50)
+#endif
+#if 0 /* 08/III-2016 */
+ ios_clq_gen(T, T->clq_gen);
+#else
+ clq_gen(T, T->clq_gen);
+#endif
+ }
+ }
+done: return;
+}
+
+/**********************************************************************/
+
+static void remove_cuts(glp_tree *T)
+{ /* remove inactive cuts (some valueable globally valid cut might
+ be saved in the global cut pool) */
+ int i, cnt = 0, *num = NULL;
+ xassert(T->curr != NULL);
+ for (i = T->orig_m+1; i <= T->mip->m; i++)
+ { if (T->mip->row[i]->origin == GLP_RF_CUT &&
+ T->mip->row[i]->level == T->curr->level &&
+ T->mip->row[i]->stat == GLP_BS)
+ { if (num == NULL)
+ num = xcalloc(1+T->mip->m, sizeof(int));
+ num[++cnt] = i;
+ }
+ }
+ if (cnt > 0)
+ { glp_del_rows(T->mip, cnt, num);
+#if 0
+ xprintf("%d inactive cut(s) removed\n", cnt);
+#endif
+ xfree(num);
+ xassert(glp_factorize(T->mip) == 0);
+ }
+ return;
+}
+
+/**********************************************************************/
+
+static void display_cut_info(glp_tree *T)
+{ glp_prob *mip = T->mip;
+ int i, gmi = 0, mir = 0, cov = 0, clq = 0, app = 0;
+ for (i = mip->m; i > 0; i--)
+ { GLPROW *row;
+ row = mip->row[i];
+ /* if (row->level < T->curr->level) break; */
+ if (row->origin == GLP_RF_CUT)
+ { if (row->klass == GLP_RF_GMI)
+ gmi++;
+ else if (row->klass == GLP_RF_MIR)
+ mir++;
+ else if (row->klass == GLP_RF_COV)
+ cov++;
+ else if (row->klass == GLP_RF_CLQ)
+ clq++;
+ else
+ app++;
+ }
+ }
+ xassert(T->curr != NULL);
+ if (gmi + mir + cov + clq + app > 0)
+ { xprintf("Cuts on level %d:", T->curr->level);
+ if (gmi > 0) xprintf(" gmi = %d;", gmi);
+ if (mir > 0) xprintf(" mir = %d;", mir);
+ if (cov > 0) xprintf(" cov = %d;", cov);
+ if (clq > 0) xprintf(" clq = %d;", clq);
+ if (app > 0) xprintf(" app = %d;", app);
+ xprintf("\n");
+ }
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_driver - branch-and-cut driver
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* int ios_driver(glp_tree *T);
+*
+* DESCRIPTION
+*
+* The routine ios_driver is a branch-and-cut driver. It controls the
+* MIP solution process.
+*
+* RETURNS
+*
+* 0 The MIP problem instance has been successfully solved. This code
+* does not necessarily mean that the solver has found optimal
+* solution. It only means that the solution process was successful.
+*
+* GLP_EFAIL
+* The search was prematurely terminated due to the solver failure.
+*
+* GLP_EMIPGAP
+* The search was prematurely terminated, because the relative mip
+* gap tolerance has been reached.
+*
+* GLP_ETMLIM
+* The search was prematurely terminated, because the time limit has
+* been exceeded.
+*
+* GLP_ESTOP
+* The search was prematurely terminated by application. */
+
+int ios_driver(glp_tree *T)
+{ int p, curr_p, p_stat, d_stat, ret;
+#if 1 /* carry out to glp_tree */
+ int pred_p = 0;
+ /* if the current subproblem has been just created due to
+ branching, pred_p is the reference number of its parent
+ subproblem, otherwise pred_p is zero */
+#endif
+#if 1 /* 18/VII-2013 */
+ int bad_cut;
+ double old_obj;
+#endif
+#if 0 /* 10/VI-2013 */
+ glp_long ttt = T->tm_beg;
+#else
+ double ttt = T->tm_beg;
+#endif
+#if 1 /* 27/II-2016 by Chris */
+ int root_done = 0;
+#endif
+#if 0
+ ((glp_iocp *)T->parm)->msg_lev = GLP_MSG_DBG;
+#endif
+#if 1 /* 16/III-2016 */
+ if (((glp_iocp *)T->parm)->flip)
+#if 0 /* 20/I-2018 */
+ xprintf("WARNING: LONG-STEP DUAL SIMPLEX WILL BE USED\n");
+#else
+ xprintf("Long-step dual simplex will be used\n");
+#endif
+#endif
+ /* on entry to the B&B driver it is assumed that the active list
+ contains the only active (i.e. root) subproblem, which is the
+ original MIP problem to be solved */
+loop: /* main loop starts here */
+ /* at this point the current subproblem does not exist */
+ xassert(T->curr == NULL);
+ /* if the active list is empty, the search is finished */
+ if (T->head == NULL)
+ { if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Active list is empty!\n");
+#if 0 /* 10/VI-2013 */
+ xassert(dmp_in_use(T->pool).lo == 0);
+#else
+ xassert(dmp_in_use(T->pool) == 0);
+#endif
+ ret = 0;
+ goto done;
+ }
+ /* select some active subproblem to continue the search */
+ xassert(T->next_p == 0);
+ /* let the application program select subproblem */
+ if (T->parm->cb_func != NULL)
+ { xassert(T->reason == 0);
+ T->reason = GLP_ISELECT;
+ T->parm->cb_func(T, T->parm->cb_info);
+ T->reason = 0;
+ if (T->stop)
+ { ret = GLP_ESTOP;
+ goto done;
+ }
+ }
+ if (T->next_p != 0)
+ { /* the application program has selected something */
+ ;
+ }
+ else if (T->a_cnt == 1)
+ { /* the only active subproblem exists, so select it */
+ xassert(T->head->next == NULL);
+ T->next_p = T->head->p;
+ }
+ else if (T->child != 0)
+ { /* select one of branching childs suggested by the branching
+ heuristic */
+ T->next_p = T->child;
+ }
+ else
+ { /* select active subproblem as specified by the backtracking
+ technique option */
+ T->next_p = ios_choose_node(T);
+ }
+ /* the active subproblem just selected becomes current */
+ ios_revive_node(T, T->next_p);
+ T->next_p = T->child = 0;
+ /* invalidate pred_p, if it is not the reference number of the
+ parent of the current subproblem */
+ if (T->curr->up != NULL && T->curr->up->p != pred_p) pred_p = 0;
+ /* determine the reference number of the current subproblem */
+ p = T->curr->p;
+ if (T->parm->msg_lev >= GLP_MSG_DBG)
+ { xprintf("-----------------------------------------------------"
+ "-------------------\n");
+ xprintf("Processing node %d at level %d\n", p, T->curr->level);
+ }
+#if 0
+ if (p == 1)
+ glp_write_lp(T->mip, NULL, "root.lp");
+#endif
+#if 1 /* 24/X-2015 */
+ if (p == 1)
+ { if (T->parm->sr_heur == GLP_OFF)
+ { if (T->parm->msg_lev >= GLP_MSG_ALL)
+ xprintf("Simple rounding heuristic disabled\n");
+ }
+ }
+#endif
+ /* if it is the root subproblem, initialize cut generators */
+ if (p == 1)
+ { if (T->parm->gmi_cuts == GLP_ON)
+ { if (T->parm->msg_lev >= GLP_MSG_ALL)
+ xprintf("Gomory's cuts enabled\n");
+ }
+ if (T->parm->mir_cuts == GLP_ON)
+ { if (T->parm->msg_lev >= GLP_MSG_ALL)
+ xprintf("MIR cuts enabled\n");
+ xassert(T->mir_gen == NULL);
+#if 0 /* 06/III-2016 */
+ T->mir_gen = ios_mir_init(T);
+#else
+ T->mir_gen = glp_mir_init(T->mip);
+#endif
+ }
+ if (T->parm->cov_cuts == GLP_ON)
+ { if (T->parm->msg_lev >= GLP_MSG_ALL)
+ xprintf("Cover cuts enabled\n");
+#ifdef NEW_COVER /* 13/II-2018 */
+ xassert(T->cov_gen == NULL);
+ T->cov_gen = glp_cov_init(T->mip);
+#endif
+ }
+ if (T->parm->clq_cuts == GLP_ON)
+ { xassert(T->clq_gen == NULL);
+ if (T->parm->msg_lev >= GLP_MSG_ALL)
+ xprintf("Clique cuts enabled\n");
+#if 0 /* 08/III-2016 */
+ T->clq_gen = ios_clq_init(T);
+#else
+ T->clq_gen = glp_cfg_init(T->mip);
+#endif
+ }
+ }
+#if 1 /* 18/VII-2013 */
+ bad_cut = 0;
+#endif
+more: /* minor loop starts here */
+ /* at this point the current subproblem needs either to be solved
+ for the first time or re-optimized due to reformulation */
+ /* display current progress of the search */
+ if (T->parm->msg_lev >= GLP_MSG_DBG ||
+ T->parm->msg_lev >= GLP_MSG_ON &&
+ (double)(T->parm->out_frq - 1) <=
+ 1000.0 * xdifftime(xtime(), T->tm_lag))
+ show_progress(T, 0);
+ if (T->parm->msg_lev >= GLP_MSG_ALL &&
+ xdifftime(xtime(), ttt) >= 60.0)
+#if 0 /* 16/II-2012 */
+ { glp_long total;
+ glp_mem_usage(NULL, NULL, &total, NULL);
+ xprintf("Time used: %.1f secs. Memory used: %.1f Mb.\n",
+ xdifftime(xtime(), T->tm_beg), xltod(total) / 1048576.0);
+ ttt = xtime();
+ }
+#else
+ { size_t total;
+ glp_mem_usage(NULL, NULL, &total, NULL);
+ xprintf("Time used: %.1f secs. Memory used: %.1f Mb.\n",
+ xdifftime(xtime(), T->tm_beg), (double)total / 1048576.0);
+ ttt = xtime();
+ }
+#endif
+ /* check the mip gap */
+ if (T->parm->mip_gap > 0.0 &&
+ ios_relative_gap(T) <= T->parm->mip_gap)
+ { if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Relative gap tolerance reached; search terminated "
+ "\n");
+ ret = GLP_EMIPGAP;
+ goto done;
+ }
+ /* check if the time limit has been exhausted */
+ if (T->parm->tm_lim < INT_MAX &&
+ (double)(T->parm->tm_lim - 1) <=
+ 1000.0 * xdifftime(xtime(), T->tm_beg))
+ { if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Time limit exhausted; search terminated\n");
+ ret = GLP_ETMLIM;
+ goto done;
+ }
+ /* let the application program preprocess the subproblem */
+ if (T->parm->cb_func != NULL)
+ { xassert(T->reason == 0);
+ T->reason = GLP_IPREPRO;
+ T->parm->cb_func(T, T->parm->cb_info);
+ T->reason = 0;
+ if (T->stop)
+ { ret = GLP_ESTOP;
+ goto done;
+ }
+ }
+ /* perform basic preprocessing */
+ if (T->parm->pp_tech == GLP_PP_NONE)
+ ;
+ else if (T->parm->pp_tech == GLP_PP_ROOT)
+#if 0 /* 27/II-2016 by Chris */
+ { if (T->curr->level == 0)
+#else
+ { if (!root_done)
+#endif
+ { if (ios_preprocess_node(T, 100))
+ goto fath;
+ }
+ }
+ else if (T->parm->pp_tech == GLP_PP_ALL)
+#if 0 /* 27/II-2016 by Chris */
+ { if (ios_preprocess_node(T, T->curr->level == 0 ? 100 : 10))
+#else
+ { if (ios_preprocess_node(T, !root_done ? 100 : 10))
+#endif
+ goto fath;
+ }
+ else
+ xassert(T != T);
+ /* preprocessing may improve the global bound */
+ if (!is_branch_hopeful(T, p))
+ { xprintf("*** not tested yet ***\n");
+ goto fath;
+ }
+ /* solve LP relaxation of the current subproblem */
+ if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Solving LP relaxation...\n");
+ ret = ios_solve_node(T);
+ if (ret == GLP_ETMLIM)
+ goto done;
+ else if (!(ret == 0 || ret == GLP_EOBJLL || ret == GLP_EOBJUL))
+ { if (T->parm->msg_lev >= GLP_MSG_ERR)
+ xprintf("ios_driver: unable to solve current LP relaxation;"
+ " glp_simplex returned %d\n", ret);
+ ret = GLP_EFAIL;
+ goto done;
+ }
+ /* analyze status of the basic solution to LP relaxation found */
+ p_stat = T->mip->pbs_stat;
+ d_stat = T->mip->dbs_stat;
+ if (p_stat == GLP_FEAS && d_stat == GLP_FEAS)
+ { /* LP relaxation has optimal solution */
+ if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Found optimal solution to LP relaxation\n");
+ }
+ else if (d_stat == GLP_NOFEAS)
+ { /* LP relaxation has no dual feasible solution */
+ /* since the current subproblem cannot have a larger feasible
+ region than its parent, there is something wrong */
+ if (T->parm->msg_lev >= GLP_MSG_ERR)
+ xprintf("ios_driver: current LP relaxation has no dual feas"
+ "ible solution\n");
+ ret = GLP_EFAIL;
+ goto done;
+ }
+ else if (p_stat == GLP_INFEAS && d_stat == GLP_FEAS)
+ { /* LP relaxation has no primal solution which is better than
+ the incumbent objective value */
+ xassert(T->mip->mip_stat == GLP_FEAS);
+ if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("LP relaxation has no solution better than incumben"
+ "t objective value\n");
+ /* prune the branch */
+ goto fath;
+ }
+ else if (p_stat == GLP_NOFEAS)
+ { /* LP relaxation has no primal feasible solution */
+ if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("LP relaxation has no feasible solution\n");
+ /* prune the branch */
+ goto fath;
+ }
+ else
+ { /* other cases cannot appear */
+ xassert(T->mip != T->mip);
+ }
+ /* at this point basic solution to LP relaxation of the current
+ subproblem is optimal */
+ xassert(p_stat == GLP_FEAS && d_stat == GLP_FEAS);
+ xassert(T->curr != NULL);
+ T->curr->lp_obj = T->mip->obj_val;
+ /* thus, it defines a local bound to integer optimal solution of
+ the current subproblem */
+ { double bound = T->mip->obj_val;
+ /* some local bound to the current subproblem could be already
+ set before, so we should only improve it */
+ bound = ios_round_bound(T, bound);
+ if (T->mip->dir == GLP_MIN)
+ { if (T->curr->bound < bound)
+ T->curr->bound = bound;
+ }
+ else if (T->mip->dir == GLP_MAX)
+ { if (T->curr->bound > bound)
+ T->curr->bound = bound;
+ }
+ else
+ xassert(T->mip != T->mip);
+ if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Local bound is %.9e\n", bound);
+ }
+ /* if the local bound indicates that integer optimal solution of
+ the current subproblem cannot be better than the global bound,
+ prune the branch */
+ if (!is_branch_hopeful(T, p))
+ { if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Current branch is hopeless and can be pruned\n");
+ goto fath;
+ }
+ /* let the application program generate additional rows ("lazy"
+ constraints) */
+ xassert(T->reopt == 0);
+ xassert(T->reinv == 0);
+ if (T->parm->cb_func != NULL)
+ { xassert(T->reason == 0);
+ T->reason = GLP_IROWGEN;
+ T->parm->cb_func(T, T->parm->cb_info);
+ T->reason = 0;
+ if (T->stop)
+ { ret = GLP_ESTOP;
+ goto done;
+ }
+ if (T->reopt)
+ { /* some rows were added; re-optimization is needed */
+ T->reopt = T->reinv = 0;
+ goto more;
+ }
+ if (T->reinv)
+ { /* no rows were added, however, some inactive rows were
+ removed */
+ T->reinv = 0;
+ xassert(glp_factorize(T->mip) == 0);
+ }
+ }
+ /* check if the basic solution is integer feasible */
+ check_integrality(T);
+ /* if the basic solution satisfies to all integrality conditions,
+ it is a new, better integer feasible solution */
+ if (T->curr->ii_cnt == 0)
+ { if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("New integer feasible solution found\n");
+ if (T->parm->msg_lev >= GLP_MSG_ALL)
+ display_cut_info(T);
+ record_solution(T);
+ if (T->parm->msg_lev >= GLP_MSG_ON)
+ show_progress(T, 1);
+#if 1 /* 11/VII-2013 */
+ ios_process_sol(T);
+#endif
+ /* make the application program happy */
+ if (T->parm->cb_func != NULL)
+ { xassert(T->reason == 0);
+ T->reason = GLP_IBINGO;
+ T->parm->cb_func(T, T->parm->cb_info);
+ T->reason = 0;
+ if (T->stop)
+ { ret = GLP_ESTOP;
+ goto done;
+ }
+ }
+ /* since the current subproblem has been fathomed, prune its
+ branch */
+ goto fath;
+ }
+ /* at this point basic solution to LP relaxation of the current
+ subproblem is optimal, but integer infeasible */
+ /* try to fix some non-basic structural variables of integer kind
+ on their current bounds due to reduced costs */
+ if (T->mip->mip_stat == GLP_FEAS)
+ fix_by_red_cost(T);
+ /* let the application program try to find some solution to the
+ original MIP with a primal heuristic */
+ if (T->parm->cb_func != NULL)
+ { xassert(T->reason == 0);
+ T->reason = GLP_IHEUR;
+ T->parm->cb_func(T, T->parm->cb_info);
+ T->reason = 0;
+ if (T->stop)
+ { ret = GLP_ESTOP;
+ goto done;
+ }
+ /* check if the current branch became hopeless */
+ if (!is_branch_hopeful(T, p))
+ { if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Current branch became hopeless and can be prune"
+ "d\n");
+ goto fath;
+ }
+ }
+ /* try to find solution with the feasibility pump heuristic */
+#if 0 /* 27/II-2016 by Chris */
+ if (T->parm->fp_heur)
+#else
+ if (T->parm->fp_heur && !root_done)
+#endif
+ { xassert(T->reason == 0);
+ T->reason = GLP_IHEUR;
+ ios_feas_pump(T);
+ T->reason = 0;
+ /* check if the current branch became hopeless */
+ if (!is_branch_hopeful(T, p))
+ { if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Current branch became hopeless and can be prune"
+ "d\n");
+ goto fath;
+ }
+ }
+#if 1 /* 25/V-2013 */
+ /* try to find solution with the proximity search heuristic */
+#if 0 /* 27/II-2016 by Chris */
+ if (T->parm->ps_heur)
+#else
+ if (T->parm->ps_heur && !root_done)
+#endif
+ { xassert(T->reason == 0);
+ T->reason = GLP_IHEUR;
+ ios_proxy_heur(T);
+ T->reason = 0;
+ /* check if the current branch became hopeless */
+ if (!is_branch_hopeful(T, p))
+ { if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Current branch became hopeless and can be prune"
+ "d\n");
+ goto fath;
+ }
+ }
+#endif
+#if 1 /* 24/X-2015 */
+ /* try to find solution with a simple rounding heuristic */
+ if (T->parm->sr_heur)
+ { xassert(T->reason == 0);
+ T->reason = GLP_IHEUR;
+ round_heur(T);
+ T->reason = 0;
+ /* check if the current branch became hopeless */
+ if (!is_branch_hopeful(T, p))
+ { if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Current branch became hopeless and can be prune"
+ "d\n");
+ goto fath;
+ }
+ }
+#endif
+ /* it's time to generate cutting planes */
+ xassert(T->local != NULL);
+#ifdef NEW_LOCAL /* 02/II-2018 */
+ xassert(T->local->m == 0);
+#else
+ xassert(T->local->size == 0);
+#endif
+ /* let the application program generate some cuts; note that it
+ can add cuts either to the local cut pool or directly to the
+ current subproblem */
+ if (T->parm->cb_func != NULL)
+ { xassert(T->reason == 0);
+ T->reason = GLP_ICUTGEN;
+ T->parm->cb_func(T, T->parm->cb_info);
+ T->reason = 0;
+ if (T->stop)
+ { ret = GLP_ESTOP;
+ goto done;
+ }
+ }
+#if 1 /* 18/VII-2013 */
+ if (T->curr->changed > 0)
+ { double degrad = fabs(T->curr->lp_obj - old_obj);
+ if (degrad < 1e-4 * (1.0 + fabs(old_obj)))
+ bad_cut++;
+ else
+ bad_cut = 0;
+ }
+ old_obj = T->curr->lp_obj;
+#if 0 /* 27/II-2016 by Chris */
+ if (bad_cut == 0 || (T->curr->level == 0 && bad_cut <= 3))
+#else
+ if (bad_cut == 0 || (!root_done && bad_cut <= 3))
+#endif
+#endif
+ /* try to generate generic cuts with built-in generators
+ (as suggested by Prof. Fischetti et al. the built-in cuts are
+ not generated at each branching node; an intense attempt of
+ generating new cuts is only made at the root node, and then
+ a moderate effort is spent after each backtracking step) */
+#if 0 /* 27/II-2016 by Chris */
+ if (T->curr->level == 0 || pred_p == 0)
+#else
+ if (!root_done || pred_p == 0)
+#endif
+ { xassert(T->reason == 0);
+ T->reason = GLP_ICUTGEN;
+ generate_cuts(T);
+ T->reason = 0;
+ }
+ /* if the local cut pool is not empty, select useful cuts and add
+ them to the current subproblem */
+#ifdef NEW_LOCAL /* 02/II-2018 */
+ if (T->local->m > 0)
+#else
+ if (T->local->size > 0)
+#endif
+ { xassert(T->reason == 0);
+ T->reason = GLP_ICUTGEN;
+ ios_process_cuts(T);
+ T->reason = 0;
+ }
+ /* clear the local cut pool */
+ ios_clear_pool(T, T->local);
+ /* perform re-optimization, if necessary */
+ if (T->reopt)
+ { T->reopt = 0;
+ T->curr->changed++;
+ goto more;
+ }
+ /* no cuts were generated; remove inactive cuts */
+ remove_cuts(T);
+#if 0 /* 27/II-2016 by Chris */
+ if (T->parm->msg_lev >= GLP_MSG_ALL && T->curr->level == 0)
+#else
+ if (T->parm->msg_lev >= GLP_MSG_ALL && !root_done)
+#endif
+ display_cut_info(T);
+#if 1 /* 27/II-2016 by Chris */
+ /* the first node will not be treated as root any more */
+ if (!root_done) root_done = 1;
+#endif
+ /* update history information used on pseudocost branching */
+ if (T->pcost != NULL) ios_pcost_update(T);
+ /* it's time to perform branching */
+ xassert(T->br_var == 0);
+ xassert(T->br_sel == 0);
+ /* let the application program choose variable to branch on */
+ if (T->parm->cb_func != NULL)
+ { xassert(T->reason == 0);
+ xassert(T->br_var == 0);
+ xassert(T->br_sel == 0);
+ T->reason = GLP_IBRANCH;
+ T->parm->cb_func(T, T->parm->cb_info);
+ T->reason = 0;
+ if (T->stop)
+ { ret = GLP_ESTOP;
+ goto done;
+ }
+ }
+ /* if nothing has been chosen, choose some variable as specified
+ by the branching technique option */
+ if (T->br_var == 0)
+ T->br_var = ios_choose_var(T, &T->br_sel);
+ /* perform actual branching */
+ curr_p = T->curr->p;
+ ret = branch_on(T, T->br_var, T->br_sel);
+ T->br_var = T->br_sel = 0;
+ if (ret == 0)
+ { /* both branches have been created */
+ pred_p = curr_p;
+ goto loop;
+ }
+ else if (ret == 1)
+ { /* one branch is hopeless and has been pruned, so now the
+ current subproblem is other branch */
+ /* the current subproblem should be considered as a new one,
+ since one bound of the branching variable was changed */
+ T->curr->solved = T->curr->changed = 0;
+#if 1 /* 18/VII-2013 */
+ /* bad_cut = 0; */
+#endif
+ goto more;
+ }
+ else if (ret == 2)
+ { /* both branches are hopeless and have been pruned; new
+ subproblem selection is needed to continue the search */
+ goto fath;
+ }
+ else
+ xassert(ret != ret);
+fath: /* the current subproblem has been fathomed */
+ if (T->parm->msg_lev >= GLP_MSG_DBG)
+ xprintf("Node %d fathomed\n", p);
+ /* freeze the current subproblem */
+ ios_freeze_node(T);
+ /* and prune the corresponding branch of the tree */
+ ios_delete_node(T, p);
+ /* if a new integer feasible solution has just been found, other
+ branches may become hopeless and therefore must be pruned */
+ if (T->mip->mip_stat == GLP_FEAS) cleanup_the_tree(T);
+ /* new subproblem selection is needed due to backtracking */
+ pred_p = 0;
+ goto loop;
+done: /* display progress of the search on exit from the solver */
+ if (T->parm->msg_lev >= GLP_MSG_ON)
+ show_progress(T, 0);
+ if (T->mir_gen != NULL)
+#if 0 /* 06/III-2016 */
+ ios_mir_term(T->mir_gen), T->mir_gen = NULL;
+#else
+ glp_mir_free(T->mir_gen), T->mir_gen = NULL;
+#endif
+#ifdef NEW_COVER /* 13/II-2018 */
+ if (T->cov_gen != NULL)
+ glp_cov_free(T->cov_gen), T->cov_gen = NULL;
+#endif
+ if (T->clq_gen != NULL)
+#if 0 /* 08/III-2016 */
+ ios_clq_term(T->clq_gen), T->clq_gen = NULL;
+#else
+ glp_cfg_free(T->clq_gen), T->clq_gen = NULL;
+#endif
+ /* return to the calling program */
+ return ret;
+}
+
+/* eof */